[1]
|
J. W. Stoneback, B. D. Owens, J. Sykes, G. S. Athwal, L. Pointer, J. M. Wolf, Incidence of elbow dislocations in the United States population, J. Bone Jt. Surg., 94 (2012), 240–245. https://doi.org/10.2106/JBJS.J.01663 doi: 10.2106/JBJS.J.01663
|
[2]
|
J. N. Doornberg, T. Bosse, M. S. Cohen, J. B. Jupiter, D. Ring, P. Kloen, Temporary presence of myofibroblasts in human elbow capsule after trauma, J. Bone Jt. Surg., 96 (2014), e36. https://doi.org/10.2106/JBJS.M.00388 doi: 10.2106/JBJS.M.00388
|
[3]
|
A. L. C. Lindenhovius, J. B. Jupiter, The posttraumatic stiff elbow: A Review of the Literature, J. Hand Surg., 32 (2007), 1605–1623. https://doi.org/10.1016/j.jhsa.2007.09.015. doi: 10.1016/j.jhsa.2007.09.015
|
[4]
|
J. O. Sajbjerg, The stiff elbow: How I do it, Acta Orthop. Scand., 67 (1996), 626–631. https://doi.org/10.3109/17453679608997771 doi: 10.3109/17453679608997771
|
[5]
|
C. L. Dunham, R. M. Castile, N. Havlioglu, A. M. Chamberlain, S. P. Lake, Temporal patterns of motion in flexion-extension and pronation-supination in a rat model of posttraumatic elbow contracture, Clin. Orthop. Relat. Res., 476 (2018), 1878–1889. https://doi.org/10.1097/CORR.0000000000000388 doi: 10.1097/CORR.0000000000000388
|
[6]
|
L. E. Karbach, J. Elfar, Elbow Instability: Anatomy, biomechanics, diagnostic maneuvers, and testing, J. Hand Surg., 42 (2017), 118–126. https://doi.org/10.1016/j.jhsa.2016.11.025 doi: 10.1016/j.jhsa.2016.11.025
|
[7]
|
B. Attum, W. Obremskey, Posttraumatic elbow stiffness: A critical analysis review, JBJS Rev., 4 (2016). https://doi.org/10.2106/JBJS.RVW.15.00084 doi: 10.2106/JBJS.RVW.15.00084
|
[8]
|
D. Ring, J. B. Jupiter, Operative treatment of elbow stiffness, JBJS Essent. Surg. Tech., 1 (2011), e18. https://doi.org/10.2106/jbjs.st.k.00010 doi: 10.2106/jbjs.st.k.00010
|
[9]
|
K. A. Hildebrand, M. Zhang, A. D. Befus, P. T. Salo, D. A. Hart, A myofibroblast-mast cell-neuropeptide axis of fibrosis in post-traumatic joint contractures: An in vitro analysis of mechanistic components, J. Orthop. Res., 32 (2014), 1290–1296. https://doi.org/10.1002/jor.22676 doi: 10.1002/jor.22676
|
[10]
|
J. N. Doornberg, T. Bosse, M. S. Cohen, J. B. Jupiter, D. Ring, P. Kloen, Temporary presence of myofibroblasts in human elbow capsule after trauma, J. Bone Jt. Surg., 96 (2014), e36. https://doi.org/10.2106/JBJS.M.00388 doi: 10.2106/JBJS.M.00388
|
[11]
|
M. S. Cohen, D. R. Schimmel, K. Masuda, H. Hastings, C. Muehleman, Structural and biochemical evaluation of the elbow capsule after trauma, J. Shoulder Elbow Surg., 16 (2007), 484–490. https://doi.org/10.1016/j.jse.2006.06.018 doi: 10.1016/j.jse.2006.06.018
|
[12]
|
L. M. Reichel, O. A. Morales, Gross anatomy of the elbow capsule: A cadaveric study, J. Hand Surg., 38 (2013), 110–116. https://doi.org/10.1016/j.jhsa.2012.09.031 doi: 10.1016/j.jhsa.2012.09.031
|
[13]
|
B. F. Morrey, L. J. Askew, E. Y. Chao, A biomechanical study of normal functional elbow motion, J. Bone Jt. Surg., 63 (1981), 872–877. https://doi.org/10.2106/00004623-198163060-00002 doi: 10.2106/00004623-198163060-00002
|
[14]
|
G. Bhabra, C. S. Modi, T. Lawrence, Managing the stiff elbow, Orthop. Trauma, 30 (2016), 329–335. https://doi.org/10.1016/j.mporth.2016.04.005 doi: 10.1016/j.mporth.2016.04.005
|
[15]
|
C. C. L. Yau, J. Viveen, D. Eygendaal, B. The, Management of the stiff elbow, Orthop. Trauma, 34 (2020), 206–212. https://doi.org/10.1016/j.mporth.2020.05.003 doi: 10.1016/j.mporth.2020.05.003
|
[16]
|
R. Sivakumar, V. Somasheker, P. K. Shingi, T. Vinoth, M. Chidambaram, Treatment of stiff elbow in young patients with interpositional arthroplasty for mobility: Case Series, J. Orthop. Case Rep., 6 (2016), 49–52. https://doi.org/10.13107/jocr.2250-0685.566 doi: 10.13107/jocr.2250-0685.566
|
[17]
|
A. M. G. Cavalcanti, R. S. O. Filho, H. C. Gomes, A. B. S. Martins, E. B. Garcia, L. M. Ferreira, Review of articulated elbow orthotics for joint stiffness rehabilitation, Acta Ortop. Bras., 30 (2022), e254358. https://doi.org/10.1590/1413-785220223005e254358 doi: 10.1590/1413-785220223005e254358
|
[18]
|
P. M. Bonutti, J. E. Windau, B. A. Ables, B. G. Miller, Static progressive stretch to reestablish elbow range of motion, Clin. Orthop. Relat., 303 (1994), 128–134. https://doi.org/10.1097/00003086-199406000-00015 doi: 10.1097/00003086-199406000-00015
|
[19]
|
G. L. Gallucci, J. G. Boretto, M. A. Dávalos, A. Donndorff, V. A. Alfie, P. De Carli, Dynamic splint for the treatment of stiff elbow, Shoulder Elbow, 3 (2011), 52–55. https://doi.org/10.1111/j.1758-5740.2010.00096.x doi: 10.1111/j.1758-5740.2010.00096.x
|
[20]
|
G. Sim, J. Fleming, C. Glasgow, Mobilizing orthoses in the management of post-traumatic elbow contractures: A survey of Australian hand therapy practice, J. Hand Ther., 34 (2021), 90–99. https://doi.org/10.1016/j.jht.2019.12.014 doi: 10.1016/j.jht.2019.12.014
|
[21]
|
N. Young, N. Terrington, D. Francis, L. S. Robinson, Orthotic management of fixed flexion deformity of the proximal interphalangeal joint following traumatic injury: A systematic review, Hong Kong J. Occup. Ther., 31 (2018), 3–13. https://doi.org/10.1177/1569186118764067 doi: 10.1177/1569186118764067
|
[22]
|
M. J. Gluck, C. M. Beck, K. M. Sochol, D. A. London, M. R. Hausman, Comparative strength of elbow splint designs: a new splint design as a stronger alternative to posterior splints, J. Shoulder Elbow Surg., 28 (2019), e125–e130. https://doi.org/10.1016/j.jse.2018.10.015 doi: 10.1016/j.jse.2018.10.015
|
[23]
|
A. L. C. Lindenhovius, J. N. Doornberg, K. M. Brouwer, J. B. Jupiter, C. S. Mudgal, D. Ring, A prospective randomized controlled trial of dynamic versus static progressive elbow splinting for posttraumatic elbow stiffness, J. Bone Jt. Surg., 94 (2012), 694–700. https://doi.org/10.2106/JBJS.J.01761 doi: 10.2106/JBJS.J.01761
|
[24]
|
G. L. Gallucci, J. G. Boretto, M. A. Dávalos, A. Donndorff, V. A. Alfie, P. D. Carli, Dynamic splint for the treatment of stiff elbow, Shoulder Elbow, 3 (2011), 52–55. https://doi.org/10.1111/j.1758-5740.2010.00096.x doi: 10.1111/j.1758-5740.2010.00096.x
|
[25]
|
M. Li, M. S. Venäläinen, S. S. Chandra, R. Patel, J. Fripp, C. Engstrom, et al., Discrete element and finite element methods provide similar estimations for hip joint contact mechanics during walking gait, J. Biomech., 115 (2021), 110163. https://doi.org/10.1016/j.jbiomech.2020.110163 doi: 10.1016/j.jbiomech.2020.110163
|
[26]
|
M. E. Mononen, J. S. Jurvelin, R. K. Korhonen, Effects of radial tears and partial meniscectomy of lateral meniscus on the knee joint mechanics during the stance phase of the gait cycle-A 3D finite element study, J. Orthop. Res., 31 (2013), 1208–1217. https://doi.org/10.1002/jor.22358 doi: 10.1002/jor.22358
|
[27]
|
P. Xiang, K. M. Liew, Predicting buckling behavior of microtubules based on an atomistic-continuum model, Int. J. Solids Struct., 48 (2011), 1730–1737. https://doi.org/10.1016/j.ijsolstr.2011.02.022 doi: 10.1016/j.ijsolstr.2011.02.022
|
[28]
|
P. Xiang, K. M. Liew, Dynamic behaviors of long and curved microtubules based on an atomistic-continuum model, Comput. Methods Appl. Mech. Eng., (2012), 123–132. https://doi.org/10.1016/j.cma.2012.02.023 doi: 10.1016/j.cma.2012.02.023
|
[29]
|
P. Xiang, K. M. Liew, Free vibration analysis of microtubules based on an atomistic-continuum model, J. Sound Vib., 331 (2012), 213–230. https://doi.org/10.1016/j.jsv.2011.08.024 doi: 10.1016/j.jsv.2011.08.024
|
[30]
|
P. Xiang, K. M. Liew, A computational framework for transverse compression of microtubules based on a higher-order Cauchy-Born rule, Comput. Methods Appl. Mech. Eng., 254 (2013), 14–30. https://doi.org/10.1016/j.cma.2012.10.013 doi: 10.1016/j.cma.2012.10.013
|
[31]
|
P. Xiang, L. W. Zhang, K. M. Liew, Analysis of macromolecular microtubules using the potential-based matrix displacement method, Compos. Struct., 127 (2015), 224–230. https://doi.org/10.1016/j.compstruct.2015.03.004 doi: 10.1016/j.compstruct.2015.03.004
|
[32]
|
P. Xiang, L. W. Zhang, K. M. Liew, A mesh-free computational framework for predicting vibration behaviors of microtubules in an elastic medium, Compos. Struct., 149 (2016), 41–53. https://doi.org/10.1016/j.compstruct.2016.03.063 doi: 10.1016/j.compstruct.2016.03.063
|
[33]
|
K. Kamei, E. Sasaki, K. Fujisaki, Y. Harada, Y. Yamamoto, Y. Ishibashi, Ulnar collateral ligament dysfunction increases stress on the humeral capitellum: a finite element analysis, JSES Int., 5 (2021), 307–313. https://doi.org/10.1016/j.jseint.2020.10.022 doi: 10.1016/j.jseint.2020.10.022
|
[34]
|
A. Zarifian, A. A. Fough, D. Eygendaal, M. Rivlin, S. A. M. Shaegh, A. R. Kachooei, Length of plates and number of screws for the fixation of distal humerus fractures: A finite element biomechanical study, J. Hand Surg., 47 (2022), 690. https://doi.org/10.1016/j.jhsa.2021.07.010 doi: 10.1016/j.jhsa.2021.07.010
|
[35]
|
E. Akkurt, M. Yıldırım, F. Erenler, O. M. Tosun, M. F. Akkurt, B. Akkurt, et al., Mechanical evaluation for the finite element analysis of intramedullary nailing and plate screw system used in humerus transverse fractures, J. Orthop., 2023. https://doi.org/10.1016/j.jor.2023.10.024 doi: 10.1016/j.jor.2023.10.024
|
[36]
|
A. Schonning, B. Oommen, I. Ionescu, T. Conway, Hexahedral mesh development of free-formed geometry: The human femur exemplified, Comput. Aided Design, 41 (2009), 566–572. https://doi.org/10.1016/j.cad.2007.10.007 doi: 10.1016/j.cad.2007.10.007
|
[37]
|
M. Bendjaballah, A. Shirazi-Adl, D. Zukor, Finite element analysis of human knee joint in varus-valgus, Clin. Biomech., 12 (1997), 139–148. https://doi.org/10.1016/S0268-0033(97)00072-7 doi: 10.1016/S0268-0033(97)00072-7
|
[38]
|
J. G. Zhang, F. Wang, R. Zhou, Q. Xue, A three-dimensional finite element model of the cervical spine: an investigation of whiplash injury, Med. Biol. Eng. Comput., 49 (2011), 193–201. https://doi.org/10.1007/s11517-010-0708-9 doi: 10.1007/s11517-010-0708-9
|
[39]
|
P. Büchler, N. A. Ramaniraka, L. R. Rakotomanana, J. P. Iannotti, A. Farron, A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints, Clin. Biomech., 17 (2002), 630–639. https://doi.org/10.1016/S0268-0033(02)00106-7 doi: 10.1016/S0268-0033(02)00106-7
|
[40]
|
K. M. Quapp, J. A. Weiss, Material characterization of human medial collateral ligament, J. Biomech. Eng., 120 (1998), 757–763. https://doi.org/10.1115/1.2834890 doi: 10.1115/1.2834890
|
[41]
|
M. M. Schulz, T. Q. Lee, M. D. Sandusky, J. E. Tibone, P. J. McMahon, The healing effects on the biomechanical properties of joint capsular tissue treated with Ho:YAG laser: An in vivo rabbit study, Arthroscopy, 17 (2001), 342–347. https://doi.org/10.1053/jars.2001.19677 doi: 10.1053/jars.2001.19677
|
[42]
|
F. Li, H. Li, W. Hu, S. Su, B. Wang, Simulation of muscle activation with coupled nonlinear FE models, J. Mech. Med. Biol., 16 (2016), 1650082. https://doi.org/10.1142/S0219519416500822 doi: 10.1142/S0219519416500822
|
[43]
|
S. Hedenstierna, P. Halldin, K. Brolin, Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue, Comput. Methods Biomech. Biomed. Eng., 11 (2008), 627–639. https://doi.org/10.1080/17474230802312516 doi: 10.1080/17474230802312516
|
[44]
|
B. S. Myers, C. A. V. Ee, D. L. A. Camacho, C. T. Woolley, T. M. Best, On the structural and material properties of mammalian skeletal muscle and its relevance to human, Cervical Impact Dyn., 104 (1995), 3095–3105. https://doi.org/10.4271/952723 doi: 10.4271/952723
|
[45]
|
B. S. Myers, C. T. Woolley, T. L. Slotter, W. E. Garrett, T. M. Best, The influence of strain rate on the passive and stimulated engineering stress-large strain behavior of the rabbit tibialis anterior muscle, J. Biomech. Eng., 120 (1998), 126–132. https://doi.org/10.1115/1.2834292 doi: 10.1115/1.2834292
|
[46]
|
K. Takatori, H. Hashizume, H. Wake, H. Inoue, N. Nagayama, Analysis of stress distribution in the humeroradial joint, J. Orthop. Sci., 7 (2002), 650–657. https://doi.org/10.1007/s007760200116 doi: 10.1007/s007760200116
|
[47]
|
F. Wang, S. Jia, M. Li, K. Pan, J. Zhang, Y. Fan, Effect of the medial collateral ligament and the lateral ulnar collateral ligament injury on elbow stability: a finite element analysis, Comput. Methods Biomech. Biomed. Eng., 24 (2021), 1517–1529. https://doi.org/10.1080/10255842.2021.1898601 doi: 10.1080/10255842.2021.1898601
|
[48]
|
L. Verstuyft, P. Caekebeke, R. van Riet, Postoperative rehabilitation in elbow surgery, J. Clin. Orthop. Trauma., 20 (2021), 101497. https://doi.org/10.1016/j.jcot.2021.101479 doi: 10.1016/j.jcot.2021.101479
|
[49]
|
Z. Y. Sun, Development of a New Classification and Functional Score for Elbow Stiffness and Exploration of Long-Term Clinical Outcomes of Open Arthrolysis, Ph.D thesis, Shanghai Jiao Tong University, 2020. https://doi.org/10.27307/d.cnki.gsjtu.2020.000096
|
[50]
|
T. K. K. Koo, A. F. T. Mak, A neuromusculoskeletal model to simulate the constant angular velocity elbow extension test of spasticity, Med. Eng. Phys., 28 (2006), 60–69. https://doi.org/10.1016/j.medengphy.2005.03.012 doi: 10.1016/j.medengphy.2005.03.012
|
[51]
|
T. Kodek, M. Munih, An analysis of static and dynamic joint torques in elbow flexion-extension movements, Simul. Modell. Pract. Theory, 11 (2003), 297–311. https://doi.org/10.1016/S1569-190X(03)00063-7 doi: 10.1016/S1569-190X(03)00063-7
|
[52]
|
M. Hackl, K. Wegmann, S. L. Kahmann, N. Heinze, M. Staat, L. P. Müller, et al., Radial shortening osteotomy reduces radiocapitellar contact pressures while preserving valgus stability of the elbow, Knee Surg. Sport Traumatol. Arthroscopy, 25 (2017), 2280–2288. https://doi.org/10.1007/s00167-017-4468-z doi: 10.1007/s00167-017-4468-z
|
[53]
|
K. Takatori, H. Hashizume, H. Wake, H. Inoue, N. Nagayama, Analysis of stress distribution in the humeroradial joint, J. Orthop. Sci., 7 (2002), 650–657. https://doi.org/10.1007/s007760200116 doi: 10.1007/s007760200116
|
[54]
|
G. J. W. King, B. F. Morrey, K. N. An, Stabilizers of the elbow, J. Shoulder Elbow Surg., 2 (1993), 165–174. https://doi.org/10.1016/S1058-2746(09)80053-0 doi: 10.1016/S1058-2746(09)80053-0
|
[55]
|
S. H. Gallay, R. R. Richards, S. W. O'Driscoll, Intraarticular capacity and compliance of stiff and normal elbows, Arthroscopy, 9 (1993), 9–13. https://doi.org/10.1016/S0749-8063(05)80336-6 doi: 10.1016/S0749-8063(05)80336-6
|
[56]
|
K. Kimata, M. Yasui, H. Yokota, S. Hirai, M. Naito, T. Nakano, Transverse ligament of the elbow joint: an anatomic study of cadavers, J. Shoulder Elbow Surg., 28 (2019), 2253–2258. https://doi.org/10.1016/j.jse.2019.04.048 doi: 10.1016/j.jse.2019.04.048
|
[57]
|
G. F. Solitro, R. Fattori, K. Smidt, C. Nguyen, M. M. Morandi, R. S. Barton, Role of the transverse ligament of the ulnar collateral ligament of the elbow: a biomechanical study, JSES Int., 5 (2021), 549–553. https://doi.org/10.1016/j.jseint.2021.01.009 doi: 10.1016/j.jseint.2021.01.009
|
[58]
|
B. F. Morrey, K. N. An, Stability of the elbow: Osseous constraints, J. Shoulder Elbow Surg., 14 (2005), S174–S178. https://doi.org/10.1016/j.jse.2004.09.031 doi: 10.1016/j.jse.2004.09.031
|
[59]
|
C. L. B. Guglielmetti, M. E. C. Gracitelli, J. H. Assunção, F. B. Andrade-Silva, M. M. N. Pessa, A. A. Ferreira-Neto, et al., Randomized trial for the treatment of post-traumatic elbow stiffness: surgical release vs. rehabilitation, J. Shoulder Elbow Surg., 29 (2020), 1522–1529. https://doi.org/10.1016/j.jse.2020.03.023 doi: 10.1016/j.jse.2020.03.023
|
[60]
|
E. S. Veltman, J. N. Doornberg, D. Eygendaal, M. P. J. van den Bekerom, Static progressive versus dynamic splinting for posttraumatic elbow stiffness: a systematic review of 232 patients, Arch. Orthop. Trauma. Surg., 135 (2015), 613–617. https://doi.org/10.1007/s00402-015-2199-5 doi: 10.1007/s00402-015-2199-5
|
[61]
|
C. C. L. Yau, J. Viveen, D. Eygendaal, B. The, Management of the stiff elbow, Orthop. Trauma., 34 (2020), 206–212. https://doi.org/10.1016/j.mporth.2020.05.003 doi: 10.1016/j.mporth.2020.05.003
|
[62]
|
E. Mobedi, W. Kim, M. Leonori, N. G. Tsagarakis, A. Ajoudani, Design and control of an assistive device for elbow effort-compensation, IEEE/ASME Trans. Mechatron., 2023. https://doi.org/10.1109/TMECH.2023.3267681 doi: 10.1109/TMECH.2023.3267681
|
[63]
|
M. Ceccarelli, M. Riabtsev, A. Fort, M. Russo, M. A. Laribi, M. Urizar, Design and experimental characterization of l-CADEL v2, an assistive device for elbow motion, Sensors, 21 (2021), 1–15. https://doi.org/10.3390/s21155149 doi: 10.3390/s21155149
|
[64]
|
J. D. A. Rosero, D. C. B. Rosero, L. F. A. Realpe, A. F. S. Pino, E. R. González, Mechatronic Design of a prototype orthosis to support elbow joint rehabilitation, Bioengineering, 9 (2022), 287. https://doi.org/10.3390/bioengineering9070287 doi: 10.3390/bioengineering9070287
|
[65]
|
R. Guachi, F. Napoleoni, F. Pipitone, M. Controzzi, Preliminary design and development of a selectable stiffness joint for elbow orthosis, in 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids), (2022), 458–463. https://doi.org/10.1109/Humanoids53995.2022.10000188
|