A common assumption is that pathogens more readily destabilize their host populations, leading to an elevated risk of driving both the host and pathogen to extinction. This logic underlies many strategies in conservation biology and pest and disease management. Yet, the interplay between pathogens and population stability likely varies across contexts, depending on the environment and traits of both the hosts and pathogens. This context-dependence may be particularly important in natural consumer-host populations where size- and stage-structured competition for resources strongly modulates population stability. Few studies, however, have examined how the interplay between size and stage structure and infectious disease shapes the stability of host populations. Here, we extend previously developed size-dependent theory for consumer-resource interactions to examine how pathogens influence the stability of host populations across a range of contexts. Specifically, we integrate a size- and stage-structured consumer-resource model and a standard epidemiological model of a directly transmitted pathogen. The model reveals surprisingly rich dynamics, including sustained oscillations, multiple steady states, biomass overcompensation, and hydra effects. Moreover, these results highlight how the stage structure and density of host populations interact to either enhance or constrain disease outbreaks. Our results suggest that accounting for these cross-scale and bidirectional feedbacks can provide key insight into the structuring role of pathogens in natural ecosystems while also improving our ability to understand how interventions targeting one may impact the other.
Citation: Jessica L. Hite, André M. de Roos. Pathogens stabilize or destabilize depending on host stage structure[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20378-20404. doi: 10.3934/mbe.2023901
[1] | Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan . Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial. AIMS Mathematics, 2022, 7(2): 2989-3005. doi: 10.3934/math.2022165 |
[2] | F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287 |
[3] | Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073 |
[4] | Erhan Deniz, Hatice Tuǧba Yolcu . Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order. AIMS Mathematics, 2020, 5(1): 640-649. doi: 10.3934/math.2020043 |
[5] | Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015 |
[6] | Mohammad Faisal Khan . Certain new applications of Faber polynomial expansion for some new subclasses of υ-fold symmetric bi-univalent functions associated with q-calculus. AIMS Mathematics, 2023, 8(5): 10283-10302. doi: 10.3934/math.2023521 |
[7] | Khadeejah Rasheed Alhindi, Khalid M. K. Alshammari, Huda Ali Aldweby . Classes of analytic functions involving the q-Ruschweyh operator and q-Bernardi operator. AIMS Mathematics, 2024, 9(11): 33301-33313. doi: 10.3934/math.20241589 |
[8] | İbrahim Aktaş . On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203 |
[9] | Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order ϑ+iδ associated with (p,q)− Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254 |
[10] | Zeya Jia, Nazar Khan, Shahid Khan, Bilal Khan . Faber polynomial coefficients estimates for certain subclasses of q-Mittag-Leffler-Type analytic and bi-univalent functions. AIMS Mathematics, 2022, 7(2): 2512-2528. doi: 10.3934/math.2022141 |
A common assumption is that pathogens more readily destabilize their host populations, leading to an elevated risk of driving both the host and pathogen to extinction. This logic underlies many strategies in conservation biology and pest and disease management. Yet, the interplay between pathogens and population stability likely varies across contexts, depending on the environment and traits of both the hosts and pathogens. This context-dependence may be particularly important in natural consumer-host populations where size- and stage-structured competition for resources strongly modulates population stability. Few studies, however, have examined how the interplay between size and stage structure and infectious disease shapes the stability of host populations. Here, we extend previously developed size-dependent theory for consumer-resource interactions to examine how pathogens influence the stability of host populations across a range of contexts. Specifically, we integrate a size- and stage-structured consumer-resource model and a standard epidemiological model of a directly transmitted pathogen. The model reveals surprisingly rich dynamics, including sustained oscillations, multiple steady states, biomass overcompensation, and hydra effects. Moreover, these results highlight how the stage structure and density of host populations interact to either enhance or constrain disease outbreaks. Our results suggest that accounting for these cross-scale and bidirectional feedbacks can provide key insight into the structuring role of pathogens in natural ecosystems while also improving our ability to understand how interventions targeting one may impact the other.
In his survey-cum-expository review article, Srivastava [35] included also a brief overview of the classical q-analysis versus the so-called (p,q)-analysis with an obviously redundant additional parameter p (see, for details, [35,p. 340]). The present sequel to Srivastava's widely-cited review article [35], we apply the concept of q-convolution in order to introduce and study the general Taylor-Maclaurin coefficient estimates for functions belonging to a new class of normalized analytic and bi-close-to-convex functions in the open unit disk, which we have defined here.
Let A denote the class of analytic functions of the form:
f(z)=z+∞∑n=2anzn(z∈Δ), | (1.1) |
where Δ denotes the open unit disk in the complex z-plane given by
Δ:={z:z∈Cand|z|<1}. |
Also let S⊂A consist of functions which are also univalent in Δ.
If the function f is given by (1.1) and the function Υ∈A is given by
Υ(z)=z+∞∑n=2ψnzn(z∈Δ), | (1.2) |
then the Hadamard product (or convolution) of the functions f and Υ is defined by defined by
(f∗Υ)(z):=z+∞∑n=2anψnzn=:(Υ∗f)(z)(z∈Δ). |
For 0≦α<1, we let S∗(α) denote the class of functions g∈S which are starlike of order α in Δ such that
ℜ(zg′(z)g(z))>α(z∈Δ). |
We denote by C(α) the class of functions f∈S which are close-to-convex of order α in Δ such that (see [10,24])
ℜ(zf′(z)g(z))>α(z∈Δ), |
where
g∈S∗(0)=:S∗. |
We note that
S∗(α)⊂C(α)⊂Sand|an|<n(∀f∈S;n∈N∖{1}) |
by the Bieberbach conjecture or the De Branges Theorem (see [3,10]), N being the set of natural numbers (or the positive integers).
In the above-cited review article, Srivastava [35] made use of various operators of q-calculus and fractional q-calculus. We begin by recalling the definitions and notations as follows (see also [33] and [45,pp. 350–351]).
The q-shifted factorial is defined, for λ,q∈C and n∈N0=N∪{0}, by
(λ;q)n={1(n=0)(1−λ)(1−λq)⋯(1−λqn−1)(n∈N). |
By using the q-gamma function Γq(z), we get
(qλ;q)n=(1−q)n Γq(λ+n)Γq(λ)(n∈N0), |
Γq(z)=(1−q)1−z(q;q)∞(qz;q)∞(|q|<1). |
We note also that
(λ;q)∞=∞∏n=0(1−λqn)(|q|<1), |
and that the q-gamma function Γq(z) satisfies the following recurrence relation:
Γq(z+1)=[z]qΓq(z), |
where [λ]q denotes the basic (or q-) number defined as follows:
[λ]q:={1−qλ1−q(λ∈C)1+ℓ−1∑j=1qj(λ=ℓ∈N). | (1.3) |
Using the definition in (1.3), we have the following consequences:
(ⅰ) For any non-negative integer n∈N0, the q-shifted factorial is given by
[n]q!:={1(n=0)n∏k=1[k]q(n∈N). |
(ⅱ) For any positive number r, the generalized q-Pochhammer symbol is defined by
[r]q,n:={1(n=0)r+n−1∏k=r[k]q(n∈N). |
In terms of the classical (Euler's) gamma function Γ(z), it is easily seen that
limq→1−{Γq(z)}=Γ(z). |
We also observe that
limq→1−{(qλ;q)n(1−q)n}=(λ)n, |
where (λ)n is the familiar Pochhammer symbol defined by
(λ)n={1(n=0)λ(λ+1)⋯(λ+n−1)(n∈N). |
For 0<q<1, the q-derivative operator (or, equivalently, the q-difference operator) Dq is defined by (see [22]; see also [14,16,21])
Dq(f∗Υ)(z)=Dq(z+∞∑n=2anψnzn):=(f∗Υ)(z)−(f∗Υ)(qz)z(1−q)=1+∞∑n=2[n]qanψnzn−1(z∈Δ), |
where, as in the definition (1.3),
[n]q={1−qn1−q=1+n−1∑j=1qj(n∈N)0(n=0). | (1.4) |
Remark 1. Whereas a q-extension of the class of starlike functions was introduced in 1990 in [20] by means of the q-derivative operator Dq, a firm footing of the usage of the q-calculus in the context of Geometric Function Theory was actually provided and the generalized basic (or q-) hypergeometric functions were first used in Geometric Function Theory in an earlier book chapter published in 1989 by Srivastava (see, for details, [34]; see also the recent works [25,27,32,36,37,39,40,46,51,52,53,55,56,57]).
For λ>−1 and 0<q<1, El-Deeb et al. [14] defined the linear operator Hλ,qΥ:A→A by
Hλ,qΥf(z)∗Mq,λ+1(z)=zDq(f∗Υ)(z)(z∈Δ), |
where the function Mq,λ(z) is given by
Mq,λ(z)=z+∞∑n=2[λ]q,n−1[n−1]q!zn(z∈Δ). |
A simple computation shows that
Hλ,qΥf(z)=z+∞∑n=2[n]q![λ+1]q,n−1anψnzn(λ>−1;0<q<1;z∈Δ). | (1.5) |
From the defining relation (1.5), we can easily verify that the following relations hold true for all f∈A:
(i)[λ+1]qHλ,qΥf(z)=[λ]qHλ+1,qΥf(z)+qλz Dq(Hλ+1,qΥf(z))(z∈Δ);(ii)IλΥf(z):=limq→1−Hλ,qΥf(z)=z+∞∑n=2n!(λ+1)n−1anψnzm(z∈Δ). | (1.6) |
Remark 2. If we take different particular cases for the coefficients ψn, we obtain the following special cases for the operator Hλ,qh:
(ⅰ) For ψn=1, we obtain the operator Jλq defined by Arif et al. [2] as follows (see also Srivastava [47]):
Jλqf(z):=z+∞∑n=2[n]q![λ+1]q,n−1anzn(z∈Δ); | (1.7) |
(ⅱ) For
ψn=(−1)n−1Γ(υ+1)4n−1(n−1)!Γ(n+υ)andυ>0, |
we obtain the operator Nλυ,q defined by El-Deeb and Bulboacǎ [12] and El-Deeb [11] as follows (see also [16]):
Nλυ,qf(z):=z+∞∑n=2(−1)n−1Γ(υ+1)4n−1(n−1)!Γ(n+υ)⋅[n]q![λ+1]q,n−1anzn=z+∞∑n=2[n]q![λ+1]q,n−1ϕnanzn | (1.8) |
(υ>0;λ>−1;0<q<1; z∈Δ), |
where
ϕn:=(−1)n−1Γ(υ+1)4n−1(n−1)!Γ(n+υ)(n∈N∖{1}); | (1.9) |
(ⅲ) For
ψn=(n+1m+n)α,α>0andn∈N0, |
we obtain the operator Mλ,αm,q defined by El-Deeb and Bulboacǎ (see [13,43]) as follows:
Mλ,αm,qf(z):=z+∞∑n=2(m+1m+n)α⋅[n]q![λ+1]q,n−1anzn(z∈Δ); | (1.10) |
(ⅳ) For
ψn=ρn−1(n−1)!e−ρandρ>0, |
we obtain a q-analogue of the Poisson operator defined in [30] by
Iλ,ρqf(z):=z+∞∑n=2ρn−1(n−1)!e−ρ⋅[n]q![λ+1]q,n−1anzn(z∈Δ); | (1.11) |
(ⅴ) For
\psi_{n} = \binom{m+n-2}{n-1}\; \theta^{n-1}\left(1-\theta \right)^{m}\qquad \left(m\in \mathbb{N};\; 0\leqq \theta \leqq 1\right), |
we get a q -analogue \Psi_{q, \theta}^{\lambda, m} of the Pascal distribution operator as follows (see [15]):
\begin{equation} \Psi_{q,\theta}^{\lambda,m}f(z): = z+\sum\limits_{n = 2}^{\infty} \binom{m+n-2}{n-1}\theta^{n-1}\left(1-\theta \right)^{m}\cdot \frac{[n]_{q}!}{[\lambda+1]_{q,n-1}}\;a_{n}\; z^{n} \end{equation} | (1.12) |
(z\in \Delta). |
If f and F are analytic functions in \Delta , we say that the function f is subordinate to the function F , written as f(z)\prec F(z) , if there exists a Schwarz function s , which is analytic in \Delta with s(0) = 0 and \left\vert s(z)\right\vert < 1 for all z\in \Delta , such that
f(z) = F\big(s(z)\big) \qquad (z\in \Delta). |
Furthermore, if the function F is univalent in \Delta , then we have the following equivalence (see, for example, [7,28])
\begin{equation*} f(z)\prec F(z)\; \Longleftrightarrow \; f(0) = F(0)\qquad \text{and} \qquad f(\Delta)\subset F(\Delta). \end{equation*} |
The Koebe one-quarter theorem (see [10]) asserts that the image of \Delta under every univalent function f\in \mathcal{S} contains the disk of radius \dfrac{1}{4} . Therefore, every function f\in \mathcal{S} has an inverse f^{-1} which satisfies the following inequality:
\begin{equation*} f\big(f^{-1}(w)\big) = w\qquad \left(\left\vert w\right\vert \lt r_{0}\left(f\right); \;r_{0}\left(f\right) \geqq \frac{1}{4}\right) , \end{equation*} |
where
\begin{align*} g(w) & = f^{-1}(w) = w-a_{2}w^{2}+\left(2a_{2}^{2}-a_{3}\right) w^{3}-\left( 5a_{2}^{3}-5a_{2}a_{3}+a_{4}\right) w^{4}+\cdots \\ & = w+\sum\limits_{n = 2}^{\infty}A_{n}\; w^{n}. \end{align*} |
A function f\in \mathcal{A} is said to be bi-univalent in \Delta if both f and f^{-1} are univalent in \Delta . Let \Sigma denote the class of normalized analytic and bi-univalent functions in \Delta given by (1.1). The class \Sigma of analytic and bi-univalent functions was introduced by Lewin [26], where it was shown that
f\in \Sigma \;\Longrightarrow\;\left\vert a_{2}\right\vert \lt 1.51. |
Brannan and Clunie [4] improved Lewin's result to the following form:
f\in \Sigma \;\Longrightarrow\; \left\vert a_{2}\right\vert \lt \sqrt{2} |
and, subsequently, Netanyahu [29] proved that
f\in \Sigma \;\Longrightarrow\;\left\vert a_{2}\right\vert \lt \frac{4}{3}. |
It should be noted that the following functions:
f_{1}(z) = \dfrac{z}{1-z},\quad f_{2}(z) = \dfrac{1}{2}\log\left(\dfrac{1+z}{1-z}\right) \qquad \text{and} \qquad f_{3}(z) = -\log (1-z), |
together with their corresponding inverses given by
f_{1}^{-1}(w) = \dfrac{w}{1+w}, \quad f_{2}^{-1}(w) = \dfrac{e^{2w}-1}{e^{2w}+1} \qquad \text{and} \qquad f_{3}^{-1}(w) = \dfrac{e^{w}-1}{e^{w}}, |
are elements of the analytic and bi-univalent function class \Sigma (see [14,48]). A brief history and interesting examples of the analytic and bi-univalent function class \Sigma can be found in (for example) [5,48].
Brannan and Taha [6] (see also [48]) introduced certain subclasses of the bi-univalent function class \Sigma similar to the familiar subclasses S^{\ast }\left(\alpha \right) and K\left(\alpha \right) of starlike and convex functions of order \alpha \; \left(0\leqq \alpha < 1\right) , respectively (see [5]). Indeed, following Brannan and Taha [6], a function f\in \mathcal{A} is said to be in the class S_{\Sigma}^{\ast }\left(\alpha \right) of bi-starlike functions of order \alpha \; \left(0 < \alpha \leqq 1\right) , if each of the following conditions is satisfied:
\begin{equation*} f\in \Sigma \qquad \text{and}\qquad \left\vert \arg\left(\frac{zf^{\prime}(z)}{ f(z)}\right)\right\vert \lt \frac{\alpha \pi}{2}\qquad (z\in \Delta) \end{equation*} |
and
\begin{equation*} \left\vert \arg\left(\frac{z\mathcal{F}^{\prime}(w)}{\mathcal{F}(w)}\right\vert\right) \lt \frac{\alpha \pi }{2} \qquad (w\in \Delta), \end{equation*} |
where the function \mathcal{F} is the analytic extension of f^{-1} to \Delta , given by
\begin{equation} \mathcal{F}(w) = w-a_{2}w^{2}+\left( 2a_{2}^{2}-a_{3}\right) w^{3}-\left( 5a_{2}^{3}-5a_{2}a_{3}+a_{4}\right) w^{4}+\cdots \qquad (w\in \Delta). \end{equation} | (1.13) |
A function f\in A is said to be in the class K_{\Sigma}^{\ast }\left(\alpha \right) of bi-convex functions of order \alpha \; \left(0 < \alpha \leqq 1\right) , if each of the following conditions is satisfied:
\begin{equation*} f\in \Sigma ,\quad \text{with}\quad \left\vert \arg\left(1+\frac{ zf^{\prime \prime }(z)}{f^{\prime}(z)}\right) \right\vert \lt \frac{\alpha \pi }{2} \qquad (z\in \Delta) \end{equation*} |
and
\begin{equation*} \left\vert \arg\left(1+\frac{zg^{\prime \prime}(w)}{g^{\prime}(w)} \right) \right\vert \lt \frac{\alpha \pi }{2}\qquad (w\in \Delta). \end{equation*} |
The classes S_{\Sigma}^{\ast}\left(\alpha \right) and K_{\Sigma}\left(\alpha \right) of bi-starlike functions of order \alpha in \Delta and bi-convex functions of order \alpha \; \left(0 < \alpha \leqq 1\right) in \Delta , corresponding to the function classes S^{\ast}\left(\alpha \right) and K\left(\alpha \right) , were also introduced analogously. For each of the function classes S_{\Sigma}^{\ast}\left(\alpha \right) and K_{\Sigma}\left(\alpha \right) , non-sharp estimates on the first two Taylor-Maclaurin coefficients \left\vert a_{2}\right\vert and \left\vert a_{3}\right\vert are known (see [6,35,48]). In fact, this pioneering work by Srivastava et al. [48] happens to be one of the most important studies of the bi-univalent function class \Sigma . It not only revived the study of the bi-univalent function class \Sigma in recent years, but it has also inspired remarkably many investigations in this area including the present paper. Some of these many recent papers dealing with problems involving the analytic and bi-univalent functions such as those considered in this article include [1,9,17,23,48], and indeed also many other works (see, for example, [38,44,54]).
Sakar and Güney [31] introduced and studied the following class:
\mathcal{T}_{\Sigma}\left( \lambda,\beta \right) \;\; \left(0\leqq \lambda \leqq 1;\; 0\leqq \beta \lt 1\right). |
In the same way, we define the following subclass of bi-close-to-convex functions \mathcal{H}_{\Sigma}^{q, \lambda }\left(\eta, \beta, \Upsilon \right) as follows.
Definition 1. For 0\leqq \eta < 1 and 0\leqq \beta \leqq 1, \; a function f\in \Sigma has the form (1.1) and the function \Upsilon given by (1.2), the function f is said to be in the class \mathcal{H}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \Upsilon\right) if there exists a function g \in \mathcal{S}^{\ast} such that
\begin{equation} \Re\left(\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}f(z)\right) ^{{\prime }}+\beta z^{2}\left( \mathcal{H}_{\Upsilon }^{\lambda ,q}f(z)\right)^{\prime\prime}}{\left(1-\beta \right) \mathcal{H}_{\Upsilon }^{\lambda,q}g(z)+\beta z\left(\mathcal{H}_{\Upsilon }^{\lambda,q}g(z)\right)^{\prime}}\right) \gt \eta \qquad (z\in \Delta) \end{equation} | (1.14) |
and
\begin{equation} \Re\left(\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda,q}\mathcal{F }(w)\right)^{{\prime}}+\beta z^{2}\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}\mathcal{F}(w)\right) ^{^{{\prime \prime }}}}{\left(1-\beta \right) \mathcal{H}_{\Upsilon }^{\lambda,q}\mathcal{G}(w)+\beta z\left(\mathcal{H} _{\Upsilon }^{\lambda ,q}\mathcal{G}(w)\right)^{{\prime}}}\right) \gt \eta \qquad (w\in \Delta), \end{equation} | (1.15) |
where the function \mathcal{F} is the analytic extension of f^{-1} to \Delta , and is given by (1.13), and \mathcal{G} is the analytic extension of g^{-1} to \Delta as follows:
\begin{equation} \mathcal{G}(w) = w-b_{2}w^{2}+\left(2b_{2}^{2}-b_{3}\right)w^{3}-\left( 5b_{2}^{3}-5b_{2}b_{3}+b_{4}\right) w^{4}+\cdots \qquad (w\in \Delta). \end{equation} | (1.16) |
We note that, if b_{n} = a_{n}\; \; (n\in \mathbb{N}\setminus\{1\}) , \mathcal{S}_{\Sigma }^{q, \lambda}\left(\eta, \beta, \Upsilon\right) becomes the class of bi-starlike functions satisfying the following inequalities:
\begin{equation} \Re\left(\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}f(z)\right)^{{\prime}}+\beta z^{2}\left(\mathcal{H}_{\Upsilon }^{\lambda ,q}f(z)\right) ^{\prime \prime}}{\left( 1-\beta \right) \mathcal{H}_{\Upsilon }^{\lambda ,q}f(z)+\beta z\left( \mathcal{H}_{\Upsilon }^{\lambda ,q}f(z)\right)^{\prime}}\right) \gt \eta \qquad (z\in \Delta). \end{equation} | (1.17) |
and
\begin{equation} \Re\left(\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}\mathcal{F }(w)\right) ^{{\prime}}+\beta z^{2}\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}\mathcal{F}(w)\right)^{\prime \prime}}{\left(1-\beta \right) \mathcal{H}_{\Upsilon}^{\lambda,q}\mathcal{F}(w)+\beta z\left( \mathcal{H} _{\Upsilon }^{\lambda ,q}\mathcal{F}(w)\right)^{\prime}}\right) \gt \eta \qquad (w\in \Delta). \end{equation} | (1.18) |
Remark 3. Each of the following limit cases when q\rightarrow 1{-} is worthy of note.
(ⅰ) Putting q\rightarrow 1{-} , we obtain
\lim\limits_{q\rightarrow 1{-}}\mathcal{H}_{\Sigma }^{q,\lambda}\left(\eta,\beta,h\right) = : \mathcal{P}_{\Sigma}^{\lambda}\left(\eta,\beta,h\right), |
where \mathcal{P}_{\Sigma}^{\lambda }\left(\eta, \beta, \Upsilon \right) represents the functions f\in \Sigma that satisfy (1.14) and (1.15) with \mathcal{H}_{\Upsilon}^{\lambda, q} replaced by \mathcal{I}_{\Upsilon}^{\lambda} as in (1.6).
(ⅱ) Putting
\psi_{n} = \dfrac{(-1)^{n-1}\Gamma(\upsilon+1)}{ 4^{n-1}\; (n-1)! \;\Gamma(m+\upsilon)}\qquad (\upsilon \gt 0), |
we obtain the class \mathcal{B}_{\Sigma}^{q, \lambda} \left(\eta, \beta, \upsilon\right) representing the functions f\in \Sigma that satisfy (1.14) and (1.15) with \mathcal{H}_{\Upsilon}^{\lambda, q} replaced by \mathcal{N}_{\upsilon, q}^{\lambda} as in (1.8).
(ⅲ) Putting
\psi_{n} = \left(\dfrac{n+1}{m+n}\right)^{\alpha}\qquad (\alpha \gt 0;\; m\geqq \mathbb{N}_0), |
we obtain the class \mathcal{L}_{\Sigma}^{\lambda, q} \left(\eta, \beta, m, \alpha \right) consisting of the functions f\in \Sigma that satisfy (1.14) and (1.15) with \mathcal{H} _{\Upsilon}^{\lambda, q} replaced by \mathcal{M}_{m, q}^{\lambda, \alpha } as in (1.10).
(ⅳ) Putting
\psi_{n} = \dfrac{\rho^{n-1}}{(n-1)!}\;e^{-\rho }\qquad (\rho \gt 0), |
we obtain the class \mathcal{M}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \rho \right) representing the functions f\in \Sigma which satisfy the inequalities in (1.14) and (1.15) with \mathcal{H}_{\Upsilon}^{\lambda, q} replaced by \mathcal{I}_{q}^{\lambda, \rho} as in (1.11).
(ⅴ) Putting
\psi_{n} = \binom{m+n-2}{n-1}\; \theta^{n-1}\left(1-\theta \right)^{m}\qquad \left(m\in \mathbb{N};\; 0\leqq \theta \leqq 1\right), |
we get the class \mathcal{W}_{\Sigma}^{q, \lambda}\left(\eta, \beta, m, \theta \right) of the functions f\in \Sigma which satisfy the inequalities in (1.14) and (1.15) with \mathcal{H}_{\Upsilon}^{\lambda, q} replaced by \Psi_{q, \theta}^{\lambda, m} occurring in (1.12).
Using the Faber polynomial expansion of functions f\in \mathcal{A} which have the normalized form (1.1), the coefficients of its inverse map may be expressed as follows (see [18]):
\begin{equation} \mathcal{F}(w) = f^{-1}(w) = w+\sum\limits_{n = 2}^{\infty}\frac{1}{n}\; K_{n-1}^{-n}(a_{2},a_{3},\cdots)\;w^{n} = w+\sum\limits_{n = 2}^{\infty}A_{n}\;w^{n}, \end{equation} | (1.19) |
where
\begin{align} \mathcal{K}_{n-1}^{-n}(a_{2},a_{3},\cdots) & = \frac{(-n)!}{(-2n+1)!\; (n-1)!} a_{2}^{n-1} \\ &\qquad +\frac{(-n)!}{(2(-n+1))!\; (n-3)!}\;a_{2}^{n-3}\;a_{3} \\ &\qquad +\frac{(-n)!}{(-2n+3)!\; (n-4)!}\;a_{2}^{n-4}\;a_{4} \\ &\qquad +\frac{(-n)!}{ (2(-n+2))!\; (n-5)!}\;a_{2}^{n-5}\;\left[a_{5}+\left(-n+2\right)a_{3}^{2}\right] \\ &\qquad +\frac{(-n)!}{(-2n+5)!\; (n-6)!}\;a_{2}^{n-6} \left[a_{6}+\left(-2n+5\right) a_{3}\;a_{4}\right] \\ &\qquad +\sum\limits_{j\geqq 7}a_{2}^{n-j}U_{j} \end{align} | (1.20) |
such that U_{j} with 7\leqq j\leqq n is a homogeneous polynomial in the variables a_{2}, a_{3}, \cdots, a_{n} . Here such expressions as (for example) (-n)! are to be interpreted symbolically by
\begin{equation*} (-n)!\equiv \Gamma(1-n): = (-n)(-n-1)(-n-2)\cdots \qquad \big(n\in \mathbb{N}_0\big). \end{equation*} |
In particular, the first three terms of \mathcal{K}_{n-1}^{-n} are given by
\begin{align*} \mathcal{K}_{1}^{-2} = -2a_{2}, \end{align*} |
\begin{align*} \mathcal{K}_{2}^{-3} = 3\left(2a_{2}^{2}-a_{3}\right) \end{align*} |
and
\begin{align*} \mathcal{K}_{3}^{-4} = -4\left(5a_{2}^{3}-5a_{2}a_{3}+a_{4}\right). \end{align*} |
In general, an expansion of \mathcal{K}_{m}^{-n} \; (n\in \mathbb{N}) is given by (see [1,8,41,42,47,49,50])
\begin{equation*} \mathcal{K}_{m}^{-n} = na_{m}+\frac{n\left(n-1\right)}{2}\;\mathcal{D}_{m}^{2}+ \frac{n!}{3!\;\left(n-3\right)!}\;\mathcal{D}_{m}^{3}+\cdots+\frac{n!}{m!\left( n-m\right)!}\;\mathcal{D}_{m}^{m}, \end{equation*} |
where
\mathcal{D}_{m}^{n} = \mathcal{D}_{m}^{n}(a_{2},a_{3},a_{4},\cdots) |
and, alternatively,
\begin{equation*} \mathcal{D}_{m}^{n}(a_{2},a_{3},\cdots,a_{m+1}) = \sum\limits_{i_1,\cdots,i_m}\left(\frac{n!}{ i_{1}!\;\cdots\; i_{m}!}\right)\;a_{2}^{i_{1}}\;\cdots\; a_{m+1}^{i_{m}}, \end{equation*} |
where a_{1} = 1 and the sum is taken over all non-negative integers i_{1}, \cdots, i_{m} satisfying the following constraints:
i_{1}+i_{2}+\cdots+i_{m} = n |
and
i_{1}+2i_{2}+\cdots+mi_{m} = m. |
Evidently, we have
\begin{equation*} \mathcal{D}_{m}^{m}(a_{2},a_{3},\cdots,a_{m+1}) = a_{2}^{m}. \end{equation*} |
The following Lemma will be needed to prove our results.
The Carathéodory Lemma. (see [10]) If \phi \in \mathfrak{P} and
\phi(z) = 1+\sum\limits_{n = 1}^{\infty}c_{n}\;z^{n}, |
then
|c_{n}|\leqq 2 \qquad (n \in \mathbb{N}). |
This inequality is sharp for all positive integers n . Here \mathfrak{P} is the family of all functions \phi, which analytic and have positive real part in \Delta, with \phi(0) = 1 .
In this section, we apply the above-described Faber polynomial expansion method, we derive bounds for the general Taylor-Maclaurin coefficients of functions in \mathcal{H}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \Upsilon \right) .
Theorem 1. Let the function f given by (1.1) belong to the class \mathcal{H}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \Upsilon \right) . Suppose also that
0\leqq \eta \lt 1,\quad 0\leqq \beta \leqq 1,\quad \lambda \gt -1 \qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. |
If a_{k} = 0 for 2\leqq k\leqq n-1, then
\begin{equation*} \left\vert a_{n}\right\vert \leqq \frac{2\left(1-\eta \right) [\lambda +1]_{q,n-1}}{n\left[1+\left(n-1\right)\beta\right] \ [n]_{q}!\,\psi _{n}} +1. \end{equation*} |
Proof. If f\in \mathcal{H}_{\Sigma }^{q, \lambda }\left(\eta, \beta, \Upsilon \right) , then there exists a function g(z) , given by
g(z): = z+\sum\limits_{n = 2}^{\infty}b_{n}\;z^{n}\in S^{\ast}, |
such that
\begin{equation*} \Re\left(\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}f(z)\right)^{\prime}+\beta z^{2}\left( \mathcal{H}_{\Upsilon }^{\lambda ,q}f(z)\right)^{\prime \prime}}{\left(1-\beta \right) \mathcal{H}_{\Upsilon}^{\lambda,q}g(z)+\beta z\left(\mathcal{H}_{\Upsilon }^{\lambda,q}g(z)\right)^{{\prime}}}\right) \gt \eta \qquad (z\in \Delta). \end{equation*} |
Moreover, by using the Faber polynomial expansion, we have
\begin{align} &\frac{z\left(\mathcal{H}_{\Upsilon }^{\lambda,q}f(z)\right)^{\prime} +\beta z^{2}\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}f(z)\right) ^{\prime \prime}}{\left(1-\beta \right) \mathcal{H}_{\Upsilon }^{\lambda ,q}g(z)+\beta z\left(\mathcal{H}_{\Upsilon }^{\lambda ,q}g(z)\right)^{\prime}} \\ &\qquad = 1+\sum\limits_{n = 2}^{\infty}\Bigg(\left[1+\beta \left(n-1\right) \right]\; \frac{[n]_{q}!}{[\lambda+1]_{q,n-1}}\,\psi _{n}\left(na_{n}-b_{n}\right) \\ &\qquad \qquad \qquad +\sum\limits_{t = 1}^{n-2}\dfrac{[n,q]!} {[\lambda +1,q]_{n-1}}\,\psi _{n}\left[1+\left(n-t-1\right)\beta \right] \\ &\qquad \qquad \qquad \qquad \cdot K_{t}^{-1}\left[\left( 1+\beta \right) b_{2},\left(1+2\beta \right) b_{3},\cdots, \left(1+t\beta \right) b_{t+1}\right] \\ &\qquad \qquad \qquad \qquad \cdot \left[\left(n-t\right)\ a_{n-t}-b_{n-t}\right] \Bigg) z^{n-1}\qquad (z\in \Delta). \end{align} | (2.1) |
Also, for the inverse map \mathcal{F} = f^{-1}, there exists a function \mathcal{G}(w) , given by
\mathcal{G}(w) = w+\sum\limits_{n = 2}^{\infty}B_{n}\;w^{n}\in S^{\ast}, |
such that
\begin{equation*} \Re\left(\frac{z\left( \mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{F }(w)\right) ^{{\prime }}+\beta z^{2}\left( \mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{F}(w)\right) ^{{{\prime \prime }}}}{\left( 1-\beta \right) \mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{G}(w)+\beta z\left( \mathcal{H} _{\Upsilon }^{\lambda ,q}\mathcal{G}(w)\right) ^{{\prime }}}\right) \gt \eta \qquad (w\in \Delta), \end{equation*} |
the Faber polynomial expansion of the inverse map \mathcal{F} = f^{-1} is given by
\mathcal{F}(w) = w+\sum\limits_{n = 2}^{\infty}A_{n}\;w^{n}, |
so we have
\begin{align} &\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda,q}\mathcal{F}(w)\right) ^{\prime}+\beta z^{2}\left(\mathcal{H}_{\Upsilon}^{\lambda,q}\mathcal{ F}(w)\right)^{\prime \prime}}{\left(1-\beta \right) \mathcal{H} _{\Upsilon }^{\lambda ,q}\mathcal{G}(w)+\beta z\left(\mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{G}(w)\right)^{\prime}} \\ &\qquad = 1+\sum\limits_{n = 2}^{\infty}\Bigg(\left[1+\beta \left(n-1\right)\right]\;\frac{[n]_{q}!}{[\lambda +1]_{q,n-1}}\,\psi _{n}\left(nA_{n}-B_{n}\right) \\ &\qquad \qquad +\sum\limits_{t = 1}^{n-2}\frac{[n]_{q}!}{[\lambda +1]_{q,n-1}}\psi _{n}\left[1+\left(n-t-1\right) \beta \right] \\ &\qquad \qquad \qquad \cdot K_{t}^{-1}\left[\left( 1+\beta \right) B_{2},\left( 1+2\beta \right) B_{3},\cdots,\left(1+t\beta \right) B_{t+1}\right] \\ &\qquad \qquad \qquad \cdot \left[\left(n-t\right) A_{n-t}-B_{n-t}\right] \Bigg)\; w^{n-1}\qquad (w\in \Delta). \end{align} | (2.2) |
Now, since
\begin{equation*} f\in \mathcal{H}_{\Sigma}^{q,\lambda}\left(\eta,\beta,\Upsilon \right) \qquad \text{and}\qquad \mathcal{F} = f^{-1}\in \mathcal{H}_{\Sigma}^{q,\lambda }\left(\eta,\beta,\Upsilon \right) , \end{equation*} |
there are the following two positive real part functions:
\begin{equation*} U(z) = 1+\sum\limits_{n = 1}^{\infty}c_{n}\;z^{n} \end{equation*} |
and
\begin{equation*} V(w) = 1+\sum\limits_{n = 1}^{\infty}d_{n}\;w^{n}, \end{equation*} |
for which
\begin{equation*} \Re\big(U(z)\big) \gt 0\qquad \text{and} \qquad \Re\big( V(w)\big) \gt 0 \qquad (z,w\in \Delta), \end{equation*} |
so that
\begin{align} &\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda,q}\mathcal{F}(w)\right) ^{\prime}+\beta z^{2}\left(\mathcal{H}_{\Upsilon }^{\lambda,q}\mathcal{ F}(w)\right)^{{{\prime \prime }}}}{\left( 1-\beta \right) \mathcal{H} _{\Upsilon}^{\lambda,q}\mathcal{G}(w)+\beta z\left( \mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{G}(w)\right)^{\prime}} = \eta +\left(1-\eta \right) \; U(z) \\ &\qquad = 1+\left(1-\eta \right) \sum\limits_{n = 1}^{\infty}c_{n}\;z^{n} \end{align} | (2.3) |
and
\begin{align} &\frac{z\left(\mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{F}(w)\right) ^{{\prime }}+\beta z^{2}\left(\mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{ F}(w)\right)^{\prime \prime}}{\left(1-\beta \right) \mathcal{H} _{\Upsilon }^{\lambda ,q}\mathcal{G}(w)+\beta z\left(\mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{G}(w)\right)^{\prime}} = \eta +\left(1-\eta \right)\; V(w) \\ &\qquad = 1+\left(1-\eta \right)\sum\limits_{n = 1}^{\infty}d_{n}\;w^{n}. \end{align} | (2.4) |
Now, under the assumption that a_{k} = 0 for 0\leqq k\leqq n-1, we obtain A_{n} = -a_{n}. Then, by using (2.1) and comparing the corresponding coefficients in (2.3), we obtain
\begin{equation} \left[1+\beta \left(n-1\right)\right] \;\frac{[n]_{q}!}{[\lambda+1]_{q,n-1} }\,\psi_{n}\left(na_{n}-b_{n}\right) = \left(1-\eta \right)\; c_{n-1}. \end{equation} | (2.5) |
Similarly, by using (2.2) in the Eq (2.4), we find that
\begin{equation} \left[1+\beta \left(n-1\right) \right]\; \frac{[n]_{q}!}{[\lambda +1]_{q,n-1} }\,\psi_{n}\left(nA_{n}-B_{n}\right) = \left(1-\eta \right)\; d_{n-1}, \end{equation} | (2.6) |
\begin{equation} \left[1+\beta \left(n-1\right) \right]\; \frac{[n]_{q}!}{[\lambda +1]_{q,n-1} }\,\psi_{n}\left(na_{n}-b_{n}\right) = \left(1-\eta \right) \;c_{n-1} \end{equation} | (2.7) |
and
\begin{equation} -\left[ 1+\beta \left(n-1\right) \right] \frac{[n]_{q}!}{[\lambda +1]_{q,n-1}}\,\psi_{n}\left(-na_{n}-B_{n}\right) = \left(1-\eta \right)\; d_{n-1}. \end{equation} | (2.8) |
Taking the moduli of both members of (2.7) and (2.8) for
\left\vert b_{n}\right\vert \leqq n\qquad \text{and} \qquad \left\vert B_{n}\right\vert \leqq n, |
and applying the Carathéodory Lemma, we conclude that
\begin{equation*} \left\vert a_{n}\right\vert \leqq \frac{2\left(1-\eta \right) [\lambda +1]_{q,n-1}}{n\left[1+\left(n-1\right) \beta \right] \; [n]_{q}!\,\psi_{n}} +1, \end{equation*} |
which completes the proof of Theorem 1.
If we set
\psi_{n} = \dfrac{(-1)^{n-1}\Gamma (\upsilon+1)}{4^{n-1}\;(n-1)!\;\Gamma (n+\upsilon)}\qquad (\upsilon \gt 0) |
in Theorem 1, we obtain the following special case.
Corollary 1. Let the function f given byt (1.1) belong to the class \mathcal{B}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \upsilon \right) . Suppose also tha
0\leqq \eta \lt 1,\quad 0\leqq \beta \leqq 1,\quad \lambda \gt -1,\quad \upsilon \gt 0\qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. |
If a_{k} = 0 for 2\leqq k\leqq n-1, then
\begin{equation*} \left\vert a_{n}\right\vert \leqq \frac{2\left(1-\eta \right)[\lambda +1]_{q,n-1}}{n\left[1+\left( n-1\right) \beta \right] \; [n]_{q}!\;\phi_{n}} +1, \end{equation*} |
where \phi_{n} is given by (1.9).
Upon putting
\psi_{n} = \left(\dfrac{n+1}{m+n}\right)^{\alpha} \qquad (\alpha \gt 0;\; m\in \mathbb{N}_0) |
in Theorem 1, we obtain the following result.
Corollary 2. Let the function f given by (1.1) belong to the class \mathcal{L}_{\Sigma}^{q, \lambda}\left(\eta, \beta, m, \alpha \right) . Suppose also that
0\leqq \eta \lt 1,\quad 0\leqq \beta \leqq 1,\quad \lambda \gt -1,\quad \alpha \gt 0,\quad m\in \mathbb{N}_0 \qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. |
If a_{k} = 0 for 2\leqq k\leqq n-1, then
\begin{equation*} \left\vert a_{n}\right\vert \leqq \frac{2\left(1-\eta \right) \left( m+n\right)^{\alpha}\;[\lambda +1]_{q,n-1}}{n\left[1+\left(n-1\right) \beta \right] \; [n]_{q}!\,\left(n+1\right)^{\alpha}}+1. \end{equation*} |
If we take
\psi_{n} = \dfrac{\rho^{n-1}}{(n-1)!}\;e^{-\rho}\qquad (\rho \gt 0) |
in Theorem 1, we obtain the following special case.
Corollary 3. Let the function f given by (1.1) belong to the class \mathcal{M}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \rho \right) . Suppose also that
0\leqq \eta \lt 1,\quad 0\leqq \beta \leqq 1,\quad\lambda \gt -1,\quad \rho \gt 0 \qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. |
If a_{k} = 0 for 2\leqq k\leqq n-1, then
\begin{equation*} \left\vert a_{n}\right\vert \leqq \frac{2\left(1-\eta \right)\;(n-1)!\;[\lambda +1]_{q,n-1}}{n\left[1+\left(n-1\right) \beta \right] \; [n]_{q}!\;\rho ^{n-1}\;e^{-\rho }}+1. \end{equation*} |
Upon setting
\psi_{n} = \binom{m+n-2}{n-1}\ \theta^{n-1}\;\left(1-\theta \right)^{m}\qquad \left(m\in\mathbb{N};\; 0\leqq \theta \leqq 1\right) |
in Theorem 1, we are led to the following result for the above-defined class \mathcal{W}_{\Sigma}^{q, \lambda}\left(\eta, \beta, m, \theta\right) .
Corollary 4. Let the function f given by (1.1) belong to the following class :
\mathcal{W}_{\Sigma}^{q,\lambda}\left(\eta,\beta,m,\theta \right) |
(0\leqq \eta \lt 1;\; 0\leqq \beta \leqq 1;\;\lambda \gt -1;\; 0 \lt q \lt 1;\; m\in \mathbb{N};\; 0\leqq\theta \leqq 1). |
If a_{k} = 0 for 2\leqq k\leqq n-1, then
\left\vert a_{n}\right\vert \leqq \frac{2\left(1-\eta\right) [\lambda +1]_{q,n-1}}{n\left[1+\left(n-1\right)\beta \right] \; [n]_{q}!\; \binom{m+n-2}{n-1}\; \theta^{n-1}\;\left(1-\theta \right)^{m}}+1. |
In particular, if we let g(z) = f(z) , we obtain the class \mathcal{S}_{\Sigma }^{q, \lambda}\left(\eta, \beta, \Upsilon \right) , which is a subclass of \mathcal{H}_{\Sigma }^{q, \lambda}\left(\eta, \beta, \Upsilon\right) . We then give the next theorem, which involves the coefficients of this subclass of the analytic and bi-starlike functions in \Delta .
Theorem 2. Let the function f given by (1.1) belong to the class \mathcal{S}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \Upsilon \right) . Suppose also that
\gamma \geqq 1,\quad \eta \geqq 0,\quad \lambda \gt -1, \quad 0\leqq\beta \lt 1 \qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. |
Then
\begin{equation} \left\vert a_{2}\right\vert \leqq \left\{ \begin{array}{ll} \frac{2\left( 1-\eta \right) [\lambda +1]_{q}}{\left( 1+\beta \right) \ [2]_{q}!\,\psi _{2}}& \qquad \left(0\leqq \eta \lt 1-\frac{\left( 1+\beta \right) ^{2}\ \left( [2]_{q}!\right) ^{2}\,[\lambda +2]_{q}\ \psi _{2}^{2}}{ 2\left( 1+2\beta -\beta ^{2}\right) \ [3]_{q}!\,[\lambda +1]_{q}\ \psi _{3}} \right) \\ \\ \sqrt{\frac{2\left( 1-\eta \right) [\lambda +1]_{q,2}}{\left( 1+2\beta -\beta ^{2}\right) \ [3]_{q}!\,\psi _{3}}} &\qquad \left(1-\frac{\left(1+\beta \right)^{2}\ \left([2]_{q}!\right)^{2}\,[\lambda +2]_{q}\ \psi_{2}^{2}}{ 2\left(1+2\beta -\beta ^{2}\right) \ [3]_{q}!\,[\lambda +1]_{q} \psi_{3}} \leqq \eta \lt 1\right) \end{array} \right. \end{equation} | (2.9) |
and
\begin{equation} \left\vert a_{3}\right\vert \leqq \left\{ \begin{array}{ll} \frac{2\left(1-\eta \right) [\lambda +1]_{q,2}}{\left( 1+2\beta -\beta ^{2}\right) \ [3]_{q}!\,\psi _{3}} &\quad \left(0\leqq \eta \lt 1-\frac{\left(1+\beta \right)^{2}\ \left( [2]_{q}!\right)^{2}\,[\lambda +2]_{q}\ \psi _{2}^{2}}{2\left(1+2\beta -\beta ^{2}\right) \ [3]_{q}!\,[\lambda +1]_{q}\ \psi _{3}}\right) \\ \\ \frac{\left(1-\eta \right)}{\left(1+2\beta \right)}\left(\tfrac{ [\lambda +1]_{q,2}}{[3]_{q}!\,\psi_{3}}+\tfrac{2\left(1-\eta\right) [\lambda +1]_{q}^{2}}{\left([2]_{q}!\right)^{2}\ \psi_{2}^{2}}\right) &\quad \left(1-\tfrac{\left(1+\beta \right)^{2}\ \left([2]_{q}!\right) ^{2}\,[\lambda +2]_{q}\ \psi_{2}^{2}}{2\left(1+2\beta -\beta ^{2}\right) \ [3]_{q}![\lambda +1]_{q}\ \psi _{3}}\leqq \eta \lt 1\right). \end{array} \right. \end{equation} | (2.10) |
Proof. Putting n = 2 and n = 3 in (2.5) and (2.6), we have
\begin{equation} \left( 1+\beta \right) \ \frac{[2]_{q}!}{[\lambda +1]_{q}}\,\psi _{2}a_{2} = \left( 1-\eta \right) c_{1}, \end{equation} | (2.11) |
\begin{equation} \left[ 2\left( 1+2\beta \right) \ a_{3}-\left(1+\beta \right)^{2}a_{2}^{2} \right] \frac{[3]_{q}!}{[\lambda +1]_{q,2}}\,\psi_{3} = \left( 1-\eta \right) c_{2}, \end{equation} | (2.12) |
\begin{equation} -\left( 1+\beta \right) \ \frac{[2]_{q}!}{[\lambda +1]_{q}}\,\psi _{2}a_{2} = \left( 1-\eta \right) d_{1} \end{equation} | (2.13) |
and
\begin{equation} \left[ -2\left( 1+2\beta \right) \ a_{3}+\left(3+6\beta -\beta ^{2}\right) a_{2}^{2}\right] \frac{[3]_{q}!}{[\lambda +1]_{q,2}}\,\psi _{3} = \left( 1-\eta \right) d_{2}. \end{equation} | (2.14) |
From (2.11) and (2.13), by using the Carathéodory Lemma, we obtain
\begin{align} \left\vert a_{2}\right\vert & = \frac{\left( 1-\eta \right) [\lambda +1]_{q}\left\vert c_{1}\right\vert }{\left( 1+\beta \right) [2]_{q}!\psi _{2} } = \frac{\left( 1-\beta \right) [\lambda +1]_{q}\left\vert d_{1}\right\vert }{ \left( 1+\gamma +2\eta \right) [2]_{q}!\psi _{2}} \\ &\leq \frac{2\left( 1-\eta \right) [\lambda +1]_{q}}{\left( 1+\beta \right) [2]_{q}!\psi _{2}}. \end{align} | (2.15) |
Also, from (2.12) and (2.14), we have
\begin{equation*} 2\left(1+2\beta -\beta ^{2}\right) \ \frac{[3]_{q}!}{[\lambda +1]_{q,2}} \,\psi _{3}a_{2}^{2} = \left( 1-\beta \right) \left( c_{2}+d_{2}\right). \end{equation*} |
Thus, by using the Carathéodory Lemma, we obtain
\begin{equation} \left\vert a_{2}\right\vert \leqq \sqrt{\frac{2\left( 1-\beta \right) [\lambda +1]_{q,2}}{\left( 1+2\beta -\beta ^{2}\right) \ [3]_{q}!\,\psi _{3}} }. \end{equation} | (2.16) |
From (2.15) and (2.16), we obtain the desired estimate on the coefficient \left\vert a_{2}\right\vert as asserted in (2.9).
In order to find the bound on the coefficient \left\vert a_{3}\right\vert, we subtract (2.14) from (2.12), so that
\begin{equation*} 4\left(1+2\beta \right) \ \frac{[3]_{q}!}{[\lambda +1]_{q,2}}\,\psi _{3}\left( a_{3}-a_{2}^{2}\right) = \left( 1-\eta \right) \left( c_{2}-d_{2}\right), \end{equation*} |
that is,
\begin{equation} a_{3} = a_{2}^{2}+\frac{\left(1-\eta \right) \left( c_{2}-d_{2}\right) [\lambda +1]_{q,2}}{4\left(1+2\beta \right)\; [3]_{q}!\; \psi_{3}}. \end{equation} | (2.17) |
Now, upon substituting the value of a_{2}^{2} from (2.16) into (2.17) and using the Carathéodory Lemma, we find that
\begin{equation} \left\vert a_{3}\right\vert \leqq \frac{2\left( 1-\beta \right) [\lambda +1]_{q,2}}{\left( 1+2\beta -\beta ^{2}\right) \ [3]_{q}!\;\psi _{3}}. \end{equation} | (2.18) |
Moreover, upon substituting the value of a_{2}^{2} from (2.11) into (2.12), we have
\begin{equation*} a_{3} = \frac{\left(1-\eta \right)}{2\left(1+2\beta \right)}\left(\frac{ [\lambda+1]_{q,2}\ c_{2}}{[3]_{q}!\psi_{3}}+\frac{\left(1-\eta \right) [\lambda+1]_{q}^{2}c_{1}^{2}}{\left([2]_{q}!\right)^{2}\psi_{2}^{2}} \right). \end{equation*} |
Applying the Carathéodory Lemma, we obtain
\begin{equation} \left\vert a_{3}\right\vert \leqq \frac{\left( 1-\eta \right) }{\left( 1+2\beta \right) }\left(\frac{[\lambda +1]_{q,2}\ }{[3]_{q}!\psi _{3}}+ \frac{2\left(1-\eta \right) [\lambda +1]_{q}^{2}}{\left([2]_{q}!\right) ^{2}\psi_{2}^{2}}\right). \end{equation} | (2.19) |
Finally, by combining (2.18) and (2.19), we have the desired estimate on the coefficient \left\vert a_{3}\right\vert as asserted in (2.10). The proof of Theorem 2 is thus completed.
In our present investigation, we have made use of the concept of q -convolution with a view to introducing a new class of analytic and bi-close-to-convex functions in the open unit disk. For functions belonging to this analytic and bi-univalent function class, we have derived estimates for the general coefficients in their Taylor-Maclaurin series expansions in the open unit disk. Our methodology is based essentially upon the Faber polynomial expansion method. We have also presented a number of corollaries and consequences of our main results.
In his recently-published review-cum-expository review article, in addition to applying the q -analysis to Geometric Function Theory of Complex Analysis, Srivastava [35] pointed out the fact that the results for the q -analogues can easily (and possibly trivially) be translated into the corresponding results for the (p, q) -analogues (with 0 < q < p \leqq 1 ) by applying some obvious parametric and argument variations, the additional parameter p being redundant. Of course, this exposition and observation of Srivastava [35,p. 340] would apply also to the results which we have considered in our present investigation for 0 < q < 1 .
The authors received no funding for the investigation leading to the completion of this article.
The authors declare that there is no conflict of interest in respect of this article.
[1] |
H. McCallum, A. Dobson, Detecting disease and parasite threats to endangered species and ecosystems, Trends Ecol. Evolut., 10 (1995), 190–194. https://doi.org/10.1016/S0169-5347(00)89050-3 doi: 10.1016/S0169-5347(00)89050-3
![]() |
[2] |
B. R. Forester, E. A. Beever, C. Darst, J. Szymanski, W. C. Funk, Linking evolutionary potential to extinction risk: applications and future directions, Front. Ecol. Environ., 20 (2022), 507–515. https://doi.org/10.1002/fee.2552 doi: 10.1002/fee.2552
![]() |
[3] | J. Bosch, A. M.-C. de Alba, S. Marquínez, S. J. Price, B. Thumsová, J. Bielby, Long-term monitoring of amphibian populations of a National Park in northern Spain reveals negative persisting effects of Ranavirus, but not Batrachochytrium dendrobatidis, Front. Veter. sci., 8 (2021). https://doi.org/10.3389/fvets.2021.645491 |
[4] |
M. C. Fisher, T. W. Garner, Chytrid fungi and global amphibian declines, Nat. Rev. Microbiol., 18 (2020), 332–343. https://doi.org/10.1038/s41579-020-0335-x doi: 10.1038/s41579-020-0335-x
![]() |
[5] |
C. X. Cunningham, S. Comte, H. McCallum, D. G. Hamilton, R. Hamede, A. Storfer, et al., Quantifying 25 years of disease-caused declines in Tasmanian devil populations: host density drives spatial pathogen spread, Ecol. Letters, 24 (2021), 958–969. https://doi.org/10.1111/ele.13703 doi: 10.1111/ele.13703
![]() |
[6] |
D. F. Jacobs, H. J. Dalgleish, C. D. Nelson, A conceptual framework for restoration of threatened plants: The effective model of American chestnut (Castanea dentata) reintroduction, New Phytolog., 197 (2013), 378–393. https://doi.org/10.1111/nph.12020 doi: 10.1111/nph.12020
![]() |
[7] |
F. De Castro, B. Bolker. Mechanisms of disease-induced extinction, Ecol. Letters, 8 (2005), 117–126. https://doi.org/10.1111/j.1461-0248.2004.00693.x doi: 10.1111/j.1461-0248.2004.00693.x
![]() |
[8] | J. L. Hite, J. Bosch, S. Fernández-Beaskoetxea, D. Medina, S. R. Hall, Joint effects of habitat, zooplankton, host stage structure and diversity on amphibian chytrid, Proceed. Royal Soc. B Biol. Sci., 283 (2016), 20160832. https://doi.org/10.1098/rspb.2016.0832 |
[9] | C. G. Becker, S. E. Greenspan, R. A. Martins, M. L. Lyra, P. Prist, J. P. Metzger, et al., Habitat split as a driver of disease in amphibians, Biol. Rev., (2023). https://doi.org/10.1111/brv.12927 |
[10] |
A. M. de Roos, J. A. J. Metz, L. Persson, Ontogenetic symmetry and asymmetry in energetics, J. Math. Biol., 66 (2013), 889–914. https://doi.org/10.1007/s00285-012-0583-0 doi: 10.1007/s00285-012-0583-0
![]() |
[11] | D. L. Preston, E. L. Sauer, Infection pathology and competition mediate host biomass overcompensation from disease, 2020. https://doi.org/10.1002/ecy.3000 |
[12] | A. M. de Roos, L. Persson. Population and community ecology of ontogenetic development, volume 51, Princeton University Press, 2013. https://doi.org/10.23943/princeton/9780691137575.001.0001 |
[13] |
P. A. Abrams, When does greater mortality increase population size? The long history and diverse mechanisms underlying the hydra effect, Ecol. letters, 12 (2009), 462–474. https://doi.org/10.1111/j.1461-0248.2009.01282.x doi: 10.1111/j.1461-0248.2009.01282.x
![]() |
[14] | A. M. de Roos, The impact of population structure on population and community dynamics, Theor. Ecol., (2020), 53–73. https://doi.org/10.1093/oso/9780198824282.003.0005 |
[15] |
R. Iritani, E. Visher, M. Boots, The evolution of stage-specific virulence: Differential selection of parasites in juveniles, Evolut. Letters, 3 (2019), 162–172. https://doi.org/10.1002/evl3.105 doi: 10.1002/evl3.105
![]() |
[16] |
M. W. Simon, M. Barfield, R. D. Holt. When growing pains and sick days collide: Infectious disease can stabilize host population oscillations caused by stage structure, Theoret. Ecol., 15 (2022), 285–309. https://doi.org/10.1007/s12080-022-00543-z doi: 10.1007/s12080-022-00543-z
![]() |
[17] |
S. Panter, D. A. Jones, Age-related resistance to plant pathogens, Adv. Botan. Res., 38 (2002), 251–280. https://doi.org/10.1016/S0065-2296(02)38032-7 doi: 10.1016/S0065-2296(02)38032-7
![]() |
[18] |
B. Ashby, E. Bruns, The evolution of juvenile susceptibility to infectious disease, Proceed. Royal Soc. B, 285 (2018), 20180844. https://doi.org/10.1098/rspb.2018.0844 doi: 10.1098/rspb.2018.0844
![]() |
[19] |
F. Ben-Ami, Host age effects in invertebrates: Epidemiological, ecological, and evolutionary implications, Trends Parasitol., 35 (2019), 466–480. https://doi.org/10.1016/j.pt.2019.03.008 doi: 10.1016/j.pt.2019.03.008
![]() |
[20] | M. J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008. https://doi.org/10.1515/9781400841035 |
[21] |
S. Carran, M. Ferrari, T. Reluga, Unintended consequences and the paradox of control: Management of emerging pathogens with age-specific virulence, PLoS Neglected Trop. Diseases, 12 (2018), e0005997. https://doi.org/10.1371/journal.pntd.0005997 doi: 10.1371/journal.pntd.0005997
![]() |
[22] |
S. V. Cousineau, S. Alizon, Parasite evolution in response to sex-based host heterogeneity in resistance and tolerance, J. Evolut. Biol., 27 (2014), 2753–2766. https://doi.org/10.1111/jeb.12541 doi: 10.1111/jeb.12541
![]() |
[23] |
F. Magpantay, A. King, P. Rohani, Age-structure and transient dynamics in epidemiological systems, J. Royal Soc. Interface, 16 (2019), 2019. https://doi.org/10.1098/rsif.2019.0151 doi: 10.1098/rsif.2019.0151
![]() |
[24] | A. Esteve, I. Permanyer, D. Boertien, J. W. Vaupel, National age and coresidence patterns shape COVID-19 vulnerability. Proceed. Nat. Aca. Sci., 117 (2020), 16118–16120. https://doi.org/10.1073/pnas.2008764117 |
[25] |
C. E. Cressler, D. V. McLeod, C. Rozins, J. Van Den Hoogen, T. Day, The adaptive evolution of virulence: a review of theoretical predictions and empirical tests, Parasitology, 143 (2016), 915–930. https://doi.org/10.1017/S003118201500092X doi: 10.1017/S003118201500092X
![]() |
[26] | J. L. Abbate, S. Kada, S. Lion, Beyond mortality: Sterility as a neglected component of parasite virulence. PLoS Pathogens, 11 (2015), e1005229. https://doi.org/10.1371/journal.ppat.1005229 |
[27] |
P. J. Hurtado, S. R. Hall, S. P. Ellner, Infectious disease in consumer populations: Dynamic consequences of resource-mediated transmission and infectiousness, Theoret. Ecol., 7 (2014), 163–179. https://doi.org/10.1007/s12080-013-0208-2 doi: 10.1007/s12080-013-0208-2
![]() |
[28] |
V. H. Smith, R. D. Holt, M. S. Smith, Y. Niu, M. Barfield, Resources, mortality, and disease ecology: Importance of positive feedbacks between host growth rate and pathogen dynamics, Israel J. Ecol. Evolut., 61 (2015), 37–49. https://doi.org/10.1080/15659801.2015.1035508 doi: 10.1080/15659801.2015.1035508
![]() |
[29] |
J. L. Hite, C. E. Cressler. Resource-driven changes to host population stability alter the evolution of virulence and transmission, Philosophical Transactions of the Royal Society B: Biological Sciences, 373 (2018), 20170087. https://doi.org/10.1098/rstb.2017.0087 doi: 10.1098/rstb.2017.0087
![]() |
[30] |
C. J. Briggs, R. A. Knapp, V. T. Vredenburg, Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians, Proceed. Nat. Aca. Sci., 107 (2010), 9695–9700. https://doi.org/10.1073/pnas.0912886107 doi: 10.1073/pnas.0912886107
![]() |
[31] |
J. L. Hite, R. M. Penczykowski, M. S. Shocket, A. T. Strauss, P. A. Orlando, M. A. Duffy, et al., Parasites destabilize host populations by shifting stage-structured interactions, Ecology, 97 (2016), 439–449. https://doi.org/10.1890/15-1065.1 doi: 10.1890/15-1065.1
![]() |
[32] |
L. Persson, K. Leonardsson, A. M. de Roos, M. Gyllenberg, B. Christensen, Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model, Theor. Popul. Biol., 54 (1998), 270–293. https://doi.org/10.1006/tpbi.1998.1380 doi: 10.1006/tpbi.1998.1380
![]() |
[33] |
K. Lika, R. M. Nisbet, A dynamic energy budget model based on partitioning of net production, J. Math. Biol., 41 (2000), 361–386. https://doi.org/10.1007/s002850000049 doi: 10.1007/s002850000049
![]() |
[34] |
A. M. de Roos, T. Schellekens, T. V. Kooten, K. E. V. D. Wolfshaar, D. Claessen, L. Persson, Simplifying a physiologically structured population model to a stage-structured biomass model, Theor. Popul. Biol., 73 (2008), 47–62. https://doi.org/10.1016/j.tpb.2007.09.004 doi: 10.1016/j.tpb.2007.09.004
![]() |
[35] |
J. L. Hite, A. C. Pfenning, C. E. Cressler, Starving the enemy? Feeding behavior shapes host-parasite interactions, Trends Ecol. Evolut., 35 (2020), 68–80. https://doi.org/10.1016/j.tree.2019.08.004 doi: 10.1016/j.tree.2019.08.004
![]() |
[36] |
O. Diekmann, M. Gyllenberg, J. A. J. Metz, Steady-state analysis of structured population models, Theor. Popul.n Biol., 63 (2003), 309–338. https://doi.org/10.1016/S0040-5809(02)00058-8 doi: 10.1016/S0040-5809(02)00058-8
![]() |
[37] | R. M. Anderson, R. M. May, Infectious diseases of humans: Dynamics and control, Oxford university press, 1992. https://doi.org/10.1093/oso/9780198545996.001.0001 |
[38] |
J. Heesterbeek, K. Dietz, The concept of Ro in epidemic theory, Statistica Neerlandica, 50 (1996), 89–110. https://doi.org/10.1111/j.1467-9574.1996.tb01482.x doi: 10.1111/j.1467-9574.1996.tb01482.x
![]() |
[39] |
A. M. d. Roos, Numerical methods for structured population models: The Escalator Boxcar Train, Numer. Methods Partial Differ. Equat., 4 (1988), 173–195. https://doi.org/10.1002/num.1690040303 doi: 10.1002/num.1690040303
![]() |
[40] |
A. M. d. Roos, O. Diekmann, J. A. J. Metz, Studying the dynamics of structured population models: A versatile technique and its application to Daphnia, Am. Natural., 139 (1992), 123–147. https://doi.org/10.1086/285316 doi: 10.1086/285316
![]() |
[41] |
P. A. Abrams, H. Matsuda, The effect of adaptive change in the prey on the dynamics of an exploited predator population, Canadian J. Fisher. Aquat. Sci., 62 (2005), 758–766. https://doi.org/10.1139/f05-051 doi: 10.1139/f05-051
![]() |
[42] |
R. M. Anderson, R. M. May, The invasion, persistence and spread of infectious diseases within animal and plant communities, Philosoph. Transact. Royal Soc. London. B Biol. Sci., 314 (1986), 533–570. https://doi.org/10.1098/rstb.1986.0072 doi: 10.1098/rstb.1986.0072
![]() |
[43] |
A. P. Dobson, The population biology of parasite-induced changes in host behavior, Quarterly Rev. Biol., 63 (1988), 139–165. https://doi.org/10.1086/415837 doi: 10.1086/415837
![]() |
[44] |
Y. Xiao, F. Van Den Bosch, The dynamics of an eco-epidemic model with biological control, Ecol. Model., 168 (2003), 203–214. https://doi.org/10.1016/S0304-3800(03)00197-2 doi: 10.1016/S0304-3800(03)00197-2
![]() |
[45] |
A. Fenton, S. Rands, The impact of parasite manipulation and predator foraging behavior on predator–prey communities, Ecology, 87 (2006), 2832–2841. https://doi.org/10.1890/0012-9658(2006)87[2832:TIOPMA]2.0.CO;2 doi: 10.1890/0012-9658(2006)87[2832:TIOPMA]2.0.CO;2
![]() |
[46] |
R. Anderson, R. M. May, Regulation and stability of host-parasite population interactions, J. Animal Ecol., 47 (1978), 219–247. https://doi.org/10.2307/3933 doi: 10.2307/3933
![]() |
[47] |
F. M. Hilker, K. Schmitz, Disease-induced stabilization of predator–prey oscillations, J. Theor. Biol., 255 (2008), 299–306. https://doi.org/10.1016/j.jtbi.2008.08.018 doi: 10.1016/j.jtbi.2008.08.018
![]() |
[48] |
P. Rohani, X. Zhong, A. A. King, Contact network structure explains the changing epidemiology of pertussis, Science, 330 (2010), 982–985. https://doi.org/10.1126/science.1194134 doi: 10.1126/science.1194134
![]() |
[49] |
C. J. E. Metcalf, J. Lessler, P. Klepac, A. Morice, B. T. Grenfell, O. Bjørnstad, Structured models of infectious disease: Inference with discrete data, Theor. Popul. Biol., 82 (2012), 275–282. https://doi.org/10.1016/j.tpb.2011.12.001 doi: 10.1016/j.tpb.2011.12.001
![]() |
[50] |
P. Klepac, H. Caswell, The stage-structured epidemic: Linking disease and demography with a multi-state matrix approach model, Theor. Ecol., 4 (2011), 301–319. https://doi.org/10.1007/s12080-010-0079-8 doi: 10.1007/s12080-010-0079-8
![]() |
1. | Abbas Kareem Wanas, Horadam polynomials for a new family of \lambda -pseudo bi-univalent functions associated with Sakaguchi type functions, 2021, 1012-9405, 10.1007/s13370-020-00867-1 | |
2. | Hari Mohan Srivastava, Ahmad Motamednezhad, Safa Salehian, Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion, 2021, 10, 2075-1680, 27, 10.3390/axioms10010027 | |
3. | H. M. Srivastava, T. M. Seoudy, M. K. Aouf, A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic (or q -) calculus, 2021, 6, 2473-6988, 6580, 10.3934/Math.2021388 | |
4. | H. M. Srivastava, T. M. Seoudy, M. K. Aouf, A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic (or q -) calculus, 2021, 6, 2473-6988, 6580, 10.3934/math.2021388 | |
5. | Likai Liu, Rekha Srivastava, Jin-Lin Liu, Applications of Higher-Order q-Derivative to Meromorphic q-Starlike Function Related to Janowski Function, 2022, 11, 2075-1680, 509, 10.3390/axioms11100509 | |
6. | Wali Khan Mashwan, Bakhtiar Ahmad, Muhammad Ghaffar Khan, Saima Mustafa, Sama Arjika, Bilal Khan, A. M. Bastos Pereira, Pascu-Type Analytic Functions by Using Mittag-Leffler Functions in Janowski Domain, 2021, 2021, 1563-5147, 1, 10.1155/2021/1209871 | |
7. | Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan, Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial, 2022, 7, 2473-6988, 2989, 10.3934/math.2022165 | |
8. | Ebrahim Analouei Adegani, Nak Eun Cho, Davood Alimohammadi, Ahmad Motamednezhad, Coefficient bounds for certain two subclasses of bi-univalent functions, 2021, 6, 2473-6988, 9126, 10.3934/math.2021530 | |
9. | Jie Zhai, Rekha Srivastava, Jin-Lin Liu, Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions, 2022, 10, 2227-7390, 3073, 10.3390/math10173073 | |
10. | Mohammad Faisal Khan, Certain new applications of Faber polynomial expansion for some new subclasses of \upsilon -fold symmetric bi-univalent functions associated with q -calculus, 2023, 8, 2473-6988, 10283, 10.3934/math.2023521 | |
11. | Daniel Breaz, Sheza El-Deeb, Seher Aydoǧan, Fethiye Sakar, The Yamaguchi–Noshiro Type of Bi-Univalent Functions Connected with the Linear q-Convolution Operator, 2023, 11, 2227-7390, 3363, 10.3390/math11153363 | |
12. | Sheza M. El-Deeb, Luminita-Ioana Cotîrlă, Coefficient Estimates for Quasi-Subordination Classes Connected with the Combination of q-Convolution and Error Function, 2023, 11, 2227-7390, 4834, 10.3390/math11234834 | |
13. | Ala Amourah, Abdullah Alsoboh, Daniel Breaz, Sheza M. El-Deeb, A Bi-Starlike Class in a Leaf-like Domain Defined through Subordination via q̧-Calculus, 2024, 12, 2227-7390, 1735, 10.3390/math12111735 | |
14. | Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan, Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions, 2021, 6, 2473-6988, 1024, 10.3934/math.2021061 | |
15. | Serap Bulut, Coefficient bounds for q-close-to-convex functions associated with vertical strip domain, 2024, 38, 0354-5180, 6003, 10.2298/FIL2417003B | |
16. | Gangadharan Murugusundaramoorthy, Alina Alb Lupas, Alhanouf Alburaikan, Sheza M. El-Deeb, Coefficient functionals for Sakaguchi-type-Starlike functions subordinated to the three-leaf function, 2025, 58, 2391-4661, 10.1515/dema-2025-0123 |