Loading [MathJax]/jax/output/SVG/jax.js
Research article

Health and fitness trends in Iran for 2024: A cross-sectional study

  • Received: 08 August 2023 Revised: 08 September 2023 Accepted: 18 September 2023 Published: 07 October 2023
  • The health and fitness sector is evolving and appears to be an important field not only for consumers but also for gym operators/managers, exercise professionals, training providers and educators with great potential worldwide. Our aim of this cross-sectional survey was to investigate the most attractive health and fitness trends in Iran for the first time and to observe any potential differences with the recent results reported in other regions. A national online survey was conducted, using the methodology of similar international surveys conducted by the American College of Sports Medicine since 2007. In total, a web-based questionnaire was sent to 7158 professionals who worked in the Iranian health and fitness industry. A total of 408 responses were collected with a response rate of 5.7%. The 10 most important health and fitness trends in Iran for 2024 were strength training with free weights, exercise for weight loss, group training, low-cost and budget gyms, dance-based workouts, outdoor activities, Pilates, bodyweight training, core training and aquatic exercise. The present findings are not fully aligned with those reported for the top health and fitness trends internationally, showing that trends related to technology and health are not yet popular nationwide. Such outcomes may support all industry stakeholders with making important business decisions, professional development opportunities and innovative concepts to enhance customer engagement through positive exercise experiences.

    Citation: Alexios Batrakoulis, Saeid Fatolahi, Farnaz Dinizadeh. Health and fitness trends in Iran for 2024: A cross-sectional study[J]. AIMS Public Health, 2023, 10(4): 791-813. doi: 10.3934/publichealth.2023053

    Related Papers:

    [1] Jay Chu, Xiaozhe Hu, Lin Mu . A pressure-robust divergence free finite element basis for the Stokes equations. Electronic Research Archive, 2024, 32(10): 5633-5648. doi: 10.3934/era.2024261
    [2] Bin Wang, Lin Mu . Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29(1): 1881-1895. doi: 10.3934/era.2020096
    [3] Kun Wang, Lin Mu . Numerical investigation of a new cut finite element method for Stokes interface equations. Electronic Research Archive, 2025, 33(4): 2503-2524. doi: 10.3934/era.2025111
    [4] Xiu Ye, Shangyou Zhang . A stabilizer free WG method for the Stokes equations with order two superconvergence on polytopal mesh. Electronic Research Archive, 2021, 29(6): 3609-3627. doi: 10.3934/era.2021053
    [5] Chunmei Wang . Simplified weak Galerkin finite element methods for biharmonic equations on non-convex polytopal meshes. Electronic Research Archive, 2025, 33(3): 1523-1540. doi: 10.3934/era.2025072
    [6] Jun Pan, Yuelong Tang . Two-grid H1-Galerkin mixed finite elements combined with L1 scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365
    [7] Derrick Jones, Xu Zhang . A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, 2021, 29(5): 3171-3191. doi: 10.3934/era.2021032
    [8] Hongze Zhu, Chenguang Zhou, Nana Sun . A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise. Electronic Research Archive, 2022, 30(6): 2321-2334. doi: 10.3934/era.2022118
    [9] Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao . Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29(3): 2489-2516. doi: 10.3934/era.2020126
    [10] Nisachon Kumankat, Kanognudge Wuttanachamsri . Well-posedness of generalized Stokes-Brinkman equations modeling moving solid phases. Electronic Research Archive, 2023, 31(3): 1641-1661. doi: 10.3934/era.2023085
  • The health and fitness sector is evolving and appears to be an important field not only for consumers but also for gym operators/managers, exercise professionals, training providers and educators with great potential worldwide. Our aim of this cross-sectional survey was to investigate the most attractive health and fitness trends in Iran for the first time and to observe any potential differences with the recent results reported in other regions. A national online survey was conducted, using the methodology of similar international surveys conducted by the American College of Sports Medicine since 2007. In total, a web-based questionnaire was sent to 7158 professionals who worked in the Iranian health and fitness industry. A total of 408 responses were collected with a response rate of 5.7%. The 10 most important health and fitness trends in Iran for 2024 were strength training with free weights, exercise for weight loss, group training, low-cost and budget gyms, dance-based workouts, outdoor activities, Pilates, bodyweight training, core training and aquatic exercise. The present findings are not fully aligned with those reported for the top health and fitness trends internationally, showing that trends related to technology and health are not yet popular nationwide. Such outcomes may support all industry stakeholders with making important business decisions, professional development opportunities and innovative concepts to enhance customer engagement through positive exercise experiences.



    In this manuscript, we detail the development of a new stabilizer-free weak Galerkin (WG) finite element method of any polynomial order in 2D and 3D, on triangular and tetrahedral meshes respectively, for obtaining the solutions of the stationary Stokes equations: Find unknown functions u (velocity) and p (pressure) such that

    μΔu+p=finΩ, (1.1)
    u=0inΩ, (1.2)
    u=0onΩ, (1.3)

    where the viscosity μ>0, and the domain Ω is a polygon or a polyhedron in Rd(d=2,3).

    The new pressure-robust, stabilizer-free WG method has a new variational formulation. Find uhVh and phWh such that

    (μwuh,wv)+(wph,v)=(f,v)vVh, (1.4)
    (uh,wq)=0qWh, (1.5)

    where w denotes weak gradients to be defined in (2.3) and (2.4), and Vh and Wh are Pk and Pk1 WG finite element spaces, to be defined in (2.1) and (2.2), respectively. Some studies on the WG methods are as follows: the parabolic equation [1,2,3], with two-order superconvergence on triangular meshes [4], the convection-diffusion equation [5,6], 4th order problems [7,8], with the conforming discontinuous Galerkin formulation [9,10,11], the Navier-Stokes equations [12,13,14], with the discrete maximum principle [15], the second order elliptic equations [16,17], with the energy conservation [18], the Darcy flow [19,20], the Oseen equations [21], the Stokes equations with pressure-robustness [22,23,24], the Maxwell equations [25], the Cahn-Hilliard equation [26], the div-curl equations [27], with adaptive refinements [28,29], the biharmonic equation [30,31], the biharmonic equation with continuous finite elements[32,33], the Stokes equations with H(div) elements [34,35], with two-order superconvergence under the CDG formulation [36,37], and with two-order superconvergence for the Stokes equations [38].

    We note that the moment equation (1.1) is not tested by applying H(div,Ω) functions in (1.4), different from most other pressure-robust methods such as those detailed in [22,23,24], but is tested by using discontinuous polynomials. The pointwise divergence-free property (pressure-robustness) is achieved by introducing pressure face variables, i.e., ph={p0,pb} where pb|ePk(e) on every face edge/triangle e of a mesh Th (see (2.2) below). The method was previously applied before in hybridized discontinuous Galerkin methods in [39].

    It is shown that the WG finite element pair, VhWh, is inf-sup stable. The method is shown pressure robust, i.e., both errors of the velocity and the pressure are independent of the pressure p and the viscosity μ in (1.1). This is necessary when μ is small. However, very few methods can achieve this. Under the inf-sup stability, we shall prove quasi-optimal approximation for the velocity in an H1-norm and in the L2 norm. The quasi-optimal convergence for pressure in the L2 norm is also proved. The theory is numerically verified by applying varying degrees of WG finite elements to both triangular and tetrahedral meshes.

    Let Th be a mesh on the domain Ω, consisting of conforming shape-regular triangles or shape-regular tetrahedrons. Here we let hT be the element diameter of TTh, and we let mesh size h=maxTThhT.

    For k1 and given Th, the finite element space for velocity is defined by

    Vh={v={v0,vb}: v0|T[Pk(T)]d, TTh;vb|e[Pk+1(e)]d, eEh; vb|e=0, eEhΩ}, (2.1)

    and the finite element space for pressure is defined by

    Wh={qh={q0,qb}: q0|TPk1(T), TT; qb|ePk(e), eEh;(q0,1)Th+qb,1Th=0}, (2.2)

    where Pk(e) and Pk(T) denote the space of polynomials of degree k or less on the edge/triangle e and triangle/tetrahedron T respectively, (,)Th=TTh(,)T and ,Th=TTh,T.

    For a function vVh, the (k+1)-degree weak gradient wv is a piecewise polynomial on the mesh Th, wv|T[Pk+1(T)]d×d, such that

    (wv, τ)T=(v0, τ)T+vb, τnTτ[Pk+1(T)]d×d. (2.3)

    For a function q={q0,qb}Wh, its weak gradient wq is defined as a piecewise vector-valued polynomial such that for each TTh, wq[Pk(T)]d satisfies

    (wq,φ)T=(q0,φ)T+qb,φnTφ[Pk(T)]d. (2.4)

    We denote by Πk the local/element-wise L2-orthogonal projection onto [Pk(T)]j where j=1,d,d×d and TTh. Let Πbk be a generic edge/face-wise defined L2 projection onto [Pk(e)]j for eT. Define Qhu={Πku,Πbk+1u}Vh and Qhp={Πk1p,Πbkp}Wh.

    Lemma 2.1. Let ϕ[H10(Ω)]d and ψH1(Ω), then, for TTh

    wQhϕ=Πk+1ϕ, (2.5)
    wQhψ=Πkψ. (2.6)

    Proof. Using (2.3) and integration by parts, we obtain the following for any τ[Pk+1(T)]d×d:

    (wQhϕ,τ)T=(Πkϕ,τ)T+Πbk+1ϕ,τnT=(ϕ,τ)T+ϕ,τnT=(ϕ,τ)T=(Πk+1ϕ,τ)T.

    This implies that (2.5) holds. The scalar version, (2.6), is proved in the same manner.

    For any function φH1(T), the following trace inequality holds true:

    φ2eC(h1Tφ2T+hTφ2T). (2.7)

    We define two semi-norms |||v||| and v1,h for any vVh:

    |||v|||2=(wv,wv), (2.8)
    v21,h=TThv02T+TThh1Tv0vb2T. (2.9)

    We also define two semi-norms |||q||| and q1,h for any qWh:

    |||q|||2=(wq,wq), (2.10)
    q21,h=TThq02T+TThh1Tq0qb2T. (2.11)

    In fact, v1,h is a norm in Vh and |||||| is also a norm in Vh, as they have been proved in [4] by applying the norm equivalence as follows:

    C1v1,h|||v|||C2v1,hvVh, (2.12)

    and

    C1q1,h|||q|||C2q1,hqWh. (2.13)

    Lemma 2.2. The following inf-sup conditions hold, for all q={q0,qb}Wh and v={v0,vb}Vh:

    supvVh(v0,wq)|||v|||βq0, (2.14)

    and

    supvVh(v0,wq)|||v|||βh|||q|||, (2.15)

    where β>0 is independent of h and Th.

    Proof. For any given q={q0,qb}Wh, it is known that there exists a function ˜vH0(div,Ω) and ˜v|T[Pk(T)]d (see, e.g., [40, (7.4)–(7.6)]) such that

    (˜v,q0)|˜v|1,hCq0, (2.16)

    where

    |˜v|21,h=TTh(˜v2T+h1T[˜v]2T).

    Let

    v={˜v,˜vb}Vh,where ˜vb|e={12(˜v|T1+˜v|T2)if eE0h,0if eEhΩ,

    where T1 and T2 are the two elements on the two sides of edge/triangle e. For such specially defined v, we have

    v21,h=TTh(˜v2T+h1T˜v{˜v}2T)=TTh(˜v2T+h1T[˜v]2T)=|˜v|21,h. (2.17)

    It follows from (2.13) and (2.17) that

    |||v|||C|˜v|1,h. (2.18)

    By (2.4), we have

    (˜v,wq)=TTh(˜vn,qbT(˜v,q0)T)=(˜v,q0). (2.19)

    Combining (2.16), (2.19) and (2.18) implies that

    |(˜v,wq)||||v|||=|(˜v,q0)||||v||||(˜v,q0)|˜v1,hβq0,

    which implies (2.14).

    Next we shall derive (2.15). For any v={v0,0}Vh and τ[Pk+1(T)]d×d, we have the following by (2.3), (2.7) and the inverse inequalities:

    (wv,τ)T=(v0,τ)T=(v0,τ)Tv0,τnTv0TτT+Ch1/2Tv0TτT,

    which implies that

    |||v|||Ch1v0. (2.20)

    It follows from (2.20) that for any v={v0,0}Vh

    |(v0,wq)||||v|||Ch|(v0,wq)|v0.

    Then we have

    supvVh|(v0,wq)||||v|||ChsupvVh|(v0,wq)|v0βhwq,

    which implies (2.15). This completes the proof of the lemma.

    Lemma 2.3. There is a unique solution for the WG finite element equations (1.4) and (1.5).

    Proof. We only need to show that zero is the unique solution of (1.4) and (1.5) if f=0. We let f=0 and v=uh in (1.4) and q=ph in (1.5). By summing the two equations, we get

    (wuh, wuh)=0.

    It implies that wuh=0 on T. By (2.12), we also obtain that uh1,h=0. Thus, uh=0.

    Since uh=0 and f=0, (1.4) is reduced to (v0,wph)=0 for any v={v0,vb}Vh. Then the inf-sup conditions (2.15) and (2.14) imply that wph=0 and p0=0. By (2.13), we have that ph1,h=0 and p0=pb=0 on T. We have proved the lemma.

    To derive the equations that the errors satisfy, we introduce eh=Qhuuh and ϵh=Qhpph.

    Lemma 3.1. [41, Theorem 3.1] For τ[Hk+2(Ω)]d, a quasi-projection Πh can be defined such that Πhτ[H(div,Ω)]d, Πhτ|T[Pk+1(T)]d×d and for v0[Pk(T)]d,

    (τ,v0)T=(Πhτ,v0)T, (3.1)
    (τ,v0)=(Πhτ,wv), (3.2)
    ΠhττChk+2|τ|k+2, (3.3)

    where ||k+2 is the semi-Hk+2 Sobolev norm on the space.

    Lemma 3.2. [41, Theorem 3.1] Let τHk+1(Ω). A quasi-projection πh can be defined such that πhτH(div,Ω), πhτ|T[Pk(T)]d and for q0Pk1(T),

    (τ,q0)T=(πhτ,q0)T, (3.4)
    (τ,q0)=(πhτ,wq), (3.5)
    πhττChk+1|τ|k+1, (3.6)

    where ||k+1 is the semi-Hk+1 Sobolev norm on the space.

    Lemma 3.3. For any vVh and qWh, the following error equations hold true:

    (μweh,wv)+(wϵh,v0)=e1(u,v), (3.7)
    (e0, wq)=e2(u,q), (3.8)

    where

    e1(u, v)=μ(Πk+1uΠhu,wv), (3.9)
    e2(u,q)=(Πkuπhu,wq). (3.10)

    Proof. First, we test (1.1) by applying v0 with v={v0,vb}Vh to obtain

    (μΔu,v0)+(p, v0)=(f,v0). (3.11)

    It follows from (3.2) and (2.5) that

    (μu,v0)=(μΠhu,wv)=(μwQhu,wv)e1(u,v). (3.12)

    It follows from (2.6) that

    (p, v0)=(Πkp, v0)=(wQhp, v0). (3.13)

    We substitute (3.12) and (3.13) into (3.11) to obtain

    (μwQhu,wv)+(μwQhp, v0)=(f,v0)+e1(u,v). (3.14)

    We subtract (3.14) from (1.4) to get

    (μweh,wv)+(μwϵh, v0)=e1(u,v)vVh. (3.15)

    Multiplying (1.2) by q={q0,qb}Wh, by applying (3.2), it follows that

    0=(u, q0)=(πhu,wq)=(Πku,wq)+e2(u,q), (3.16)

    which implies that

    (Πku,wq)=e2(u,q). (3.17)

    The difference between (3.17) and (1.5) implies (3.8). We have proved the lemma.

    We shall first prove the optimal order error estimates of the |||||| norm for the velocity uh, and of the L2 norm for the pressure ph.

    Lemma 4.1. Let u[Hk+1(Ω)]d, vVh and qWh. The following estimates hold:

    |e1(u, v)|Cμhk|u|k+1|||v|||, (4.1)
    |e2(u, q)|Chk+1|u|k+1|||q|||, (4.2)

    where e1(,) and e2(,) have been defined in (3.9) and (3.10), respectively.

    Proof. By the Cauchy-Schwarz inequality, the definitions of Πk+1 and Πh, we compute

    |e1(u, v)|=μ|(Πk+1uΠhu,wv)|Cμhk|u|k+1|||v|||.

    Similarly, we have

    |e2(u, q)|=|(πhuΠku,wq)|Chk+1|u|k+1|||q|||.

    We have proved the lemma.

    Theorem 4.1. Let (u,p)([Hk+1(Ω)]d[H10(Ω)]d)×(Hk(Ω)L20(Ω)) be the solutions of (1.1)–(1.3). Let (uh,ph)Vh×Wh be the solutions of (1.4) and (1.5). Then, the following error estimates hold true:

    |||Qhuuh|||Chk|u|k+1, (4.3)
    h|||Qhpph|||+Πk1pp0Cμhk|u|k+1. (4.4)

    Proof. It follows from (3.7) that for any v={v0,vb}Vh, by (4.1), we have

    |(wϵh,v0)|=|(μweh,wv)e1(u,v)|Cμ(|||eh|||+hk|u|k+1)|||v|||. (4.5)

    Then applying the estimate (4.5) and (2.15) yields

    h|||ϵh|||Cμ(|||eh|||+hk|u|k+1). (4.6)

    By letting v=eh in (3.7) and q=ϵh in (3.8), and by using (3.8), we have

    |||eh|||2=|μ1e1(u,eh)e2(u,ϵh)|.

    It then follows from (4.1), (4.2) and (4.6) that

    |||eh|||2Chk|u|k+1|||eh|||+Chk|u|k+1h|||ϵh|||Chk|u|k+1|||eh|||+Ch2k|u|2k+1,

    which implies (4.3). The estimate (4.4) follows from (4.5), (4.3) and the inf-sup conditions (2.14) and (2.15). We have proved the theorem.

    We shall derive next the optimal-order convergence for velocity in the L2 norm by using the duality argument. Recall that eh={e0,eb}=Qhuuh and ϵh=Qhpph. Consider the problem of seeking (ψ,ξ) such that

    μΔψ+ξ=e0inΩ, (4.7)
    ψ=0inΩ, (4.8)
    ψ=0onΩ. (4.9)

    Assume that the duality problem given by (4.7)–(4.9) has the H2(Ω)×H1(Ω)-regularity property that the solution (ψ,ξ)H2(Ω)×H1(Ω) and the following a priori estimate holds true:

    μψ2+ξ1Ce0. (4.10)

    We need the following lemma first.

    Lemma 4.2. For any vVh and qWh, the following equations hold true:

    (μwQhψ,wv)+(wQhξ,v0)=(e0,v0)+e3(ψ,v), (4.11)
    (Πkψ,wq)=e4(ψ,q), (4.12)

    where ψ and ξ are defined in (4.7), and

    e3(ψ, v)=μ(ψΠk+1ψ)n,v0vbTh,e4(ψ,q)=(ψΠkψ)n,q0qbTh.

    Proof. Testing (4.7) by applying v0 with v={v0,vb}Vh gives

    (μΔψ,v0)+(ξ, v0)=(e0,v0). (4.13)

    By performing integration by parts, and setting ψn,vbTh=0, we derive

    (Δψ,v0)=(ψ,v0)Thψn,v0vbTh. (4.14)

    By integration by parts, and given(2.3) and (2.5), we have

    (ψ,v0)Th=(Πk+1ψ,v0)Th=(v0,(Πk+1ψ))Th+v0,Πk+1ψnTh=(Πk+1ψ,wv)Th+v0vb,Πk+1ψnTh=(wQhψ,wv)Th+v0vb,Πk+1ψnTh. (4.15)

    Combining (4.14) and (4.15) gives

    (μΔψ,v0)=(μwQhψ,wv)e3(ψ,v). (4.16)

    By applying the definition of Πk, (2.6), and (3.13), we obtain

    (ξ, v0)=(Πkξ, v0)=(wQhξ, v0). (4.17)

    Combining (4.16) and (4.17) with (4.13) yields (4.11).

    Testing (4.8) by applying q0 with q={q0,qb}Wh gives

    (ψ, q0)=0. (4.18)

    By applying integration by parts, we obtain

    (ψ, q0)=(Πkψ,q0)Th+ψn,q0qbTh=(Πkψ,q0)ThΠkψn,q0Th+ψn,q0qbTh=(Πkψ,wq)Πkψn,q0qbTh+ψn,q0qbTh=(Πkψ,wq)+e4(ψ,q). (4.19)

    Combining (4.18) and (4.19) yields

    (Πkψ,wq)=e4(ψ,q). (4.20)

    We have proved the lemma.

    By the same argument as that for (4.16), (3.7) has another form, i.e.,

    (μweh,wv)+(wϵh,v0)=e3(u,v), (4.21)
    (e0,wq)=e4(u,q). (4.22)

    Letting v=Qhψ and q=Qhξ in (4.21) and (4.22), we obtain

    (μweh,wQhψ)+(wϵh,Πkψ)=e3(u,Qhψ), (4.23)
    (e0,wQhξ)=e4(u,Qhξ). (4.24)

    Letting v=eh and q=ϵh in (4.11) and (4.12), we have

    (μwQhψ,weh)+(wQhξ,e0)=(e0,e0)+e3(ψ,eh), (4.25)
    (Πkψ,wϵh)=e4(ψ,ϵh), (4.26)

    By applying (4.26), (4.23) becomes

    (μwQhψ,weh)=e3(u,Qhψ)+e4(ψ,ϵh). (4.27)

    Theorem 4.2. Let (u,p)([Hk+1(Ω)]d[H10(Ω)]d)×(Hk(Ω)L20(Ω)) be the solutions of (1.1)–(1.3). Let (uh,ph)Vh×Wh denote the unique solutions of (1.4) and (1.5). With the condition (4.10), the following error bound holds:

    Πkuu0Chk+1|u|k+1. (4.28)

    Proof. Letting v=eh in (4.11) yields

    e02=(μwQhψ,weh)Th(e0,wQhξ)+e3(ψ,eh). (4.29)

    By applying (4.27) and (4.24), (4.29) becomes

    eh2=e3(u,Qhψ)+e4(ψ,ϵh)+e3(ψ,eh)+e4(u,Qhξ). (4.30)

    Next we shall estimate all of the terms on the right hand side of (4.30). Using the Cauchy-Schwarz inequality, the trace inequality (2.7), and the definition of Πk+1, we obtain

    |e3(u,Qhψ)|μ|(uΠk+1u)n,ΠkψΠbk+1ψTh|μ(TThuΠk+1u2T)1/2(TThΠkψψ2T)1/2Cμhk+1|u|k+1|ψ|2. (4.31)

    Similarly, we have

    |e4(u,Qhξ)||(uΠku)n,Πk1ξΠbkξTh|(TThuΠku2T)1/2(TThΠk1ξξ2T)1/2Chk+1|u|k+1|ξ|1. (4.32)

    Using the Cauchy-Schwarz inequality and the trace inequalities, applying (2.12) and (4.3), we obtain

    |e3(ψ,eh)|μ|(ψΠk+1ψ)n,e0ebTh|μ(TThhTψΠk+1ψ2T)1/2(TThh1Te0eb2T)1/2Cμh|ψ|2|||eh|||Cμhk+1|u|k+1|ψ|2. (4.33)

    By (4.4), we have

    |e4(ψ,ϵh)||(ψΠkψ)n,ϵ0ϵbTh|(TThψΠkψ2T)1/2(TThϵ0ϵb2T)1/2Ch|ψ|2h|||ϵh|||Cμhk+1|u|k+1|ψ|2. (4.34)

    Substituting all the four bounds above into (4.30), we get

    eh2Chk+1|u|k+1(μψ2+ξ1).

    By applying this inequality and the regularity condition (4.10), (4.28) is proved.

    In the first example in 2D, we have chosen the domain Ω=(0,1)×(0,1) for the Stokes equations (1.1)–(1.3). We have chosen an f (depending on μ) in (1.1) such that the exact solution of (1.1)–(1.3) is as follows (independent of μ):

    u=( (2y6y2+4y3)(x22x3+x4)(2x6x2+4x3)(y22y3+y4)),p=2x3+3x2x. (5.1)

    We computed the solution (5.1) on triangular grids shown, as in Figure 1 for the Pk-WG/Pk1-WG mixed finite elements for k=1,2,3,4, and 5. The results are listed in Tables 15. As shown, the optimal order of convergence has been achieved for all solutions in all norms. From the data, we can see the method is pressure-robust and the error is independent of the viscosity μ.

    Figure 1.  The uniform triangular meshes used to compute the results in Tables 15.
    Table 1.  The order of convergence and the error results given by the P1/P0 WG element for the solution (5.1) for the Figure 1 meshes.
    Grid uuh0 O(hr) |||uuh||| O(hr) Πk1pp00 O(hr)
    By the P1-WG/P0-WG elements, μ=1 in (1.1).
    5 0.5113E-03 1.94 0.2717E-01 0.99 0.1927E-01 1.00
    6 0.1285E-03 1.99 0.1357E-01 1.00 0.9706E-02 0.99
    7 0.3209E-04 2.00 0.6769E-02 1.00 0.4871E-02 0.99
    By the P1-WG/P0-WG elements, μ=106 in (1.1).
    5 0.5113E-03 1.94 0.2717E-01 0.99 0.1929E-07 1.00
    6 0.1285E-03 1.99 0.1357E-01 1.00 0.9700E-08 0.99
    7 0.3209E-04 2.00 0.6769E-02 1.00 0.4881E-08 0.99

     | Show Table
    DownLoad: CSV
    Table 2.  The order of convergence and the error results given by the P2/P1 WG element for the solution (5.1) for the Figure 1 meshes.
    Grid uuh0 O(hr) |||uuh||| O(hr) Πk1pp00 O(hr)
    By the P2-WG/P1-WG elements, μ=1 in (1.1).
    4 0.9758E-04 3.03 0.6913E-02 1.91 0.1433E-01 1.13
    5 0.1185E-04 3.04 0.1747E-02 1.98 0.4625E-02 1.63
    6 0.1458E-05 3.02 0.4356E-03 2.00 0.1301E-02 1.83
    By the P2-WG/P1-WG elements, μ=106 in (1.1).
    4 0.9758E-04 3.03 0.6913E-02 1.91 0.1435E-07 1.13
    5 0.1185E-04 3.04 0.1747E-02 1.98 0.4643E-08 1.63
    6 0.1458E-05 3.02 0.4356E-03 2.00 0.1345E-08 1.79

     | Show Table
    DownLoad: CSV
    Table 3.  The order of convergence and the error results given by the P3/P2 WG element for the solution (5.1) for the Figure 1 meshes.
    Grid uuh0 O(hr) |||uuh||| O(hr) Πk1pp00 O(hr)
    By the P3-WG/P2-WG elements, μ=1 in (1.1).
    4 0.6255E-05 3.92 0.5836E-03 2.89 0.1448E-02 2.58
    5 0.3879E-06 4.01 0.7294E-04 3.00 0.2066E-03 2.81
    6 0.2392E-07 4.02 0.9022E-05 3.02 0.2751E-04 2.91
    By the P3-wG/P2-WG elements, μ=106 in (1.1).
    4 0.6255E-05 3.92 0.5836E-03 2.89 0.1489E-08 2.54
    5 0.3879E-06 4.01 0.7294E-04 3.00 0.3668E-09 2.02
    6 0.2392E-07 4.02 0.9022E-05 3.02 0.3366E-09 0.12

     | Show Table
    DownLoad: CSV
    Table 4.  The order of convergence and the error results given by the P4/P3 WG element for the solution (5.1) for the Figure 1 meshes.
    Grid uuh0 O(hr) |||uuh||| O(hr) Πk1pp00 O(hr)
    By the P4-WG/P3-WG elements, μ=1 in (1.1).
    3 0.1291E-04 4.63 0.6964E-03 3.67 0.6446E-03 3.47
    4 0.4222E-06 4.93 0.4501E-04 3.95 0.4543E-04 3.83
    5 0.1321E-07 5.00 0.2814E-05 4.00 0.2983E-05 3.93
    By the P4-WG/P3-WG elements, μ=106 in (1.1).
    3 0.1291E-04 4.63 0.6964E-03 3.67 0.8212E-09 3.12
    4 0.4222E-06 4.93 0.4501E-04 3.95 0.4223E-09 0.96
    5 0.1321E-07 5.00 0.2814E-05 4.00 0.4401E-09 0.00

     | Show Table
    DownLoad: CSV
    Table 5.  The order of convergence and the error results given by the P5/P4 WG element for the solution (5.1) for the Figure 1 meshes.
    Grid uuh0 O(hr) |||uuh||| O(hr) Πk1pp00 O(hr)
    By the P5-WG/P4-WG elements, μ=1 in (1.1).
    2 0.5642E-04 4.37 0.1814E-02 3.60 0.9773E-03 3.55
    3 0.9738E-06 5.86 0.6161E-04 4.88 0.3342E-04 4.87
    4 0.1546E-07 5.98 0.1952E-05 4.98 0.1069E-05 4.97
    By the P5-WG/P4-WG elements, μ=106 in (1.1).
    2 0.5642E-04 4.37 0.1814E-02 3.60 0.1211E-08 3.24
    3 0.9738E-06 5.86 0.6161E-04 4.88 0.3831E-09 1.66
    4 0.1546E-07 5.98 0.1953E-05 4.98 0.5148E-09 0.00

     | Show Table
    DownLoad: CSV

    We note that for some high level grids the computer round-off error was found to exceed the truncation error when μ=106, as described in Tables 35.

    We computed the 2D solution (5.1) again for slightly perturbed triangular meshes, as illustrated in Figure 2 by employing the Pk-WG/Pk1-WG mixed finite elements for k=1,2,3,4 and 5. The computational results are listed in Tables 610. The quasi-optimal convergence has been achieved for all solutions in all norms.

    Figure 2.  The triangular meshes used to compute the results in Tables 610.
    Table 6.  The order of convergence and the error results given by the P1/P0 WG element for the solution (5.1) for the Figure 2 meshes.
    Grid uuh0 O(hr) |||uuh||| O(hr) Πk1pp00 O(hr)
    By the P1-WG/P0-WG elements, μ=1 in (1.1).
    4 0.7627E-03 1.85 0.3264E-01 0.96 0.1809E-01 1.28
    5 0.1954E-03 1.96 0.1639E-01 0.99 0.7991E-02 1.18
    6 0.4904E-04 1.99 0.8189E-02 1.00 0.3835E-02 1.06
    By the P1-WG/P0-WG elements, μ=106 in (1.1).
    4 0.7627E-03 1.85 0.3264E-01 0.96 0.1808E-07 1.28
    5 0.1954E-03 1.96 0.1639E-01 0.99 0.7999E-08 1.18
    6 0.4904E-04 1.99 0.8189E-02 1.00 0.3846E-08 1.06

     | Show Table
    DownLoad: CSV
    Table 7.  The order of convergence and the error results given by the P2/P1 WG element for the solution (5.1) for the Figure 2 meshes.
    Grid uuh0 O(hr) |||uuh||| O(hr) Πk1pp00 O(hr)
    By the P2-WG/P1-WG elements, μ=1 in (1.1).
    4 0.2225E-04 2.95 0.2167E-02 1.94 0.2011E-02 1.04
    5 0.2784E-05 3.00 0.5434E-03 2.00 0.6969E-03 1.53
    6 0.3480E-06 3.00 0.1355E-03 2.00 0.2017E-03 1.79
    By the P2-WG/P1-WG elements, μ=106 in (1.1).
    4 0.2225E-04 2.95 0.2167E-02 1.94 0.2031E-08 1.03
    5 0.2784E-05 3.00 0.5434E-03 2.00 0.7851E-09 1.37
    6 0.3480E-06 3.00 0.1355E-03 2.00 0.3701E-09 1.08

     | Show Table
    DownLoad: CSV
    Table 8.  The order of convergence and the error results given by the P3/P2 WG element for the solution (5.1) for the Figure 2 meshes.
    Grid uuh0 O(hr) |||uuh||| O(hr) Πk1pp00 O(hr)
    By the P3-WG/P2-WG elements, μ=1 in (1.1).
    3 0.1339E-04 3.62 0.9788E-03 2.69 0.2254E-02 1.84
    4 0.8544E-06 3.97 0.1239E-03 2.98 0.3795E-03 2.57
    5 0.5341E-07 4.00 0.1541E-04 3.01 0.5423E-04 2.81
    By the P3-WG/P2-WG elements, μ=106 in (1.1).
    3 0.1339E-04 3.62 0.9788E-03 2.69 0.2311E-08 1.80
    4 0.8544E-06 3.97 0.1239E-03 2.98 0.4983E-09 2.21
    5 0.5341E-07 4.00 0.1541E-04 3.01 0.3679E-09 0.44

     | Show Table
    DownLoad: CSV
    Table 9.  The order of convergence and the error results given by the P4/P3 WG element for the solution (5.1) for the Figure 2 meshes.
    Grid uuh0 O(hr) |||uuh||| O(hr) Πk1pp00 O(hr)
    By the P4-WG/P3-WG elements, μ=1 in (1.1).
    2 0.2795E-04 3.98 0.1327E-02 3.12 0.3037E-02 2.70
    3 0.8864E-06 4.98 0.8282E-04 4.00 0.2700E-03 3.49
    4 0.2742E-07 5.01 0.5105E-05 4.02 0.1973E-04 3.77
    By the P4-WG/P3-WG elements, μ=106 in (1.1).
    2 0.2795E-04 3.98 0.1327E-02 3.12 0.3134E-08 2.66
    3 0.8864E-06 4.98 0.8282E-04 4.00 0.5525E-09 2.50
    4 0.2742E-07 5.01 0.5105E-05 4.02 0.4121E-09 0.42

     | Show Table
    DownLoad: CSV
    Table 10.  The order of convergence and the error results given by the P5/P4 WG element for the solution (5.1) for the Figure 2 meshes.
    Grid uuh0 O(hr) |||uuh||| O(hr) Πk1pp00 O(hr)
    By the P5-WG/P4-WG elements, μ=1 in (1.1).
    2 0.2375E-05 6.00 0.1322E-03 5.02 0.2879E-03 4.38
    3 0.3664E-07 6.02 0.4074E-05 5.02 0.1069E-04 4.75
    4 0.1017E-08 5.17 0.4051E-06 3.33 0.3607E-06 4.89
    By the P5-WG/P4-WG elements, μ=106 in (1.1).
    2 0.2375E-05 6.00 0.1322E-03 5.02 0.6884E-09 3.14
    3 0.3664E-07 6.02 0.4075E-05 5.02 0.4504E-09 0.61
    4 0.1013E-08 5.18 0.4030E-06 3.34 0.5125E-09 0.00

     | Show Table
    DownLoad: CSV

    In the third test, we performed 3D numerical computation on domain Ω=(0,1)×(0,1)×(0,1). We chose an f in (1.1) such that we would have the following exact solution

    u=(210(x1)2x2(y1)2y2(z3z2+2z3)210(x1)2x2(y1)2y2(z3z2+2z3)210[(x3x2+2x3)(y2y)2(x2x)2(y3y2+2y3)](z2z)2),p=10(3y22y3y). (5.2)

    The 3D meshes are illustrated in Figure 3. The computational results are listed in Tables 1113.

    Figure 3.  The tetrahedral meshes used to compute the results in Tables 1113.
    Table 11.  The order of convergence and the error results given by the P1/P0 WG finite element for the solution (5.2) for the Figure 3 meshes.
    Grid uuh0 O(hr) |||uuh||| O(hr) Πk1pp00 O(hr)
    By the P1-WG/P0-WG elements, μ=1 in (1.1).
    3 0.366E-01 1.20 0.696E+00 0.73 0.412E+00 2.62
    4 0.975E-02 1.91 0.355E+00 0.97 0.812E-01 2.34
    5 0.242E-02 2.01 0.180E+00 0.98 0.145E-01 2.49
    By the P1-WG/P0-WG elements, μ=103 in (1.1).
    3 0.428E-01 1.03 0.763E+00 0.67 0.553E-03 2.42
    4 0.108E-01 1.98 0.362E+00 1.08 0.134E-03 2.05
    5 0.249E-02 2.12 0.180E+00 1.00 0.196E-04 2.77

     | Show Table
    DownLoad: CSV
    Table 12.  The order of convergence and the error results given by the P2/P1 WG finite element for the solution (5.2) for the Figure 3 meshes.
    Grid uuh0 O(hr) |||uuh||| O(hr) Πk1pp00 O(hr)
    By the P2-WG/P1-WG elements, μ=1 in (1.1).
    3 0.618E-02 2.90 0.231E+00 1.83 0.145E+00 1.78
    4 0.639E-03 3.27 0.498E-01 2.21 0.258E-01 2.49
    5 0.476E-04 3.75 0.117E-01 2.09 0.540E-03 5.58
    By the P2-WG/P1-WG elements, μ=103 in (1.1).
    3 0.615E-02 2.91 0.209E+00 1.97 0.135E-03 1.91
    4 0.685E-03 3.17 0.473E-01 2.14 0.232E-04 2.54
    5 0.474E-04 3.85 0.117E-01 2.02 0.716E-06 5.02

     | Show Table
    DownLoad: CSV
    Table 13.  The order of convergence and the error results given by the P3/P2 WG finite element for the solution (5.2) for the Figure 3 meshes.
    Grid uuh0 O(hr) |||uuh||| O(hr) Πk1pp00 O(hr)
    By the P3-WG/P2-WG elements, μ=1 in (1.1).
    3 0.644E-03 3.89 0.376E-01 2.80 0.257E-01 3.70
    4 0.351E-04 4.20 0.480E-02 2.97 0.896E-03 4.84
    5 0.198E-05 4.15 0.618E-03 2.96 0.465E-04 4.27
    By the P3-WG/P2-WG elements, μ=103 in (1.1).
    3 0.708E-03 3.71 0.382E-01 2.70 0.314E-04 3.58
    4 0.507E-04 3.80 0.484E-02 2.98 0.140E-05 4.48
    5 0.210E-05 4.60 0.618E-03 2.97 0.398E-07 5.14

     | Show Table
    DownLoad: CSV

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Yan Yang is supported in part by the Program of Sichuan National Applied Mathematics Center, No. 2023-KFJJ-01-001.

    The authors declare there are no conflicts of interest.


    Acknowledgments



    The authors would like to express their gratitude to all participants for their contribution.

    Conflict of Interest



    The authors declare no conflict of interest.

    [1] (2022) International Health, Racquet, SportsClub AssociationThe 2022 IHRSA Global Report. Boston, MA, USA: IHRSA. Available from: https://www.ihrsa.org/publications/the-2022-ihrsa-global-report/.
    [2] (2018) International Health, Racquet and SportsClub AssociationThe IHRSA Asia-Pacific Health Club Report. Boston, MA, USA: IHRSA. Available from: https://www.ihrsa.org/publications/ihrsa-asia-pacific-health-club-report-second-edition/#.
    [3] Andreasson J, Johansson T (2014) Τhe fitness revolution: Historical transformations in the global gym and fitness culture. Sport Sci Rev 23: 91-112. https://doi.org/10.2478/ssr-2014-0006
    [4] Mohammadi S, Azami MK (2021) A look to fitness industry in Iran. The global private health & fitness business: A marketing perspective. Bingley, UK: Emerald Publishing Limited 165-171.
    [5] Guthold R, Stevens GA, Riley LM, et al. (2018) Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health 6: e1077-e1086. https://doi.org/10.1016/S2214-109X(18)30357-7
    [6] NCD Risk Factor Collaboration (NCD-RisC).Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet (2017) 390: 2627-2642. https://doi.org/10.1016/S0140-6736(17)32129-3
    [7] Sallis R (2015) Exercise is medicine: A call to action for physicians to assess and prescribe exercise. Phys Sportsmed 43: 22-26. https://doi.org/10.1080/00913847.2015.1001938
    [8] Rhodes RE, Janssen I, Bredin SS, et al. (2017) Physical activity: Health impact, prevalence, correlates and interventions. Psychol. Health 32: 942-975. https://doi.org/10.1080/08870446.2017.1325486
    [9] (2023) International Monetary FundWorld Economic Outlook Database. Washington, DC, USA: International Monetary Fund. Available from: https://www.imf.org/en/Publications/WEO/weo-database/2023/April/weo-report?c=429,&s=NGDPD,PPPGDP,NGDPDPC,PPPPC,&sy=2022&ey=2027&ssm=0&scsm=1&scc=0&ssd=1&ssc=0&sic=0&sort=country&ds=.&br=1.
    [10] (2018) World Health OrganizationNoncommunicable diseases country profiles 2018. Geneva, Switzerland: World Health Organization. Available from: https://apps.who.int/iris/handle/10665/274512.
    [11] Ravanbakhsh F, Nourbakhsh P, Sepasi H, et al. (2020) Designing a model of effective factors to attract women to fitness clubs by emphasizing on health promotion behaviors. J Toloo E Behdasht 18: 15-26. https://doi.org/10.18502/tbj.v18i5.2273
    [12] Thompson WR (2006) Worldwide survey reveals fitness trends for 2007. ACSM's Health Fit J 10: 8-14. https://doi.org/10.1249/01.FIT.0000252519.52241.39
    [13] Thompson WR (2007) Worldwide survey reveals fitness trends for 2008. ACSM's Health Fit J 11: 7-13. https://doi.org/10.1249/01.FIT.0000298449.25061.a8
    [14] Thompson WR (2008) Worldwide survey reveals fitness trends for 2009. ACSM's Health Fit J 12: 7-14. https://doi.org/10.1249/01.FIT.0000312432.13689.a4
    [15] Thompson WR (2009) Worldwide survey reveals fitness trends for 2010. ACSM's Health Fit J 13: 9-16. https://doi.org/10.1249/FIT.0b013e3181bcd89b
    [16] Thompson WR (2010) Worldwide survey reveals fitness trends for 2011. ACSM's Health Fit J 14: 8-17. https://doi.org/10.1249/FIT.0b013e3181f96ce6
    [17] Thompson WR (2011) Worldwide survey reveals fitness trends for 2012. ACSM's Health Fit J 15: 9-18. https://doi.org/10.1249/FIT.0b013e31823373cb
    [18] Thompson WR (2012) Worldwide survey reveals fitness trends for 2013. ACSM's Health Fit J 16: 8-17. https://doi.org/10.1249/01.FIT.0000422568.47859.35
    [19] Thompson WR (2013) Now trending: Worldwide survey of fitness trends for 2014. ACSM's Health Fit J 17: 10-20. https://doi.org/10.1249/FIT.0b013e3182a955e6
    [20] Thompson WR (2014) Worldwide survey of fitness trends for 2015: what's driving the market. ACSM's Health Fit J 18: 8-17. https://doi.org/10.1249/FIT.0b013e3182a955e6
    [21] Thompson WR (2015) Worldwide survey of fitness trends for 2016: 10th Anniversary Edition. ACSM's Health Fit J 19: 9-18. https://doi.org/10.1249/FIT.0000000000000164
    [22] Thompson WR (2016) Worldwide survey of fitness trends for 2017. ACSM's Health Fit J 20: 8-17. https://doi.org/10.1249/FIT.0000000000000252
    [23] Thompson WR (2017) Worldwide survey of fitness trends for 2018: the CREP edition. ACSM's Health Fit J 21: 10-19. https://doi.org/10.1249/FIT.0000000000000341
    [24] Thompson WR (2018) Worldwide survey of fitness trends for 2019. ACSM's Health Fit J 22: 10-17. https://doi.org/10.1249/FIT.0000000000000341
    [25] Thompson WR (2019) Worldwide survey of fitness trends for 2020. ACSM's Health Fit J 23: 10-18. https://doi.org/10.1249/FIT.0000000000000526
    [26] Thompson WR (2021) Worldwide survey reveals fitness trends for 2021. ACSM's Health Fit J 25: 10-19. https://doi.org/10.1249/FIT.0000000000000621
    [27] Thompson WR (2022) Worldwide survey reveals fitness trends for 2022. ACSM's Health Fit J 26: 11-20. https://doi.org/10.1249/FIT.0000000000000732
    [28] Thompson WR (2023) Worldwide survey reveals fitness trends for 2023. ACSM's Health Fit J 27: 9-18. https://doi.org/10.1249/FIT.0000000000000834
    [29] Kercher VM (2018) International comparisons: ACSM's worldwide survey of fitness trends. ACSM's Health Fit J 22: 24-29. https://doi.org/10.1249/FIT.0000000000000431
    [30] Kercher V, Feito Y, Yates B (2019) Regional comparisons: The worldwide survey of fitness trends. ACSM's Health Fit J 23: 41-48. https://doi.org/10.1249/FIT.0000000000000531
    [31] Kercher VM, Kercher K, Bennion T, et al. (2021) Fitness trends from around the globe. ACSM's Health Fit J 25: 20-31. https://doi.org/10.1249/FIT.0000000000000639
    [32] Kercher VM, Kercher K, Bennion T, et al. (2022) 2022 Fitness Trends from Around the Globe. ACSM's Health Fit J 26: 21-37. https://doi.org/10.1249/FIT.0000000000000737
    [33] Kercher VM, Kercher K, Levy P, et al. (2023) Fitness trends from around the globe. ACSM's Health Fit J 27: 19-30. https://doi.org/10.1249/FIT.0000000000000836
    [34] Amaral PC, Palma DD (2019) Brazil and Argentina survey of fitness trends for 2020. ACSM's Health Fit J 23: 36-40. https://doi.org/10.1249/FIT.0000000000000525
    [35] Batrakoulis A, Chatzinikolaou A, Jamurtas AZ, et al. (2020) National survey of fitness trends in Greece for 2021. Int J Hum Mov Sports Sci 8: 308-320. https://doi.org/10.13189/saj.2020.080602
    [36] Batrakoulis A (2023) National survey of fitness trends in Greece for 2023. Int J Hum Mov Sports Sci 10: 1085-1097. https://doi.org/10.13189/saj.2022.100527
    [37] Batrakoulis A (2019) European survey of fitness trends for 2020. ACSM's Health Fit J 23: 28-35. https://doi.org/10.1249/FIT.0000000000000523
    [38] Batrakoulis A, Veiga OL, Franco S, et al. (2023) Health and fitness trends in Southern Europe for 2023: A cross-sectional survey. AIMS Public Health 10: 378-408. https://doi.org/10.3934/publichealth.2023028
    [39] Chávez LF, Zavalza AR, Rodríguez LE (2020) National survey of fitness trends in Mexico for 2020. Retos 39: 30-37. https://doi.org/10.47197/retos.v0i39.78113
    [40] Li YM, Han J, Liu Y, et al. (2019) China survey of fitness trends for 2020. ACSM's Health Fit J 23: 19-27. https://doi.org/10.1249/FIT.0000000000000522
    [41] Valcarce-Torrente M, Arroyo-Nieto A, Veiga OL, et al. (2022) National survey of fitness trends in Colombia for 2022. Retos 45: 483-495. https://doi.org/10.47197/retos.v45i0.93100
    [42] Veiga OL, Romero-Caballero A, Valcarce-Torrente M, et al. (2022) Evolution of Spanish and worldwide fitness trends: A five-year analysis. Retos 43: 388-397. https://doi.org/10.47197/retos.v43i0.89033
    [43] Abou Sawan S, Nunes EA, Lim C, et al. (2022) The health benefits of resistance exercise: Beyond hypertrophy and big weights. Exerc Sport Mov 1: e00001. https://doi.org/10.1249/ESM.0000000000000001
    [44] Rieger T, Batrakoulis A (2016) Innovations in fitness education: The European approach of standards development for specialist occupations. Growing the Fitness Sector through Innovation. Den Bosch, the Netherlands: BlackBoxPublishers 149-164.
    [45] De Lyon ATC, Neville RD, Armour KM (2017) The role of fitness professionals in public health: A review of the literature. Quest 69: 313-330. https://doi.org/10.1080/00336297.2016.1224193
    [46] Soan EJ, Street SJ, Brownie SM, et al. (2014) Exercise physiologists: Essential players in interdisciplinary teams for noncommunicable chronic disease management. J Multidiscip Healthc 7: 65-68. https://doi.org/10.2147/jmdh.s55620
    [47] Muth ND, Vargo K, Bryant CX (2015) The role of the fitness professional in the clinical setting. Curr Sports Med Rep 14: 301-312. https://doi.org/10.1249/JSR.0000000000000174
    [48] (2022) DeloitteEuropean health & fitness market report 2022. Brussels, Belgium: Europe Active. Available from: https://www2.deloitte.com/content/dam/Deloitte/de/Documents/consumer-business/EHFMR_2022_Auszug_Report.pdf.
    [49] (2019) International Health, Racquet and Sports Club AssociationThe 2019 IHRSA health club consumer report. Boston, USA: IHRSA. Available from: https://www.ihrsa.org/publications/the-2019-ihrsa-health-club-consumer-report/.
    [50] Batrakoulis A, Rieger T, Santos Rocha R The relationship between special populations and credentials for the European fitness professionals (2016).Lithuanian Sports University.
    [51] Middelkamp J, Rutgers H (2017) Customer engagement and experience in the fitness sector. Den Bosch, the Netherlands: BlackBoxPublishers. Available from: https://europeactive.blackboxpublishers.com/en/publications/management/customer-engagement-and-experience-in-the-fitness-sector.
    [52] Batrakoulis A, Jamurtas AZ, Fatouros IG (2021) High-intensity interval training in metabolic diseases: Physiological adaptations. ACSM's Health Fit J 25: 54-59. https://doi.org/: 10.1249/FIT.0000000000000703
    [53] Batrakoulis A, Fatouros IG (2022) Psychological adaptations to high-intensity interval training in overweight and obese adults: A topical review. Sports 10: 64. https://doi.org/10.3390/sports10050064
    [54] Batrakoulis A, Jamurtas AZ, Metsios GS, et al. (2022) Comparative efficacy of 5 exercise types on cardiometabolic health in overweight and obese adults: A systematic review and network meta-analysis of randomized controlled trials. Circ Cardiovasc Qual Outcomes 15: e008243. https://doi.org/10.1161/CIRCOUTCOMES.121.008243
    [55] Batrakoulis A (2022) Psychophysiological adaptations to pilates training in overweight and obese individuals: A topical review. Diseases 10: 71. https://doi.org/10.3390/diseases10040071
    [56] Batrakoulis A (2022) Psychophysiological adaptations to yoga practice in overweight and obese individuals: A topical review. Diseases 10: 107. https://doi.org/10.3390/diseases10040107
    [57] Batrakoulis A (2023) Role of mind-body fitness in obesity. Diseases 11: 1. https://doi.org/10.3390/diseases11010001
    [58] Middelkamp J, Wolfhagen P, Eemstra J (2020) Group fitness in Europe. Den Bosch, the Netherlands: BlackBoxPublishers. Available from: https://www.blackboxpublishers.com/en/publications/groupfitness/group-fitness-in-europe.
    [59] Gronau N, Titze G (2018) Personal training in Europe. Den Bosch, the Netherlands: BlackBoxPublishers. Available from: https://www.blackboxpublishers.com/en/publications/personal-training/personal-training-in-europe.
    [60] Middelkamp J, Rutgers H (2020) HORIZON 2030-The future of the health and fitness sector. Den Bosch, the Netherlands: BlackBoxPublishers. Available from: https://www.europeactive.eu/covid19/horizon-2030-future-health-fitness-sector.
    [61] Batrakoulis A, Rieger T (2014) European barometer on the top future trends in education, training and certification of the exercise professionals. J Phys Educ Sport Sci 1: 10-26.
    [62] Štajer V, Milovanovic IM, Todorovic N, et al. (2022) Let's (Tik) Talk about fitness trends. Front Public Health 10: 899949. https://doi.org/10.3389/fpubh.2022.899949
    [63] Angosto S, García-Fernández J, Grimaldi-Puyana M (2023) A systematic review of intention to use fitness apps (2020–2023). Humanit Soc Sci Commun 10: 512. https://doi.org/10.1057/s41599-023-02011-3
    [64] Tsitskari E, Batrakoulis A (2022) Investigating the marketing strategies of the health and fitness sector in Greece; the managers' perspective. Retos 43: 264-273. https://doi.org/10.47197/retos.v43i0.88880
    [65] Tsitskari E, Batrakoulis A (2022) To Become Digital or Not... The Case of Greece. The Digital Transformation of the Fitness Sector: A Global Perspective. Bingley. UK: Emerald Publishing Limited 31-37.
    [66] Petridis L, Batrakoulis A (2013) The Running Movement in Greece: Investigating the Profile of the Modern Marathon Runners. Hellenic J Sport Rec Manage 10: 43-54.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3124) PDF downloads(168) Cited by(3)

Figures and Tables

Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog