Research article Special Issues

Analyzing a SEIR-Type mathematical model of SARS-COVID-19 using piecewise fractional order operators

  • Received: 23 June 2023 Revised: 17 August 2023 Accepted: 30 August 2023 Published: 22 September 2023
  • MSC : 34A08, 47H08, 93A30

  • Recently, the area devoted to mathematical epidemiology has attracted much attention. Mathematical formulations have served as models for various infectious diseases. In this regard, mathematical models have also been used to study COVID-19, a threatening disease in present time. This research work is devoted to consider a SEIR (susceptible-exposed-infectious-removed) type mathematical model for investigating COVID-19 alongside a new scenario of fractional calculus. We consider piece-wise fractional order derivatives to investigate the proposed model for qualitative and computational analysis. The results related to the qualitative analysis are studied via using the tools of fixed point approach. In addition, the computational analysis is performed due to a significance of simulation to understand the transmission dynamics of COVID-19 infection in the community. In addition, a numerical scheme based on Newton's polynomials is established to simulate the approximate solutions of the proposed model by using various fractional orders. Additionally, some real data results are also shown in comparison to the numerical results.

    Citation: Nadiyah Hussain Alharthi, Mdi Begum Jeelani. Analyzing a SEIR-Type mathematical model of SARS-COVID-19 using piecewise fractional order operators[J]. AIMS Mathematics, 2023, 8(11): 27009-27032. doi: 10.3934/math.20231382

    Related Papers:

    [1] Kelly Pagidas . 2024 Annual Report. AIMS Medical Science, 2025, 12(1): 63-68. doi: 10.3934/medsci.2025005
    [2] Ragini C Bhake, Stafford L Lightman . A Simple Complex Case: Restoration of Circadian Cortisol Activity. AIMS Medical Science, 2015, 2(3): 182-185. doi: 10.3934/medsci.2015.3.182
    [3] Mpumelelo Nyathi, Autherlia Dimpho Rinkie Mosiame . Evaluating radiation exposure risks from patient urine in a PET-CT center: should concerns arise?. AIMS Medical Science, 2025, 12(2): 238-246. doi: 10.3934/medsci.2025016
    [4] Piero Pavone, Ottavia Avola, Claudia Oliva, Alessandra Di Nora, Tiziana Timpanaro, Chiara Nannola, Filippo Greco, Raffaele Falsaperla, Agata Polizzi . Genetic epilepsy and role of mutation variants in 27 epileptic children: results from a “single tertiary centre” and literature review. AIMS Medical Science, 2024, 11(3): 330-347. doi: 10.3934/medsci.2024023
    [5] Muhammad Bilal . Leukemoid reaction in paraplegic male with pressure injuries: A case report. AIMS Medical Science, 2024, 11(2): 72-76. doi: 10.3934/medsci.2024006
    [6] Niccolò Stomeo, Giacomo Simeone, Leonardo Ciavarella, Giulia Lionetti, Arosh S. Perera Molligoda Arachchige, Francesco Cama . Fluid overload during operative hysteroscopy for metroplasty: A case report. AIMS Medical Science, 2023, 10(4): 310-317. doi: 10.3934/medsci.2023024
    [7] Ryan T. Borne, Arash Aghel, Amit C. Patel, Robert K. Rogers . Innominate Steal Syndrome: A Two Patient Case Report and Review. AIMS Medical Science, 2015, 2(4): 360-370. doi: 10.3934/medsci.2015.4.360
    [8] Rosario Megna . Evolution of the COVID-19 pandemic in Italy at the national and regional levels from February 2020 to March 2022. AIMS Medical Science, 2023, 10(3): 237-258. doi: 10.3934/medsci.2023019
    [9] Juliet A Harvey, Sebastien FM Chastin, Dawn A Skelton . What happened to my legs when I broke my arm?. AIMS Medical Science, 2018, 5(3): 252-258. doi: 10.3934/medsci.2018.3.252
    [10] Jamie L. Flexon, Lisa Stolzenberg, Stewart J. D'Alessio . The effect of cannabis legislation on opioid and benzodiazepine use among aging Americans. AIMS Medical Science, 2024, 11(4): 361-377. doi: 10.3934/medsci.2024025
  • Recently, the area devoted to mathematical epidemiology has attracted much attention. Mathematical formulations have served as models for various infectious diseases. In this regard, mathematical models have also been used to study COVID-19, a threatening disease in present time. This research work is devoted to consider a SEIR (susceptible-exposed-infectious-removed) type mathematical model for investigating COVID-19 alongside a new scenario of fractional calculus. We consider piece-wise fractional order derivatives to investigate the proposed model for qualitative and computational analysis. The results related to the qualitative analysis are studied via using the tools of fixed point approach. In addition, the computational analysis is performed due to a significance of simulation to understand the transmission dynamics of COVID-19 infection in the community. In addition, a numerical scheme based on Newton's polynomials is established to simulate the approximate solutions of the proposed model by using various fractional orders. Additionally, some real data results are also shown in comparison to the numerical results.



    It is with admiration that we share with you our publication data for the 2022 calendar year for the AIMS Medical Science Journal. It was another successful year with the highest number of publication submissions to date over the past three years. Our depth and breadth of publications spanned multiple basic and clinical science disciplines that originated from talented authors across the globe. We look forward to an exciting year ahead and welcome the opportunity to review original manuscripts for consideration for publication in the journal. Our goals are to provide a forum of high-quality manuscripts that can positively impact the expansion of scientific knowledge and advance the health of our population.

    Below is a graphic depiction of the manuscript submission and publication data for the journal for the past three years (Figure 1). There are slightly more submissions that were received in 2022 than in 2021, and the number of accepted and published manuscripts remain stable for the past three years. Our hope is increasing the footprint of quality manuscripts submitted to the journal that will translate into an increased number of high-quality publications for the upcoming year.

    Figure 1.  Manuscript statistics from 2020 to 2022.

    2022 manuscripts status:

    Publications: 28

    Reject rate: 71%

    Publication time (from submission to online): 109 days

    The geographic distribution of the corresponding authors of the published manuscripts are depicted below (Figure 2). We are honored to attract authors from around the world who chose to submit their research to the journal for publication (USA, Canada, Nigeria, Japan, etc.). Of note the majority of publications originate from authors based in the United States representing 39% of the publications followed by Canada and Nigeria standing at 11% each.

    Table 1 depicts the type of manuscripts published. A total of 28 articles were published in 2022, of which, the majority were research based, 12 (43%) followed by reviews, 10 (36%).

    Table 1.  Published articles type.
    Article type Number Percent
    Research article 12 43%
    Review 10 36%
    Others 6 21%
    Total 28

     | Show Table
    DownLoad: CSV
    Figure 2.  Corresponding authors distribution.

    Table 2 depicts the top 10 articles with the highest views, published in 2022. A focus of these top 10 articles was: Fall Risks, Monoclonal Antibody development and COVID-19.

    Table 2.  The top 10 articles with the highest views, published in 2022.
    Title Corresponding author Views
    1 Knowledge, attitudes on falls and awareness of hospitalized patient's fall risk factors among the nurses working in Tertiary Care Hospitals Surapaneni Krishna Mohan 1861
    2 Clinical pharmacology to support monoclonal antibody drug development Sharon Lu 1861
    3 Telehealth during COVID-19 pandemic era: a systematic review Jonathan Kissi 1787
    4 Understanding the psychological impact of the COVID-19 pandemic on university students Belgüzar Kara 1786
    5 Soluble Fas ligand, soluble Fas receptor, and decoy receptor 3 as disease biomarkers for clinical applications: A review Michiro Muraki 1697
    6 Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment Anuj A. Shukla 1613
    7 Recurrence after treatment of arteriovenous malformations of the head and neck Nguyen Minh Duc 1583
    8 Staphylococcus aureus antimicrobial efflux pumps and their inhibitors: recent developments Manuel Varela 1467
    9 The mental health of the health care professionals in India during the COVID-19 pandemic: a cross-sectional study B Shivananda Nayak 1268
    10 Recognition, treatment, and prevention of perioperative anaphylaxis: a narrative review Julena Foglia 1210

     | Show Table
    DownLoad: CSV

    AIMS Medical Science Journal has 94 members, representing 26 countries. Thirty three percent of the members are from the United States, and other members represent Italy, France, and several other countries (Figure 3). We want to particularly acknowledge our editors: Kelly Pagidas (Editor-in-Chief), Belgüzar Kara, Gulshan Sunavala-Dossabhoy, Gwendolyn Quinn, Panayota Mitrou, Kimberly Udlis (retired), Mai Alzamel, Yi-Jang Lee, Sreekumar Othumpangat, Ji Hyun Kim, Athanasios Alexiou, Robert Striker, Andrei Kelarev, Casey Peiris, Patrick Legembre, Ramin Ataee, Louis Ragolia, Bogdan Borz, Robert Kratzke, Maria Fiorillo, Lars Malmström, Giuliana Banche, Jean-Marie Exbrayat and Elias El-Habr. Importantly, a special thank you to all the Editorial Board members, reviewers and in-house editors, and staff for their dedication, commitment, and unrelenting hard work throughout the year. We hope to attract additional scholars that will be able to join our team for the upcoming year.

    Figure 3.  Editorial board members distribution.


    [1] World Health Organization (WHO), Naming the coronavirus disease (COVID-19) and the virus that causes it, 2020.
    [2] D. S. Hui, E. I Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, et al., The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-The latest 2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infect. Dis., 91 (2020) 264–266. https://doi.org/10.1016/j.ijid.2020.01.009 doi: 10.1016/j.ijid.2020.01.009
    [3] S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, et. al, Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, Int. J. Infect. Dis., 92 (2020), 214–217. https://doi.org/10.1016/j.ijid.2020.01.050 doi: 10.1016/j.ijid.2020.01.050
    [4] S. Zhao, S. S. Musa, Q. Lin, J. Ran, G. Yang, W. Wang, et al., Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: A data-driven modelling analysis of the early outbreak, J. Clin. Med., 9 (2020), 388. https://doi.org/10.3390/jcm9020388 doi: 10.3390/jcm9020388
    [5] A. Parasher, COVID-19: Current understanding of its pathophysiology, clinical presentation and treatment, Postgrad. Med. J., 97 (2021), 312–320. https://doi.org10.1136/postgradmedj-2020-138577 doi: 10.1136/postgradmedj-2020-138577
    [6] W. M. El-Sadr, A. Vasan, A. El-Mohandes, Facing the new Covid-19 reality, N. Engl. J. Med., 388 (2023), 385–387. https://doi.org/10.1056/NEJMp2213920 doi: 10.1056/NEJMp2213920
    [7] I. Nesteruk, Statistics based predictions of coronavirus 2019-nCoV spreading in mainland China, 2020. MedRxiv.
    [8] K. Shah, R. U. Din, W. Deebani, P. Kumam, Z. Shah, On nonlinear classical and fractional order dynamical system addressing COVID-19, Results Phys., 24 (2021), 104069. https://doi.org/10.1016/j.rinp.2021.104069 doi: 10.1016/j.rinp.2021.104069
    [9] A. J. Lotka, Contribution to the theory of periodic reactions, J. Phys. Chem., 14 (2002), 271–274. https://doi.org/10.1021/j150111a004 doi: 10.1021/j150111a004
    [10] N. S. Goel, S. C. Maitra, E. W. Montroll, On the Volterra and other nonlinear models of interacting populations, Rev. Mod. phys., 43 (1971), 231–276. https://doi.org/10.1103/RevModPhys.43.231 doi: 10.1103/RevModPhys.43.231
    [11] M. M. Khalsaraei, An improvement on the positivity results for 2-stage explicit Runge-Kutta methods, J. Comput. Appl. Math., 235 (2010), 137–143. https://doi.org/10.1016/j.cam.2010.05.020 doi: 10.1016/j.cam.2010.05.020
    [12] P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579 (2020), 270–273. https://doi.org/10.1038/s41586-020-2012-7 doi: 10.1038/s41586-020-2012-7
    [13] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–1207. https://doi.org/10.1056/NEJMoa2001316 doi: 10.1056/NEJMoa2001316
    [14] I. I. Bogoch, A. Watts, A. Thomas-Bachli, C. Huber, M. U. G. Kraemer, K. Khan, Pneumonia of unknown aetiology in Wuhan, China: Potential for international spread via commercial air travel, J. Travel Med., 27 (2020), taaa008. https://doi.org/10.1093/jtm/taaa008 doi: 10.1093/jtm/taaa008
    [15] A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P van den Driessche, et al., Modelling strategies for controlling SARS out breaks, Proc. Biol. Sci., 271 (2004), 2223–2232. https://doi.org/10.1098/rspb.2004.2800 doi: 10.1098/rspb.2004.2800
    [16] R. Kahn, I. Holmdahl, S. Reddy, J. Jernigan, M. J. Mina, R. B. Slayton, Mathematical modeling to inform vaccination strategies and testing approaches for coronavirus disease 2019 (COVID-19) in nursing homes, Clin. Infect. Dis., 74 (2022), 597–603. https://doi.org/10.1093/cid/ciab517 doi: 10.1093/cid/ciab517
    [17] J. Mondal, S. Khajanchi, Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak, Nonlinear Dyn., 2022 (2022), 177–202. https://doi.org/10.1007/s11071-022-07235-7 doi: 10.1007/s11071-022-07235-7
    [18] A. I. Abioye, O. J. Peter, H. A. Ogunseye, F. A. Oguntolu, T. A. Ayoola, A. O. Oladapo, A fractional-order mathematical model for malaria and COVID-19 co-infection dynamics. Healthc. Anal., 4 (2023), 100210. https://doi.org/10.1016/j.health.2023.100210 doi: 10.1016/j.health.2023.100210
    [19] J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study, Lancet, 395 (2020), 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 doi: 10.1016/S0140-6736(20)30260-9
    [20] J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
    [21] F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004
    [22] R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
    [23] M. Dalir, M. Bashour, Applications of fractional calculus, Appl. Math. Sci., 4 (2010), 1021–1032.
    [24] R. L. Magin, Fractional calculus in bioengineering, Redding: Begell House, 2006.
    [25] Y. A. Rossikhin, M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 15–67. https://doi.org/10.1115/1.3101682 doi: 10.1115/1.3101682
    [26] R. Gorenflo, F. Mainardi, Fractional calculus. In: Fractals and fractional calculus in continuum mechanics, Vienna: Springer, 1997. https://doi.org/10.1007/978-3-7091-2664-6
    [27] E. Addai, A. Adeniji, O. J. Peter, J. O Agbaje, K. Oshinubi, Dynamics of age-structure smoking models with government intervention coverage under fractal-fractional order derivatives, Fractal Fract., 7 (2023), 370. https://doi.org/10.3390/fractalfract7050370 doi: 10.3390/fractalfract7050370
    [28] M. Shimizu, W. Zhang, Fractional calculus approach to dynamic problems of viscoelastic materials. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf., 42 (1999), 825–837. https://doi.org/10.1299/jsmec.42.825 doi: 10.1299/jsmec.42.825
    [29] F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, Fract. Calc. Appl. Anal., 15 (2012), 712–717. https://doi.org/10.2478/s13540-012-0048-6 doi: 10.2478/s13540-012-0048-6
    [30] Z. Dai, Y. Peng, H. A. Mansy, R. H. Sandler, T. J Royston, A model of lung parenchyma stress relaxation using fractional viscoelasticity, Med. Eng. Phys., 37 (2015), 752–758. https://doi.org/10.1016/j.medengphy.2015.05.003 doi: 10.1016/j.medengphy.2015.05.003
    [31] M. M. Amirian, Y. Jamali, The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: A primer, Crit. Rev. Biomed. Eng., 47 (2019), 249–276. https://doi.org/10.1615/CritRevBiomedEng.2018028368 doi: 10.1615/CritRevBiomedEng.2018028368
    [32] H. Khan, J. F. Gómez-Aguilar, A. Alkhazzan, A. Khan, A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler law, Math. Method. Appl. Sci., 43 (2020), 3786–3806. https://doi.org/10.1002/mma.6155 doi: 10.1002/mma.6155
    [33] C. Celauro, C. Fecarotti, A. Pirrotta, A. C. Collop, Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures, Constr. Build. Mater., 36 (2012), 458–466. https://doi.org/10.1016/j.conbuildmat.2012.04.028 doi: 10.1016/j.conbuildmat.2012.04.028
    [34] G. C. Wu, M. Luo, L. L. Huang, S. Banerjee, Short memory fractional differential equations for new memristor and neural network design, Nonlinear Dyn., 100 (2020), 3611–3623. https://doi.org/10.1007/s11071-020-05572-z doi: 10.1007/s11071-020-05572-z
    [35] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel, 2016. arXiv: 1602.03408.
    [36] E. F. D. Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation, Math. Model. Anal., 21 (2016), 188–198. https://doi.org/10.3846/13926292.2016.1145607 doi: 10.3846/13926292.2016.1145607
    [37] E. F. D. Goufo, A biomathematical view on the fractional dynamics of cellulose degradation, Fract. Calc. Appl. Anal., 18 (2015), 554–564. https://doi.org/10.1515/fca-2015-0034 doi: 10.1515/fca-2015-0034
    [38] M. B. Jeelani, Stability and computational analysis of COVID-19 using a higher order galerkin time discretization scheme, Adv. Appl. Stat., 86 (2023), 167–206. https://doi.org/10.17654/0972361723022 doi: 10.17654/0972361723022
    [39] A. Al Elaiw, F. Hafeez, M. B. Jeelani, M. Awadalla, K. Abuasbeh, Existence and uniqueness results for mixed derivative involving fractional operators, AIMS Mathematics, 8 (2023), 7377–7393. https://doi.org/10.3934/math.2023371 doi: 10.3934/math.2023371
    [40] S. K. Kabunga, E. F. D. Goufo, V. H. Tuong. Analysis and simulation of a mathematical model of tuberculosis transmission in democratic Republic of the Congo, Adv. Differ. Equ., 2020 (2020), 642. https://doi.org/10.1186/s13662-020-03091-0 doi: 10.1186/s13662-020-03091-0
    [41] A. Atangana, S. I. Araz, Mathematical model of COVID-19 spread in Turkey and South Africa: Theory, methods and applications, Adv. Differ. Equ., 2020 (2020), 659. https://doi.org/10.1186/s13662-020-03095-w doi: 10.1186/s13662-020-03095-w
    [42] A. Atangana, S. I. Araz, New concept in calculus: Piecewise differential and integral operators, Chaos Soliton. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
    [43] M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
    [44] M. A. Khan, A. Atangana, E. Alzahrani, Fatmawati, The dynamics of COVID-19 with quarantined and isolation, Adv. Differ. Equ., 2020 (2020), 425. https://doi.org/10.1186/s13662-020-02882-9 doi: 10.1186/s13662-020-02882-9
    [45] O. Dyer, Covid-19: China stops counting cases as models predict a million or more deaths, BMJ, 380 (2023), 2. https://doi.org/10.1136/bmj.p2 doi: 10.1136/bmj.p2
    [46] A. Moumen, R. Shafqat, A. Alsinai, H. Boulares, M. Cancan, M. B. Jeelani, Analysis of fractional stochastic evolution equations by using Hilfer derivative of finite approximate controllability, AIMS Mathematics, 8 (2023), 16094–16114. https://doi.org/10.3934/math.2023821 doi: 10.3934/math.2023821
    [47] A. Zeb, A. Atangana, Z. A. Khan, S. Djillali, A robust study of a piecewise fractional order COVID-19 mathematical model, Alex. Eng. J., 61 (2022), 5649–5665. https://doi.org/10.1016/j.aej.2021.11.039 doi: 10.1016/j.aej.2021.11.039
    [48] C. Y. Li, J. Yin, A pedestrian-based model for simulating COVID-19 transmission on college campus, Transportmetrica A, 19 (2023), 2005182. https://doi.org/10.1080/23249935.2021.2005182 doi: 10.1080/23249935.2021.2005182
    [49] M. S. Arshad, D. Baleanu, M. B. Riaz, M. Abbas, A novel 2-stage fractional Runge-Kutta method for a time fractional logistic growth model, Discrete Dyn. Nat. Soc., 2020 (2020), 1020472. https://doi.org/10.1155/2020/1020472 doi: 10.1155/2020/1020472
    [50] F. Liu, K. Burrage, Novel techniques in parameter estimation for fractional dynamical models arising from biological systems, Comput. Math. Appl., 62 (2011), 822–833. https://doi.org/10.1016/j.camwa.2011.03.002 doi: 10.1016/j.camwa.2011.03.002
    [51] M. T. Hoang, O. F. Egbelowo, Dynamics of a fractional-order hepatitis B epidemic model and its solutions by nonstandard numerical schemes, In: Mathematical Modelling and Analysis of Infectious Diseases, Springer, Cham, 302 (2020), 127–153. https://doi.org/10.1007/978-3-030-49896-2_5
    [52] Z. J. Fu, Z. C. Tang, H. T. Zhao, P. W. Li, T. Rabczuk, Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method, Eur. Phys. J. Plus, 134 (2019), 272. https://doi.org/10.1140/epjp/i2019-12786-7 doi: 10.1140/epjp/i2019-12786-7
    [53] B. Wang, L. Li, Y. Wang, An efficient nonstandard finite difference scheme for chaotic fractional-order Chen system, IEEE Access, 8 (2020), 98410–98421. https://doi.org/10.1109/ACCESS.2020.2996271 doi: 10.1109/ACCESS.2020.2996271
    [54] A. J. Arenas, G. González-Parra, B. M. Chen-Charpentier, Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simulat., 121 (2016), 48–63. https://doi.org/10.1016/j.matcom.2015.09.001 doi: 10.1016/j.matcom.2015.09.001
    [55] R. Lewandowski, Z. Pawlak, Dynamic analysis of frames with viscoelastic dampers modelled by rheological models with fractional derivatives, J. Sound Vib., 330 (2011), 923–936. https://doi.org/10.1016/j.jsv.2010.09.017 doi: 10.1016/j.jsv.2010.09.017
    [56] Pakistan population (LIVE), Available from: https://www.worldometers.info/world-population/pakistan-population/.
    [57] Pakistan COVID-19 corona tracker, Available from: https://www.coronatracker.com/country/pakistan/.
    [58] Current information about COVID-19 in Pakistan, Available from: https://www.worldometers.info/.
    [59] K. Shah, T. Abdeljawad, R. Ud Din, To study the transmission dynamic of SARS-CoV-2 using nonlinear saturated incidence rate, Physica A, 604 (2022), 127915. https://doi.org/10.1016/j.physa.2022.127915 doi: 10.1016/j.physa.2022.127915
    [60] R. Ouncharoen, K. Shah, R. Ud Din, T. Abdeljawad, A. Ahmadian, S. Salahshour, et al., Study of integer and fractional order COVID-19 mathematical model, Fractals, 31 (2023), 2340046. https://doi.org/10.1142/S0218348X23400467 doi: 10.1142/S0218348X23400467
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1819) PDF downloads(86) Cited by(1)

Figures and Tables

Figures(11)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog