
Oncology research has focused extensively on estrogen hormones and their function in breast cancer proliferation. Mathematical modeling is essential for the analysis and simulation of breast cancers. This research presents a novel approach to examine the therapeutic and inhibitory effects of hormone and estrogen therapies on the onset of breast cancer. Our proposed mathematical model comprises a nonlinear coupled system of partial differential equations, capturing intricate interactions among estrogen, cytotoxic T lymphocytes, dormant cancer cells, and active cancer cells. The model's parameters are meticulously estimated through experimental studies, and we conduct a comprehensive global sensitivity analysis to assess the uncertainty of these parameter values. Remarkably, our findings underscore the pivotal role of hormone therapy in curtailing breast tumor growth by blocking estrogen's influence on cancer cells. Beyond this crucial insight, our proposed model offers an integrated framework to delve into the complexity of tumor progression and immune response under hormone therapy. We employ diverse experimental datasets encompassing gene expression profiles, spatial tumor morphology, and cellular interactions. Integrating multidimensional experimental data with mathematical models enhances our understanding of breast cancer dynamics and paves the way for personalized treatment strategies. Our study advances our comprehension of estrogen receptor-positive breast cancer and exemplifies a transformative approach that merges experimental data with cutting-edge mathematical modeling. This framework promises to illuminate the complexities of cancer progression and therapy, with broad implications for oncology.
Citation: Abeer S. Alnahdi, Muhammad Idrees. Nonlinear dynamics of estrogen receptor-positive breast cancer integrating experimental data: A novel spatial modeling approach[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 21163-21185. doi: 10.3934/mbe.2023936
[1] | Fathy H. Riad, Eslam Hussam, Ahmed M. Gemeay, Ramy A. Aldallal, Ahmed Z.Afify . Classical and Bayesian inference of the weighted-exponential distribution with an application to insurance data. Mathematical Biosciences and Engineering, 2022, 19(7): 6551-6581. doi: 10.3934/mbe.2022309 |
[2] | S. H. Sathish Indika, Norou Diawara, Hueiwang Anna Jeng, Bridget D. Giles, Dilini S. K. Gamage . Modeling the spread of COVID-19 in spatio-temporal context. Mathematical Biosciences and Engineering, 2023, 20(6): 10552-10569. doi: 10.3934/mbe.2023466 |
[3] | Kai Wang, Zhenzhen Lu, Xiaomeng Wang, Hui Li, Huling Li, Dandan Lin, Yongli Cai, Xing Feng, Yateng Song, Zhiwei Feng, Weidong Ji, Xiaoyan Wang, Yi Yin, Lei Wang, Zhihang Peng . Current trends and future prediction of novel coronavirus disease (COVID-19) epidemic in China: a dynamical modeling analysis. Mathematical Biosciences and Engineering, 2020, 17(4): 3052-3061. doi: 10.3934/mbe.2020173 |
[4] | Sarah R. Al-Dawsari, Khalaf S. Sultan . Modeling of daily confirmed Saudi COVID-19 cases using inverted exponential regression. Mathematical Biosciences and Engineering, 2021, 18(3): 2303-2330. doi: 10.3934/mbe.2021117 |
[5] | Manal M. Yousef, Rehab Alsultan, Said G. Nassr . Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on Type-II progressive censoring data. Mathematical Biosciences and Engineering, 2023, 20(2): 1674-1694. doi: 10.3934/mbe.2023076 |
[6] | Mohamed S. Eliwa, Buthaynah T. Alhumaidan, Raghad N. Alqefari . A discrete mixed distribution: Statistical and reliability properties with applications to model COVID-19 data in various countries. Mathematical Biosciences and Engineering, 2023, 20(5): 7859-7881. doi: 10.3934/mbe.2023340 |
[7] | Francisco Julian Ariza-Hernandez, Juan Carlos Najera-Tinoco, Martin Patricio Arciga-Alejandre, Eduardo Castañeda-Saucedo, Jorge Sanchez-Ortiz . Bayesian inverse problem for a fractional diffusion model of cell migration. Mathematical Biosciences and Engineering, 2024, 21(4): 5826-5837. doi: 10.3934/mbe.2024257 |
[8] | Wael S. Abu El Azm, Ramy Aldallal, Hassan M. Aljohani, Said G. Nassr . Estimations of competing lifetime data from inverse Weibull distribution under adaptive progressively hybrid censored. Mathematical Biosciences and Engineering, 2022, 19(6): 6252-6275. doi: 10.3934/mbe.2022292 |
[9] | Walid Emam, Khalaf S. Sultan . Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148 |
[10] | Xiaomei Feng, Jing Chen, Kai Wang, Lei Wang, Fengqin Zhang, Zhen Jin, Lan Zou, Xia Wang . Phase-adjusted estimation of the COVID-19 outbreak in South Korea under multi-source data and adjustment measures: a modelling study. Mathematical Biosciences and Engineering, 2020, 17(4): 3637-3648. doi: 10.3934/mbe.2020205 |
Oncology research has focused extensively on estrogen hormones and their function in breast cancer proliferation. Mathematical modeling is essential for the analysis and simulation of breast cancers. This research presents a novel approach to examine the therapeutic and inhibitory effects of hormone and estrogen therapies on the onset of breast cancer. Our proposed mathematical model comprises a nonlinear coupled system of partial differential equations, capturing intricate interactions among estrogen, cytotoxic T lymphocytes, dormant cancer cells, and active cancer cells. The model's parameters are meticulously estimated through experimental studies, and we conduct a comprehensive global sensitivity analysis to assess the uncertainty of these parameter values. Remarkably, our findings underscore the pivotal role of hormone therapy in curtailing breast tumor growth by blocking estrogen's influence on cancer cells. Beyond this crucial insight, our proposed model offers an integrated framework to delve into the complexity of tumor progression and immune response under hormone therapy. We employ diverse experimental datasets encompassing gene expression profiles, spatial tumor morphology, and cellular interactions. Integrating multidimensional experimental data with mathematical models enhances our understanding of breast cancer dynamics and paves the way for personalized treatment strategies. Our study advances our comprehension of estrogen receptor-positive breast cancer and exemplifies a transformative approach that merges experimental data with cutting-edge mathematical modeling. This framework promises to illuminate the complexities of cancer progression and therapy, with broad implications for oncology.
Data modeling has become extremely complicated in recent years as a result of the massive amount of data collected from many sectors, mainly in engineering, medicine, ecology, and renewable energy. The most popular option for analyzing count data sets is the Poisson distribution. The Poisson distribution has the drawback of being unable to represent overdispersed data sets. Overdispersion happens when the variation exceeds the mean. For count data sets, many researchers have presented mixed-Poisson distributions such as Poisson inverse Gaussian by [1], Conway–Maxwell–Poisson [2], Generalized Poisson Lindley [3], Poisson Weibull [4], Poisson Ishita [5], Poisson quasi-Lindley [6], Poisson Xgamma [7,8], Poisson XLindley [9], Poisson Moment Exponential [10], among authors. Even though there are several discrete models in the literature, there is still plenty of room to suggest a new discretized model that is acceptable under a variety of scenarios.
Let X be a random variable having Ramos and Louzada distribution [11] with the probability density function (PDF) given by
f(x;λ)=(τ2−2τ+x)τ2(τ−1)e−(xτ), τ≥2,x>0. | (1) |
where τ is the scale parameter.
In this study, a new one-parameter discrete distribution for modeling count observations is introduced by compounding the Poisson distribution with Ramous-Louzada (RL) distribution. The resulting model is called the Poisson Ramous-Louzada (PRL) distribution. The major reason for the selection of the RL distribution as a compounding distribution is because of its simple form, which is needed to compute the statistical properties of the proposed distribution and estimate the unknown parameter. The proposed model may be used to model count datasets, which are frequently seen in real-world data modeling. To build a mixed Poisson model, it is assumed that the Poisson model's parameter is a random variable (RV) with a continuous distribution, and the count variable is drawn from the Poisson distribution conditional on the random parameter. As a result, the count variable's marginal distribution is a mixed Poisson distribution.
The remainder of the paper is structured as follows: The new model is described in Section 2 and gives graphical representations of PMF, and HRF. Section 3 deduces several mathematical characteristics. Section 4 estimates the PRL parameter using the following classical estimation methods, maximum likelihood estimation (MLE), Anderson Darling (AD), Cramer von Mises (CVM), ordinary least-squares (OLS) and weighted least squares (WLS), and a simulation study is also given. Section 5 additionally discusses the Bayesian model formulation for the suggested distribution. Section 6 examines three real-world data sets to demonstrate the versatility of the PRL distribution. Section 6 also includes a Bayesian study of real-world data sets using Markov chain Monte Carlo methods. Section 7 concludes with some recommendations.
A random variable X is said to follow the Poisson Ramos-Louzada distribution if it possesses the following stochastic representation
(X|θ)∼Poisson(g(θ)) |
(θ|τ)∼RL(τ) |
We call the marginal distribution of X the Poisson Ramos-Louzada distribution. The model is denoted by PRL(τ).
Theorem 1: The PMF of PRL distribution is given by
P(X=x,τ)=(1+1τ)−x(x−1+τ(τ−1))(τ−1)(1+τ)2;x=0,1,2,3,…&τ≥2 |
Proof: The PMF of the new probability model can be obtained as
g(x|θ)=e−θθxx!;x=0,1,2,3,…&θ>0 |
when its parameter θ follows RL distribution
f(θ;τ)=(τ2−2τ+θ)τ2(τ−1)e−(θτ) |
We have
P(X=x,τ)=∞∫0g(x|θ)f(θ;τ)dθ =1x!τ2(τ−1)∞∫0e−θθx(τ2−2τ+θ)e−(θτ)dθ =1x!τ2(τ−1)((τ2−2τ)∞∫0e−θθxe−(θτ)dθ+∞∫0e−θθx+1e−(θτ)dθ) =1x!τ2(τ−1)((τ2−2τ)(1+1τ)−x−1Γ(1+x)+(1+1τ)−2−xΓ(2+x)) P(X=x,τ)=(1+1τ)−x(x−1+τ(τ−1))(τ−1)(1+τ)2;x=0,1,2,3,…&τ≥2. | (2) |
The PMF behavior of the Poisson Ramos-Louzada distribution for various parameter values is shown in Figure 1.
As can be seen, the PMF has a positively skewed and can be used to discuss the count data that is positively skewed. The corresponding CDF of the discrete Poisson Ramos-Louzada distribution is given as
F(X=x)=pr(X≤x)=1−∞∑v=x+1P(v) =1−(1+1τ)−xτ(x+τ2)(τ−1)(1+τ)2;x=0,1,2,…;τ≥2. | (3) |
The corresponding survival function is
S(x;τ)=(1+1τ)−xτ(x+τ2)(τ−1)(1+τ)2, | (4) |
The hazard rate function (HRF), and reversed hazard rate function can be expressed as
h(x;τ)=x+τ(τ−1)−1τ(x+τ2), | (5) |
and
r(x;τ)=1−x+τ−τ2xτ+τ3−(1+1τ)x(τ−1)(1+τ)2. | (6) |
The graphs below depict the behavior of the HRF of the discrete PRL distribution for various parameter values.
This section has examined some statistical measures of the PRL distribution. Moments, the moment generating function (MGF), and the probability generation function are among them (pgf).
Assume X is a PRL random variable, the rth factorial moments can be derived as
μ′(r)=E[E(X(r)|θ)], where X(r)=X(X−1)(X−2)…(X−r+1) |
=1τ2(τ−1)∞∫0[∞∑x=0x(r)e−θθxx!](τ2−2τ+θ)e−(θτ)dθ |
=1τ2(τ−1)∞∫0[θr∞∑x=re−θθx−r(x−r)!](τ2−2τ+θ)e−(θτ)dθ |
Taking x+r in place of x within the bracket, we get
μ′(r)=1τ2(τ−1)∞∫0[θr∞∑x=0e−θθxx!](τ2−2τ+θ)e−(θτ)dθ=1τ2(τ−1)∞∫0θr(τ2−2τ+θ)e−(θτ)dθ=τr(−1+r+τ)Γ(1+r)τ−1. | (7) |
The first four factorial moments can be expressed as
μ′(1)=τ2τ−1, |
μ′(2)=2τ2(1+τ)τ−1, |
μ′(3)=6τ3(2+τ)τ−1, |
and
μ′(4)=24τ4(3+τ)τ−1. |
The first four moments about the mean of the PRL distribution are obtained.
μ2=τ2(τ2+τ−3)(τ−1)2, | (8) |
μ3=τ2(2τ4+3τ3−14τ2+4τ+7)(τ−1)3, | (9) |
μ4=τ2(9τ6+18τ5−92τ4+41τ3+77τ2−41τ−15)(τ−1)4, | (10) |
Using Eqs (8)–(10), the Index of Dispersion (ID), coefficient of skewness (CS), and coefficient of Kurtosis (CK) can be derived in closed forms,
ID(X)=Var(X)Mean(X)=τ2+τ−3τ−1, | (11) |
CS(X)=μ3(μ2)3╱2=τ2(7+4τ−14τ2+3τ3+2τ4)(τ−1)3(τ2(−3+τ+τ2)(−1+τ)2)3/2, | (12) |
and
CK(X)=9τ6+18τ5−92τ4+41τ3+77τ2−41τ−15τ2(τ2+τ−3)2. | (13) |
The moment-generating function of RV X can be expressed as
MX(s)=∞∑x=0exsP(X=x,τ) =τ(τ−es(τ−2)−1)−1(τ−1)(1+τ−esτ)2. | (14) |
The probability-generating function of PRL distribution can be derived as
PX(t)=∞∑x=0txP(X=x,τ) =−1−τ+2tτ+τ2−tτ2(−1+τ)(−1−τ+tτ)2. | (15) |
Table 1 displays some computational statistics of the PRL distribution for sundry parameter values.
τ | E(X) | Var(X) | CS(X) | CK(X) | ID(X) | CV(X) |
2 | 4.00000 | 12.0000 | 1.44338 | 6.08333 | 3.00000 | 0.86603 |
3 | 4.50000 | 20.2500 | 1.67901 | 7.05761 | 4.50000 | 1.00000 |
4 | 5.33333 | 30.2222 | 1.79405 | 7.66025 | 5.66667 | 1.03078 |
5 | 6.25000 | 42.1875 | 1.85607 | 8.02222 | 6.75000 | 1.03923 |
6 | 7.20000 | 56.1600 | 1.89348 | 8.25493 | 7.80000 | 1.04083 |
7 | 8.16667 | 72.1389 | 1.91786 | 8.41326 | 8.83333 | 1.04002 |
8 | 9.14286 | 90.1224 | 1.93468 | 8.52586 | 9.85714 | 1.03833 |
9 | 10.1250 | 110.1094 | 1.94678 | 8.60883 | 10.87500 | 1.03638 |
10 | 11.1111 | 132.0988 | 1.95579 | 8.67174 | 11.88889 | 1.03441 |
15 | 16.0714 | 272.0663 | 1.97871 | 8.83698 | 16.92857 | 1.02632 |
20 | 21.0526 | 462.0499 | 1.98750 | 8.90278 | 21.94737 | 1.02103 |
In this section, the parameter of PRL distribution is examined using some classical estimation approaches. The considered estimation approaches are maximum likelihood, Anderson-Darling, Cramer von Mises, least squares, and weighted least squares.
Let X1,X2,X3,…Xn be a random sample of failure times from PRL distribution, and the likelihood function for the parameter τ can be written as
L(τ|x)=∏ni=1(1+1τ)−xi(xi−1+τ(τ−1))(τ−1)(1+τ)2, | (16) |
and log-likelihood function is specified by
l(τ|x)=∑ni=1log(1+1τ)−xi+∑ni=1log(xi−1+τ(τ−1))−nlog(τ−1)−nlog(1+τ)2. | (17) |
We get the following equation by deriving Eq (17) with regard to parameter τ:
∂l∂τ=∑ni=1xi(1+1τ)τ2+∑ni=12τ−1xi+τ(τ−1)−1−n(τ−1)−2n(τ+1). | (18) |
The ML estimate is obtained by equating the above equation to zero and solving it for parameter τ. However, the ensuing expression has not a closed-form result and the required results can be obtained using iterative procedures.
The Anderson-Darling (AD) estimator ˆτ of parameter τ can be defined by minimizing the following expression
AD(τ)=−n−1nn∑i=1(2i−1)[log(F(x(i:n)|τ))+log(1−F(x(i:n)|τ))], |
AD(τ)=−n−1n∑ni=1(2i−1)[log(1−(1+1τ)−x(i:n)τ(x(i:n)+τ2)(τ−1)(1+τ)2)+log((1+1τ)−x(i:n)τ(x(i:n)+τ2)(τ−1)(1+τ)2)], |
Alternatively, the estimator can also be obtained by solving the following nonlinear equation
n∑i=1(2i−1)[ϕ(x(i:n)|τ)F(x(i:n)|τ)−ϕ(x(n+1−i:n)|τ)1−F(x(n+1−i:n)|τ)]=0 |
where ϕ(xi:n|τ)=ddτF(x(i:n)|τ) and it reduces to
ϕ(xi:n|τ)=(1+1τ)−x(i:n)(−x(i:n)2(τ−1)−(τ−3)τ2−x(i:n)(−1+τ−3τ2+τ3))(τ−1)2(1+τ)3 | (19) |
The ordinary least-square (OLS) estimator of the PRL model parameter can be obtained by minimizing
LSE(τ)=n∑i=1[F(x(i:n)|τ)−in+1]2, |
with respect to the parameter τ. Moreover, the LSE of τ is also obtained by solving
m∑i=1[1−i1+n−(1+1τ)−x(i:n)τ(x(i:n)+τ2)(τ−1)(1+τ)2]ϕ(xi:n|τ)=0, |
The WLS estimate (WLSE) of τ, say ˆτ, can be determined by minimizing
WLSE(τ)=n∑i=1(n+1)2(n+2)i(n−i+1)[F(x(i:n)|τ)−in+1]2, |
with respect to τ. The WLSE of τ can also be obtained by solving
n∑i=1(1+n)2(2+n)i(n−i+1)[1−i1+n−(1+1τ)−x(i:n)τ(x(i:n)+τ2)(τ−1)(1+τ)2]ϕ(xi:n|τ)=0, |
In which ϕ(xi:n|τ) is presented in (19).
The Cramer von Mises (CVM) is a minimum distance-based estimator. The CVM of the PRL distribution can be obtained by minimizing
CVM(τ)=112n+n∑i=1[log(F(x(i:n)|τ))−2i−12n]2, |
with respect to the parameter τ.
The CVME of τ is also obtained by solving
n∑i=1[1−2i−12n−(1+1τ)−x(i:n)τ(x(i:n)+τ2)(τ−1)(1+τ)2]ϕ(xi:n|τ)=0. |
In this section, we performed a simulation study to evaluate the accuracy of all considered estimators. In the simulation run, we generate 10,000 samples of size n = 10, 25, 50,100,200, and 300 from PRL distribution and then calculate the average estimates (AE), absolute bias (AB), mean relative error (MRE) and mean square error (MSE). For this purpose, we consider the six sets of values of parameter τ. The simulation results are presented in Tables 2–7.
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 2.4683 | 3.0734 | 2.7620 | 3.0486 | 2.7156 |
25 | 2.3209 | 2.4309 | 2.1472 | 2.5131 | 2.3049 | |
50 | 2.2357 | 2.1799 | 2.1001 | 2.2501 | 2.1488 | |
100 | 2.1808 | 2.1098 | 2.1000 | 2.1307 | 2.1045 | |
200 | 2.1416 | 2.1002 | 2.1000 | 2.1013 | 2.1004 | |
300 | 2.1274 | 2.1000 | 2.1000 | 2.1002 | 2.1000 | |
AB | 10 | 0.3683 | 0.9734 | 0.6620 | 0.9486 | 0.6156 |
25 | 0.2209 | 0.3309 | 0.0472 | 0.4131 | 0.2049 | |
50 | 0.1357 | 0.0799 | 0.0001 | 0.1501 | 0.0488 | |
100 | 0.0808 | 0.0098 | 0.0000 | 0.0307 | 0.0045 | |
200 | 0.0416 | 0.0002 | 0.0000 | 0.0013 | 0.0004 | |
300 | 0.0274 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | |
MRE | 10 | 0.1754 | 0.4635 | 0.3152 | 0.4517 | 0.2931 |
25 | 0.1052 | 0.1576 | 0.0225 | 0.1967 | 0.0976 | |
50 | 0.0646 | 0.0381 | 0.0001 | 0.0715 | 0.0233 | |
100 | 0.0385 | 0.0046 | 0.0000 | 0.0146 | 0.0021 | |
200 | 0.0198 | 0.0001 | 0.0000 | 0.0006 | 0.0002 | |
300 | 0.0130 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | |
MSE | 10 | 0.7743 | 3.3333 | 2.0870 | 3.4064 | 2.3300 |
25 | 0.2951 | 0.8431 | 0.0912 | 1.1611 | 0.5520 | |
50 | 0.1391 | 0.1614 | 0.0001 | 0.3712 | 0.0985 | |
100 | 0.0627 | 0.0157 | 0.0000 | 0.0651 | 0.0068 | |
200 | 0.0271 | 0.0003 | 0.0000 | 0.0025 | 0.0006 | |
300 | 0.0169 | 0.0000 | 0.0000 | 0.0006 | 0.0000 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 3.1396 | 4.3862 | 4.3030 | 4.1871 | 4.2023 |
25 | 3.0268 | 4.0219 | 3.9440 | 3.8787 | 3.9351 | |
50 | 2.9950 | 3.9277 | 3.9411 | 3.7879 | 3.8614 | |
100 | 2.9948 | 3.9041 | 4.0457 | 3.7762 | 3.8804 | |
200 | 2.9964 | 3.9231 | 4.2116 | 3.8175 | 3.9187 | |
300 | 2.9970 | 3.9378 | 4.3245 | 3.8419 | 3.9348 | |
AB | 10 | 0.1396 | 1.3862 | 1.3030 | 1.1871 | 1.2023 |
25 | 0.0268 | 1.0219 | 0.9440 | 0.8787 | 0.9351 | |
50 | 0.0050 | 0.9277 | 0.9411 | 0.7879 | 0.8614 | |
100 | 0.0052 | 0.9041 | 1.0457 | 0.7762 | 0.8804 | |
200 | 0.0036 | 0.9231 | 1.2116 | 0.8175 | 0.9187 | |
300 | 0.0030 | 0.9378 | 1.3245 | 0.8419 | 0.9348 | |
MRE | 10 | 0.0465 | 0.5763 | 0.5672 | 0.5519 | 0.5599 |
25 | 0.0089 | 0.4499 | 0.4713 | 0.4301 | 0.4473 | |
50 | 0.0017 | 0.3944 | 0.4427 | 0.3736 | 0.3907 | |
100 | 0.0017 | 0.3580 | 0.4347 | 0.3302 | 0.3570 | |
200 | 0.0012 | 0.3318 | 0.4495 | 0.3062 | 0.3321 | |
300 | 0.0010 | 0.3237 | 0.4659 | 0.2977 | 0.3217 | |
MSE | 10 | 1.5854 | 5.3423 | 4.9727 | 4.6497 | 4.8640 |
25 | 0.7594 | 2.7425 | 2.7410 | 2.4596 | 2.6652 | |
50 | 0.4343 | 1.9387 | 2.1702 | 1.7096 | 1.8726 | |
100 | 0.2391 | 1.4819 | 1.9558 | 1.2643 | 1.4561 | |
200 | 0.1248 | 1.1972 | 1.9742 | 1.0271 | 1.1933 | |
300 | 0.0832 | 1.0952 | 2.0686 | 0.9387 | 1.0861 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 3.9375 | 5.2163 | 5.2168 | 5.1234 | 5.0765 |
25 | 3.9262 | 4.9401 | 4.9726 | 4.8907 | 4.8748 | |
50 | 3.9620 | 4.9088 | 5.0659 | 4.8573 | 4.8859 | |
100 | 3.9713 | 4.8963 | 5.1787 | 4.8401 | 4.8697 | |
200 | 3.9834 | 4.8858 | 5.3031 | 4.8439 | 4.8789 | |
300 | 3.9988 | 4.8862 | 5.3711 | 4.8506 | 4.8756 | |
AB | 10 | 0.0625 | 1.2163 | 1.2168 | 1.1234 | 1.0765 |
25 | 0.0738 | 0.9401 | 0.9726 | 0.8907 | 0.8748 | |
50 | 0.0380 | 0.9088 | 1.0659 | 0.8573 | 0.8859 | |
100 | 0.0287 | 0.8963 | 1.1787 | 0.8401 | 0.8697 | |
200 | 0.0166 | 0.8858 | 1.3031 | 0.8439 | 0.8789 | |
300 | 0.0012 | 0.8862 | 1.3711 | 0.8506 | 0.8756 | |
MRE | 10 | 0.0156 | 0.4834 | 0.4807 | 0.4714 | 0.4854 |
25 | 0.0185 | 0.3538 | 0.3585 | 0.3405 | 0.3536 | |
50 | 0.0095 | 0.2878 | 0.3167 | 0.2742 | 0.2889 | |
100 | 0.0072 | 0.2466 | 0.3054 | 0.2321 | 0.2424 | |
200 | 0.0042 | 0.2264 | 0.3260 | 0.2157 | 0.2256 | |
300 | 0.0003 | 0.2229 | 0.3428 | 0.2138 | 0.2205 | |
MSE | 10 | 2.9043 | 6.2750 | 6.0663 | 5.8402 | 6.1414 |
25 | 1.3856 | 3.1215 | 3.0986 | 2.8793 | 3.0677 | |
50 | 0.7547 | 1.9790 | 2.2677 | 1.8032 | 2.0032 | |
100 | 0.3717 | 1.3758 | 1.8782 | 1.2184 | 1.3353 | |
200 | 0.1822 | 1.0527 | 1.9039 | 0.9610 | 1.0504 | |
300 | 0.1202 | 0.9624 | 2.0149 | 0.8867 | 0.9453 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 4.8793 | 6.2159 | 6.2417 | 6.1934 | 6.0518 |
25 | 4.9283 | 5.9406 | 6.0539 | 5.9254 | 5.8979 | |
50 | 4.9480 | 5.9061 | 6.0826 | 5.8767 | 5.8738 | |
100 | 4.9839 | 5.8739 | 6.1814 | 5.8623 | 5.8668 | |
200 | 4.9940 | 5.8508 | 6.2729 | 5.8430 | 5.8573 | |
300 | 4.9858 | 5.8588 | 6.3355 | 5.8436 | 5.8443 | |
AB | 10 | 0.1207 | 1.2159 | 1.2417 | 1.1934 | 1.0518 |
25 | 0.0717 | 0.9406 | 1.0539 | 0.9254 | 0.8979 | |
50 | 0.0520 | 0.9061 | 1.0826 | 0.8767 | 0.8738 | |
100 | 0.0161 | 0.8739 | 1.1814 | 0.8623 | 0.8668 | |
200 | 0.0060 | 0.8508 | 1.2729 | 0.8430 | 0.8573 | |
300 | 0.0142 | 0.8588 | 1.3355 | 0.8436 | 0.8443 | |
MRE | 10 | 0.0241 | 0.4372 | 0.4343 | 0.4289 | 0.4335 |
25 | 0.0143 | 0.2971 | 0.3010 | 0.2896 | 0.2975 | |
50 | 0.0104 | 0.2376 | 0.2514 | 0.2249 | 0.2334 | |
100 | 0.0032 | 0.1979 | 0.2415 | 0.1921 | 0.1968 | |
200 | 0.0012 | 0.1769 | 0.2549 | 0.1739 | 0.1775 | |
300 | 0.0028 | 0.1737 | 0.2671 | 0.1705 | 0.1714 | |
MSE | 10 | 4.5278 | 8.0561 | 7.8298 | 7.6115 | 7.7488 |
25 | 1.9727 | 3.5841 | 3.6415 | 3.3645 | 3.5746 | |
50 | 0.9619 | 2.1944 | 2.3526 | 1.9809 | 2.1332 | |
100 | 0.4770 | 1.4498 | 1.9140 | 1.3619 | 1.4272 | |
200 | 0.2355 | 1.0642 | 1.8717 | 1.0091 | 1.0642 | |
300 | 0.1600 | 0.9522 | 1.9495 | 0.9070 | 0.9279 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 6.8852 | 8.3751 | 8.3080 | 8.2719 | 8.0785 |
25 | 6.9508 | 7.9654 | 8.0939 | 7.9661 | 7.9015 | |
50 | 6.9772 | 7.9105 | 8.0665 | 7.8996 | 7.8877 | |
100 | 6.9808 | 7.8671 | 8.1001 | 7.8491 | 7.8347 | |
200 | 6.9902 | 7.8377 | 8.2073 | 7.8376 | 7.8279 | |
300 | 6.9994 | 7.8330 | 8.2567 | 7.8323 | 7.8247 | |
AB | 10 | 0.1148 | 1.3751 | 1.3080 | 1.2719 | 1.0785 |
25 | 0.0492 | 0.9654 | 1.0939 | 0.9661 | 0.9015 | |
50 | 0.0228 | 0.9105 | 1.0665 | 0.8996 | 0.8877 | |
100 | 0.0192 | 0.8671 | 1.1001 | 0.8491 | 0.8347 | |
200 | 0.0098 | 0.8377 | 1.2073 | 0.8376 | 0.8279 | |
300 | 0.0006 | 0.8330 | 1.2567 | 0.8323 | 0.8247 | |
MRE | 10 | 0.0164 | 0.3971 | 0.3834 | 0.3728 | 0.3801 |
25 | 0.0070 | 0.2536 | 0.2487 | 0.2396 | 0.2494 | |
50 | 0.0033 | 0.1922 | 0.1930 | 0.1835 | 0.1908 | |
100 | 0.0027 | 0.1539 | 0.1695 | 0.1468 | 0.1502 | |
200 | 0.0014 | 0.1307 | 0.1741 | 0.1286 | 0.1298 | |
300 | 0.0001 | 0.1240 | 0.1797 | 0.1228 | 0.1229 | |
MSE | 10 | 8.0853 | 13.221 | 12.275 | 11.590 | 11.818 |
25 | 3.1995 | 5.2182 | 4.9697 | 4.6070 | 5.0214 | |
50 | 1.5333 | 2.9054 | 2.8651 | 2.6487 | 2.8488 | |
100 | 0.7477 | 1.7950 | 2.0349 | 1.6308 | 1.7225 | |
200 | 0.3819 | 1.2139 | 1.8654 | 1.1544 | 1.1984 | |
300 | 0.2538 | 1.0264 | 1.8495 | 0.9997 | 1.0176 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 14.870 | 16.725 | 16.755 | 16.639 | 16.487 |
25 | 14.975 | 16.192 | 16.194 | 16.166 | 16.071 | |
50 | 15.003 | 15.979 | 16.045 | 16.015 | 15.948 | |
100 | 15.014 | 15.881 | 16.023 | 15.876 | 15.818 | |
200 | 14.992 | 15.818 | 16.066 | 15.853 | 15.801 | |
300 | 15.014 | 15.810 | 16.081 | 15.826 | 15.813 | |
AB | 10 | 0.1302 | 1.7254 | 1.7551 | 1.6394 | 1.4871 |
25 | 0.0254 | 1.1917 | 1.1941 | 1.1658 | 1.0705 | |
50 | 0.0026 | 0.9791 | 1.0445 | 1.0145 | 0.9477 | |
100 | 0.0142 | 0.8806 | 1.0226 | 0.8755 | 0.8180 | |
200 | 0.0084 | 0.8184 | 1.0661 | 0.8532 | 0.8008 | |
300 | 0.0135 | 0.8103 | 1.0806 | 0.8263 | 0.8125 | |
MRE | 10 | 0.0087 | 0.3328 | 0.3258 | 0.3120 | 0.3262 |
25 | 0.0017 | 0.2138 | 0.2007 | 0.1975 | 0.2060 | |
50 | 0.0002 | 0.1496 | 0.1444 | 0.1445 | 0.1491 | |
100 | 0.0009 | 0.1114 | 0.1076 | 0.1043 | 0.1085 | |
200 | 0.0006 | 0.0832 | 0.0879 | 0.0814 | 0.0824 | |
300 | 0.0009 | 0.0733 | 0.0817 | 0.0710 | 0.0729 | |
MSE | 10 | 27.483 | 42.816 | 40.605 | 37.786 | 40.567 |
25 | 11.128 | 16.789 | 14.977 | 14.517 | 15.753 | |
50 | 5.4177 | 8.2091 | 7.5370 | 7.6602 | 8.2052 | |
100 | 2.7917 | 4.5139 | 4.1585 | 3.9290 | 4.2486 | |
200 | 1.3835 | 2.4799 | 2.6592 | 2.3612 | 2.4262 | |
300 | 0.8964 | 1.8851 | 2.2170 | 1.7610 | 1.8652 |
The Bayesian parameter estimation technique is an alternate to classical maximum likelihood estimation. In Bayesian estimation, a prior distribution must be defined for each unknown parameter. Consider a set of data x=x1,x2,…,xn taken from discrete PRL distribution and the likelihood function is provided by
L(τ|x)=∏ni=1(1+1τ)−xi(xi−1+τ(τ−1))(τ−1)(1+τ)2. | (20) |
The Bayesian model is constructed by stating the prior distribution for the model parameter and then multiplying it with the likelihood function for the provided data using the Bayes theorem to generate the posterior distribution function. The prior distribution of parameter τ is denoted as p(τ).
p(τ|x)∝L(τ|x)p(τ). |
For the proposed distribution, the gamma distribution is considered a prior distribution with known hyperparameters such as τ∼Gamma(α,β). The posterior expression, up to proportionality, may be found by multiplying the likelihood by the prior, and this can be represented as
p(τ|x)∝βαΓ(α)τα−1exp(−τβ)n∏i=1(1+1τ)−xi(xi−1+τ(τ−1))(τ−1)(1+τ)2 |
The posterior density is not mathematically tractable; for inference purposes, we will utilize the Markov Chain Monte Carlo (MCMC) approach to mimic posterior samples, allowing for easy sample-based conclusions.
In the present study, we explore the application of MCMC algorithms implemented in the package MCMCpack of the R program to simulate samples from the joint posterior distribution. For this purpose, we generated 1006000 samples of the joint posterior distribution of interest. The effects of the initial values in the iterative process are eliminated after a burn-in phase of 6000 simulated samples. To achieve approximately independent samples, a thinning interval of size 300 was utilized. The parameter Bayes estimates were gained by taking the expected value of generated samples. Traceplots and the Geweke diagnostic were used to monitor the convergence of the simulated sequences. The asymptotic standard error of the difference divided by the difference between the two means of non-overlapping parts of a simulated Markov chain is the basis of the Geweke convergence diagnostic. We may say that a chain has reached convergence if its corresponding absolute z score is smaller than 1.96 since this z score asymptotically follows a typical normal distribution. The construction of interesting posterior summaries was done using the R software package MCMCpack.
This section is ardent to prove the usefulness of the discrete Poisson Ramos-Louzada distribution in the modeling of three datasets. We compare the fits of the proposed distribution with some renowned one-parameter discrete distributions, discrete Raleigh [12], Poisson, discrete Pareto [13] and discrete Burr-Hatke [14], discrete Inverted Topp-Leone [15]. The Kolmogorov-Smirnov (KS) test, Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) are used to compare the fitted models. We also illustrate the estimation procedures based on censored samples proposed in the previous section with three examples from the literature.
A sample of the failure time of 15 electronic components in an acceleration life test [16]. The observations are 1, 5, 6, 11, 12, 19, 20, 22, 23, 31, 37, 46, 54, 60, and 66. The mean and variance of the first dataset are 27.533 and 431.94 respectively. The dispersion index value is 15.689 which indicates that the dataset is overdispersed. We determine the MLEs, standard errors (SE), and model selection measures (AIC, BIC, and KS) for the first dataset using the R software's maxLik package. These results are shown in Table 8 along with the model selection measures.
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 26.455 (7.2429) | 64.995 | 131.99 | 132.70 | 0.1770 | 0.6700 |
DR | 24.382 (3.1481) | 66.394 | 134.79 | 135.50 | 0.2160 | 0.4300 |
Poisson | 27.533 (1.3548) | 151.21 | 304.41 | 305.12 | 0.3810 | 0.0180 |
DITL | 0.4178 (0.1079) | 74.491 | 150.98 | 151.69 | 0.3590 | 0.0310 |
DPr | 0.3284 (0.0848) | 77.402 | 156.80 | 157.51 | 0.4060 | 0.0097 |
DBH | 0.9992 (0.0076) | 91.368 | 184.74 | 185.44 | 0.7910 | 0.0000 |
For Bayesian data analysis, the parameter τ of the PRL distribution was assumed to have an approximate gamma as the prior distribution, that is, τ∼Gamma(0.001,0.1). Figure 4 depicts posterior samples for the parameter τ. The evaluation of the MCMC draws across iterations is assessed using traceplot, posterior density, and ACF plot. From the traceplot, it is interesting to note that the samples produced attained acceptable convergence. The ACF plot indicates that the posterior samples are uncorrelated. Furthermore, the z-score of the Geweke test is –0.2498, indicating that the samples have sufficiently converged to a stable distribution. The posterior mean for τ is τBayes=13.00418 with a standard deviation of 2.18641, and the corresponding 95% highest density interval is (9.008356, 17.3976). We observe that the ML and Bayesian estimates are quite similar.
A sample of 66 patients died due to COVID-19 in China from January 23, 2022, to March 28, 2020. The data are: 8, 16, 15, 24, 26, 26, 38, 43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97,108, 97,146,121,143,142,105, 98,136,114,118,109, 97,150, 71, 52, 29, 44, 47, 35, 42, 31, 38, 31, 30, 28, 27, 22, 17, 22, 11, 7, 13, 10, 14, 13, 11, 8, 3, 7, 6, 9, 7, 4, 6, 5, 3 and 5. Some descriptive measures (mean, variance, and dispersion index) for this dataset are 47.742, 1924.8, and 38.696. We acquire the ML estimates for the parameter, and model selection metrics (AIC, BIC, and KS) for the second dataset. These results are shown in Table 9.
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 48.711 (6.1847) | 324.51 | 651.02 | 653.21 | 0.0851 | 0.7300 |
DR | 47.010 (2.8934) | 347.23 | 696.45 | 698.64 | 0.2930 | 0.0000 |
Poisson | 49.743 (0.8682) | 1409.8 | 2821.6 | 2823.8 | 0.4970 | 0.0000 |
DITL | 0.3539 (0.0436) | 366.91 | 735.81 | 738.00 | 0.3290 | 0.0000 |
DPr | 0.2863 (0.0352) | 379.07 | 760.14 | 762.33 | 0.3820 | 0.0000 |
DBH | 0.9997 (0.0019) | 461.02 | 924.04 | 926.23 | 0.8120 | 0.0000 |
For Bayesian data analysis, the parameter tau of the PRL distribution was assumed to have a gamma prior distribution. The associated Geweke z-score is –0.08203, which likewise indicates that the samples have sufficiently converged to a stable distribution. The posterior mean for τ is τBayes=32.0684 with a standard deviation of 2.89397, and a 95% HDI of (26.20931, 37.44432). The ML and Bayesian estimates are discernibly similar to one another.
The third dataset is also about deaths due to COVID-19 in Pakistan from 18 March 2020 to 30 June 2020. The data are: 1, 6, 6, 4, 4, 4, 1, 20, 5, 2, 3, 15, 17, 7, 8, 25, 8, 25, 11, 25, 16, 16, 12, 11, 20, 31, 42, 32, 23, 17, 19, 38, 50, 21, 14, 37, 23, 47, 31, 24, 9, 64, 39, 30, 36, 46, 32, 50, 34, 32, 34, 30, 28, 35, 57, 78, 88, 60, 78, 67, 82, 68, 97, 67, 65,105, 83,101,107, 88,178,110,136,118,136,153,119, 89,105, 60,148, 59, 73, 83, 49,137 and 91. Some computational measures, mean, variance and index of dispersion for the third dataset are; 50.057, 1758.8, and 35.135. The MLEs and goodness-of-fit measures for this dataset are given in Table 10.
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 49.020 (5.4201) | 428.30 | 858.61 | 861.07 | 0.0676 | 0.8210 |
DR | 46.339 (2.4841) | 452.55 | 907.10 | 909.56 | 0.2473 | 0.0000 |
Poisson | 50.058 (0.9742) | 1713.0 | 3428.1 | 3430.5 | 0.4954 | 0.0000 |
DITL | 0.3493 (0.0375) | 488.14 | 978.28 | 980.75 | 0.3263 | 0.0000 |
DPr | 0.2835 (0.0304) | 503.61 | 1009.2 | 1011.7 | 0.3558 | 0.0000 |
DBH | 0.9997 (0.0016) | 613.80 | 1229.6 | 1232.1 | 0.7876 | 0.0000 |
For the third dataset, the gamma distribution is again considered as the prior distribution, and the posterior samples for the parameter are described in Figure 8. Furthermore, the Geweke z-score is used as a diagnostic measure and its value is –0.03794, suggesting convergence of the samples to a stable distribution. The posterior mean for the third dataset is τBayes=46.96159 with a standard deviation of 4.92385. The corresponding 95% HDI (37.94273, 57.07319). The ML and Bayes estimate is quite similar to each other.
In this paper, we introduce a one-parameter discrete distribution by compounding Poisson with the Ramos-Louzada distribution. The proposed distribution is showing unimodal and positively skewed behavior. The failure rate of new distribution is increasing pattern. Some statistical properties derived include the moment-generating function, probability-generating function, factorial moments, dispersion index, skewness and kurtosis. The model parameter is estimated using the maximum likelihood estimation approach and the behavior of the derived estimator is assessed via a simulation study. The usefulness of the proposed distribution is carried out using three real-life datasets. The proposed distribution provides more efficient results than all considered competitive distributions. The Bayesian analysis is also performed by taking the MCMC approximation approach.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare there is no conflict of interest.
[1] |
M. Arnold, E. Morgan, H. Rumgay, A. Mafra, D. Singh, M. Laversanne, et al., Current and future burden of breast cancer: Global statistics for 2020 and 2040, Breast, 66 (2022), 15–23. https://doi.org/10.1016/j.breast.2022.08.010 doi: 10.1016/j.breast.2022.08.010
![]() |
[2] | G. N. Sharma, R. Dave, J. Sanadya, P. Sharma, K. Sharma, Various types and management of breast cancer: An overview, J. Adv. Pharm. Technol. Res., 1 (2010), 109. |
[3] |
Y. Feng, M. Spezia, S. Huang, C. Yuan, Z. Zeng, L. Zhang, et al., Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis, Genes Dis., 5 (2018), 77–106. https://doi.org/10.1016/j.gendis.2018.05.001 doi: 10.1016/j.gendis.2018.05.001
![]() |
[4] |
C. Urbaniak, G. B. Gloor, M. Brackstone, L. Scott, M. Tangney, G. Reid, The microbiota of breast tissue and its association with breast cancer, Appl. Environ. Microbiol., 82 (2016), 5039–5048. https://doi.org/10.1128/AEM.01235-16 doi: 10.1128/AEM.01235-16
![]() |
[5] |
D. L. Monticciolo, M. S. Newell, L. Moy, B. Niell, B. Monsees, E. A. Sickles, Breast cancer screening in women at higher-than-average risk: Recommendations from the acr, J. Am. College Radiol., 15 (2018), 408–414. https://doi.org/10.1016/j.jacr.2017.11.034 doi: 10.1016/j.jacr.2017.11.034
![]() |
[6] |
B. H. Lerner, The breast cancer wars: Hope, fear, and the pursuit of a cure in twentieth-century America, Bull. His. Med., 76 (2002), 179–180. https://doi.org/10.1353/bhm.2002.0039 doi: 10.1353/bhm.2002.0039
![]() |
[7] |
L. Wiechmann, H. M. Kuerer, The molecular journey from ductal carcinoma in situ to invasive breast cancer, Cancer, 112 (2008), 2130–2142. https://doi.org/10.1002/cncr.23430 doi: 10.1002/cncr.23430
![]() |
[8] |
R. Benacka, D. Szaboova, Z. Gulasova, Z. Hertelyova, J. Radonak, Classic and new markers in diagnostics and classification of breast cancer, Cancers, 14 (2022), 5444. https://doi.org/10.3390/cancers14215444 doi: 10.3390/cancers14215444
![]() |
[9] | R. Sumbaly, N. Vishnusri, S. Jeyalatha, Diagnosis of breast cancer using decision tree data mining technique, Int. J. Comput. Appl., 98 (2014). https://doi.org/10.5120/17219-7456 |
[10] |
B. Lim, W. A. Woodward, X. Wang, J. M. Reuben, N. T. Ueno, Inflammatory breast cancer biology: The tumour microenvironment is key, Nat. Rev. Cancer, 18 (2018), 485–499. ttps://doi.org/10.1038/s41568-018-0010-y doi: 10.1038/s41568-018-0010-y
![]() |
[11] |
M. Idrees, A. Sohail, Bio-algorithms for the modeling and simulation of cancer cells and the immune response, Bio-Algorithms Med-Syst., 17 (2021), 55–63. https://doi.org/10.1515/bams-2020-0054 doi: 10.1515/bams-2020-0054
![]() |
[12] | A. K. Abbas, A. H. Lichtman, S. Pillai, Basic Immunology E-Book: Functions And Disorders of The Ommune System, Elsevier Health Sciences, 2019. |
[13] | Obstacles in the development of therapeutic cancer vaccines, Vaccines Cancer Immunother., (2019), 153–160. https://doi.org/10.1016/B978-0-12-814039-0.00012-6 |
[14] |
R. A. Hess, D. Bunick, K. H. Lee, J. Bahr, J. A. Taylor, K. S. Korach, et al., A role for oestrogens in the male reproductive system, Nature, 390 (1997), 509–512. https://doi.org/10.1038/37352 doi: 10.1038/37352
![]() |
[15] |
P. Bhardwaj, C. C. Au, A. Benito-Martin, H. Ladumor, S. Oshchepkova, R. Moges, et al., Estrogens and breast cancer: Mechanisms involved in obesityrelated development, growth and progression, J. Steroid Biochem. Mol. Biol., 189 (2019), 161–170. https://doi.org/10.1016/j.jsbmb.2019.03.002 doi: 10.1016/j.jsbmb.2019.03.002
![]() |
[16] |
S. S. Skandalis, N. Afratis, G. Smirlaki, D. Nikitovic, A. D. Theocharis, G. N. Tzanakakis, Cross-talk between estradiol receptor and egfr/igfir signaling pathways in estrogen-responsive breast cancers: Focus on the role and impact of proteoglycans, Matrix Biol., 35 (2014), 182–193. https://doi.org/10.1016/j.matbio.2013.09.002 doi: 10.1016/j.matbio.2013.09.002
![]() |
[17] |
R. X. Song, Z. Zhang, R. J. Santen, Estrogen rapid action via protein complex formation involving ERα and Src, Trends Endocrinol. Metab., 16 (2005), 347–353. https://doi.org/10.1016/j.tem.2005.06.010 doi: 10.1016/j.tem.2005.06.010
![]() |
[18] |
L. Anderson, S. Jang, J. L. Yu, Qualitative behavior of systems of tumor–cd4+–cytokine interactions with treatments, Math. Methods Appl. Sci., 38 (2015), 4330–4344. https://doi.org/10.1002/mma.3370 doi: 10.1002/mma.3370
![]() |
[19] |
G. Song, T. Tian, X. Zhang, A mathematical model of cell-mediated immune response to tumor, Math. Biosci. Eng., 18 (2021), 373–385. https://doi.org/10.3934/mbe.2021020 doi: 10.3934/mbe.2021020
![]() |
[20] |
K. J. Mahasa, R. Ouifki, A. Eladdadi, L. de Pillis, A combination therapy of oncolytic viruses and chimeric antigen receptor t cells: A mathematical model proof of concept, Math. Biosci. Eng., 19 (2022), 4429–4457. https://doi.org/10.3934/mbe.2022205 doi: 10.3934/mbe.2022205
![]() |
[21] |
K. M. Storey, S. E. Lawler, T. L. Jackson, Modeling oncolytic viral therapy, immune checkpoint inhibition, and the complex dynamics of innate and adaptive immunity in glioblastoma treatment, Front. Physiol., 11 (2020), 151. https://doi.org/10.3389/fphys.2020.00151 doi: 10.3389/fphys.2020.00151
![]() |
[22] |
A. M. Jarrett, M. J. Bloom, W. Godfrey, A. K. Syed, D. A. Ekrut, L. I. Ehrlich, et al., Mathematical modelling of trastuzumabinduced immune response in an in vivo murine model of her2+ breast cancer, Math. Med. Biol., 36 (2019), 381–410. https://doi.org/10.1093/imammb/dqy014 doi: 10.1093/imammb/dqy014
![]() |
[23] |
H. C. Wei, Mathematical modeling of tumor growth: The MCF-7 breast cancer cell line, Math. Biosci. Eng., 16 (2019), 6512–6535. https://doi.org/10.3934/mbe.2019325 doi: 10.3934/mbe.2019325
![]() |
[24] |
H. C. Wei, Mathematical modeling of er-positive breast cancer treatment with azd9496 and palbociclib, AIMS Math., 5 (2020), 3446–3455. https://doi.org/10.3934/math.2020223 doi: 10.3934/math.2020223
![]() |
[25] |
M. T. McKenna, J. A. Weis, S. L. Barnes, D. R. Tyson, M. I. Miga, V. Quaranta, et al., A predictive mathematical modeling approach for the study of doxorubicin treatment in triple negative breast cancer, Sci. Rep., 7 (2017), 5725. https://doi.org/10.1038/s41598-017-05902-z doi: 10.1038/s41598-017-05902-z
![]() |
[26] |
S. I. Oke, M. B. Matadi, S. S. Xulu, Optimal control analysis of a mathematical model for breast cancer, Math. Comput. Appl., 23 (2018), 21. https://doi.org/10.3390/mca23020021 doi: 10.3390/mca23020021
![]() |
[27] | C. Mufudza, W. Sorofa, E. T. Chiyaka, Assessing the effects of estrogen on the dynamics of breast cancer, Comput. Math. Methods Med., 2012 (2012). https://doi.org/10.1155/2012/473572 |
[28] |
R. Ouifki, S. I. Oke, Mathematical model for the estrogen paradox in breast cancer treatment, J. Math. Biol., 84 (2022), 28. https://doi.org/10.1007/s00285-022-01729-z doi: 10.1007/s00285-022-01729-z
![]() |
[29] | M. Riaz, M. T. M. van Jaarsveld, A. Hollestelle, W. J. C. Prager-van der Smissen, A. A. J. Heine, A. W. M. Boersma, et al., Mirna expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific mirnas, Breast Cancer Res., 15 (2013), 33–49. https://doi.org/10.1186/bcr3415 |
[30] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295–321. https://doi.org/10.1016/S0092-8240(05)80260-5 doi: 10.1016/S0092-8240(05)80260-5
![]() |
[31] |
S. E. Wardell, A. P. Yllanes, C. A. Chao, Y. Bae, K. J. Andreano, T. K. Desautels, et al., Pharmacokinetic and pharmacodynamic analysis of fulvestrant in preclinical models of breast cancer to assess the importance of its estrogen receptor-α degrader activity in antitumor efficacy, Breast Cancer Res. Treatment, 179 (2020), 67–77. https://doi.org/10.1007/s10549-019-05454-y doi: 10.1007/s10549-019-05454-y
![]() |
[32] |
M. R. Muller, F. Grunebach, A. Nencioni, P. Brossart, Transfection of dendritic cells with rna induces CD4-and CD8-mediated t cell immunity against breast carcinomas and reveals the immunodominance of presented t cell epitopes, J. Immunol., 170 (2003), 5892–5896. https://doi.org/10.4049/jimmunol.170.12.5892 doi: 10.4049/jimmunol.170.12.5892
![]() |
[33] | I. Gruber, N. Landenberger, A. Staebler, M. Hahn, D. Wallwiener, T. Fehm, Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer, Anticancer Res., 33 (2013), 2233–2238. |
[34] | G. D. Smith, G. D. Smith, Numerical solution of partial differential equations: Finite difference methods, Oxford university press, 1985. |
[35] | F. Wang, E. Hou, A direct meshless method for solving two-dimensional secondorder hyperbolic telegraph equations, J. Math., 2020 (2020). https://doi.org/10.1155/2020/8832197 |
[36] |
F. Wang, E. Hou, S. A. Salama, M. M. A. Khater, Numerical investigation of the nonlinear fractional ostrovsky equation, Fractals, 30 (2022), 2240142. https://doi.org/10.1142/S0218348X22401429 doi: 10.1142/S0218348X22401429
![]() |
[37] |
K. G. Link, M. T. Stobb, J. D. Paola, K. B. Neeves, A. L. Fogelson, S. S. Sindi, et al., A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow, PLoS One, 13(2018), e0200917. https://doi.org/10.1371/journal.pone.0200917 doi: 10.1371/journal.pone.0200917
![]() |
[38] | J. Folkman, R. Kalluri, Cancer without disease, Nature, 427 (2004), 787–787. https://doi.org/10.1038/427787a |
[39] |
T. Fehm, V. Mueller, R. Marches, G. Klein, B. Gueckel, H. Neubauer, et al., Tumor cell dormancy: Implications for the biology and treatment of breast cancer, Apmis, 116 (2008), 742–753. https://doi.org/10.1111/j.1600-0463.2008.01047.x doi: 10.1111/j.1600-0463.2008.01047.x
![]() |
[40] |
O. E. Franco, A. K. Shaw, D. W. Strand, S. W. Hayward, Cancer associated fibroblasts in cancer pathogenesis, Semin. Cell Dev. Biol., 21 (2010), 33–39. https://doi.org/10.1016/j.semcdb.2009.10.010 doi: 10.1016/j.semcdb.2009.10.010
![]() |
[41] |
M. W. Retsky, R. Demicheli, W. J. M. Hrushesky, M. Baum, I. D. Gukas, Dormancy and surgery-driven escape from dormancy help explain some clinical features of breast cancer, Apmis, 116 (2008), 730–741. https://doi.org/10.1111/j.1600-0463.2008.00990.x doi: 10.1111/j.1600-0463.2008.00990.x
![]() |
[42] | M. Fernandez, M. Zhou, L. Soto-Ortiz, A computational assessment of the robustness of cancer treatments with respect to immune response strength, tumor size and resistance, Int. J. Tumor Ther., 7 (2018), 1–26. |
[43] |
V. Valayannopoulos, F. Bajolle, J. B. Arnoux, S. Dubois, N. Sannier, C. Baussan, et al., Successful treatment of severe cardiomyopathy in glycogen storage disease type III With D, L-3-hydroxybutyrate, ketogenic and high-protein diet, Pediatr. Res., 70 (2011), 638–641. https://doi.org/10.1203/PDR.0b013e318232154f doi: 10.1203/PDR.0b013e318232154f
![]() |
[44] |
A. Friedman, K. L. Liao, The role of the cytokines IL-27 and IL-35 in cancer, Math. Biosci. Eng., 12 (2015), 1203. https://doi.org/10.3934/mbe.2015.12.1203 doi: 10.3934/mbe.2015.12.1203
![]() |
1. | Fatimah M. Alghamdi, Muhammad Ahsan-ul-Haq, Muhammad Nasir Saddam Hussain, Eslam Hussam, Ehab M. Almetwally, Hassan M. Aljohani, Manahil SidAhmed Mustafa, Etaf Alshawarbeh, M. Yusuf, Discrete Poisson Quasi-XLindley distribution with mathematical properties, regression model, and data analysis, 2024, 17, 16878507, 100874, 10.1016/j.jrras.2024.100874 | |
2. | Osama Abdulaziz Alamri, Classical and Bayesian estimation of discrete poisson Agu-Eghwerido distribution with applications, 2024, 109, 11100168, 768, 10.1016/j.aej.2024.09.063 | |
3. | Amani Alrumayh, Marco Costa, Bernoulli Poisson Moment Exponential Distribution: Mathematical Properties, Regression Model, and Applications, 2024, 2024, 0161-1712, 10.1155/2024/5687958 | |
4. | Seth Borbye, Suleman Nasiru, Kingsley Kuwubasamni Ajongba, Vladimir Mityushev, Poisson XRani Distribution: An Alternative Discrete Distribution for Overdispersed Count Data, 2024, 2024, 0161-1712, 10.1155/2024/5554949 | |
5. | Waheed Babatunde Yahya, Muhammad Adamu Umar, A new poisson-exponential-gamma distribution for modelling count data with applications, 2024, 0033-5177, 10.1007/s11135-024-01894-x | |
6. | Yingying Qi, Dan Ding, Yusra A. Tashkandy, M.E. Bakr, M.M. Abd El-Raouf, Anoop Kumar, A novel probabilistic model with properties: Its implementation to the vocal music and reliability products, 2024, 107, 11100168, 254, 10.1016/j.aej.2024.07.035 | |
7. | Abdullah Ali H. Ahmadini, Muhammad Ahsan-ul-Haq, Muhammad Nasir Saddam Hussain, A new two-parameter over-dispersed discrete distribution with mathematical properties, estimation, regression model and applications, 2024, 10, 24058440, e36764, 10.1016/j.heliyon.2024.e36764 | |
8. | Safar M. Alghamdi, Muhammad Ahsan-ul-Haq, Olayan Albalawi, Majdah Mohammed Badr, Eslam Hussam, H.E. Semary, M.A. Abdelkawy, Binomial Poisson Ailamujia model with statistical properties and application, 2024, 17, 16878507, 101096, 10.1016/j.jrras.2024.101096 | |
9. | Khlood Al-Harbi, Aisha Fayomi, Hanan Baaqeel, Amany Alsuraihi, A Novel Discrete Linear-Exponential Distribution for Modeling Physical and Medical Data, 2024, 16, 2073-8994, 1123, 10.3390/sym16091123 | |
10. | Tabassum Naz Sindhu, Anum Shafiq, Abdon Atangana, Tahani A. Abushal, Alia A. Alkhathami, Control Charts for Overdispersed Count Data: Exploring the Poisson Chris‐Jerry Distribution in Agriculture and Medicine, 2025, 0748-8017, 10.1002/qre.3745 | |
11. | Abdullah M. Alomair, Muhammad Ahsan-ul-Haq, Analysis of radiation and corn borer data using discrete Poisson Xrama distribution, 2025, 18, 16878507, 101388, 10.1016/j.jrras.2025.101388 | |
12. | Muteb Faraj Alharthi, Samirah Alzubaidi, A novel discrete statistical model with applications on medical and health real data, 2025, 125, 11100168, 42, 10.1016/j.aej.2025.04.026 | |
13. | Abdullah M. Alomair, Muhammad Ahsan-ul-Haq, Modeling radiation and electronic devices data with Poisson-Darna distribution, 2025, 18, 16878507, 101661, 10.1016/j.jrras.2025.101661 | |
14. | Ali M. Mahnashi, Abdullah A. Zaagan, Poisson copoun distribution: An alternative discrete model for count data analysis, 2025, 128, 11100168, 571, 10.1016/j.aej.2025.05.085 |
τ | E(X) | Var(X) | CS(X) | CK(X) | ID(X) | CV(X) |
2 | 4.00000 | 12.0000 | 1.44338 | 6.08333 | 3.00000 | 0.86603 |
3 | 4.50000 | 20.2500 | 1.67901 | 7.05761 | 4.50000 | 1.00000 |
4 | 5.33333 | 30.2222 | 1.79405 | 7.66025 | 5.66667 | 1.03078 |
5 | 6.25000 | 42.1875 | 1.85607 | 8.02222 | 6.75000 | 1.03923 |
6 | 7.20000 | 56.1600 | 1.89348 | 8.25493 | 7.80000 | 1.04083 |
7 | 8.16667 | 72.1389 | 1.91786 | 8.41326 | 8.83333 | 1.04002 |
8 | 9.14286 | 90.1224 | 1.93468 | 8.52586 | 9.85714 | 1.03833 |
9 | 10.1250 | 110.1094 | 1.94678 | 8.60883 | 10.87500 | 1.03638 |
10 | 11.1111 | 132.0988 | 1.95579 | 8.67174 | 11.88889 | 1.03441 |
15 | 16.0714 | 272.0663 | 1.97871 | 8.83698 | 16.92857 | 1.02632 |
20 | 21.0526 | 462.0499 | 1.98750 | 8.90278 | 21.94737 | 1.02103 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 2.4683 | 3.0734 | 2.7620 | 3.0486 | 2.7156 |
25 | 2.3209 | 2.4309 | 2.1472 | 2.5131 | 2.3049 | |
50 | 2.2357 | 2.1799 | 2.1001 | 2.2501 | 2.1488 | |
100 | 2.1808 | 2.1098 | 2.1000 | 2.1307 | 2.1045 | |
200 | 2.1416 | 2.1002 | 2.1000 | 2.1013 | 2.1004 | |
300 | 2.1274 | 2.1000 | 2.1000 | 2.1002 | 2.1000 | |
AB | 10 | 0.3683 | 0.9734 | 0.6620 | 0.9486 | 0.6156 |
25 | 0.2209 | 0.3309 | 0.0472 | 0.4131 | 0.2049 | |
50 | 0.1357 | 0.0799 | 0.0001 | 0.1501 | 0.0488 | |
100 | 0.0808 | 0.0098 | 0.0000 | 0.0307 | 0.0045 | |
200 | 0.0416 | 0.0002 | 0.0000 | 0.0013 | 0.0004 | |
300 | 0.0274 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | |
MRE | 10 | 0.1754 | 0.4635 | 0.3152 | 0.4517 | 0.2931 |
25 | 0.1052 | 0.1576 | 0.0225 | 0.1967 | 0.0976 | |
50 | 0.0646 | 0.0381 | 0.0001 | 0.0715 | 0.0233 | |
100 | 0.0385 | 0.0046 | 0.0000 | 0.0146 | 0.0021 | |
200 | 0.0198 | 0.0001 | 0.0000 | 0.0006 | 0.0002 | |
300 | 0.0130 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | |
MSE | 10 | 0.7743 | 3.3333 | 2.0870 | 3.4064 | 2.3300 |
25 | 0.2951 | 0.8431 | 0.0912 | 1.1611 | 0.5520 | |
50 | 0.1391 | 0.1614 | 0.0001 | 0.3712 | 0.0985 | |
100 | 0.0627 | 0.0157 | 0.0000 | 0.0651 | 0.0068 | |
200 | 0.0271 | 0.0003 | 0.0000 | 0.0025 | 0.0006 | |
300 | 0.0169 | 0.0000 | 0.0000 | 0.0006 | 0.0000 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 3.1396 | 4.3862 | 4.3030 | 4.1871 | 4.2023 |
25 | 3.0268 | 4.0219 | 3.9440 | 3.8787 | 3.9351 | |
50 | 2.9950 | 3.9277 | 3.9411 | 3.7879 | 3.8614 | |
100 | 2.9948 | 3.9041 | 4.0457 | 3.7762 | 3.8804 | |
200 | 2.9964 | 3.9231 | 4.2116 | 3.8175 | 3.9187 | |
300 | 2.9970 | 3.9378 | 4.3245 | 3.8419 | 3.9348 | |
AB | 10 | 0.1396 | 1.3862 | 1.3030 | 1.1871 | 1.2023 |
25 | 0.0268 | 1.0219 | 0.9440 | 0.8787 | 0.9351 | |
50 | 0.0050 | 0.9277 | 0.9411 | 0.7879 | 0.8614 | |
100 | 0.0052 | 0.9041 | 1.0457 | 0.7762 | 0.8804 | |
200 | 0.0036 | 0.9231 | 1.2116 | 0.8175 | 0.9187 | |
300 | 0.0030 | 0.9378 | 1.3245 | 0.8419 | 0.9348 | |
MRE | 10 | 0.0465 | 0.5763 | 0.5672 | 0.5519 | 0.5599 |
25 | 0.0089 | 0.4499 | 0.4713 | 0.4301 | 0.4473 | |
50 | 0.0017 | 0.3944 | 0.4427 | 0.3736 | 0.3907 | |
100 | 0.0017 | 0.3580 | 0.4347 | 0.3302 | 0.3570 | |
200 | 0.0012 | 0.3318 | 0.4495 | 0.3062 | 0.3321 | |
300 | 0.0010 | 0.3237 | 0.4659 | 0.2977 | 0.3217 | |
MSE | 10 | 1.5854 | 5.3423 | 4.9727 | 4.6497 | 4.8640 |
25 | 0.7594 | 2.7425 | 2.7410 | 2.4596 | 2.6652 | |
50 | 0.4343 | 1.9387 | 2.1702 | 1.7096 | 1.8726 | |
100 | 0.2391 | 1.4819 | 1.9558 | 1.2643 | 1.4561 | |
200 | 0.1248 | 1.1972 | 1.9742 | 1.0271 | 1.1933 | |
300 | 0.0832 | 1.0952 | 2.0686 | 0.9387 | 1.0861 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 3.9375 | 5.2163 | 5.2168 | 5.1234 | 5.0765 |
25 | 3.9262 | 4.9401 | 4.9726 | 4.8907 | 4.8748 | |
50 | 3.9620 | 4.9088 | 5.0659 | 4.8573 | 4.8859 | |
100 | 3.9713 | 4.8963 | 5.1787 | 4.8401 | 4.8697 | |
200 | 3.9834 | 4.8858 | 5.3031 | 4.8439 | 4.8789 | |
300 | 3.9988 | 4.8862 | 5.3711 | 4.8506 | 4.8756 | |
AB | 10 | 0.0625 | 1.2163 | 1.2168 | 1.1234 | 1.0765 |
25 | 0.0738 | 0.9401 | 0.9726 | 0.8907 | 0.8748 | |
50 | 0.0380 | 0.9088 | 1.0659 | 0.8573 | 0.8859 | |
100 | 0.0287 | 0.8963 | 1.1787 | 0.8401 | 0.8697 | |
200 | 0.0166 | 0.8858 | 1.3031 | 0.8439 | 0.8789 | |
300 | 0.0012 | 0.8862 | 1.3711 | 0.8506 | 0.8756 | |
MRE | 10 | 0.0156 | 0.4834 | 0.4807 | 0.4714 | 0.4854 |
25 | 0.0185 | 0.3538 | 0.3585 | 0.3405 | 0.3536 | |
50 | 0.0095 | 0.2878 | 0.3167 | 0.2742 | 0.2889 | |
100 | 0.0072 | 0.2466 | 0.3054 | 0.2321 | 0.2424 | |
200 | 0.0042 | 0.2264 | 0.3260 | 0.2157 | 0.2256 | |
300 | 0.0003 | 0.2229 | 0.3428 | 0.2138 | 0.2205 | |
MSE | 10 | 2.9043 | 6.2750 | 6.0663 | 5.8402 | 6.1414 |
25 | 1.3856 | 3.1215 | 3.0986 | 2.8793 | 3.0677 | |
50 | 0.7547 | 1.9790 | 2.2677 | 1.8032 | 2.0032 | |
100 | 0.3717 | 1.3758 | 1.8782 | 1.2184 | 1.3353 | |
200 | 0.1822 | 1.0527 | 1.9039 | 0.9610 | 1.0504 | |
300 | 0.1202 | 0.9624 | 2.0149 | 0.8867 | 0.9453 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 4.8793 | 6.2159 | 6.2417 | 6.1934 | 6.0518 |
25 | 4.9283 | 5.9406 | 6.0539 | 5.9254 | 5.8979 | |
50 | 4.9480 | 5.9061 | 6.0826 | 5.8767 | 5.8738 | |
100 | 4.9839 | 5.8739 | 6.1814 | 5.8623 | 5.8668 | |
200 | 4.9940 | 5.8508 | 6.2729 | 5.8430 | 5.8573 | |
300 | 4.9858 | 5.8588 | 6.3355 | 5.8436 | 5.8443 | |
AB | 10 | 0.1207 | 1.2159 | 1.2417 | 1.1934 | 1.0518 |
25 | 0.0717 | 0.9406 | 1.0539 | 0.9254 | 0.8979 | |
50 | 0.0520 | 0.9061 | 1.0826 | 0.8767 | 0.8738 | |
100 | 0.0161 | 0.8739 | 1.1814 | 0.8623 | 0.8668 | |
200 | 0.0060 | 0.8508 | 1.2729 | 0.8430 | 0.8573 | |
300 | 0.0142 | 0.8588 | 1.3355 | 0.8436 | 0.8443 | |
MRE | 10 | 0.0241 | 0.4372 | 0.4343 | 0.4289 | 0.4335 |
25 | 0.0143 | 0.2971 | 0.3010 | 0.2896 | 0.2975 | |
50 | 0.0104 | 0.2376 | 0.2514 | 0.2249 | 0.2334 | |
100 | 0.0032 | 0.1979 | 0.2415 | 0.1921 | 0.1968 | |
200 | 0.0012 | 0.1769 | 0.2549 | 0.1739 | 0.1775 | |
300 | 0.0028 | 0.1737 | 0.2671 | 0.1705 | 0.1714 | |
MSE | 10 | 4.5278 | 8.0561 | 7.8298 | 7.6115 | 7.7488 |
25 | 1.9727 | 3.5841 | 3.6415 | 3.3645 | 3.5746 | |
50 | 0.9619 | 2.1944 | 2.3526 | 1.9809 | 2.1332 | |
100 | 0.4770 | 1.4498 | 1.9140 | 1.3619 | 1.4272 | |
200 | 0.2355 | 1.0642 | 1.8717 | 1.0091 | 1.0642 | |
300 | 0.1600 | 0.9522 | 1.9495 | 0.9070 | 0.9279 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 6.8852 | 8.3751 | 8.3080 | 8.2719 | 8.0785 |
25 | 6.9508 | 7.9654 | 8.0939 | 7.9661 | 7.9015 | |
50 | 6.9772 | 7.9105 | 8.0665 | 7.8996 | 7.8877 | |
100 | 6.9808 | 7.8671 | 8.1001 | 7.8491 | 7.8347 | |
200 | 6.9902 | 7.8377 | 8.2073 | 7.8376 | 7.8279 | |
300 | 6.9994 | 7.8330 | 8.2567 | 7.8323 | 7.8247 | |
AB | 10 | 0.1148 | 1.3751 | 1.3080 | 1.2719 | 1.0785 |
25 | 0.0492 | 0.9654 | 1.0939 | 0.9661 | 0.9015 | |
50 | 0.0228 | 0.9105 | 1.0665 | 0.8996 | 0.8877 | |
100 | 0.0192 | 0.8671 | 1.1001 | 0.8491 | 0.8347 | |
200 | 0.0098 | 0.8377 | 1.2073 | 0.8376 | 0.8279 | |
300 | 0.0006 | 0.8330 | 1.2567 | 0.8323 | 0.8247 | |
MRE | 10 | 0.0164 | 0.3971 | 0.3834 | 0.3728 | 0.3801 |
25 | 0.0070 | 0.2536 | 0.2487 | 0.2396 | 0.2494 | |
50 | 0.0033 | 0.1922 | 0.1930 | 0.1835 | 0.1908 | |
100 | 0.0027 | 0.1539 | 0.1695 | 0.1468 | 0.1502 | |
200 | 0.0014 | 0.1307 | 0.1741 | 0.1286 | 0.1298 | |
300 | 0.0001 | 0.1240 | 0.1797 | 0.1228 | 0.1229 | |
MSE | 10 | 8.0853 | 13.221 | 12.275 | 11.590 | 11.818 |
25 | 3.1995 | 5.2182 | 4.9697 | 4.6070 | 5.0214 | |
50 | 1.5333 | 2.9054 | 2.8651 | 2.6487 | 2.8488 | |
100 | 0.7477 | 1.7950 | 2.0349 | 1.6308 | 1.7225 | |
200 | 0.3819 | 1.2139 | 1.8654 | 1.1544 | 1.1984 | |
300 | 0.2538 | 1.0264 | 1.8495 | 0.9997 | 1.0176 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 14.870 | 16.725 | 16.755 | 16.639 | 16.487 |
25 | 14.975 | 16.192 | 16.194 | 16.166 | 16.071 | |
50 | 15.003 | 15.979 | 16.045 | 16.015 | 15.948 | |
100 | 15.014 | 15.881 | 16.023 | 15.876 | 15.818 | |
200 | 14.992 | 15.818 | 16.066 | 15.853 | 15.801 | |
300 | 15.014 | 15.810 | 16.081 | 15.826 | 15.813 | |
AB | 10 | 0.1302 | 1.7254 | 1.7551 | 1.6394 | 1.4871 |
25 | 0.0254 | 1.1917 | 1.1941 | 1.1658 | 1.0705 | |
50 | 0.0026 | 0.9791 | 1.0445 | 1.0145 | 0.9477 | |
100 | 0.0142 | 0.8806 | 1.0226 | 0.8755 | 0.8180 | |
200 | 0.0084 | 0.8184 | 1.0661 | 0.8532 | 0.8008 | |
300 | 0.0135 | 0.8103 | 1.0806 | 0.8263 | 0.8125 | |
MRE | 10 | 0.0087 | 0.3328 | 0.3258 | 0.3120 | 0.3262 |
25 | 0.0017 | 0.2138 | 0.2007 | 0.1975 | 0.2060 | |
50 | 0.0002 | 0.1496 | 0.1444 | 0.1445 | 0.1491 | |
100 | 0.0009 | 0.1114 | 0.1076 | 0.1043 | 0.1085 | |
200 | 0.0006 | 0.0832 | 0.0879 | 0.0814 | 0.0824 | |
300 | 0.0009 | 0.0733 | 0.0817 | 0.0710 | 0.0729 | |
MSE | 10 | 27.483 | 42.816 | 40.605 | 37.786 | 40.567 |
25 | 11.128 | 16.789 | 14.977 | 14.517 | 15.753 | |
50 | 5.4177 | 8.2091 | 7.5370 | 7.6602 | 8.2052 | |
100 | 2.7917 | 4.5139 | 4.1585 | 3.9290 | 4.2486 | |
200 | 1.3835 | 2.4799 | 2.6592 | 2.3612 | 2.4262 | |
300 | 0.8964 | 1.8851 | 2.2170 | 1.7610 | 1.8652 |
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 26.455 (7.2429) | 64.995 | 131.99 | 132.70 | 0.1770 | 0.6700 |
DR | 24.382 (3.1481) | 66.394 | 134.79 | 135.50 | 0.2160 | 0.4300 |
Poisson | 27.533 (1.3548) | 151.21 | 304.41 | 305.12 | 0.3810 | 0.0180 |
DITL | 0.4178 (0.1079) | 74.491 | 150.98 | 151.69 | 0.3590 | 0.0310 |
DPr | 0.3284 (0.0848) | 77.402 | 156.80 | 157.51 | 0.4060 | 0.0097 |
DBH | 0.9992 (0.0076) | 91.368 | 184.74 | 185.44 | 0.7910 | 0.0000 |
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 48.711 (6.1847) | 324.51 | 651.02 | 653.21 | 0.0851 | 0.7300 |
DR | 47.010 (2.8934) | 347.23 | 696.45 | 698.64 | 0.2930 | 0.0000 |
Poisson | 49.743 (0.8682) | 1409.8 | 2821.6 | 2823.8 | 0.4970 | 0.0000 |
DITL | 0.3539 (0.0436) | 366.91 | 735.81 | 738.00 | 0.3290 | 0.0000 |
DPr | 0.2863 (0.0352) | 379.07 | 760.14 | 762.33 | 0.3820 | 0.0000 |
DBH | 0.9997 (0.0019) | 461.02 | 924.04 | 926.23 | 0.8120 | 0.0000 |
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 49.020 (5.4201) | 428.30 | 858.61 | 861.07 | 0.0676 | 0.8210 |
DR | 46.339 (2.4841) | 452.55 | 907.10 | 909.56 | 0.2473 | 0.0000 |
Poisson | 50.058 (0.9742) | 1713.0 | 3428.1 | 3430.5 | 0.4954 | 0.0000 |
DITL | 0.3493 (0.0375) | 488.14 | 978.28 | 980.75 | 0.3263 | 0.0000 |
DPr | 0.2835 (0.0304) | 503.61 | 1009.2 | 1011.7 | 0.3558 | 0.0000 |
DBH | 0.9997 (0.0016) | 613.80 | 1229.6 | 1232.1 | 0.7876 | 0.0000 |
τ | E(X) | Var(X) | CS(X) | CK(X) | ID(X) | CV(X) |
2 | 4.00000 | 12.0000 | 1.44338 | 6.08333 | 3.00000 | 0.86603 |
3 | 4.50000 | 20.2500 | 1.67901 | 7.05761 | 4.50000 | 1.00000 |
4 | 5.33333 | 30.2222 | 1.79405 | 7.66025 | 5.66667 | 1.03078 |
5 | 6.25000 | 42.1875 | 1.85607 | 8.02222 | 6.75000 | 1.03923 |
6 | 7.20000 | 56.1600 | 1.89348 | 8.25493 | 7.80000 | 1.04083 |
7 | 8.16667 | 72.1389 | 1.91786 | 8.41326 | 8.83333 | 1.04002 |
8 | 9.14286 | 90.1224 | 1.93468 | 8.52586 | 9.85714 | 1.03833 |
9 | 10.1250 | 110.1094 | 1.94678 | 8.60883 | 10.87500 | 1.03638 |
10 | 11.1111 | 132.0988 | 1.95579 | 8.67174 | 11.88889 | 1.03441 |
15 | 16.0714 | 272.0663 | 1.97871 | 8.83698 | 16.92857 | 1.02632 |
20 | 21.0526 | 462.0499 | 1.98750 | 8.90278 | 21.94737 | 1.02103 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 2.4683 | 3.0734 | 2.7620 | 3.0486 | 2.7156 |
25 | 2.3209 | 2.4309 | 2.1472 | 2.5131 | 2.3049 | |
50 | 2.2357 | 2.1799 | 2.1001 | 2.2501 | 2.1488 | |
100 | 2.1808 | 2.1098 | 2.1000 | 2.1307 | 2.1045 | |
200 | 2.1416 | 2.1002 | 2.1000 | 2.1013 | 2.1004 | |
300 | 2.1274 | 2.1000 | 2.1000 | 2.1002 | 2.1000 | |
AB | 10 | 0.3683 | 0.9734 | 0.6620 | 0.9486 | 0.6156 |
25 | 0.2209 | 0.3309 | 0.0472 | 0.4131 | 0.2049 | |
50 | 0.1357 | 0.0799 | 0.0001 | 0.1501 | 0.0488 | |
100 | 0.0808 | 0.0098 | 0.0000 | 0.0307 | 0.0045 | |
200 | 0.0416 | 0.0002 | 0.0000 | 0.0013 | 0.0004 | |
300 | 0.0274 | 0.0000 | 0.0000 | 0.0002 | 0.0000 | |
MRE | 10 | 0.1754 | 0.4635 | 0.3152 | 0.4517 | 0.2931 |
25 | 0.1052 | 0.1576 | 0.0225 | 0.1967 | 0.0976 | |
50 | 0.0646 | 0.0381 | 0.0001 | 0.0715 | 0.0233 | |
100 | 0.0385 | 0.0046 | 0.0000 | 0.0146 | 0.0021 | |
200 | 0.0198 | 0.0001 | 0.0000 | 0.0006 | 0.0002 | |
300 | 0.0130 | 0.0000 | 0.0000 | 0.0001 | 0.0000 | |
MSE | 10 | 0.7743 | 3.3333 | 2.0870 | 3.4064 | 2.3300 |
25 | 0.2951 | 0.8431 | 0.0912 | 1.1611 | 0.5520 | |
50 | 0.1391 | 0.1614 | 0.0001 | 0.3712 | 0.0985 | |
100 | 0.0627 | 0.0157 | 0.0000 | 0.0651 | 0.0068 | |
200 | 0.0271 | 0.0003 | 0.0000 | 0.0025 | 0.0006 | |
300 | 0.0169 | 0.0000 | 0.0000 | 0.0006 | 0.0000 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 3.1396 | 4.3862 | 4.3030 | 4.1871 | 4.2023 |
25 | 3.0268 | 4.0219 | 3.9440 | 3.8787 | 3.9351 | |
50 | 2.9950 | 3.9277 | 3.9411 | 3.7879 | 3.8614 | |
100 | 2.9948 | 3.9041 | 4.0457 | 3.7762 | 3.8804 | |
200 | 2.9964 | 3.9231 | 4.2116 | 3.8175 | 3.9187 | |
300 | 2.9970 | 3.9378 | 4.3245 | 3.8419 | 3.9348 | |
AB | 10 | 0.1396 | 1.3862 | 1.3030 | 1.1871 | 1.2023 |
25 | 0.0268 | 1.0219 | 0.9440 | 0.8787 | 0.9351 | |
50 | 0.0050 | 0.9277 | 0.9411 | 0.7879 | 0.8614 | |
100 | 0.0052 | 0.9041 | 1.0457 | 0.7762 | 0.8804 | |
200 | 0.0036 | 0.9231 | 1.2116 | 0.8175 | 0.9187 | |
300 | 0.0030 | 0.9378 | 1.3245 | 0.8419 | 0.9348 | |
MRE | 10 | 0.0465 | 0.5763 | 0.5672 | 0.5519 | 0.5599 |
25 | 0.0089 | 0.4499 | 0.4713 | 0.4301 | 0.4473 | |
50 | 0.0017 | 0.3944 | 0.4427 | 0.3736 | 0.3907 | |
100 | 0.0017 | 0.3580 | 0.4347 | 0.3302 | 0.3570 | |
200 | 0.0012 | 0.3318 | 0.4495 | 0.3062 | 0.3321 | |
300 | 0.0010 | 0.3237 | 0.4659 | 0.2977 | 0.3217 | |
MSE | 10 | 1.5854 | 5.3423 | 4.9727 | 4.6497 | 4.8640 |
25 | 0.7594 | 2.7425 | 2.7410 | 2.4596 | 2.6652 | |
50 | 0.4343 | 1.9387 | 2.1702 | 1.7096 | 1.8726 | |
100 | 0.2391 | 1.4819 | 1.9558 | 1.2643 | 1.4561 | |
200 | 0.1248 | 1.1972 | 1.9742 | 1.0271 | 1.1933 | |
300 | 0.0832 | 1.0952 | 2.0686 | 0.9387 | 1.0861 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 3.9375 | 5.2163 | 5.2168 | 5.1234 | 5.0765 |
25 | 3.9262 | 4.9401 | 4.9726 | 4.8907 | 4.8748 | |
50 | 3.9620 | 4.9088 | 5.0659 | 4.8573 | 4.8859 | |
100 | 3.9713 | 4.8963 | 5.1787 | 4.8401 | 4.8697 | |
200 | 3.9834 | 4.8858 | 5.3031 | 4.8439 | 4.8789 | |
300 | 3.9988 | 4.8862 | 5.3711 | 4.8506 | 4.8756 | |
AB | 10 | 0.0625 | 1.2163 | 1.2168 | 1.1234 | 1.0765 |
25 | 0.0738 | 0.9401 | 0.9726 | 0.8907 | 0.8748 | |
50 | 0.0380 | 0.9088 | 1.0659 | 0.8573 | 0.8859 | |
100 | 0.0287 | 0.8963 | 1.1787 | 0.8401 | 0.8697 | |
200 | 0.0166 | 0.8858 | 1.3031 | 0.8439 | 0.8789 | |
300 | 0.0012 | 0.8862 | 1.3711 | 0.8506 | 0.8756 | |
MRE | 10 | 0.0156 | 0.4834 | 0.4807 | 0.4714 | 0.4854 |
25 | 0.0185 | 0.3538 | 0.3585 | 0.3405 | 0.3536 | |
50 | 0.0095 | 0.2878 | 0.3167 | 0.2742 | 0.2889 | |
100 | 0.0072 | 0.2466 | 0.3054 | 0.2321 | 0.2424 | |
200 | 0.0042 | 0.2264 | 0.3260 | 0.2157 | 0.2256 | |
300 | 0.0003 | 0.2229 | 0.3428 | 0.2138 | 0.2205 | |
MSE | 10 | 2.9043 | 6.2750 | 6.0663 | 5.8402 | 6.1414 |
25 | 1.3856 | 3.1215 | 3.0986 | 2.8793 | 3.0677 | |
50 | 0.7547 | 1.9790 | 2.2677 | 1.8032 | 2.0032 | |
100 | 0.3717 | 1.3758 | 1.8782 | 1.2184 | 1.3353 | |
200 | 0.1822 | 1.0527 | 1.9039 | 0.9610 | 1.0504 | |
300 | 0.1202 | 0.9624 | 2.0149 | 0.8867 | 0.9453 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 4.8793 | 6.2159 | 6.2417 | 6.1934 | 6.0518 |
25 | 4.9283 | 5.9406 | 6.0539 | 5.9254 | 5.8979 | |
50 | 4.9480 | 5.9061 | 6.0826 | 5.8767 | 5.8738 | |
100 | 4.9839 | 5.8739 | 6.1814 | 5.8623 | 5.8668 | |
200 | 4.9940 | 5.8508 | 6.2729 | 5.8430 | 5.8573 | |
300 | 4.9858 | 5.8588 | 6.3355 | 5.8436 | 5.8443 | |
AB | 10 | 0.1207 | 1.2159 | 1.2417 | 1.1934 | 1.0518 |
25 | 0.0717 | 0.9406 | 1.0539 | 0.9254 | 0.8979 | |
50 | 0.0520 | 0.9061 | 1.0826 | 0.8767 | 0.8738 | |
100 | 0.0161 | 0.8739 | 1.1814 | 0.8623 | 0.8668 | |
200 | 0.0060 | 0.8508 | 1.2729 | 0.8430 | 0.8573 | |
300 | 0.0142 | 0.8588 | 1.3355 | 0.8436 | 0.8443 | |
MRE | 10 | 0.0241 | 0.4372 | 0.4343 | 0.4289 | 0.4335 |
25 | 0.0143 | 0.2971 | 0.3010 | 0.2896 | 0.2975 | |
50 | 0.0104 | 0.2376 | 0.2514 | 0.2249 | 0.2334 | |
100 | 0.0032 | 0.1979 | 0.2415 | 0.1921 | 0.1968 | |
200 | 0.0012 | 0.1769 | 0.2549 | 0.1739 | 0.1775 | |
300 | 0.0028 | 0.1737 | 0.2671 | 0.1705 | 0.1714 | |
MSE | 10 | 4.5278 | 8.0561 | 7.8298 | 7.6115 | 7.7488 |
25 | 1.9727 | 3.5841 | 3.6415 | 3.3645 | 3.5746 | |
50 | 0.9619 | 2.1944 | 2.3526 | 1.9809 | 2.1332 | |
100 | 0.4770 | 1.4498 | 1.9140 | 1.3619 | 1.4272 | |
200 | 0.2355 | 1.0642 | 1.8717 | 1.0091 | 1.0642 | |
300 | 0.1600 | 0.9522 | 1.9495 | 0.9070 | 0.9279 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 6.8852 | 8.3751 | 8.3080 | 8.2719 | 8.0785 |
25 | 6.9508 | 7.9654 | 8.0939 | 7.9661 | 7.9015 | |
50 | 6.9772 | 7.9105 | 8.0665 | 7.8996 | 7.8877 | |
100 | 6.9808 | 7.8671 | 8.1001 | 7.8491 | 7.8347 | |
200 | 6.9902 | 7.8377 | 8.2073 | 7.8376 | 7.8279 | |
300 | 6.9994 | 7.8330 | 8.2567 | 7.8323 | 7.8247 | |
AB | 10 | 0.1148 | 1.3751 | 1.3080 | 1.2719 | 1.0785 |
25 | 0.0492 | 0.9654 | 1.0939 | 0.9661 | 0.9015 | |
50 | 0.0228 | 0.9105 | 1.0665 | 0.8996 | 0.8877 | |
100 | 0.0192 | 0.8671 | 1.1001 | 0.8491 | 0.8347 | |
200 | 0.0098 | 0.8377 | 1.2073 | 0.8376 | 0.8279 | |
300 | 0.0006 | 0.8330 | 1.2567 | 0.8323 | 0.8247 | |
MRE | 10 | 0.0164 | 0.3971 | 0.3834 | 0.3728 | 0.3801 |
25 | 0.0070 | 0.2536 | 0.2487 | 0.2396 | 0.2494 | |
50 | 0.0033 | 0.1922 | 0.1930 | 0.1835 | 0.1908 | |
100 | 0.0027 | 0.1539 | 0.1695 | 0.1468 | 0.1502 | |
200 | 0.0014 | 0.1307 | 0.1741 | 0.1286 | 0.1298 | |
300 | 0.0001 | 0.1240 | 0.1797 | 0.1228 | 0.1229 | |
MSE | 10 | 8.0853 | 13.221 | 12.275 | 11.590 | 11.818 |
25 | 3.1995 | 5.2182 | 4.9697 | 4.6070 | 5.0214 | |
50 | 1.5333 | 2.9054 | 2.8651 | 2.6487 | 2.8488 | |
100 | 0.7477 | 1.7950 | 2.0349 | 1.6308 | 1.7225 | |
200 | 0.3819 | 1.2139 | 1.8654 | 1.1544 | 1.1984 | |
300 | 0.2538 | 1.0264 | 1.8495 | 0.9997 | 1.0176 |
Measures | n | MLE | OLSE | WLSE | ADE | CVME |
AE | 10 | 14.870 | 16.725 | 16.755 | 16.639 | 16.487 |
25 | 14.975 | 16.192 | 16.194 | 16.166 | 16.071 | |
50 | 15.003 | 15.979 | 16.045 | 16.015 | 15.948 | |
100 | 15.014 | 15.881 | 16.023 | 15.876 | 15.818 | |
200 | 14.992 | 15.818 | 16.066 | 15.853 | 15.801 | |
300 | 15.014 | 15.810 | 16.081 | 15.826 | 15.813 | |
AB | 10 | 0.1302 | 1.7254 | 1.7551 | 1.6394 | 1.4871 |
25 | 0.0254 | 1.1917 | 1.1941 | 1.1658 | 1.0705 | |
50 | 0.0026 | 0.9791 | 1.0445 | 1.0145 | 0.9477 | |
100 | 0.0142 | 0.8806 | 1.0226 | 0.8755 | 0.8180 | |
200 | 0.0084 | 0.8184 | 1.0661 | 0.8532 | 0.8008 | |
300 | 0.0135 | 0.8103 | 1.0806 | 0.8263 | 0.8125 | |
MRE | 10 | 0.0087 | 0.3328 | 0.3258 | 0.3120 | 0.3262 |
25 | 0.0017 | 0.2138 | 0.2007 | 0.1975 | 0.2060 | |
50 | 0.0002 | 0.1496 | 0.1444 | 0.1445 | 0.1491 | |
100 | 0.0009 | 0.1114 | 0.1076 | 0.1043 | 0.1085 | |
200 | 0.0006 | 0.0832 | 0.0879 | 0.0814 | 0.0824 | |
300 | 0.0009 | 0.0733 | 0.0817 | 0.0710 | 0.0729 | |
MSE | 10 | 27.483 | 42.816 | 40.605 | 37.786 | 40.567 |
25 | 11.128 | 16.789 | 14.977 | 14.517 | 15.753 | |
50 | 5.4177 | 8.2091 | 7.5370 | 7.6602 | 8.2052 | |
100 | 2.7917 | 4.5139 | 4.1585 | 3.9290 | 4.2486 | |
200 | 1.3835 | 2.4799 | 2.6592 | 2.3612 | 2.4262 | |
300 | 0.8964 | 1.8851 | 2.2170 | 1.7610 | 1.8652 |
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 26.455 (7.2429) | 64.995 | 131.99 | 132.70 | 0.1770 | 0.6700 |
DR | 24.382 (3.1481) | 66.394 | 134.79 | 135.50 | 0.2160 | 0.4300 |
Poisson | 27.533 (1.3548) | 151.21 | 304.41 | 305.12 | 0.3810 | 0.0180 |
DITL | 0.4178 (0.1079) | 74.491 | 150.98 | 151.69 | 0.3590 | 0.0310 |
DPr | 0.3284 (0.0848) | 77.402 | 156.80 | 157.51 | 0.4060 | 0.0097 |
DBH | 0.9992 (0.0076) | 91.368 | 184.74 | 185.44 | 0.7910 | 0.0000 |
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 48.711 (6.1847) | 324.51 | 651.02 | 653.21 | 0.0851 | 0.7300 |
DR | 47.010 (2.8934) | 347.23 | 696.45 | 698.64 | 0.2930 | 0.0000 |
Poisson | 49.743 (0.8682) | 1409.8 | 2821.6 | 2823.8 | 0.4970 | 0.0000 |
DITL | 0.3539 (0.0436) | 366.91 | 735.81 | 738.00 | 0.3290 | 0.0000 |
DPr | 0.2863 (0.0352) | 379.07 | 760.14 | 762.33 | 0.3820 | 0.0000 |
DBH | 0.9997 (0.0019) | 461.02 | 924.04 | 926.23 | 0.8120 | 0.0000 |
Model | MLEs (S.E.) | -LogLik. | AIC | BIC | K-S | P-value |
PRL | 49.020 (5.4201) | 428.30 | 858.61 | 861.07 | 0.0676 | 0.8210 |
DR | 46.339 (2.4841) | 452.55 | 907.10 | 909.56 | 0.2473 | 0.0000 |
Poisson | 50.058 (0.9742) | 1713.0 | 3428.1 | 3430.5 | 0.4954 | 0.0000 |
DITL | 0.3493 (0.0375) | 488.14 | 978.28 | 980.75 | 0.3263 | 0.0000 |
DPr | 0.2835 (0.0304) | 503.61 | 1009.2 | 1011.7 | 0.3558 | 0.0000 |
DBH | 0.9997 (0.0016) | 613.80 | 1229.6 | 1232.1 | 0.7876 | 0.0000 |