More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power system protection. An adaptive protection coordination strategy is proposed in this paper. It will trace the connectivity of the system structure to determine the set of relay numbers as a tracking path. According to the topology of the system structure, the tracking path can be divided into two categories: the main feeder path and the branch path. The time multiplier setting (TMS) of each relay can be used to evaluate the operation time of the over-current relay (OCR), and the operation time of the relay can be used to evaluate the fitness of the TMS setting combination. Furthermore, the relay protection coordination problem can be modeled to minimize the accumulated summation of all primary and backup relay operation time (OT) subject to the coordination time interval (CTI) limitation. A modified particle swarm optimization (MPSO) algorithm with adaptive self-cognition and society operation scheme (ASSOS) was proposed and utilized to determine TMS for each relay on the tracking path. A 16-bus test MV system with distributed generators (DGs) will be applied to test the adaptive protection coordination approach proposed in this paper. The results show that the proposed MPSO algorithm reduces the overall OT and relieves the impact on protection coordination settings after DG joins the system. The paper also tests and compares the proposed MPSO with other metaheuristic intelligence-based random search algorithms to prove that MPSO possesses with increased efficiency and performance.
Citation: Tung-Sheng Zhan, Chun-Lien Su, Yih-Der Lee, Jheng-Lun Jiang, Jin-Ting Yu. Adaptive OCR coordinationin distribution system with distributed energy resources contribution[J]. AIMS Energy, 2023, 11(6): 1278-1305. doi: 10.3934/energy.2023058
[1] | Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On ψ-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005 |
[2] | M. J. Huntul . Inverse source problems for multi-parameter space-time fractional differential equations with bi-fractional Laplacian operators. AIMS Mathematics, 2024, 9(11): 32734-32756. doi: 10.3934/math.20241566 |
[3] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[4] | Zihan Yue, Wei Jiang, Boying Wu, Biao Zhang . A meshless method based on the Laplace transform for multi-term time-space fractional diffusion equation. AIMS Mathematics, 2024, 9(3): 7040-7062. doi: 10.3934/math.2024343 |
[5] | Junseok Kim . A normalized Caputo–Fabrizio fractional diffusion equation. AIMS Mathematics, 2025, 10(3): 6195-6208. doi: 10.3934/math.2025282 |
[6] | Lahcene Rabhi, Mohammed Al Horani, Roshdi Khalil . Existence results of mild solutions for nonlocal fractional delay integro-differential evolution equations via Caputo conformable fractional derivative. AIMS Mathematics, 2022, 7(7): 11614-11634. doi: 10.3934/math.2022647 |
[7] | Choukri Derbazi, Hadda Hammouche . Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory. AIMS Mathematics, 2020, 5(3): 2694-2709. doi: 10.3934/math.2020174 |
[8] | Amjid Ali, Teruya Minamoto, Rasool Shah, Kamsing Nonlaopon . A novel numerical method for solution of fractional partial differential equations involving the ψ-Caputo fractional derivative. AIMS Mathematics, 2023, 8(1): 2137-2153. doi: 10.3934/math.2023110 |
[9] | Jagdev Singh, Jitendra Kumar, Devendra Kumar, Dumitru Baleanu . A reliable numerical algorithm for fractional Lienard equation arising in oscillating circuits. AIMS Mathematics, 2024, 9(7): 19557-19568. doi: 10.3934/math.2024954 |
[10] | Apassara Suechoei, Parinya Sa Ngiamsunthorn . Extremal solutions of φ−Caputo fractional evolution equations involving integral kernels. AIMS Mathematics, 2021, 6(5): 4734-4757. doi: 10.3934/math.2021278 |
More and more distributed energy resources (DERs) are being added to the medium-voltage (MV) or low-voltage (LV) radial distribution networks (RDNs). These distributed power sources will cause the redistribution of power flow and fault current, bringing new challenges to the coordination of power system protection. An adaptive protection coordination strategy is proposed in this paper. It will trace the connectivity of the system structure to determine the set of relay numbers as a tracking path. According to the topology of the system structure, the tracking path can be divided into two categories: the main feeder path and the branch path. The time multiplier setting (TMS) of each relay can be used to evaluate the operation time of the over-current relay (OCR), and the operation time of the relay can be used to evaluate the fitness of the TMS setting combination. Furthermore, the relay protection coordination problem can be modeled to minimize the accumulated summation of all primary and backup relay operation time (OT) subject to the coordination time interval (CTI) limitation. A modified particle swarm optimization (MPSO) algorithm with adaptive self-cognition and society operation scheme (ASSOS) was proposed and utilized to determine TMS for each relay on the tracking path. A 16-bus test MV system with distributed generators (DGs) will be applied to test the adaptive protection coordination approach proposed in this paper. The results show that the proposed MPSO algorithm reduces the overall OT and relieves the impact on protection coordination settings after DG joins the system. The paper also tests and compares the proposed MPSO with other metaheuristic intelligence-based random search algorithms to prove that MPSO possesses with increased efficiency and performance.
Ostrowski proved the following interesting and useful integral inequality in 1938, see [18] and [15, page:468].
Theorem 1.1. Let f:I→R, where I⊆R is an interval, be a mapping differentiable in the interior I∘ of I and let a,b∈I∘ with a<b. If |f′(x)|≤M for all x∈[a,b], then the following inequality holds:
|f(x)−1b−a∫baf(t)dt|≤M(b−a)[14+(x−a+b2)2(b−a)2] | (1.1) |
for all x∈[a,b]. The constant 14 is the best possible in sense that it cannot be replaced by a smaller one.
This inequality gives an upper bound for the approximation of the integral average 1b−a∫baf(t)dt by the value of f(x) at point x∈[a,b]. In recent years, such inequalities were studied extensively by many researchers and numerous generalizations, extensions and variants of them appeared in a number of papers, see [1,2,10,11,19,20,21,22,23].
A function f:I⊆R→R is said to be convex (AA−convex) if the inequality
f(tx+(1−t)y)≤tf(x)+(1−t)f(y) |
holds for all x,y∈I and t∈[0,1].
In [4], Anderson et al. also defined generalized convexity as follows:
Definition 1.1. Let f:I→(0,∞) be continuous, where I is subinterval of (0,∞). Let M and N be any two Mean functions. We say f is MN-convex (concave) if
f(M(x,y))≤(≥)N(f(x),f(y)) |
for all x,y∈I.
Recall the definitions of AG−convex functions, GG−convex functions and GA− functions that are given in [16] by Niculescu:
The AG−convex functions (usually known as log−convex functions) are those functions f:I→(0,∞) for which
x,y∈I and λ∈[0,1]⟹f(λx+(1−λ)y)≤f(x)1−λf(y)λ, | (1.2) |
i.e., for which logf is convex.
The GG−convex functions (called in what follows multiplicatively convex functions) are those functions f:I→J (acting on subintervals of (0,∞)) such that
x,y∈I and λ∈[0,1]⟹f(x1−λyλ)≤f(x)1−λf(y)λ. | (1.3) |
The class of all GA−convex functions is constituted by all functions f:I→R (defined on subintervals of (0,∞)) for which
x,y∈I and λ∈[0,1]⟹f(x1−λyλ)≤(1−λ)f(x)+λf(y). | (1.4) |
The article organized three sections as follows: In the first section, some definitions an preliminaries for Riemann-Liouville and new fractional conformable integral operators are given. Also, some Ostrowski type results involving Riemann-Liouville fractional integrals are in this section. In the second section, an identity involving new fractional conformable integral operator is proved. Further, new Ostrowski type results involving fractional conformable integral operator are obtained by using some inequalities on established lemma and some well-known inequalities such that triangle inequality, Hölder inequality and power mean inequality. After the proof of theorems, it is pointed out that, in special cases, the results reduce the some results involving Riemann-Liouville fractional integrals given by Set in [27]. Finally, in the last chapter, some new results for AG-convex functions has obtained involving new fractional conformable integrals.
Let [a,b] (−∞<a<b<∞) be a finite interval on the real axis R. The Riemann-Liouville fractional integrals Jαa+f and Jαb−f of order α∈C (ℜ(α)>0) with a≥0 and b>0 are defined, respectively, by
Jαa+f(x):=1Γ(α)∫xa(x−t)α−1f(t)dt(x>a;ℜ(α)>0) | (1.5) |
and
Jαb−f(x):=1Γ(α)∫bx(t−x)α−1f(t)dt(x<b;ℜ(α)>0) | (1.6) |
where Γ(t)=∫∞0e−xxt−1dx is an Euler Gamma function.
We recall Beta function (see, e.g., [28, Section 1.1])
B(α,β)={∫10tα−1(1−t)β−1dt(ℜ(α)>0;ℜ(β)>0)Γ(α)Γ(β)Γ(α+β) (α,β∈C∖Z−0). | (1.7) |
and the incomplete gamma function, defined for real numbers a>0 and x≥0 by
Γ(a,x)=∫∞xe−tta−1dt. |
For more details and properties concerning the fractional integral operators (1.5) and (1.6), we refer the reader, for example, to the works [3,5,6,7,8,9,14,17] and the references therein. Also, several new and recent results of fractional derivatives can be found in the papers [29,30,31,32,33,34,35,36,37,38,39,40,41,42].
In [27], Set gave some Ostrowski type results involving Riemann-Liouville fractional integrals, as follows:
Lemma 1.1. Let f:[a,b]→R be a differentiable mapping on (a,b) with a<b. If f′∈L[a,b], then for all x∈[a,b] and α>0 we have:
(x−a)α+(b−x)αb−af(x)−Γ(α+1)b−a[Jαx−f(a)+Jαx+f(b)]=(x−a)α+1b−a∫10tαf′(tx+(1−t)a)dt−(b−x)α+1b−a∫10tαf′(tx+(1−t)b)dt |
where Γ(α) is Euler gamma function.
By using the above lemma, he obtained some new Ostrowski type results involving Riemann-Liouville fractional integral operators, which will generalized via new fractional integral operators in this paper.
Theorem 1.2. Let f:[a,b]⊂[0,∞)→R be a differentiable mapping on (a,b) with a<b such that f′∈L[a,b]. If |f′| is s−convex in the second sense on [a,b] for some fixed s∈(0,1] and |f′(x)|≤M, x∈[a,b], then the following inequality for fractional integrals with α>0 holds:
|(x−a)α+(b−x)αb−af(x)−Γ(α+1)b−a[Jαx−f(a)+Jαx+f(b)]|≤Mb−a(1+Γ(α+1)Γ(s+1)Γ(α+s+1))[(x−a)α+1+(b−x)α+1α+s+1] |
where Γ is Euler gamma function.
Theorem 1.3. Let f:[a,b]⊂[0,∞)→R be a differentiable mapping on (a,b) with a<b such that f′∈L[a,b]. If |f′|q is s−convex in the second sense on [a,b] for some fixed s∈(0,1],p,q>1 and |f′(x)|≤M, x∈[a,b], then the following inequality for fractional integrals holds:
|(x−a)α+(b−x)αb−af(x)−Γ(α+1)b−a[Jαx−f(a)+Jαx+f(b)]|≤M(1+pα)1p(2s+1)1q[(x−a)α+1+(b−x)α+1b−a] |
where 1p+1q=1, α>0 and Γ is Euler gamma function.
Theorem 1.4. Let f:[a,b]⊂[0,∞)→R be a differentiable mapping on (a,b) with a<b such that f′∈L[a,b]. If |f′|q is s−convex in the second sense on [a,b] for some fixed s∈(0,1],q≥1 and |f′(x)|≤M, x∈[a,b], then the following inequality for fractional integrals holds:
|(x−a)α+(b−x)αb−af(x)−Γ(α+1)b−a[Jαx−f(a)+Jαx+f(b)]|≤M(1+α)1−1q(1+Γ(α+1)Γ(s+1)Γ(α+s+1))1q[(x−a)α+1+(b−x)α+1b−a] |
where α>0 and Γ is Euler gamma function.
Theorem 1.5. Let f:[a,b]⊂[0,∞)→R be a differentiable mapping on (a,b) with a<b such that f′∈L[a,b]. If |f′|q is s−concave in the second sense on [a,b] for some fixed s∈(0,1],p,q>1, x∈[a,b], then the following inequality for fractional integrals holds:
|(x−a)α+(b−x)αb−af(x)−Γ(α+1)b−a[Jαx−f(a)+Jαx+f(b)]|≤2s−1q(1+pα)1p(b−a)[(x−a)α+1|f′(x+a2)|+(b−x)α+1|f′(b+x2)|] |
where 1p+1q=1, α>0 and Γ is Euler gamma function.
Some fractional integral operators generalize the some other fractional integrals, in special cases, as in the following integral operator. Jarad et. al. [13] has defined a new fractional integral operator. Also, they gave some properties and relations between the some other fractional integral operators, as Riemann-Liouville fractional integral, Hadamard fractional integrals, generalized fractional integral operators etc., with this operator.
Let β∈C,Re(β)>0, then the left and right sided fractional conformable integral operators has defined respectively, as follows;
βaJαf(x)=1Γ(β)∫xa((x−a)α−(t−a)αα)β−1f(t)(t−a)1−αdt; | (1.8) |
βJαbf(x)=1Γ(β)∫bx((b−x)α−(b−t)αα)β−1f(t)(b−t)1−αdt. | (1.9) |
The results presented here, being general, can be reduced to yield many relatively simple inequalities and identities for functions associated with certain fractional integral operators. For example, the case α=1 in the obtained results are found to yield the same results involving Riemann-Liouville fractional integrals, given before, in literatures. Further, getting more knowledge, see the paper given in [12]. Recently, some studies on this integral operators appeared in literature. Gözpınar [13] obtained Hermite-Hadamard type results for differentiable convex functions. Also, Set et. al. obtained some new results for quasi−convex, some different type convex functions and differentiable convex functions involving this new operator, see [24,25,26]. Motivating the new definition of fractional conformable integral operator and the studies given above, first aim of this study is obtaining new generalizations.
Lemma 2.1. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. Then the following equality for fractional conformable integrals holds:
(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]=(x−a)αβ+1b−a∫10(1−(1−t)αα)βf′(tx+(1−t)a)dt+(b−x)αβ+1b−a∫10(1−(1−t)αα)βf′(tx+(1−t)b)dt. |
where α,β>0 and Γ is Euler Gamma function.
Proof. Using the definition as in (1.8) and (1.9), integrating by parts and and changing variables with u=tx+(1−t)a and u=tx+(1−t)b in
I1=∫10(1−(1−t)αα)βf′(tx+(1−t)a)dt,I2=∫10(1−(1−t)αα)βf′(tx+(1−t)b)dt |
respectively, then we have
I1=∫10(1−(1−t)αα)βf′(tx+(1−t)a)dt=(1−(1−t)αα)βf(tx+(1−t)a)x−a|10−β∫10(1−(1−t)αα)β−1(1−t)α−1f(tx+(1−t)a)x−adt=f(x)αβ(x−a)−β∫xa(1−(x−ux−a)αα)β−1(x−ux−a)α−1f(u)x−adux−a=f(x)αβ(x−a)−β(x−a)αβ+1∫xa((x−a)α−(x−u)αα)β−1(x−u)α−1f(u)du=f(x)αβ(x−a)−Γ(β+1)(x−a)αβ+1βJαxf(a), |
similarly
I2=∫10(1−(1−t)αα)βf′(tx+(1−t)b)dt=−f(x)αβ(b−x)+Γ(β+1)(b−x)αβ+1βxJαf(b) |
By multiplying I1 with (x−a)αβ+1b−a and I2 with (b−x)αβ+1b−a we get desired result.
Remark 2.1. Taking α=1 in Lemma 2.1 is found to yield the same result as Lemma 1.1.
Theorem 2.1. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. If |f′| is convex on [a,b] and |f′(x)|≤M with x∈[a,b], then the following inequality for fractional conformable integrals holds:
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤Mαβ+1B(1α,β+1)[(x−a)αβ+1b−a+(b−x)αβ+1b−a] | (2.1) |
where α,β>0, B(x,y) and Γ are Euler beta and Euler gamma functions respectively.
Proof. From Lemma 2.1 we can write
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1b−a∫10(1−(1−t)αα)β|f′(tx+(1−t)a)|dt+(b−x)αβ+1b−a∫10(1−(1−t)αα)β|f′(tx+(1−t)b)|dt≤(x−a)αβ+1b−a[∫10(1−(1−t)αα)βt|f′(x)|dt+∫10(1−(1−t)αα)β(1−t)|f′(a)|dt]+(b−x)αβ+1b−a[∫10(1−(1−t)αα)βt|f′(x)|dt+∫10(1−(1−t)αα)β(1−t)|f′(b)|dt]. | (2.2) |
Notice that
∫10(1−(1−t)αα)βtdt=1αβ+1[B(1α,β+1)−B(2α,β+1)],∫10(1−(1−t)αα)β(1−t)dt=B(2α,β+1)αβ+1. | (2.3) |
Using the fact that, |f′(x)|≤M for x∈[a,b] and combining (2.3) with (2.2), we get desired result.
Remark 2.2. Taking α=1 in Theorem 3.1 and s=1 in Theorem 1.2 are found to yield the same results.
Theorem 2.2. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. If |f′|q is convex on [a,b], p,q>1 and |f′(x)|≤M with x∈[a,b], then the following inequality for fractional conformable integrals holds:
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤M[B(βp+1,1α)αβ+1]1p[(x−a)αβ+1b−a+(b−x)αβ+1b−a] | (2.4) |
where 1p+1q=1, α,β>0, B(x,y) and Γ are Euler beta and Euler gamma functions respectively.
Proof. By using Lemma 2.1, convexity of |f′|q and well-known Hölder's inequality, we have
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1b−a[(∫10(1−(1−t)αα)βp)1p(∫10|f′(tx+(1−t)a)|qdt)1q]+(b−x)αβ+1b−a[(∫10(1−(1−t)αα)βp)1p(∫10|f′(tx+(1−t)b)|qdt)1q]. | (2.5) |
Notice that, changing variables with x=1−(1−t)α, we get
∫10(1−(1−t)αα)βp=B(βp+1,1α)αβ+1. | (2.6) |
Since |f′|q is convex on [a,b] and |f′|q≤Mq, we can easily observe that,
∫10|f′(tx+(1−t)a)|qdt≤∫10t|f′(x)|qdt+∫10(1−t)|f′(a)|qdt≤Mq. | (2.7) |
As a consequence, combining the equality (2.6) and inequality (2.7) with the inequality (2.5), the desired result is obtained.
Remark 2.3. Taking α=1 in Theorem 3.2 and s=1 in Theorem 1.3 are found to yield the same results.
Theorem 2.3. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. If |f′|q is convex on [a,b], q≥1 and |f′(x)|≤M with x∈[a,b], then the following inequality for fractional conformable integrals holds:
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤Mαβ+1B(1α,β+1)[(x−a)αβ+1b−a+(b−x)αβ+1b−a] | (2.8) |
where α,β>0, B(x,y) and Γ are Euler Beta and Euler Gamma functions respectively.
Proof. By using Lemma 2.1, convexity of |f″|q and well-known power-mean inequality, we have
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1b−a(∫10(1−(1−t)αα)βdt)1−1q(∫10(1−(1−t)αα)β|f′(tx+(1−t)a)|qdt)1q+(b−x)αβ+1b−a(∫10(1−(1−t)αα)βdt)1−1q(∫10(1−(1−t)αα)β|f′(tx+(1−t)b)|qdt)1q. | (2.9) |
Since |f′|q is convex and |f′|q≤Mq, by using (2.3) we can easily observe that,
∫10(1−(1−t)αα)β|f′(tx+(1−t)a)|qdt≤∫10(1−(1−t)αα)β[t|f′(x)|q+(1−t)|f′(a)|q]dt≤Mqαβ+1B(1α,β+1). | (2.10) |
As a consequence,
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1b−a(1αβ+1B(1α,β+1))1−1q(Mqαβ+1B(1α,β+1))1q+(b−x)αβ+1b−a(1αβ+1B(1α,β+1))1−1q(Mqαβ+1B(1α,β+1))1q=Mαβ+1B(1α,β+1)[(x−a)αβ+1b−a+(b−x)αβ+1b−a]. | (2.11) |
This means that, the desired result is obtained.
Remark 2.4. Taking α=1 in Theorem 3.2 and s=1 in Theorem 1.4 are found to yield the same results.
Theorem 2.4. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. If |f′|q is concave on [a,b], p,q>1 and |f′(x)|≤M with x∈[a,b], then the following inequality for fractional conformable integrals holds:
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤[B(βp+1,1α)αβ+1]1p[(x−a)αβ+1b−a|f′(x+a2)|+(b−x)αβ+1b−a|f′(x+b2)|] | (2.12) |
where 1p+1q=1, α,β>0, B(x,y) and Γ are Euler Beta and Gamma functions respectively.
Proof. By using Lemma 2.1 and well-known Hölder's inequality, we have
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1b−a[(∫10(1−(1−t)αα)βp)1p(∫10|f′(tx+(1−t)a)|qdt)1q]+(b−x)αβ+1b−a[(∫10(1−(1−t)αα)βp)1p(∫10|f′(tx+(1−t)b)|qdt)1q]. | (2.13) |
Since |f″|q is concave, it can be easily observe that,
|f′(tx+(1−t)a)|qdt≤|f′(x+a2)|,|f′(tx+(1−t)b)|qdt≤|f′(b+x2)|. | (2.14) |
Notice that, changing variables with x=1−(1−t)α, as in (2.6), we get,
∫10(1−(1−t)αα)βp=B(βp+1,1α)αβ+1. | (2.15) |
As a consequence, substituting (2.14) and (2.15) in (2.13), the desired result is obtained.
Remark 2.5. Taking α=1 in Theorem 3.2 and s=1 in Theorem 1.5 are found to yield the same results.
Some new inequalities for AG-convex functions has obtained in this chapter. For the simplicity, we will denote |f′(x)||f′(a)|=ω and |f′(x)||f′(b)|=ψ.
Theorem 3.1. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. If |f′| is AG−convex on [a,b], then the following inequality for fractional conformable integrals holds:
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤|f′(a)|(x−a)αβ+1αβ(b−a)[ω−1lnω−(ωln−αβ−1(ω)(Γ(αβ+1)−Γ(αβ+1,lnω)))]+|f′(b)|(b−x)αβ+1αβ(b−a)[ψ−1lnψ−(ψln−αβ−1(ψ)(Γ(αβ+1)−Γ(αβ+1,lnψ)))] |
where α>0,β>1, Re(lnω)<0∧Re(lnψ)<0∧Re(αβ)>−1,B(x,y),Γ(x,y) and Γ are Euler Beta, Euler incomplete Gamma and Euler Gamma functions respectively.
Proof. From Lemma 2.1 and definition of AG−convexity, we have
(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]≤(x−a)αβ+1b−a∫10(1−(1−t)αα)β|f′(tx+(1−t)a)|dt+(b−x)αβ+1b−a∫10(1−(1−t)αα)β|f′(tx+(1−t)b)|dt≤(x−a)αβ+1b−a[∫10(1−(1−t)αα)β|f′(a)|(|f′(x)||f′(a)|)tdt]+(b−x)αβ+1b−a[∫10(1−(1−t)αα)β|f′(b)|(|f′(x)||f′(b)|)tdt]. | (3.1) |
By using the fact that |1−(1−t)α|β≤1−|1−t|αβ for α>0,β>1, we can write
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1αβ(b−a)[∫10(1−|1−t|αβ)|f′(a)|(|f′(x)||f′(a)|)tdt]+(b−x)αβ+1αβ(b−a)[∫10(1−|1−t|αβ)|f′(b)|(|f′(x)||f′(b)|)tdt]. |
By computing the above integrals, we get the desired result.
Theorem 3.2. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. If |f′|q is AG−convex on [a,b] and p,q>1, then the following inequality for fractional conformable integrals holds:
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(B(βp+1,1α)αβ+1)1p[|f′(a)|(x−a)αβ+1b−a(ωq−1qlnω)1q+|f′(b)|(b−x)αβ+1b−a(ψq−1qlnψ)1q]. |
where 1p+1q=1, α,β>0, B(x,y) and Γ are Euler beta and Euler gamma functions respectively.
Proof. By using Lemma 2.1, AG−convexity of |f′|q and well-known Hölder's inequality, we can write
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1b−a[(∫10(1−(1−t)αα)βp)1p(|f′(a)|q∫10(|f′(x)||f′(a)|)qtdt)1q]+(b−x)αβ+1b−a[(∫10(1−(1−t)αα)βp)1p(|f′(b)|q∫10(|f′(x)||f′(b)|)qtdt)1q]. |
By a simple computation, one can obtain
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(B(βp+1,1α)αβ+1)1p×[|f′(a)|(x−a)αβ+1b−a(ωq−1qlnω)1q+|f′(b)|(b−x)αβ+1b−a(ψq−1qlnψ)1q]. |
This completes the proof.
Corollary 3.1. In our results, some new Ostrowski type inequalities can be derived by choosing |f′|≤M. We omit the details.
The authors declare that no conflicts of interest in this paper.
[1] |
Holguin JP, Rodriguez DC, Ramos G (2020) Reverse power flow (RPF) detection and impact on protection coordination of distribution systems. IEEE Trans Ind Appl 56: 2393–2401. https://doi.org/10.1109/TIA.2020.2969640 doi: 10.1109/TIA.2020.2969640
![]() |
[2] |
Zeineldin HH, Mohamed YARI, Khadkikar V, et al. (2013) A protection coordination index for evaluating distributed generation impacts on protection for meshed distribution systems. IEEE Trans Smart Grid 4: 1523–1532. https://doi.org/10.1109/TSG.2013.2263745 doi: 10.1109/TSG.2013.2263745
![]() |
[3] |
Wan H, Li KK, Wong KP (2010) An adaptive multiagent approach to protection relay coordination with distributed generators in industrial power distribution system. IEEE Trans Ind Appl 46: 2118–2124. https://doi.org/10.1109/TIA.2010.2059492 doi: 10.1109/TIA.2010.2059492
![]() |
[4] |
Isherwood N, Rahman MS, Oo AMT (2017) Distribution feeder protection and reconfiguration using multi-agent approach. Proceeding of Australasian Universities Power Engineering Conference (AUPEC) 1–6. https://doi.org/10.1109/AUPEC.2017.8282425 doi: 10.1109/AUPEC.2017.8282425
![]() |
[5] |
Kayyali D, Zeineldin H, Diabat A, et al. (2020) An optimal integrated approach considering distribution system reconfiguration and protection coordination. Proceeding of 2020 IEEE Power & Energy Society General Meeting (PESGM) 1–5. https://doi.org/10.1109/PESGM41954.2020.9281412 doi: 10.1109/PESGM41954.2020.9281412
![]() |
[6] |
Ghotbi-Maleki M, Chabanloo RM, Zeineldin HH, et al. (2021) Design of setting group-based overcurrent protection scheme for active distribution networks using MILP. IEEE Trans Smart Grid 12: 1185–1193. https://doi.org/10.1109/TSG.2020.3027371 doi: 10.1109/TSG.2020.3027371
![]() |
[7] |
Alam MN, Chakrabarti S, Tiwari VK (2020) Protection coordination with high penetration of solar power to distribution networks. Proceeding of 2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES) 132–137. https://doi.org/10.1109/SPIES48661.2020.9243146 doi: 10.1109/SPIES48661.2020.9243146
![]() |
[8] |
Abdul Rahim MN, Mokhlis H, Bakar AHA, et al. (2019) Protection coordination toward optimal network reconfiguration and DG Sizing. IEEE Access 7: 163700–163718. https://doi.org/10.1109/ACCESS.2019.2952652 doi: 10.1109/ACCESS.2019.2952652
![]() |
[9] |
Zhan H, Wang C, Wang Y, et al. (2016) Relay protection coordination integrated optimal placement and sizing of distributed generation sources in distribution networks. IEEE Trans Smart Grid 7: 55–65. https://doi.org//10.1109/TSG.2015.2420667 doi: 10.1109/TSG.2015.2420667
![]() |
[10] |
Pedraza A, Reyes D, Gomez C, et al. (2015) Optimization methodology to distributed generation location in distribution networks assessing protections coordination. IEEE Latin America Trans 13: 1398–1406. https://doi.org//10.1109/TLA.2015.7111995 doi: 10.1109/TLA.2015.7111995
![]() |
[11] |
Saldarriaga-Zuluaga SD, López-Lezama JM, Muñoz-Galeano N (2021) Adaptive protection coordination scheme in microgrids using directional over-current relays with non-standard characteristics. Heliyon 7: e06665. https://doi.org/10.1016/j.heliyon.2021.e06665 doi: 10.1016/j.heliyon.2021.e06665
![]() |
[12] |
Mahat P, Chen Z, Bak-Jensen B, et al. (2011) A simple adaptive overcurrent protection of distribution systems with distributed generation. IEEE Trans Smart Grid 2: 428–437. https://doi.org//10.1109/TSG.2011.2149550 doi: 10.1109/TSG.2011.2149550
![]() |
[13] |
Jongepier AG, Van der Sluis L (1997) Adaptive distance protection of double-circuit lines using artificial neural networks. IEEE Trans on Power Delivery 12: 97–105. https://doi.org//10.1109/61.568229 doi: 10.1109/61.568229
![]() |
[14] |
Musirikare A, Pujiantara M, Tjahjono A, et al. (2018) ANN-based modeling of directional overcurrent relay characteristics applied in radial distribution system with distributed generations. Proceeding of 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE) 52–57. https://doi.org//10.1109/ICITEED.2018.8534834 doi: 10.1109/ICITEED.2018.8534834
![]() |
[15] |
Rahmatullah D, Dewantara BY, Iradiratu DPK (2018) Adaptive DOCR coordination in loop electrical distribution system with DG using artificial neural network LMBP. Proceeding of 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) 560–565. https://doi.org//10.1109/ISRITI.2018.8864433 doi: 10.1109/ISRITI.2018.8864433
![]() |
[16] |
Chiang MY, Huang SC, Hsiao TC, et al. (2022) Optimal sizing and location of photovoltaic generation and energy storage systems in an unbalanced distribution system. Energies 15: 6682. https://doi.org/10.3390/en15186682 doi: 10.3390/en15186682
![]() |
[17] |
Javadian SAM, Tamizkar R, Haghifam MR (2009) A Protection and reconfiguration scheme for distribution networks with DG. Proceeding of 2009 IEEE Bucharest Power Tech Conference 1–8. https://doi.org/10.1109/PTC.2009.5282063 doi: 10.1109/PTC.2009.5282063
![]() |
[18] |
Akmal M, Al-Naemi F, Iqbal N, et al. (2019) Impact of distributed PV generation on relay coordination and power quality. Proceeding of 2019 IEEE Milan PowerTech 1–6. https://doi.org/10.1109/PTC.2019.8810791 doi: 10.1109/PTC.2019.8810791
![]() |
[19] |
Soni AK, Kumar A, Panda RK, et al. (2023) Adaptive coordination of relays in AC microgrid considering operational and topological changes. IEEE Systems Journal 17: 3071–3082. https://doi.org/10.1109/JSYST.2022.3227311 doi: 10.1109/JSYST.2022.3227311
![]() |
[20] | The Institute of Electrical and Electronics Engineers, Inc. (2001) IEEE recommended practice for protection and coordination of industrial and commercial power systems, New York: IEEE press, 1–710. |
[21] |
Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks (ICNN'95) 4: 1942–1948. https://doi.org//10.1109/ICNN.1995.488968 doi: 10.1109/ICNN.1995.488968
![]() |
[22] |
Eberhart R, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. Proceedings of the 2000 Congress on Evolutionary Computation (CEC00) 1: 84–88. https://doi.org//10.1109/CEC.2000.870279 doi: 10.1109/CEC.2000.870279
![]() |
1. | Anjali Upadhyay, Surendra Kumar, The exponential nature and solvability of stochastic multi-term fractional differential inclusions with Clarke’s subdifferential, 2023, 168, 09600779, 113202, 10.1016/j.chaos.2023.113202 | |
2. | Amadou Diop, Wei-Shih Du, Existence of Mild Solutions for Multi-Term Time-Fractional Random Integro-Differential Equations with Random Carathéodory Conditions, 2021, 10, 2075-1680, 252, 10.3390/axioms10040252 | |
3. | Yong-Kui Chang, Jianguo Zhao, Some new asymptotic properties on solutions to fractional evolution equations in Banach spaces, 2021, 0003-6811, 1, 10.1080/00036811.2021.1969016 | |
4. | Ahmad Al-Omari, Hanan Al-Saadi, António M. Lopes, Impulsive fractional order integrodifferential equation via fractional operators, 2023, 18, 1932-6203, e0282665, 10.1371/journal.pone.0282665 | |
5. | Hiba El Asraoui, Ali El Mfadel, M’hamed El Omari, Khalid Hilal, Existence of mild solutions for a multi-term fractional differential equation via ψ-(γ,σ)-resolvent operators, 2023, 16, 1793-5571, 10.1142/S1793557123502121 | |
6. | Zhiyuan Yuan, Luyao Wang, Wenchang He, Ning Cai, Jia Mu, Fractional Neutral Integro-Differential Equations with Nonlocal Initial Conditions, 2024, 12, 2227-7390, 1877, 10.3390/math12121877 | |
7. | Jia Mu, Zhiyuan Yuan, Yong Zhou, Mild Solutions of Fractional Integrodifferential Diffusion Equations with Nonlocal Initial Conditions via the Resolvent Family, 2023, 7, 2504-3110, 785, 10.3390/fractalfract7110785 |