We present an approach to Lyapunov theorems about a center for germs of analytic vector fields based on the Poincaré–Dulac and Birkhoff normal forms. Besides new proofs of three Lyapunov theorems, we prove their generalization: if the Poincaré–Dulac normal form indicates the existence of a family of periodic solutions, then such a family really exists. We also present new proofs of Weinstein and Moser theorems about lower bounds for the number of families of periodic solutions; here, besides the normal forms, some topological tools are used, i.e., the Poincaré–Hopf formula and the Lusternik–Schnirelmann category on weighted projective spaces.
Citation: Henryk Żołądek. Normal forms, invariant manifolds and Lyapunov theorems[J]. Communications in Analysis and Mechanics, 2023, 15(2): 300-341. doi: 10.3934/cam.2023016
[1] | Amar Nath Chatterjee, Fahad Al Basir, Yasuhiro Takeuchi . Effect of DAA therapy in hepatitis C treatment — an impulsive control approach. Mathematical Biosciences and Engineering, 2021, 18(2): 1450-1464. doi: 10.3934/mbe.2021075 |
[2] | Tailei Zhang, Hui Li, Na Xie, Wenhui Fu, Kai Wang, Xiongjie Ding . Mathematical analysis and simulation of a Hepatitis B model with time delay: A case study for Xinjiang, China. Mathematical Biosciences and Engineering, 2020, 17(2): 1757-1775. doi: 10.3934/mbe.2020092 |
[3] | Suxia Zhang, Hongbin Guo, Robert Smith? . Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences and Engineering, 2018, 15(6): 1291-1313. doi: 10.3934/mbe.2018060 |
[4] | Yuhua Long, Yining Chen . Global stability of a pseudorabies virus model with vertical transmission. Mathematical Biosciences and Engineering, 2020, 17(5): 5234-5249. doi: 10.3934/mbe.2020283 |
[5] | Xiaowen Xiong, Yanqiu Li, Bingliang Li . Global stability of age-of-infection multiscale HCV model with therapy. Mathematical Biosciences and Engineering, 2021, 18(3): 2182-2205. doi: 10.3934/mbe.2021110 |
[6] | Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019 |
[7] | Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo . Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level. Mathematical Biosciences and Engineering, 2022, 19(2): 1515-1535. doi: 10.3934/mbe.2022070 |
[8] | Tingting Xue, Long Zhang, Xiaolin Fan . Dynamic modeling and analysis of Hepatitis B epidemic with general incidence. Mathematical Biosciences and Engineering, 2023, 20(6): 10883-10908. doi: 10.3934/mbe.2023483 |
[9] | Junli Liu . Threshold dynamics of a time-delayed hantavirus infection model in periodic environments. Mathematical Biosciences and Engineering, 2019, 16(5): 4758-4776. doi: 10.3934/mbe.2019239 |
[10] | Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409 |
We present an approach to Lyapunov theorems about a center for germs of analytic vector fields based on the Poincaré–Dulac and Birkhoff normal forms. Besides new proofs of three Lyapunov theorems, we prove their generalization: if the Poincaré–Dulac normal form indicates the existence of a family of periodic solutions, then such a family really exists. We also present new proofs of Weinstein and Moser theorems about lower bounds for the number of families of periodic solutions; here, besides the normal forms, some topological tools are used, i.e., the Poincaré–Hopf formula and the Lusternik–Schnirelmann category on weighted projective spaces.
[1] | A. A Andronov, E. A. Leontovich, A. G. Gordon, A. G. Maier, Qualitative Theory of Second–Order Dynamical Systems, Halsted Press, New York, 1973. https://doi.org/10.1137/1017026 |
[2] |
R. F. Arenstorf, Central configurations of four bodies with one inferior mass, Celestial Mech., 28 (1982), 9–15. https://doi.org/10.1007/BF01230655 doi: 10.1007/BF01230655
![]() |
[3] | V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, New York, 1983. https://doi.org/10.1007/978-1-4612-1037-5 |
[4] | V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical Aspects of the Mathematical and Celestial Mechanics, Encyclopaedia of Math. Sci., Dynamical Systems, 3, Springer, New York, 1988. https://doi.org/10.2307/3619341 |
[5] |
A. Baider, J. A. Sanders, Unique normal forms: The nilpotent Hamiltonian case, J. Differ. Equations, 92 (1991), 282–304. https://doi.org/10.1016/0022-0396(91)90050-J doi: 10.1016/0022-0396(91)90050-J
![]() |
[6] |
J. F. Barros, E. Leandro, Bifurcations and enumeration of classes of relative equilibria in the planar restricted four-body problem, SIAM J. Math. Anal., 46 (2014), 1185–1203. https://doi.org/10.1137/130911342 doi: 10.1137/130911342
![]() |
[7] | W. Barwicz, M. Wiliński, H. Żołądek, Birkhoff normalization, bifurcations of Hamiltonian vector fields and the Deprits formula, J. Fixed Point Theory Appl. 13 (2013), 587–610. https://doi.org/10.1007/s11784-013-0136-1 |
[8] | G. D. Birkhoff, Dynamical Systems, Amer. Math. Soc., Providence, 1927. https://doi.org/10.1016/B978-044450871-3/50149-2 |
[9] | C. A. Briot, J. C. Bouquet, Recherches sur les propriétés des fonctions définies par des équations différentiells, J. Éc. Polytech. 36 (1856), 133–198. |
[10] |
E. N. Dancer, S. Rybicki, A note on periodic solutions of autonomous Hamiltonian systems emanating from degenerate stationary solutions, Differ. Integr. Equations, 12 (1999), 147–160. https://doi.org/10.57262/die/1367265626 doi: 10.57262/die/1367265626
![]() |
[11] |
I. Dolgachev, Weighted projective varieties, Lect. Notes in Math., 956 (1982), Springer, Berlin, 34–71. https://doi.org/10.1007/BFB0101508 doi: 10.1007/BFB0101508
![]() |
[12] | J. J. Duistermaat, The monodromy in the Hamiltonian Hopf bifurcation, Z. angew. Math. Phys. 49 (1998), 156–161. https://doi.org/10.1007/s000330050086 |
[13] | H. Dulac, Sur les cycles limites, Bull. Soc. Math. France, 51, 1923. https://doi.org/10.24033/BSMF.1031 |
[14] | A. Fomenko, D. Fuchs, Homotopical Topology, Graduate Texts in Math., 273, Springer, New York, 2016. https://doi.org/10.1007/978-3-319-23488-5 |
[15] |
A. Gołȩbiewska, E. Pérez-Chavela, S. Rybicki, A. Ureña, Bifurcation of closed orbits from equilibria of Newtonian systems with Coriolis forces, J. Differ. Equations, 338 (2022), 441–473. https://doi.org/10.1016/j.jde.2022.08.004 doi: 10.1016/j.jde.2022.08.004
![]() |
[16] | M. Hirsch, C. Pugh, M. Shub, Invariant manifolds, Lect. Notes Math. 583, Springer, New York, 1977. https://doi.org/10.1007/BFb0092042 |
[17] | Yu. Ilyashenko, S. Yakovenko, Lectures on Analytic Differential Equations, Graduate Studies in Math. 86, Amer. Math. Soc., Providence, 2008. https://doi.org/10.1090/gsm/086 |
[18] | L.G. Khazin, E.E. Shnol, Stability of Critical Equilibrium States, Nonlinear Science: Theory and Applications, Manchester Un-ty Press, Manchester, 1991. |
[19] |
E. Leandro, On the central configurations of the planar restricted four-body problem, J. Differ. Equations, 226 (2006), 323–351. https://doi.org/10.1006/j.jde.2005.10.015 doi: 10.1006/j.jde.2005.10.015
![]() |
[20] |
A. Ligȩza, H. Żołądek, Qualitative analysis of some libration points in the restricted four-body problem, Rus. J. Nonlin. Dyn., 17 (2021), 369–390. https://doi.org/10.20537/nd210402 doi: 10.20537/nd210402
![]() |
[21] | A. M. Lyapunov, The General Problem of the Stability of Motion, Taylor & Francis Group, London, 1992. https://doi.org/10.1115/1.2901415 |
[22] | J. Mawhin, J. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989. https://doi.org/10.1007/971-1-4757-2061-7 |
[23] | J. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math. 29 (1976), 724–747. https://doi.org/10.1016/s0304-0208(08)71098-3 |
[24] | R. Moussu, Une démonstration géometrique d'un théorème de Lyapunov–Poincaré, in: Bifurcation, Ergodic Theory and Applications (Dijon, 1981), Asterisque (1982), 98–99. |
[25] |
E. Pérez-Chavela, S. Rybicki, D. Strzelecki, Symmetric Lyapunov center theorem, Calculus Variations PDEs, 56 (2017), art. 26. https://doi.org/10.1007/s00526-017-1120-1 doi: 10.1007/s00526-017-1120-1
![]() |
[26] |
E. Pérez-Chavela, S. Rybicki, D. Strzelecki, Symmetric Lyapunov center theorem for minimal orbit, J. Differential Equations, 265 (2018), 752–778. https://doi.org/10.1016/j.jde.2018.03.009 doi: 10.1016/j.jde.2018.03.009
![]() |
[27] | H. Poincaré, Mémoire sur les Courbes Définies par une Équation Différentielle, in: Œuvres de Henri Poincaré, 1, Gauthier–Villars, Paris, 1951. |
[28] | D. S. Schmidt, Periodic solutions near a resonant equilibrium of a Hamiltonian system, Celestial Mech. 9 (1974) 81–103. https://doi.org/10.1007/BF01236166 |
[29] | C. L. Siegel, Vorlesungen über Himmelsmechanik, Springer, Berlin, 1956. https://doi.org/10.1007/978-3-642-94671-4 |
[30] |
E. Stróżyna, H. Żołądek, Analytic properties of the complete normal form for the Bogdanov–Takens singularity, Nonlinearity, 34 (2021), 3046–3082. https://doi.org/10.1088/1361-6544/abe51d doi: 10.1088/1361-6544/abe51d
![]() |
[31] | D. Strzelecki, Periodic solutions of symmetric Hamiltonian systems, Arch. Rational Mech. Anal. 237 (2020), 921–950. https://doi.org/10.1007/s00205-020-01522-6 |
[32] |
A. Szulkin, Bifurcation of strongly indefinite functionals and a Liapunov type theorem for Hamiltonian systems, Differential Integral Equations, 7 (1994), 217–234. https://doi.org/10.57262/die/1369926976 doi: 10.57262/die/1369926976
![]() |
[33] | J. C. van der Meer, Bifurcation at non-semisimple 1: -1 resonance, J. Appl. Math. Phys. 37 (1986), 425–437. https://doi.org/10.1007/BF00946761 |
[34] |
A. van Straten, A note on the number of periodic orbits near a resonant equilibrium point, Nonlinearity, 2 (1989), 445–458. https://doi.org/10.1007/BF02570469 doi: 10.1007/BF02570469
![]() |
[35] | A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math. 20 (1973), 47–57. https://doi.org/10.1007/BF01405263 |
[36] | A. Weinstein, Symplectic V–manifolds, periodic orbits of Hamiltonian systems and the volume of some Riemannian manifolds, Comm. Pure Appl. Math. 30 (1977), 265–271. https://doi.org/10.1002/cpa.3160300207 |
[37] | H. Żołądek, The Monodromy Group, Monografie Matematyczne, 67 Birkhäuser, Basel, 2006. https://doi.org/10.1007/3-7643-7536-1 |
1. | F. Nazari, A.B. Gumel, E.H. Elbasha, Differential characteristics of primary infection and re-infection can cause backward bifurcation in HCV transmission dynamics, 2015, 263, 00255564, 51, 10.1016/j.mbs.2015.02.002 | |
2. | Wei Wang, Wanbiao Ma, Hepatitis C virus infection is blocked by HMGB1: A new nonlocal and time-delayed reaction–diffusion model, 2018, 320, 00963003, 633, 10.1016/j.amc.2017.09.046 | |
3. | A. Cousien, V. C. Tran, S. Deuffic-Burban, M. Jauffret-Roustide, J.-S. Dhersin, Y. Yazdanpanah, Dynamic modelling of hepatitis C virus transmission among people who inject drugs: a methodological review, 2015, 22, 13520504, 213, 10.1111/jvh.12337 | |
4. | David P. Durham, Laura A. Skrip, Robert Douglas Bruce, Silvia Vilarinho, Elamin H. Elbasha, Alison P. Galvani, Jeffrey P. Townsend, The Impact of Enhanced Screening and Treatment on Hepatitis C in the United States, 2016, 62, 1058-4838, 298, 10.1093/cid/civ894 | |
5. | Emily D. Bethea, Qiushi Chen, Chin Hur, Raymond T. Chung, Jagpreet Chhatwal, Should we treat acute hepatitis C? A decision and cost-effectiveness analysis, 2018, 67, 02709139, 837, 10.1002/hep.29611 | |
6. | Lauren E. Cipriano, Jeremy D. Goldhaber-Fiebert, Population Health and Cost-Effectiveness Implications of a “Treat All” Recommendation for HCV: A Review of the Model-Based Evidence, 2018, 3, 2381-4683, 238146831877663, 10.1177/2381468318776634 | |
7. | Wei Wang, Wanbiao Ma, Block effect on HCV infection by HMGB1 released from virus-infected cells: An insight from mathematical modeling, 2018, 59, 10075704, 488, 10.1016/j.cnsns.2017.11.024 | |
8. | Cheng Ding, Xiaoxiao Liu, Shigui Yang, The value of infectious disease modeling and trend assessment: a public health perspective, 2021, 1478-7210, 1, 10.1080/14787210.2021.1882850 | |
9. | Ignacio Rozada, Daniel Coombs, Viviane D. Lima, Conditions for eradicating hepatitis C in people who inject drugs: A fibrosis aware model of hepatitis C virus transmission, 2016, 395, 00225193, 31, 10.1016/j.jtbi.2016.01.030 | |
10. | Karen Van Nuys, Ronald Brookmeyer, Jacquelyn W. Chou, David Dreyfus, Douglas Dieterich, Dana P. Goldman, Broad Hepatitis C Treatment Scenarios Return Substantial Health Gains, But Capacity Is A Concern, 2015, 34, 0278-2715, 1666, 10.1377/hlthaff.2014.1193 | |
11. | Ashley B Pitcher, Annick Borquez, Britt Skaathun, Natasha K Martin, Mathematical modeling of hepatitis c virus (HCV) prevention among people who inject drugs: A review of the literature and insights for elimination strategies, 2019, 481, 00225193, 194, 10.1016/j.jtbi.2018.11.013 | |
12. | Ruiqing Shi, Yunting Cui, Global analysis of a mathematical model for Hepatitis C virus transmissions, 2016, 217, 01681702, 8, 10.1016/j.virusres.2016.02.006 | |
13. | Mingwang Shen, Yanni Xiao, Weike Zhou, Zhen Li, Global Dynamics and Applications of an Epidemiological Model for Hepatitis C Virus Transmission in China, 2015, 2015, 1026-0226, 1, 10.1155/2015/543029 | |
14. | A. Nwankwo, D. Okuonghae, Mathematical Analysis of the Transmission Dynamics of HIV Syphilis Co-infection in the Presence of Treatment for Syphilis, 2018, 80, 0092-8240, 437, 10.1007/s11538-017-0384-0 | |
15. | Yao Wang, Zeyu Zhao, Mingzhai Wang, Mikah Ngwanguong Hannah, Qingqing Hu, Jia Rui, Xingchun Liu, Yuanzhao Zhu, Jingwen Xu, Meng Yang, Jing-An Cui, Yanhua Su, Benhua Zhao, Tianmu Chen, The transmissibility of hepatitis C virus: a modelling study in Xiamen City, China, 2020, 148, 0950-2688, 10.1017/S0950268820002885 | |
16. | M. E. Woode, M. Abu‐Zaineh, J. Perriëns, F. Renaud, S. Wiktor, J.‐P. Moatti, Potential market size and impact of hepatitis C treatment in low‐ and middle‐income countries, 2016, 23, 1352-0504, 522, 10.1111/jvh.12516 | |
17. | Oluwasegun M. Ibrahim, Daniel Okuonghae, Monday N.O. Ikhile, Mathematical Modeling of the Population Dynamics of Age-Structured Criminal Gangs with Correctional Intervention Measures, 2022, 107, 0307904X, 39, 10.1016/j.apm.2022.02.005 | |
18. | S. P. Rajasekar, M. Pitchaimani, Quanxin Zhu, Probing a Stochastic Epidemic Hepatitis C Virus Model with a Chronically Infected Treated Population, 2022, 42, 0252-9602, 2087, 10.1007/s10473-022-0521-1 | |
19. | Louiza Tabharit, Maghnia Hamou Maamar, 2021, Mathematical Modeling of Chronic Hepatitis C Treatment’s Effect on the Evolution of its Complications, 978-1-6654-4171-1, 1, 10.1109/ICRAMI52622.2021.9585963 | |
20. | Oluwakemi E. Abiodun, Olukayode Adebimpe, James A. Ndako, Olajumoke Oludoun, Benedicta Aladeitan, Michael Adeniyi, Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number, 2022, 11, 2046-1402, 1153, 10.12688/f1000research.124555.1 | |
21. | Baolin Li, Fengqin Zhang, Xia Wang, A delayed diffusive HBV model with nonlinear incidence and CTL immune response, 2022, 45, 0170-4214, 11930, 10.1002/mma.8547 | |
22. | Yuqiong Lan, Yanqiu Li, Dongmei Zheng, Global dynamics of an age-dependent multiscale hepatitis C virus model, 2022, 85, 0303-6812, 10.1007/s00285-022-01773-9 | |
23. | Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo, Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level, 2021, 19, 1551-0018, 1515, 10.3934/mbe.2022070 | |
24. | R. Rakkiyappan, V. Preethi Latha, F. A. Rihan, Global Dynamics of a Fractional-order Ebola Model with Delayed Immune Response on Complex Networks, 2021, 91, 0369-8203, 681, 10.1007/s40010-021-00756-7 | |
25. | Ke Qi, Zhijun Liu, Lianwen Wang, Qinglong Wang, A nonlinear HCV model in deterministic and randomly fluctuating environments, 2023, 46, 0170-4214, 4644, 10.1002/mma.8792 | |
26. | Nauman Ahmed, Ali Raza, Ali Akgül, Zafar Iqbal, Muhammad Rafiq, Muhammad Ozair Ahmad, Fahd Jarad, New applications related to hepatitis C model, 2022, 7, 2473-6988, 11362, 10.3934/math.2022634 | |
27. | Oluwakemi E. Abiodun, Olukayode Adebimpe, James A. Ndako, Olajumoke Oludoun, Benedicta Aladeitan, Michael Adeniyi, Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number, 2022, 11, 2046-1402, 1153, 10.12688/f1000research.124555.2 | |
28. | Vuk Vujović, Influence of environmental fluctuations on Hepatitis C transmission, 2022, 191, 03784754, 203, 10.1016/j.matcom.2021.08.008 | |
29. | Robert B Hood, Alison H Norris, Abigail Shoben, William C Miller, Randall E Harris, Laura W Pomeroy, Forecasting Hepatitis C Virus Status for Children in the United States: A Modeling Study, 2024, 1058-4838, 10.1093/cid/ciae157 | |
30. | Parvaiz Ahmad Naik, Mehmet Yavuz, Sania Qureshi, Mehraj-ud-din Naik, Kolade M. Owolabi, Amanullah Soomro, Abdul Hamid Ganie, Memory impacts in hepatitis C: A global analysis of a fractional-order model with an effective treatment, 2024, 01692607, 108306, 10.1016/j.cmpb.2024.108306 | |
31. | Shewafera Wondimagegnhu Teklu, Tsegaye Simon Lachamo, Tibebu Tulu Guya, Analyses of a stage structure hepatitis c virus compartmental model with optimal control theory, 2025, 11, 2363-6203, 10.1007/s40808-025-02288-0 |