Research article Special Issues

Well-posedness and stabilization of a type three layer beam system with Gurtin-Pipkin's thermal law

  • The goal of this work is to study the well-posedness and the asymptotic behavior of solutions of a triple beam system commonly known as the Rao-Nakra beam model. We consider the effect of Gurtin-Pipkin's thermal law on the outer layers of the beam system. Using standard semi-group theory for linear operators and the multiplier method, we establish the existence and uniqueness of weak global solution, as well as a stability result.

    Citation: Soh Edwin Mukiawa. Well-posedness and stabilization of a type three layer beam system with Gurtin-Pipkin's thermal law[J]. AIMS Mathematics, 2023, 8(12): 28188-28209. doi: 10.3934/math.20231443

    Related Papers:

    [1] Adel M. Al-Mahdi, Maher Noor, Mohammed M. Al-Gharabli, Baowei Feng, Abdelaziz Soufyane . Stability analysis for a Rao-Nakra sandwich beam equation with time-varying weights and frictional dampings. AIMS Mathematics, 2024, 9(5): 12570-12587. doi: 10.3934/math.2024615
    [2] Adel M. Al-Mahdi . Long-time behavior for a nonlinear Timoshenko system: Thermal damping versus weak damping of variable-exponents type. AIMS Mathematics, 2023, 8(12): 29577-29603. doi: 10.3934/math.20231515
    [3] Khaled zennir, Djamel Ouchenane, Abdelbaki Choucha, Mohamad Biomy . Well-posedness and stability for Bresse-Timoshenko type systems with thermodiffusion effects and nonlinear damping. AIMS Mathematics, 2021, 6(3): 2704-2721. doi: 10.3934/math.2021164
    [4] Cyril Dennis Enyi, Soh Edwin Mukiawa . Dynamics of a thermoelastic-laminated beam problem. AIMS Mathematics, 2020, 5(5): 5261-5286. doi: 10.3934/math.2020338
    [5] Yonghui Zou, Xin Xu, An Gao . Local well-posedness to the thermal boundary layer equations in Sobolev space. AIMS Mathematics, 2023, 8(4): 9933-9964. doi: 10.3934/math.2023503
    [6] Tijani A. Apalara, Aminat O. Ige, Cyril D. Enyi, Mcsylvester E. Omaba . Uniform stability result of laminated beams with thermoelasticity of type Ⅲ. AIMS Mathematics, 2023, 8(1): 1090-1101. doi: 10.3934/math.2023054
    [7] Said Mesloub, Hassan Altayeb Gadain, Lotfi Kasmi . On the well posedness of a mathematical model for a singular nonlinear fractional pseudo-hyperbolic system with nonlocal boundary conditions and frictional damping terms. AIMS Mathematics, 2024, 9(2): 2964-2992. doi: 10.3934/math.2024146
    [8] Yellamma, N. Manjunatha, Umair Khan, Samia Elattar, Sayed M. Eldin, Jasgurpreet Singh Chohan, R. Sumithra, K. Sarada . Onset of triple-diffusive convective stability in the presence of a heat source and temperature gradients: An exact method. AIMS Mathematics, 2023, 8(6): 13432-13453. doi: 10.3934/math.2023681
    [9] Noelia Bazarra, José R. Fernández, Jaime E. Muñoz-Rivera, Elena Ochoa, Ramón Quintanilla . Analytical and numerical analyses of a viscous strain gradient problem involving type Ⅱ thermoelasticity. AIMS Mathematics, 2024, 9(7): 16998-17024. doi: 10.3934/math.2024825
    [10] Osama Moaaz, Ahmed E. Abouelregal, Fahad Alsharari . Lateral vibration of an axially moving thermoelastic nanobeam subjected to an external transverse excitation. AIMS Mathematics, 2023, 8(1): 2272-2295. doi: 10.3934/math.2023118
  • The goal of this work is to study the well-posedness and the asymptotic behavior of solutions of a triple beam system commonly known as the Rao-Nakra beam model. We consider the effect of Gurtin-Pipkin's thermal law on the outer layers of the beam system. Using standard semi-group theory for linear operators and the multiplier method, we establish the existence and uniqueness of weak global solution, as well as a stability result.



    In the present work, we consider the Rao-Nakra (three layer) beam system, where the top and the bottom layers of the beam are subjected to Gurtin-Pipkin's thermal law, namely

    {ρ1h1uttE1h1uxxk(u+v+αwx)+δ1θx=0, in (0,π)×R+,ρ3h3vttE3h3vxx+k(u+v+αwx)δ1θ+δ2ϑx=0, in (0,π)×R+,ρhwtt+EIwxxxxαk(u+v+αwx)x+δ3wt=0, in (0,π)×R+,ρ4θtβ1+0g1(s)θxx(x,ts)ds+δ1(uxt+vt)=0, in (0,π)×R+,ρ5ϑtβ2+0g2(s)ϑxx(x,ts)ds+δ2vxt=0, in (0,π)×R+ (1.1)

    with the following boundary conditions:

    {ux(0,t)=vx(0,t)=w(0,t)=wxx(0,t)=θ(0,t)=ϑ(0,t)=0, t0,u(π,t)=v(π,t)=w(π,t)=wxx(π,t)=θx(π,t)=ϑx(π,t)=0, t0, (1.2)

    and the initial data

    {u(x,0)=u0(x), v(x,0)=v0(x), w(x,0)=w0(x),x(0,π),ut(x,0)=u1(x), vt(x,0)=v1(x), wt(x,0)=w1(x),x(0,π),θ(x,t)=θ0(x,t),ϑ(x,t)=ϑ0(x,t),x(0,π), t>0. (1.3)

    The relaxation functions g1 and g2 are positive non-increasing functions to be specified later. The stabilization of Rao-Nakra beam systems has gathered much interest from researchers recently, and a great number of results have been established. The Rao-Nakra beam model is a beam system that takes into account the motion of two outer face plates (assumed to be relatively stiff) and a sandwiched compliant inner core layer, see [1,2,3,4,5] for Rao-Nakra, Mead-Markus and multilayer plates or sandwich models. The basic equations of motion of the Rao-Nakra model are derived thanks to the Euler-Bernoulli beam assumptions for the outer face plate layers, the Timoshenko beam assumptions for the sandwich layer and a "no slip" assumption for the motion along the interface. Suppose h(j), j=1,2,3 is the thickness of each layer in the beam of length π, see Figure 1 and h=h(1)+h(2)+h(3) the total thickness of the beam.

    Figure 1.  Triple layer beam.

    Assuming the Kirchhoff hypothesis is imposed on the outer layers of beam and in addition, there is a continuous, piecewise linear displacements through the cross-sections, Liu et al. [6] gave a detailed derivation of following laminated beam system:

    {ρ1h1uttE1h1uxxτ=0,ρ1I1y1ttE1I1y1xxh12τ+G1h1(wx+y1)=0,ρhwtt+EIwxxxxG1h1k(wx+y1)xG3h3(wx+y3)xh2τx=0,ρ3h3vttE3h3vxx+τ=0,ρ3I3y3ttE3I3y3xxh32τ+G3h3(wx+y3)=0, (1.4)

    where x(0,π),t>0, (u,y1),(v,y3) represent longitudinal displacement and shear angle of the bottom and top layers plates. The transverse displacement of the beam is represented by w, and τ is the shear stress of the core layer. Also, for j=1,2,3 (from bottom to top layer), Ej,Gj,Ij,ρj>0 are Young's modulus, shear modulus, moments of inertia and density respectively for each layer. Moreover, in (1.4)3, we have that ρh=ρ1h1+ρ2h2+ρ3h3 and EI=E1I1+E3I3. By neglecting the rotary inertia in top and bottom layers of the beam, we obtain ρ1I1=ρ3I3=0 in (1.4)4 and (1.4)5. Furthermore, if we neglect the transverse shear, this leads to the Euler-Bernoulli hypothesis wx+y1=wx+y3=0. Assuming that the core layer consists of a material that is linearly elastic with the stress-strain relationship τ=2G2ε, where the shear strain ε is defined by

    ε=12h2(u+v+αwx) where α=h2+h1+h22.

    Thus, we arrive at the following Rao-Nakra beam model [1], given by

    {ρ1h1uttE1h1uxxk(u+v+αwx)=0,ρ3h3vttE3h3vxx+k(u+v+αwx)=0,ρhwtt+EIwxxxxαk(u+v+αwx)x=0, (1.5)

    where k=G2h2, G2=E22(1+ν) and 1<ν<12 is the Poisson ratio. Furthermore, when the extensional motion of the outer layers is neglected, system (1.4) takes the form of the two-layer laminated beam system derived by Hansen and Spies [7]. Li et al. [8] showed that system (1.5) is unstable if only one of the equations is damped. When two of the three equations in (1.5) were damped, the authors in [8] proved a polynomial stability. For recent results in literature, Méndez et al. [9] considered (1.5) with with Kelvin-Voigt damping and studied the well-posedness, lack of exponential decay and polynomial decay. Feng and Özer [10] looked at a nonlinearly damped Rao-Nakra beam system and established the global attractor with finite fractal dimension. Feng et al. [11] studied the stability of Rao-Nakra sandwich beam with time-varying weight and time-varying delay. Mukiawa et al. [12] considered (1.5) with viscoelastic damping on the first equation and heat conduction govern by Fourier's law and proved the well-posedness and a general decay result. Also, Raposo et al. [13] coupled (1.5) with Maxwell-Cattaneo heat conduction established the well-posedness. For more results related Rao-Nakra beam system with frictional, delay or thermal damping, see [14,15,16,17,18,19,20] and the references therein.

    An interesting tool used by Mathematician in stabilizing beam models such as the Laminated and Timoshenko beam systems is the Gurtin-Pipkin's thermal law, see [21], with constitutive equation

    βq(t)+0g(s)θx(x,ts)ds=0, (1.6)

    where θ=θ(x,t) is the temperature difference, q=q(x,t) is the heat flux, β is a coupling constant coefficient and the relaxation g is a summable convex L1([0,+)) function with unit mass. For results related to (1.6), Dell'Oro and Pata [22] studied

    {ρ1uttk(ux+v)x=0, in (0,π)×R+,ρ2vttbvxx+k(ux+v)+δθx=0, in (0,π)×R+,ρ3θt1β0h(s)θxx(x,ts)ds+δvxt=0, in (0,π)×R+ (1.7)

    and proved an exponential stability result if and only if χh=0, where

    χh=(ρ1kρ3βh(0))(ρ1kρ2b)βh(0)ρ1δ2kbρ3.

    For similar results with Gurtin-Pipkin's thermal law, see [23,24,25,26,27,28] and references therein. As clearly elaborated in [22], the Fourier's and Cattaneo's (second sound) thermal law can be recovered from (1.6) by defining the memory function g in (1.6) as

    gδ(s)=1δh(sδ),  δ>0 (1.8)

    and

    gτ(s)=βτesβτ, τ>0 (1.9)

    respectively. A closely related thermal law to the Gurtin-Pipkin's thermal law is the Coleman-Gurtin's heat conduction law, see [29], with constitutive equation given by

    βq(t)+(1η)θx+η0μ(s)θx(x,ts)ds=0,  η(0,1), (1.10)

    where η=1 and η=0 correspond to the Gurtin-Pipkin's and Fourier thermal laws, respectively. This entails replacing (1.7)3 with

    ρ3θt(1η)βθxxηβ0μ(s)θxx(x,ts)ds+δvxt=0, in (0,π)×R+. (1.11)

    We should note here that systems govern by Coleman-Gurtin's thermal lawa (1.10) gain additional dissipation from the term (1η)βθxx and thus less difficult to handle compare to systems with Gurtin-Pipkin's thermal law (1.6).

    Our main focus of this paper is to investigate the well-posedness and the asymptotic behavior of solutions of system (1.1)–(1.3). We mote here that, the rotational inertia term wxxtt which should be in (1.1)3 of the original models is neglected in the present model. However, the result in this paper is not affected by the absent of this term. Also, since the thermal coupling in system (1.1)–(1.3) is not strong enough to achieve exponential stability, a viscous damping term wt is added to (1.1)3. The rest of work is organized as follows: In Section 2, we state some assumptions and set up our problem (1.1)–(1.3) in appropriate spaces. In Section 3, we prove the existence and uniqueness result for the system (1.1)–(1.3). In Section 4, we study the asymptotic behavior of solution of system (1.1)–(1.3).

    For the relaxation functions g1 and g2, we assume the following:

    Assumption (A0):

    (a0) g1,g2:[0,+)(0,+) are non-increasing C2([0,+)) and convex summable functions satisfying

    lims+gi(s)=0 and +0gi(s)ds=1, i=1,2. (2.1)

    (b0) There exists ξi>0, i=1,2 such that

    gi(s)ξi(gi(s)), s0, i=1,2. (2.2)

    By setting

    μ1(s)=g1(s) and μ2(s)=g2(s), (2.3)

    assumption (A0) ensues the following:

    Assumption (A1):

    (a1) μ1,μ2:[0,+)(0,+) are non-increasing C1([0,+)) and convex summable functions satisfying

    μ0i=+0μi(s)ds=gi(0)>0, and +0sμi(s)ds=1, i=1,2. (2.4)

    (b1) There exists ξi>0, i=1,2 such that

    μi(s)ξiμi(s), s0, i=1,2. (2.5)

    Due to the work of Dafermos [30], we define new functions for the relative past history of θ and ϑ as follows:

    σ,ζ:(0,π)×R+×R+R+,

    define by

    σ=σ(x,t,s):=ttsθ(x,r)dr  and ζ=ζ(x,t,s):=ttsϑ(x,r)dr. (2.6)

    On account of the boundary conditions (1.2), we have

    σ(0,t,s)=σx(π,t,s)=ζ(0,t,s)=ζx(π,t,s)=0,

    and routine calculation gives

    {σt+σsθ=0, in (0,π)×(R+×R+,ζt+ζsϑ=0, in (0,π)×R+×R+,σ(x,t,0)=ζ(x,t,0)=0, in (0,π)×R+,σ(x,0,s)=s0θ0(x,r)dr:=σ0(x,s), in (0,π)×R+,ζ(x,0,s)=s0ϑ0(x,r)dr:=ζ0(x,s), in (0,π)×R+, (2.7)

    where σ0 and ζ0 represent the history of θ and ϑ respectively. Also, using direct computations, we have

    +0g1(s)θxx(x,ts)ds=lima+g1(s)ttsθxx(x,r)dr|s=as=0+0g1(s)ttsθxx(x,r)drds=+0μ1(s)σxx(x,t,s)ds. (2.8)

    Similarly, we get

    +0g2(s)ϑxx(x,ts)ds=+0μ2(s)ζxx(x,t,s)ds. (2.9)

    On account of (2.6)–(2.9), system (1.1)–(1.3) takes the form

    {ρ1h1uttE1h1uxxk(u+v+αwx)+δ1θx=0,in (0,π)×R+,ρ3h3vttE3h3vxx+k(u+v+αwx)δ1θ+δ2ϑx=0,in (0,π)×R+,ρhwtt+EIwxxxxαk(u+v+αwx)x+δ3wt=0,in (0,π)×R+,ρ4θtβ1+0μ1(s)σxx(x,t,s)ds+δ1(uxt+vt)=0,in (0,π)×R+,σt+σsθ=0,in (0,π)×R+×R+,ρ5ϑtβ2+0μ2(s)ζxx(x,t,s)ds+δ2vxt=0,in (0,π)×R+,ζt+ζsϑ=0,in (0,π)×R+×R+ (2.10)

    with the boundary conditions

    {ux(0,t)=vx(0,t)=w(0,t)=wxx(0,t)=θ(0,t)=ϑ(0,t), t0,u(π,t)=v(π,t)=w(π,t)=wxx(π,t)=θx(π,t)=ϑx(π,t)=0, t0,σ(0,t,s)=σx(π,t,s)=ζ(0,t,s)=ζx(π,t,s)=0, s,tR+,σ(x,t,0)=ζ(x,t,0)=0, x(0,π),tR+ (2.11)

    and the initial data

    {u(x,0)=u0(x), v(x,0)=v0(x), w(x,0)=w0(x),x(0,π),ut(x,0)=u1(x), vt(x,0)=v1(x), wt(x,0)=w1(x),x(0,π),θ(x,t)=θ0(x,t),ϑ(x,t)=ϑ0(x,t)x(0,π), t>0,σ(x,0,s)=σ0(x,s), ζ(x,0,s)=ζ0(x,s), x(0,π),s>0. (2.12)

    Setting Ψ=(u,φ,v,ψ,w,ϕ,θ,σ,ϑ,ζ)T, with φ=ut, ψ=vt and ϕ=wt. Then, the semi-group formulation of system (2.10)–(2.12) is given by the Cauchy problem

    (P){Ψt+AΨ=0,Ψ(0)=Ψ0, (2.13)

    where Ψ0=(u0,u1,v0,v1,w0,w1,θ0,σ0,ϑ0,ζ0)T and the linear operator A is defined by

    AΨ=(φE1ρ1uxxkρ1h1(u+v+αwx)+δ1ρ1h1θxψE3ρ3vxx+kρ3h3(u+v+αwx)δ1ρ3h3θ+δ2ρ3h3ϑxϕEIρhwxxxxαkρh(u+v+αwx)x+δ3ρhϕβ1ρ4+0μ1(s)σxx(x,s)ds+δ1ρ4(φx+ψ)σsθβ2ρ5+0μ2(s)ζxx(x,s)ds+δ2ρ5ψxζsϑ).

    Let , and . denote the inner product and the norm in L2(0,π) respectively and we define following Sobolev spaces:

    H1a:={ϖH1(0,π)/ϖ(0)=0}, H1b:={ϖH1(0,π)/ϖ(π)=0},H2a:={ϖH2(0,π)/ϖxH1a}, H2b:={ϖH2(0,π)/ϖxH1b},H2:=H2(0,π)H10(0,π),

    where H2 is equip with the inner product

    ϖ,ˆϖH2=ϖxx,ˆϖxx

    and norm

    ϖ2H2=ϖxx2.

    It is easy to check that (H2,.2H2) is a Banach space and the norm .2H2 is equivalent to the usual norm in H2(0,π). Next, we introduce the weighted-Hilbert space of H1a(0,π)-real valued functions on (0,+) by

    L2μ:=L2μ(R+;H1a(0,π)),

    where

    L2μ(R+;H1a(0,π))={ϖ:R+H1a(0,π)/+0μ(s)ϖx(s)2ds<},

    and equip them with the inner product

    (ϖ,ˆϖ)L2μ:=+0μ(s)ϖx(s),ˆϖx(s)ds,

    and norm

    ϖ2L2μ=+0μ(s)ϖx(s)2ds.

    Also, we define

    D(L2μ):={ϖL2μ/ϖsL2μ  and lims0ϖx(s)=0}.

    Now, we introduce the phase space of our problem given by

    H:=H1b×L2×H1b×L2×H2×L2×L2×L2μ1×L2×L2μ2

    and equipped it with the inner product

    (u,φ,v,ψ,w,ϕ,θ,σ,ϑ,ζ),(ˆu,ˆφ,ˆv,ˆψ,ˆw,ˆϕ,ˆθ,ˆσ,ˆϑ,ˆζ)H:=E1h1ux,ˆux+ρ1h1φ,ˆφ+k(u+v+αwx),(ˆu+ˆv+αˆwx)+E3h3vx,ˆvx+ρ3h3ψ,ˆψ+EIwxx,ˆwxx+ρhϕ,ˆϕ+ρ4θ,ˆθ+β1σ,ˆσL2μ1+ρ5ϑ,ˆϑ+β2ζ,ˆζL2μ2

    and norm

    Ψ2H=(u,φ,v,ψ,w,ϕ,θ,σ,ϑ,ζ)2H:=E1h1ux2+ρ1h1φ2+k(u+v+αwx)2+E3h3vx2+ρ3h3ψ2+EIwxx2+ρhϕ2+ρ4θ2+β1σ2L2μ1+ρ5ϑ2+β2ζ2L2μ2,

    for any Φ=(w,φ,v,ψ,u,ϕ,θ,σ,ϑ,ζ)TH.

    The domain of the linear operator A in (2.13) is defined as follows:

    D(A):={(u,φ,v,ψ,w,ϕ,θ,σ,ϑ,ζ)H|u,vH2bH1b, φ,ψH1b,wH4H2, ϕH2,σD(L2μ1), θH1a,ζD(L2μ2), ϑH1a,(u+v+αwx)H1aH1b,+0μ1(s)σ(s)dsH2H1a,+0μ2(s)ζ(s)dsH2H1a,wxx(0)=wxx(π)=0.}.

    Remark 2.1. (1) Due to (2.5), we can deduce that

    ϖs,ϖL2μiξi2ϖ2L2μi,   ϖD(L2μi), i=1,2. (2.14)

    (2) Using Hölder's and Young's inequalities, we have that

    +0μi(s)ϖx(s)dsgi(0)ϖL2μi, i=1,2. (2.15)

    In this section, we establish the existence and uniqueness of global weak solution to the system (2.10)–(2.12).

    Lemma 3.1. The linear operator A:D(A)HH defined in (2.13) is monotone.

    Proof. Let Ψ=(u,φ,v,ψ,w,ϕ,θ,σ,ϑ,ζ)D(A), then using integration by parts and the boundary conditions (2.11), we have

    AΨ,ΨH=δ3ϕ2+β1+0μ1(s)σxs(s),σx(s)ds+β2+0μ2(s)ζxs(s),ζx(s)ds=δ3ϕ2+β12+0μ1(s)dds(σx(s)2)ds+β22+0μ2(s)dds(ζx(s)2)ds=δ3ϕ2β12+0μ1(s)σx(s)2ds+β12lima+μ1(s)σx(s)2|s=as=0β22+0μ2(s)ζx(s)2ds+β22lima+μ2(s)ζx(s)2|s=as=0.

    From (2.5) and (2.6), we obtain

    lima+μ1(s)σx(s)2|s=as=0=lima+μ2(s)ζx(s)2|s=as=0=0.

    Therefore,

    AΨ,ΨH=δ3ϕ2β12+0μ1(s)σx(s)2dsβ22+0μ2(s)ζx(s)2ds0.

    Therefore, A is monotone.

    Lemma 3.2. The linear operator A:D(A)HH defined in (2.13) maximal, that is R(I+A)=H.

    Proof. Given F=(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10)H, we look for a unique solution

    Ψ=(u,φ,v,ψ,w,ϕ,θ,σ,ϑ,ζ)D(A)

    such that Ψ solves the stationary problem

    Ψ+AΨ=F. (3.1)

    System (3.1) is equivalent to

    {uφ=k1, in H1b,ρ1h1φE1h1uxxk(u+v+αwx)+δ1θx=ρ1h1k2, in L2,vψ=k3, in H1b,ρ3h3ψE3h3vxx+k(u+v+αwx)δ1θ+δ2ϑx=ρ3h3k4, in L2,wϕ=k5, in H2,(ρh+δ3)ϕ+EIwxxxxαk(u+v+αwx)x=ρhk6, in L2,ρ4θβ1+0μ1(s)σxx(x,s)ds+δ1(φx+ψ)=ρ4k7, in L2,σ+σsθ=k8, in L2μ1ρ5ϑβ2+0μ2(s)ζxx(x,s)ds+δ2ψx=ρ5k9, in L2,ζ+ζsϑ=k10, in L2μ2. (3.2)

    By multiplying (3.2)8 and (3.2)10 by er and integrating the results over (0,s), we arrive at

    σ(s)=(1es)θ+s0ersk8(r)dr,ζ(s)=(1es)ϑ+s0ersk10(r)dr. (3.3)

    From (3.2)1, (3.2)3 and (3.2)5, we get

    uk1=φ,  vk3=ψ and  wk5=ϕ, (3.4)

    respectively. Substituting (3.4) and (3.3) into (3.2)2, (3.2)4,(3.2)6,(3.2)7 and (3.2)9 leads to

    {ρ1h1uE1h1uxxk(u+v+αwx)+δ1θx=ρ1h1(k1+k2)f1, in L2,ρ3h3vE3h3vxx+k(u+v+αwx)δ1θ+δ2ϑx=ρ3h3(k3+k4)f2, in L2,ρhw+EIwxxxxαk(u+v+αwx)x=δ3k5+ρh(k5+k6)f3, in L2,ρ4θCβ1,μ1θxx+δ1(ux+v)=δ1(k1x+k3)+ρ4k7+β1+0μ1(s)(s0ersk8xx(r)dr)dsf4, in H1,ρ5ϑCβ2,μ2ϑxx+δ2vx=δ2k3x+ρ5k9+β2+0μ2(s)(s0ersk10xx(r)dr)dsf5, in H1, (3.5)

    where

    Cβi,μi=βi+0μi(s)(1es)ds>0, i=1,2.

    Now, we observe that last terms in f4 and f5 are in H1(0,π). Indeed, since k8L2μ1, we have for any

    ϖH1a(0,π), with ϖx1,

    that

    |+0μ1(s)(s0ersk8xx(r)dr)ds,ϖ|=|+0μ1(s)(s0ersk8x(r)dr)ds,ϖx|+0μ1(s)es(s0erk8x(r)dr)ds=+0erk8x(r)(+resμ1(s)ds)dr=+0μ1(r)erk8x(r)+resdsdr=+0μ1(r)k8x(r)dr<.

    In the same way, we get that

    +0μ2(s)(s0ersk10xx(r)dr)dsH1(0,π).

    Next, we consider the Banach space H:=H1b×H1b×H2×L2×L2 and equip it with the norm

    (u,v,w,θ,ϑ)2H=ρ1h1u2+E1h1ux2+k(u+v+αwx)2+ρ3h3v2+E3h3vx2+ρhw2+EIwxx2+ρ4θ2+ρ5ϑ2.

    On the account of the weak formulation of (3.5), we consider the bilinear form B on H×H and linear form L on H, define as follows:

    B((u,v,w,θ,ϑ),(u,v,w,θ,ϑ)):=ρ1h1u,u+E1h1ux,ux+k(u+v+αwx),(u+v+αwx)+ρ3h3v,v+E3h3vx,vx+ρhw,w+EIwxx,wxx+ρ4θ,θ+Cη,β1,μ1θx,θx+ρ5ϑ,ϑ+Cη,β2,μ2ϑx,ϑx,

    and

    L((u,v,w,θ,ϑ)):=ρ1h1(k1+k2),u+ρ3h3(k3+k4),v+δ3k5+ρh(k5+k6),u+δ1(k1x+k3)+ρ4k7,θ+β1+0μ1(s)(s0ersk8x(r)dr)ds,θx+δ2k3x+ρ5k9,ϑ+β2+0μ2(s)(s0ersk10x(r)dr)ds,ϑx,

    for every (u,v,w,θ,ϑ), (u,v,w,θ,ϑ)H. Routine computations, using Cauchy-Schwarz, Young's and Poincaré's inequalities shows that B is a bounded and coercive bilinear form on H×H, and L is a bounded linear form on H. Therefore, using Lax-Milgram theorem, there exists a unique (u,v,w,θ,ϑ)H such that

    B((u,v,w,θ,ϑ),(u,v,w,θ,ϑ))=L((u,v,w,θ,ϑ)),  (u,v,w,θ,ϑ)H.

    From (3.4), it follows that

    φH1b, ψH1b and ϕH2.

    Then, using standard regularity theory, it follows from (3.5), that

    u,vH2bH1b, wH4H2,  θ,ϑH2H1a.

    Since u,vH1b,w,k6H2 and k6L2, it easy to see from (3.5)3 that w satisfy

    wxx(0)=wxx(π)=0.

    Also, from (3.3), substituting θ and ϑ, we see that

    σD(L2μ1),  ζD(L2μ2).

    Finally, from (3.2)7 and (3.2)9, using regularity theory, we get that

    +0μ1(s)σ(s)ds,+0μ2(s)ζ(s)dsH2H1a.

    Thus, Ψ=(u,φ,v,ψ,w,ϕ,θ,σ,ϑ,ζ)D(A) and satisfies (3.1). That is, the operator A is maximal.

    Theorem 3.1. Suppose Ψ0=(u0,u1,v0,v1,w0,w1,θ0,σ0,ϑ0,ζ0)H is given and condition (A1) holds, then the Cauchy problem (2.13) has a unique weak global solution

    ΨC([0,+),H).

    Furthermore, if Ψ0=(u0,u1,v0,v1,w0,w1,θ0,σ0,ϑ0,ζ0)D(A), then the solution is in the class

    ΨC([0,),D(A))C1([0,),H).

    Proof. On account of Lemmas 3.1 and 3.2 applying the Hille-Yosida theorem, we have that A is a generator of a C0-semigroup of contractions S(t)=eAt, t0, on H. By the semigroup theory for linear operators (Pazy [31]), we get that

    Ψ(t)=S(t)Ψ0, t0,

    on H is a unique solution satisfying problem (2.13).

    In this section, we study the stability of solution of (2.10)–(2.12). The energy functional associated to the solution Ψ=(u,ut,v,vt,w,wt,θ,σ,ϑ,ζ) of system (2.10)–(2.12) is defined by

    E(t)=12[ρ1h1ut2+ρ3h3vt2+ρhwt2+E1h1ux2+E3h3vx2+EIwxx2]+12[k(u+v+αwx)2+ρ4θ2+β1σ2L2μ1+ρ5ϑ2+β2ζ2L2μ2],   t0. (4.1)

    Lemma 4.1. Under the conditions of Theorem 3.1, the energy functional (4.1) satisfies

    E(t)=δ3wt2+β12+0μ1(s)σx(s)2ds+β22+0μ2(s)ζx(s)2ds0,t0. (4.2)

    Proof. Multiplication in L2(0,π) the Eq (2.10)1,(2.10)2,(2.10)3, (2.10)4 and (2.10)6 by ut,vt,wt, θ and ϑ respectively, follow by multiplying (2.10)5 and (2.10)7 by σ and ζ in L2μ1 and L2μ2 respectively, then using integration by parts and the boundary conditions (2.11), we have

    12ddt[ρ1h1ut2+E1h1ux2]k(u+v+αwx),utδ1θ,uxt=0, (4.3)
    12ddt[ρ3h3vt2+E3h3vx2]+k(u+v+αwx),vtδ1θ,vtδ2ϑ,vxt=0, (4.4)
    12ddt[ρhwt2+EIwxx2]+k(u+v+αwx),αwxt+δ3wt2=0, (4.5)
    12ddt[ρ4θ2]+β1+0μ1(s)σx(s),θx(t)ds+δ1θ,(uxt+vt)=0, (4.6)
    12ddt[β1σ2L2μ1]β12+0μ1(s)σx(s)2dsβ1+0μ1(s)σx(s),θx(t)ds=0, (4.7)
    12ddt[ρ5ϑ2]+β2+0μ2(s)ζx(s),ϑx(t)ds+δ2ϑ,vxt=0, (4.8)

    and

    12ddt[β2ζ2L2μ2]β22+0μ2(s)ζx(s)2dsβ1+0μ2(s)ζx(s),ϑx(t)ds=0. (4.9)

    Addition of (4.3)–(4.9) leads to

    E(t)=δ3wt2+β12+0μ1(s)σx(s)2ds+β22+0μ2(s)ζx(s)2ds0. (4.10)

    Therefore, the energy E is non-increasing and bounded above by E(0). Also, the computations here are done for regular solution. However, the result remains true for weak solution by density argument.

    Lemma 4.2. Let Ψ=(u,ut,v,vt,w,wt,θ,σ,ϑ,ζ)H be the solution of system (2.10)–(2.12) given by Theorem 3.1, then the functional G1 defined by

    G1(t)=ρ1h1ut,u+ρ3h3vt,v+ρhwt,w+δ32w2

    satisfies the estimate

    G1(t)E1h12ux2E3h32vx2EIwxx2k(u+v+αwx)2+ρ1h1ut2+ρ3h3vt2+ρhwt2+Cθ2+Cϑ2,  t0. (4.11)

    Proof. Differentiation of G1 gives

    G1(t)=ρ1h1utt,u+ρ3h3vtt,v+ρhwtt,w+δ3wt,w+ρ1h1ut2+ρ3h3vt2+ρhwt2.

    Using Eq (2.10)1, (2.10)2 and (2.10)3, then applying integration by parts over (0,π) and making use of the boundary conditions (2.11) leads to

    G1(t)=E1h1ux2E3h3vx2EIwxx2k(u+v+αwx)2+δ1ux,θ+δ1v,θ+δ2vx,ϑ+ρ1h1ut2+ρ3h3vt2+ρhwt2.

    Applying Young's and Poincaré's inequalities, we obtain

    G1(t)E1h12ux2E3h32vx2EIwxx2k(u+v+αwx)2+ρ1h1ut2+ρ3h3vt2+ρhwt2+Cθ2+Cϑ2.

    Lemma 4.3. Let Ψ=(u,ut,v,vt,w,wt,θ,σ,ϑ,ζ)H be the solution of system (2.10)–(2.12) given by Theorem 3.1, then the functional G2 defined by

    G2(t)=ρ1h1ρ4θ,ˆut(t), where ˆut(t)=x0ut(y,t)dydx

    satisfies, for any ϵ1>0 and ϵ2>0, the the estimate

    G2(t)ρ1h1δ12ut2+ϵ1ux2+ϵ2(u+v+αwx)2+Cvt2+Cσ2L2μ1+C(1+1ϵ1+1ϵ2)θ2,  t0. (4.12)

    Proof. Differentiation of G2, using (2.10)1 and (2.10)4, integration by parts and boundary conditions (2.11), we arrive at

    G2(t)=ρ1h1ρ4θ,ˆutt(t)ρ1h1ρ4θt,ˆut(t)=ρ1h1δ1ut2ρ4E1h1θ,ux+ρ1h1δ1vt,ˆut(t)ρ4kθ,^(u+v+αwx)+ρ3δ1θ2+ρ1h1β1ut,+0μ1(s)σx(.,t,s)ds.

    Using Cauchy-Schwarz, Young's and Poincaré's inequalities yields

    G2(t)ρ1h1δ1ut2+ϵ1ux2+(ρ4E1h1)24ϵ1θ2+3ρ1h1δ14vt2+ρ1h1δ14ut2+ϵ2(u+v+αwx)2+(ρ4k)24ϵ2θ2+ρ3δ1θ2+ρ1h1δ14ut2+3ρ1h1β214δ1σ2L2μ1.

    Thus, we obtain (4.12).

    Lemma 4.4. Let Ψ=(u,ut,v,vt,w,wt,θ,σ,ϑ,ζ)H be the solution of system (2.10)–(2.12) given by Theorem 3.1, then the functional G3 defined by

    G3(t)=ρ3h3ρ5ϑ,ˆvt(t), where ˆvt(t)=x0vt(y,t)dy

    satisfies, for any ϵ3>0 and ϵ4>0, the estimate

    G3(t)ρ3h3δ22vt2+ϵ3vx2+ϵ4(u+v+αwx)2+Cθ2+Cζ2L2μ2+C(1+1ϵ3+1ϵ4)ϑ2,  t0. (4.13)

    Proof. Differentiation of G3, using (2.10)2 and (2.10)5, integration by parts and boundary conditions (2.11), we arrive at

    G3(t)=ρ3h3ρ5ϑ,ˆvtt(t)ρ3h3ρ5ϑt,ˆvt(t)=ρ3h3δ2vt2ρ5E3h3ϑ,vxρ5δ1ϑ,ˆθ(t)+ρ5kϑ,^(u+v+αwx)+ρ5δ2ϑ2+ρ3h3β2vt,+0μ2(s)ζx(.,t,s)ds.

    Applying Cauchy-Schwarz, Young's and Poincaré's inequalities, we have

    G3(t)ρ3h3δ2vt2+ϵ3vx2+(ρ5E3h3)24ϵ3ϑ2+ρ5δ12θ2+ρ5δ12ϑ2+ϵ4(u+v+αwx)2+(ρ5k)24ϵ4ϑ2+ρ5δ2ϑ2+ρ3h3δ24vt2+3ρ3h3β224δ2ζ2L2μ2.

    Hence, we get (4.13).

    Lemma 4.5. Let Ψ=(u,ut,v,vt,w,wt,θ,σ,ϑ,ζ)H be the solution of system (2.10)–(2.12) given by Theorem 3.1, then the functional G4 defined by

    G4(t)=ρ4θ,+0μ1(s)σ(.,t,s)ds,

    satisfies, for any ϵ5>0 and ϵ6>0, the estimate

    G4(t)ρ4g1(0)2θ2+ϵ5ut2+ϵ6vt2C+0μ1(s)σx(s)2ds (4.14)
    +C(1+1ϵ5+1ϵ6)σ2L2μ1,  t0. (4.15)

    Proof. Differentiating G4 with respect to t, using (2.10)4 and (2.10)5, integration by parts and the boundary conditions (2.11) and recalling (2.4), we get

    G4(t)=ρ4θt,+0μ1(s)σ(.,t,s)dsρ4θ,+0μ1(s)σt(.,t,s)ds=ρ4g1(0)θ2+β1+0μ1(s)σx(.,t,s)ds2δ1ut,+0μ1(s)σx(.,t,s)ds+δ1vt,+0μ1(s)σx(.,t,s)ds+ρ4θ,+0μ1(s)σs(.,t,s)ds.

    Making use of Cauchy-Schwarz and Young's inequalities, we have

    β1+0μ1(s)σx(.,t,s)ds2Cσ2L2μ1, (4.16)
    |δ1ut,+0μ1(s)σx(.,t,s)ds|ϵ5ut2+Cϵ5σ2L2μ1, for any ϵ5>0, (4.17)
    |δ1vt,+0μ1(s)σx(.,t,s)ds|ϵ6vt2+Cϵ6σ2L2μ1, for any ϵ6>0. (4.18)

    Also, using integration by parts with respect to s, we get

    |ρ4θ,+0μ1(s)σs(.,t,s)ds|=|ρ4θ,+0μ1(s)σ(.,t,s)ds|Cθ(+0μ1(s)σx2ds)12ρ4g1(0)2θ2C+0μ1(s)σx(s)2ds. (4.19)

    On account of (4.16)–(4.19), we obtain

    G4(t)ρ4g1(0)2θ2+ϵ5ut2+ϵ6vt2C+0μ1(s)σx(s)2ds+C(1+1ϵ5+1ϵ6)σ2L2μ1.

    Lemma 4.6. Let Ψ=(u,ut,v,vt,w,wt,θ,σ,ϑ,ζ)H be the solution of system (2.10)–(2.12) given by Theorem 3.1, then the functional G5 defined by

    G5(t)=ρ5ϑ,+0μ2(s)ζ(.,t,s)ds,

    satisfies for any ϵ7>0, the estimate

    G5(t)(t)ρ5g2(0)2ϑ2+ϵ7vt2C+0μ2(s)ζx(s)2ds+C(1+1ϵ7)ζ2L2μ2,  t0. (4.20)

    Proof. Differentiation of G5 with respect to t, using (2.10)6 and (2.10)7, integration by parts and the boundary conditions (2.11), and recalling (2.4), we get

    G5=ρ5ϑt,+0μ2(s)ζ(.,t,s)dsρ5ϑ,+0μ2(s)ζt(.,t,s)ds=ρ5g1(0)ϑ2+β2+0μ2(s)ζx(.,t,s)ds2δ2vt,+0μ2(s)ζx(.,t,s)ds+ρ5ϑ,+0μ2(s)ζs(.,t,s)ds.

    Using similar estimations as in (4.16)–(4.19) leads to (4.20).

    The main stability result of this work is the following:

    Theorem 4.1. Let Ψ0=(u0,u1,v0,v1,w0,w1,θ0,σ0,ϑ0,ζ0)D(A) be given. Suppose condition (A1) holds, then the energy functional E(t) defined in (4.1) decays exponentially. That is, there exists positive constants M and λ such that

    E(t)Meλt, t0. (4.21)

    Proof. We set

    L(t):=NE(t)+N1G1(t)+N2G2(t)+N3G3(t)+N4G4(t)+N5G5(t),  t0, (4.22)

    for some N,N1,N2,N3,N4,N5>0 to be specified later. Direct computations, applying Young's, Cauchy-Schwarz and Poincaré's inequalities gives

    ˜b1E(t)L(t)˜b2E(t),  t0, (4.23)

    for some positive constants ˜b1 and ˜b2. Now, using Lemmas 4.1 and 4.24.6, we get

    L(t)[ρ1h1δ12N2ρ1h1N1ϵ5N4]ut2[δ3NρhN1]wt2[ρ3h3δ22N3ρ3h3N1CN2ϵ6N4ϵ7N5]vt2[E1h12N1ϵ1N2]ux2[E3h32N1ϵ3N3]vx2EIN1wxx2[kN1ϵ2N2ϵ4N3](u+v+αwx)2[ρ4g1(0)2N4CN1CN2(1+1ϵ1+1ϵ2)CN3]θ2+[CN2+CN4(1+1ϵ5+1ϵ6)]σ2L2μ1[β12NCN4]+0μ1(s)σx(s)2ds[ρ5g2(0)2N5CN1CN3(1+1ϵ3+1ϵ4)]ϑ2+[CN3+CN5(1+1ϵ7)]ζ2L2μ2[β22NCN5]+0μ2(s)ζx(s)2ds. (4.24)

    From (2.5), we have that

    μi(s)1ξiμi(s),  i=1,2.

    Also, by choosing

    N1=1,ϵ1=E1h14N2, ϵ2=k4N2, ϵ3=E3h34N3, ϵ4=k4N3,
    ϵ5=ρ1h1δ14N4,  ϵ6=ρ3h3δ28N4,  ϵ7=ρ3h3δ28N5,

    then (4.24) takes the form

    L(t)[ρ1h1δ14N2ρ1h1]ut2[ρ3h3δ24N3CN2ρ3h3]vt2[δ3Nρh]wt2E1h14ux2E3h34vx2EIwxx2k2(u+v+αwx)2[ρ4g1(0)2N4CN2(1+4N2E1h1+4N2k)CN3C]θ2[β1ξ12NCξ1N4(CN2+CN4(1+4N4ρ1h1δ1+8N4ρ3h3δ2))]σ2L2μ1[ρ5g2(0)2N5CN3(1+4N3E3h3+4N3k)C]ϑ2[β2ξ22NCξ2N5(CN3+CN5(1+8N5ρ3h3δ2))]ζ2L2μ2. (4.25)

    Next, we specified the rest of the parameters. First, we choose N2 large such that

    ρ1h1δ14N2ρ1h1>0.

    Second, we select N3 large enough such that

    ρ3h3δ24N3CN2ρ3h3>0.

    Thirdly, we choose N4 and N5 large enough such that

    ρ4g1(0)2N4CN2(1+4N2E1h1+4N2k)CN3C>0,

    and

     ρ4h2(0)2N5CN3(1+8N3k+4N3b)C>0.

    Finally, we choose N very large so that (4.23) remain valid and

    δ3Nρh>0, β1ξ12NCξ1N4(CN2+CN4(1+4N4ρ1h1δ1+8N4ρ3h3δ2))>0,
    β2ξ22NCξ2N5(CN3+CN5(1+8N5ρ3h3δ2))>0.

    Thus, we obtain

    L(t)γ0[ut2+vt2+wt2+ux2+vx2+wxx2]γ0[(u+v+αwx)2+|θ2+σ2L2μ1+ϑ2+ζ2L2μ2] (4.26)

    for some γ0>0. Recalling (4.1), it follows from (4.26) that

    L(t)γ1E(t),  t0, (4.27)

    for some γ1>0. Using (4.23), we obtain

    L(t)γ2L(t),  t0, (4.28)

    for some γ2>0. Integrating (4.28) over (0,t) yields for some γ3>0

    L(t)L(0)eγ3t,  t0. (4.29)

    Hence, the exponential estimate of the energy functional E(t) in (4.21) follows from (4.29) by using (4.23). This completes the proof.

    In this work, we investigated the the effect of Gurtin-Pipkin's thermal law on the outer layers of the Rao-Nakra beam model. Using standard semi-group theory for linear operators and the multiplier method, the well-posedness and a stability result of solutions of the triple beam system have been established.

    The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

    The author acknowledges the technical and financial support from the Ministry of education and the University of Hafr Al Batin, Saudi Arabia. This research work was funded by Institutional fund projects # IFP-A-2022-2-1-04.

    The author declares no potential conflict of interest.



    [1] Y. V. K. S. Rao, B. C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores, J. Sound Vibr., 34 (1974), 309–326. https://doi.org/10.1016/S0022-460X(74)80315-9 doi: 10.1016/S0022-460X(74)80315-9
    [2] D. J. Mead, S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound Vibr., 10 (1969), 163–175. https://doi.org/10.1016/0022-460X(69)90193-X doi: 10.1016/0022-460X(69)90193-X
    [3] M. J. Yan, E. H. Dowell, Governing equations for vibrating constrained-layer damping sandwich plates and beams, J. Appl. Mech., 39 (1972), 1041–1047. https://doi.org/10.1115/1.3422825 doi: 10.1115/1.3422825
    [4] S. W. Hansen, Several related models for multilayer sandwich plates, Math. Models Methods Appl. Sci., 14 (2004), 1103–1132. https://doi.org/10.1142/S0218202504003568 doi: 10.1142/S0218202504003568
    [5] A. Ö. Özer, S. W. Hansen, Uniform stabilization of a multilayer Rao-Nakra sandwich beam, Evolution Equ. Control Theory, 2 (2013), 695–710. https://doi.org/10.3934/eect.2013.2.695 doi: 10.3934/eect.2013.2.695
    [6] Z. Liu, S. A. Trogdon, J. Yong, Modeling and analysis of a laminated beam, Math. Comput. Model., 30 (1999), 149–167. https://doi.org/10.1016/S0895-7177(99)00122-3 doi: 10.1016/S0895-7177(99)00122-3
    [7] S. W. Hansen, R. D. Spies, Structural damping in a laminated beam due to interfacial slip, J. Sound Vibr., 204 (1997), 183–202. https://doi.org/10.1006/jsvi.1996.0913 doi: 10.1006/jsvi.1996.0913
    [8] Y. F. Li, Z. Y. Liu, Y. Wang, Weak stability of a laminated beam, Math. Control Relat. Fields, 8 (2018), 789–808. https://doi.org/10.3934/mcrf.2018035 doi: 10.3934/mcrf.2018035
    [9] T. Q. Méndez, V. C. Zannini, B. W. Feng, Asymptotic behavior of the Rao-Nakra sandwich beam model with Kelvin-Voigt damping, Math. Mech. Solids, 2023. https://doi.org/10.1177/10812865231180535 doi: 10.1177/10812865231180535
    [10] B. W. Feng, A. Ö. Özer, Long-time behavior of a nonlinearly-damped three-layer Rao-Nakra sandwich beam, Appl. Math. Optim., 87 (2023), 19. https://doi.org/10.1007/s00245-022-09931-7 doi: 10.1007/s00245-022-09931-7
    [11] B. W. Feng, C. A. Raposo, C. A. Nonato, A. Soufyane, Analysis of exponential stabilization for Rao-Nakra sandwich beam with time-varying weight and time-varying delay: Multiplier method versus observability, Math. Control Relat. Fields, 13 (2023), 631–663. https://doi.org/10.3934/mcrf.2022011 doi: 10.3934/mcrf.2022011
    [12] S. E. Mukiawa, C. D. Enyi, J. D. Audu, Well-posedness and stability result for a thermoelastic Rao-Nakra beam model, J. Therm. Stresses, 45 (2022), 720–739. https://doi.org/10.1080/01495739.2022.2074931 doi: 10.1080/01495739.2022.2074931
    [13] C. A. Raposo, O. P. V. Villagran, J. Ferreira, E. Pişkin, Rao-Nakra sandwich beam with second sound, Part. Differ. Equ. Appl. Math., 4 (2021), 100053. https://doi.org/10.1016/j.padiff.2021.100053 doi: 10.1016/j.padiff.2021.100053
    [14] Z. Y. Liu, B. P. Rao, Q. Zheng, Polynomial stability of the Rao-Nakra beam with a single internal viscous damping, J. Differ. Equ., 269 (2020), 6125–6162. https://doi.org/10.1016/j.jde.2020.04.030 doi: 10.1016/j.jde.2020.04.030
    [15] S. W. Hansen, O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions, Math. Control Relat. Fields, 1 (2011), 189–230. https://doi.org/10.3934/mcrf.2011.1.189 doi: 10.3934/mcrf.2011.1.189
    [16] S. W. Hansen, O. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions, ESAIM Control Optim. Calc. Var., 17 (2011), 1101–1132. https://doi.org/10.1051/cocv/2010040 doi: 10.1051/cocv/2010040
    [17] S. W. Hansen, R. Rajaram, Simultaneous boundary control of a Rao-Nakra sandwich beam, in: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, 3146–3151. https://doi.org/10.1109/CDC.2005.1582645
    [18] S. W. Hansen, R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam, Conf. Publ., 2005 (2005), 365–375.
    [19] R. Rajaram, Exact boundary controllability result for a Rao-Nakra sandwich beam, Syst. Control Lett., 56 (2007), 558–567. https://doi.org/10.1016/j.sysconle.2007.03.007 doi: 10.1016/j.sysconle.2007.03.007
    [20] C. A. Raposo, Rao-Nakra model with internal damping and time delay, Math. Morav., 25 (2021), 53–67. https://doi.org/10.5937/MatMor2102053R doi: 10.5937/MatMor2102053R
    [21] M. E. Gurtin, A. C. Pipkin, A general theory of heat conduction with finite waves peeds, Arch. Rational Mech. Anal., 31 (1968), 113–126. https://doi.org/10.1007/BF00281373 doi: 10.1007/BF00281373
    [22] F. Dell'Oro, V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law, J. Differ. Equ., 257 (2014), 523–548. https://doi.org/10.1016/j.jde.2014.04.009 doi: 10.1016/j.jde.2014.04.009
    [23] A. Fareh, Exponential stability of a Timoshenko type thermoelastic system with Gurtin-Pipkin thermal law and frictional damping, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 71 (2022), 95–115. https://doi.org/10.31801/cfsuasmas.847038 doi: 10.31801/cfsuasmas.847038
    [24] W. J. Liu, W. F. Zhao, On the stability of a laminated beam with structural damping and Gurti-Pipkin thermal law, Nonlinear Anal. Model. Control, 26 (2021), 396–418. https://doi.org/10.15388/namc.2021.26.23051 doi: 10.15388/namc.2021.26.23051
    [25] T. A. Apalara, O. B. Almutairi, Well-posedness and exponential stability of swelling porous with Gurtin-Pipkin thermoelasticity, Mathematics, 10 (2022), 1–17. https://doi.org/10.3390/math10234498 doi: 10.3390/math10234498
    [26] M. Khader, B. Said-Houari, On the decay rate of solutions of the Bresse system with Gurtin-Pipkin thermal law, Asymptot. Anal., 103 (2017), 1–32. https://doi.org/10.3233/ASY-171417 doi: 10.3233/ASY-171417
    [27] D. Hanni, B. W. Feng, K. Zennir, Stability of Timoshenko system coupled with thermal law of Gurtin-Pipkin affecting on shear force, Appl. Anal., 101 (2022), 5171–5192. https://doi.org/10.1080/00036811.2021.1883591 doi: 10.1080/00036811.2021.1883591
    [28] F. Dell'Oro, On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction, J. Differ. Equ., 281 (2021), 148–198. https://doi.org/10.1016/j.jde.2021.02.009 doi: 10.1016/j.jde.2021.02.009
    [29] B. D. Coleman, M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199–208. https://doi.org/10.1007/BF01596912 doi: 10.1007/BF01596912
    [30] C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differ. Equ., 7 (1970), 554–569. https://doi.org/10.1016/0022-0396(70)90101-4 doi: 10.1016/0022-0396(70)90101-4
    [31] A. Pazzy, Semigroups of linear operators and application to partial differential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
  • This article has been cited by:

    1. Mohammed M. Al-Gharabli, Shadi Al-Omari, Adel M. Al-Mahdi, Genni Fragnelli, Stabilization of a Rao–Nakra Sandwich Beam System by Coleman–Gurtin’s Thermal Law and Nonlinear Damping of Variable-Exponent Type, 2024, 2024, 2314-4785, 1, 10.1155/2024/1615178
    2. Djellali Fayssal, Victor R. Cabanillas Zannini, Adel M. Al-Mahdi, EXPONENTIAL STABILIZATION OF LAMINATED BEAMS WITH GURTIN–PIPKIN THERMAL LAW THE CASE OF EQUAL SPEEDS, 2024, 36, 0897-3962, 10.1216/jie.2024.36.183
    3. Hasan Almutairi, Soh Edwin Mukiawa, On the uniform stability of a thermoelastic Timoshenko system with infinite memory, 2024, 9, 2473-6988, 16260, 10.3934/math.2024787
    4. Aissa Guesmia, Study of the well-posedness and decay rates for Rao–Nakra sandwich beam models subject to a single internal infinite memory and Dirichlet–Neumann boundary conditions, 2025, 44, 2238-3603, 10.1007/s40314-024-03033-6
    5. Soh Edwin Mukiawa, Johnson D. Audu, Salim A. Messaoudi, Stabilization of a coupled bridge system with past history and gurtin-pipkin’s heat conduction, 2025, 1607-3606, 1, 10.2989/16073606.2025.2457677
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1514) PDF downloads(97) Cited by(5)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog