
One-third of all greenhouse gas emissions come from the world's building stock while accounting for 40% of global energy use. There is no way to combat global warming or attain energy independence without addressing the inefficiency of the building sector. This sector is the second consumer of electricity after the industrial sector in Morocco and is ranked third emitter after the energy sector and transportation sector. Using Ifrane as a case study, this paper examines and reviews the city's energy use and the initiatives taken to improve building efficiency. The findings showed that, during the analyzed period, i.e., from 2014 to 2022, Ifrane's annual electricity consumption climbed steadily from 35 to 43 GWh. The government of Morocco has implemented effective laws, guidelines and regulations, as well as publicized ways to reduce energy consumption and increase energy efficiency. However, gathered data and survey results revealed opportunities and challenges for enhancing Ifrane's efficient energy use.
The study also evaluates government programs, codes/standards and related actions for the improvement of household energy efficiency. As part of the review, the available literature was analyzed to assess the effectiveness of energy behavior and awareness, the impact of an economical and sustainable building envelope, the impact of building retrofitting programs, the importance of energy-performing devices and appliances, the adoption of smart home energy management systems, the integration of renewable energies for on-site clean energy generation and the role of policies and governance in the building sector in Ifrane. A benchmark evaluation and potential ideas are offered to guide energy policies and improve energy efficiency in Ifrane and other cities within the same climate zone.
Citation: Hamza El Hafdaoui, Ahmed Khallaayoun, Kamar Ouazzani. Activity and efficiency of the building sector in Morocco: A review of status and measures in Ifrane[J]. AIMS Energy, 2023, 11(3): 454-485. doi: 10.3934/energy.2023024
[1] | Olayan Albalawi . Estimation techniques utilizing dual auxiliary variables in stratified two-phase sampling. AIMS Mathematics, 2024, 9(11): 33139-33160. doi: 10.3934/math.20241582 |
[2] | Haidy A. Newer, Bader S Alanazi . Bayesian estimation and prediction for linear exponential models using ordered moving extremes ranked set sampling in medical data. AIMS Mathematics, 2025, 10(1): 1162-1182. doi: 10.3934/math.2025055 |
[3] | Nuran M. Hassan, M. Nagy, Subhankar Dutta . Statistical inference for the bathtub-shaped distribution using balanced and unbalanced sampling techniques. AIMS Mathematics, 2024, 9(9): 25049-25069. doi: 10.3934/math.20241221 |
[4] | Haidy A. Newer, Mostafa M. Mohie El-Din, Hend S. Ali, Isra Al-Shbeil, Walid Emam . Statistical inference for the Nadarajah-Haghighi distribution based on ranked set sampling with applications. AIMS Mathematics, 2023, 8(9): 21572-21590. doi: 10.3934/math.20231099 |
[5] | Mehreen Fatima, Saman Hanif Shahbaz, Muhammad Hanif, Muhammad Qaiser Shahbaz . A modified regression-cum-ratio estimator for finite population mean in presence of nonresponse using ranked set sampling. AIMS Mathematics, 2022, 7(4): 6478-6488. doi: 10.3934/math.2022361 |
[6] | S. P. Arun, M. R. Irshad, R. Maya, Amer I. Al-Omari, Shokrya S. Alshqaq . Parameter estimation in the Farlie–Gumbel–Morgenstern bivariate Bilal distribution via multistage ranked set sampling. AIMS Mathematics, 2025, 10(2): 2083-2097. doi: 10.3934/math.2025098 |
[7] | Hleil Alrweili, Fatimah A. Almulhim . Estimation of the finite population mean using extreme values and ranks of the auxiliary variable in two-phase sampling. AIMS Mathematics, 2025, 10(4): 8794-8817. doi: 10.3934/math.2025403 |
[8] | Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Ahmed Elshahhat . Analysis of reliability index R=P(Y<X) for newly extended xgamma progressively first-failure censored samples with applications. AIMS Mathematics, 2024, 9(11): 32200-32231. doi: 10.3934/math.20241546 |
[9] | Anoop Kumar, Shashi Bhushan, Abdullah Mohammed Alomair . Assessment of correlated measurement errors in presence of missing data using ranked set sampling. AIMS Mathematics, 2025, 10(4): 9805-9831. doi: 10.3934/math.2025449 |
[10] | Areej M. AL-Zaydi . On concomitants of generalized order statistics arising from bivariate generalized Weibull distribution and its application in estimation. AIMS Mathematics, 2024, 9(8): 22002-22021. doi: 10.3934/math.20241069 |
One-third of all greenhouse gas emissions come from the world's building stock while accounting for 40% of global energy use. There is no way to combat global warming or attain energy independence without addressing the inefficiency of the building sector. This sector is the second consumer of electricity after the industrial sector in Morocco and is ranked third emitter after the energy sector and transportation sector. Using Ifrane as a case study, this paper examines and reviews the city's energy use and the initiatives taken to improve building efficiency. The findings showed that, during the analyzed period, i.e., from 2014 to 2022, Ifrane's annual electricity consumption climbed steadily from 35 to 43 GWh. The government of Morocco has implemented effective laws, guidelines and regulations, as well as publicized ways to reduce energy consumption and increase energy efficiency. However, gathered data and survey results revealed opportunities and challenges for enhancing Ifrane's efficient energy use.
The study also evaluates government programs, codes/standards and related actions for the improvement of household energy efficiency. As part of the review, the available literature was analyzed to assess the effectiveness of energy behavior and awareness, the impact of an economical and sustainable building envelope, the impact of building retrofitting programs, the importance of energy-performing devices and appliances, the adoption of smart home energy management systems, the integration of renewable energies for on-site clean energy generation and the role of policies and governance in the building sector in Ifrane. A benchmark evaluation and potential ideas are offered to guide energy policies and improve energy efficiency in Ifrane and other cities within the same climate zone.
Continuous data that strictly falls in the open interval (0, 1) is something we see rather frequently. Practitioners must represent this using the proper distributions, management, etc. This type of analysis includes studying ratios, percentages, etc. The beta distribution, which is utilized in a variety of situations, is one of the most versatile such distributions. However, there is a disadvantage to utilizing the beta distribution, as it is insufficient for some real-world scenarios, such as hydrological data. Considering this, the Topp-Leone distribution [1] and Kumaraswamy's distribution [2] merit consideration as alternatives to the beta model that have similar structure. The distribution and quantile functions may be represented in closed forms, which is a benefit in this case. To model datasets in the fields of biology, engineering, actuarial science, economics, and financial risk management, among others, several unit distributions have been created. Some of these significant, well-known distributions include the unit logistic distribution [3], unit Gompertz and unit Birnbaum-Saunders distributions [4,5], extended reduced Kies distribution [6], unit-Weibull distributions [7], unit generalized half normal distribution [8], unit Lindley distribution [9], unit Burr XII distribution [10], power unit Burr-XII distribution[11], unit gamma-Gompertz distribution [12], unit Teissier distribution[13], and generalized unit half-logistic geometric distribution[14], etc.
Recently, Kharazmi et al. [15] proposed a new one-parameter unit distribution based on the definition of the arctan function. The new bounded distribution is called the arctan uniform distribution (AUD). The probability density function (PDF) and cumulative distribution function (CDF) of the AUD are given, respectively, by:
f(z)=δtan−1(δ)+δ2z2tan−1(δ),0<z<1,δ>0, | (1.1) |
and
F(z)=tan−1(δz)tan−1(δ),0<z<1,δ>0, | (1.2) |
where δ is the scale parameter. We depict the PDF (1.1) in Figure 1 for a few different choices of the parameter δ to examine the effect of δ on the PDF behavior. It can be concluded that the AUD has asymmetric shapes. Kharazmi et al. [15] also provided the moments of this distribution.
Cost-effective sampling is a major issue in some research, especially when measuring the relevant feature is costly, inconvenient, or time-consuming. It is possible to give the sample items that are gathered additional structure using ranked set sampling (RSS) and to leverage this structure to create effective inferential processes. It is possible to rank tiny groups of units exactly, even without true quantification. The ranking might be carried out using eye examination, preliminary data, expert judgment, prior sampling episodes, or other imprecise techniques without the need for real measurement. The RSS method is a great instrument for attaining observational economy since it increases the accuracy attained per unit of the sample. This method of data collection was initially put forth by McIntyre [16] as an alternative to the widely used simple random sample (SRS) methodology for improving the effectiveness of the sample mean. It is used extensively in the fields of agriculture, biology, engineering, quality control, and environmental studies (see [17,18,19,20,21,22,23,24,25]). The procedures below should be followed to implement the RSS of s observations from a population:
(1) Choose (s) SRS with size (s) each, with s to be a low number.
(2) In each sample, order the units from smallest to greatest. Without actually measuring the units about the variable of interest, ranking is performed.
(3) Only the a1th greatest unit in the a1th sample, a1=1,..,s is used for actual measurements. As a result, the RSS associated with this cycle will be Z1(1:m∘∘),Z2(2:m∘∘),....,Zm∘∘(m∘∘:m∘∘). Note that Za1(a1:m∘∘) stands for the a1th order statistic from the a1th row.
(4) Carry out the preceding steps v times (cycles) to obtain sample size m∘∘=sv, where s is the set size and v is the cycle number. As a result, the observed RSS for this v cycle will be Za1(a1:m∘∘)a2, a1=1,..,s, a2=1,..,v, where s is the set size and v is the cycle count. Hence for simplified form, Za1a2 will be used for the rest of the article instead of Za1(a1:m∘∘)a2.
Statistical inference relies heavily on the parametric estimate approach employing the sampling design strategy. Numerous studies have examined various estimation techniques for estimating parameters based on RSS designs and their extensions. Reference [26] investigated how to estimate the location-scale family distributions' parameters. Some examples included the normal, exponential, and gamma distributions [27], the half logistic distribution [28], the Gumbel distribution [29], the generalized Rayleigh distribution [30], the Pareto distribution[31,32], the x-gamma distribution [33], the new Weibull-Pareto distribution[34], the extended inverted Topp-Leone distribution [35], the generalized quasi-Lindley distribution [36], and the inverse Kumaraswamy distribution [37]. For more, see [38,39,40,41,42].
Statistical inference relies heavily on the parametric estimating approach and the sampling design strategy. The statistical literature frequently proposes different estimation approaches, since parameter estimation is important in practice. Generally, maximum likelihood (ML) estimation is the first step in the estimation process. This method's easy-to-understand formulation is the reason for its popularity. The estimators that are produced using this approach, for instance, are normally distributed and asymptotically consistent. Other, more widely used estimating techniques are available in the literature. These techniques include maximum product of spacing (MPS), least squares (LS), weighted LS (WLS), Cramér-von Mises (CM), Anderson-Darling (AD), minimum spacing absolute-log distance (MSALD), right-tail AD (RAD), left-tail AD (LAD), minimum spacing absolute distance (MSAD), percentile (PS), and a few more.
This study's objective is to present an in-depth assessment of several frequentist approaches to the AUD. The wide range of fields in which the RSS approach is used served as the inspiration for this concentration. In addition, the RSS design offers, for a fixed sample size, more efficient estimators than the SRS design. We use certain significant traditional estimating techniques based on the following procedures: RSS and SRS. The following estimation methods are taken into consideration: MPS, LS, ML, WLS, CM, AD, MSALD, RAD, LAD, MSAD, and PS. A simulation task is then used to compare the suggested estimates based on the RSS design to those offered by the SRS approach for the same sample size. Some precision metrics are used in comparison studies. The novelty of this study stems from the lack of prior research evaluating all of these estimating techniques for the AUD based on RSS. For illustration reasons, an insurance data set is investigated as well. Therefore, the study will serve as a guide for selecting the most appropriate estimating technique for the AUD, which we believe applied statisticians would find fascinating.
The following describes how this article is organized: Section 2 addresses the ML estimate (MLE) of the AUD parameter based on the RSS and SRS approaches. A few essential minimum distances of estimation for the proposed AUD are discussed in Section 3. In Section 4, several maximum and minimum product of spacing estimation are covered. The WLS, LS, and PS estimation techniques of the AUD are presented in Section 5. The effectiveness of the supplied estimating techniques is compared and evaluated in Section 6 using a Monte Carlo simulation. In Sections 7 and 8, respectively, an analysis of an insurance dataset is provided, followed by a conclusion.
In this section, the MLE of parameter δ of the AUD is considered based on RSS and SRS. At first, assume that Za1a2={Za1a2,a1=1,...,s,a2=1,...,v}, is an RSS of size m∘∘ with PDF (1.1) and CDF (1.2), where v is the cycles count and s is the set size. It can be seen from the structure of RSS that the data are all mutually independent, and, in addition, for each a1=1,...,s, the data are identically distributed. It should be noted that, if the judgment ranking is perfect, the PDF of a1th order statistics Za1a2 is as below:
fZa1a2(z)=m∘∘!(a1−1)!(m∘∘−a1)[f(z)]a1−1[1−F(z)]m∘∘−a1. | (2.1) |
The likelihood function (LF) of the AUD, based on RSS, is given by:
L(δ)=s∏a1=1v∏a2=1m∘∘!(a1−1)!(m∘∘−a1)[δtan−1(δ)(1+δ2z2a1a2)]a1−1[1−tan−1(δza1a2)tan−1(δ)]m∘∘−a1. | (2.2) |
The log-LF of (2.2), denoted by ℓ∗, is as follows:
ℓ∗∝s∑a1=1v∑a2=1(a1−1)[lnδ−ln(tan−1(δ))−ln(1+δ2z2a1a2)]+(m∘∘−a1)ln[C(δ)], | (2.3) |
where C(δ)=[1−tan−1(δza1a2)tan−1(δ)]. The MLE of δ says ˆδ1 is obtained by maximizing (2.3), which can be computed as the solution of the following nonlinear equation:
∂ℓ∗∂δ=s∑a1=1v∑a2=1[(a1−1)δ−2δ(a1−1)z2a1a2(1+δ2z2a1a2)−(a1−1)(1+δ2)tan−1(δ)]+s∑a1=1v∑a2=1(m∘∘−a1)C′(δ)C(δ), | (2.4) |
where C′(δ)=tan−1(δza1a2)[tan−1(δ)]2(1+δ2)−1(1+δ2z2a1a2)tan−1(δ).
Setting (2.4) to zero and solving numerically, we get the MLE ˆδ1 of δ.
Additionally, the MLE of the AUD parameter under SRS is the subject of the following discussion. We assume that z1,z2,...,zm∘∘ is an observed SRS of size m∘∘ from the AUD with PDF (1.1). The log-LF, say ℓ∗1, based on SRS, is given by
ℓ∗1=m∘∘ln(δ)−m∘∘ln[tan−1(δ)]−m∘∘∑i=1ln(1+δ2z2i). |
The MLE ⃜δ1, of δ, is provided as the solution of the following non-linear equation after setting with zero:
∂ℓ∗1∂δ=m∘∘δ−m∘∘∑i=0m∘∘(1+δ2)tan−1(δ)−m∘∘∑i=02δzi(1+δ2z2i). | (2.5) |
Then, ⃜δ1 is provided from (2.5) after setting with zero and using the numerical technique.
This section illustrates four estimation methods that minimize goodness-of-fit statistics, including AD, RAD, LAD, and CM. This series of estimating methods was created based on the discrepancy between the estimated CDF and the actual distribution function. This section presents the estimates of AUD parameters for SRS and RSS using the mentioned methodologies.
Reference [43] introduced the AD test as an alternative to traditional statistical procedures to identify sample distribution deviations from the presumed distribution. Here, six estimators of parameter δ are produced based on the RSS and SRS.
Suppose that the ordered items Z(1:m∘∘),Z(2:m∘∘),...,Z(m∘∘:m∘∘) are an RSS drawn from the AUD with sample size m∘∘=sv, where s is set size and v is the cycle count. By minimizing the following equation, the AD estimate (ADE) ˆδ2 of δ for the AUD is generated.
ϑ1=−m∘∘−1m∘∘m∘∘∑k=1(2k−1){logF(z(k:m∘∘)|δ)+logˉF(z(m∘∘−k+1:m∘∘)|δ)}. | (3.1) |
Instead of using (3.1), the ADE ˆδ2 of the AUD may be calculated by solving the nonlinear equation illustrated below:
m∘∘∑k=1(2k−1){φ1(z(k:m∘∘)|δ)F(z(k:m∘∘)|δ)−φ2(z(m∘∘−k+1:m∘∘)|δ)ˉF(z(m∘∘−k+1:m∘∘)|δ)}=0, |
where,
φ1(z(k:m∘∘)|δ)=tan−1(δz(k:m∘∘))[tan−1(δ)]2(1+δ2)−z(k:m∘∘)(1+δ2z2(k:m∘∘))tan−1(δ), | (3.2) |
and
φ2(z(m∘∘−k+1:m∘∘)|δ)=tan−1(δz(m∘∘−k+1:m∘∘))[tan−1(δ)]2(1+δ2)−z(m∘∘−k+1:m∘∘)(1+δ2z2(m∘∘−k+1:m∘∘))tan−1(δ). | (3.3) |
The following function is used to provide the RAD estimate (RADE) ˆδ3 for δ of the AUD:
ϑ2=m∘∘2−2m∘∘∑k=1F(z(k:m∘∘)|δ)−1m∘∘m∘∘∑k=1(2k−1)logˉF(z(m∘∘+1−k:m∘∘)|δ). | (3.4) |
Instead of using (3.4), the RADE ˆδ3 of the AUD may be calculated by solving the nonlinear equation illustrated below:
−2m∘∘∑k=1φ1(z(k:m∘∘)|δ)+1m∘∘m∘∘∑k=1(2k−1)φ2(z(m∘∘−k+1:m∘∘)|δ)ˉF(z(m∘∘−k+1:m∘∘)|δ)=0, |
where φ1(.) and φ2(.) are defined in (3.2) and (3.3).
The following function is used to provide the LAD estimate (LADE) ˆδ4 for δ of the AUD:
ϑ3=−3m∘∘2+2m∘∘∑k=1F(z(k:m∘∘)|δ)−1m∘∘m∘∘∑k=1(2k−1)logF(z(k:m∘∘)|δ). |
To obtain the LADE ˆδ4 of the AUD, the following nonlinear equation may be solved:
2m∘∘∑k=1φ1(z(k:m∘∘)|δ)−1m∘∘m∘∘∑k=1(2k−1)φ1(z(k:m∘∘)|δ)F(z(k:m∘∘)|δ)=0, |
where, φ1(.) is defined in (3.2).
Next, let us consider the scenario in which the ordered items Z(1),Z(2),...,Z(m∘∘) are SRS seen from AUD with sample size m∘∘. The following function is used to provide the ADE ⃜δ2, for δ of the AUD:
ϑ∙1=−m∘∘−1m∘∘m∘∘∑l=1(2l−1){logF(z(l)|δ)+logˉF(z(m∘∘−l+1)|δ)}, | (3.5) |
with respect to δ. The following equation which is equivalent to (3.5) may be solved numerically to provide ⃜δ2
m∘∘∑l=1(2l−1){φ′1(z(l)|δ)F(z(l)|δ)−φ′2(z(m∘∘−l+1)|δ)ˉF(z(m∘∘−l+1)|δ)}=0, |
where
φ′1(z(l)|δ)=tan−1(δz(l))[tan−1(δ)]2(1+δ2)−z(m∘∘−l+1)(1+δ2z(m∘∘−l+1))tan−1(δ), | (3.6) |
and
φ′2(z(m∘∘−l+1)|δ)=tan−1(δz(m∘∘−l+1))[tan−1(δ)]2(1+δ2)−z(m∘∘−l+1)(1+δ2z2(m∘∘−l+1))tan−1(δ). | (3.7) |
The following function is minimized for obtaining the RADE ⃜δ3 for the AUD.
ϑ2∙=m∘∘2−2m∘∘∑l=1F(z(l)|δ)−1m∘∘m∘∘∑l=1(2l−1)logˉF(z(m∘∘+1−l)|δ). | (3.8) |
The RTDE ⃜δ3 of the AUD is determined by solving the numerically the following nonlinear equation rather than using (3.8):
−2m∘∘∑l=1φ′1(z(l)|δ)+1m∘∘m∘∘∑l=1(2l−1)φ′2(z(m∘∘+1−l)|δ)ˉF(z(m∘∘+1−l)|δ)=0, |
where φ′1(.) and φ′2(.) are defined in (3.6) and (3.7).
The following function is used to provide the LADE ⃜δ4 for δ of the AUD:
ϑ3∙=−3m∘∘2+2m∘∘∑l=1F(z(l)|δ)−1m∘∘m∘∘∑l=1(2l−1)logF(zl)|δ). |
To obtain the LADE ⃜δ4 of the AUD, the following nonlinear equation may be solved:
ϑ3∙=2m∘∘∑l=1φ′1(z(l)|δ)−1m∘∘m∘∘∑l=1(2l−1)φ′1(z(l)|δ)F(z1)|δ)=0, |
where φ′1(.) is defined in (3.6).
To support the decision to use minimal distance estimators of the CM type, [44] offered empirical evidence showing the estimator's bias is less than that of other minimum distance estimators. Here, the RSS and SRS techniques are used to produce the CM estimate (CME) for the AUD parameter.
Let us assume that the ordered items Z(1:m∘∘),Z(2:m∘∘),...,Z(m∘∘:m∘∘), with sample size m∘∘=sv, where s is set size and v is the cycle numbers, are the selected RSS from CDF (1.2). In order to obtain CME ˆδ5 of δ, the following function is minimized with regard to δ :
ψ=112m∘∘+m∘∘∑k=1{F(z(k:m∘∘)|δ)−2k−12m∘∘}2. | (3.9) |
Instead of using (3.9), CME can be derived by resolving the following nonlinear equation:
m∘∘∑k=1{F(z(k:m∘∘)|δ)−2k−12m∘∘}φ1(z(k:m∘∘)|δ)=0, |
where φ1(.) is defined in (3.2).
Currently, suppose that the ordered items Z(1),Z(2),...,Z(m∘∘) are the seen SRS from the AUD with sample size m∘∘. So, the following function is minimized to determine the CME ⃜δ5 of δ:
ψ′=112m∘∘+m∘∘∑l=1{F(z(l)|δ)−2l−12m∘∘}2. | (3.10) |
Or equivalent to (3.10), the CME ⃜δ5 of δ is produced by minimizing the following function
m∘∘∑l=1{F(z(l)|δ)−2l−12m∘∘}φ′1(z(l)|δ)=0, |
where φ′1(.) is defined in (3.6).
The concept of differences in the values of the CDF at successive data points, according to Cheng and Amin [45], may be used to get the MPS estimate (MPSE) of the unknown parameter of the AUD. This approach is just as effective as ML estimators and consistent under a wider range of conditions.
Let Z(1:m∘∘),Z(2:m∘∘),...,Z(m∘∘:m∘∘) be ordered items of the RSS drawn from the AUD with sample size m∘∘=sv, where s is set size and v is the cycle numbers. The uniform spacings may be defined as follows based on a random sample taken from the AUD.
ℏk(δ)=F(z(k:m∘∘)|δ)−F(z(k−1:m∘∘)|δ),k=1,2,...,m, |
where F(z(0:m∘∘)|δ)=0,F(z(m∘∘+1:m∘∘)|δ)=1, such that m∘∘+1∑k=1ℏk(δ)=1.
To get the MPSE ˆδ6 of δ, the geometric mean of the spacing should be maximized.
K(δ)={m∘∘+1∏k=1ℏk(δ)}1m∘∘+1, |
or, alternatively, there is maximizing the function that follows:
H(δ)=1m∘∘+1m∘∘+1∑k=1ln[ℏk(δ)]. |
The MPSE ˆδ6 of δ can also be obtained by numerically resolving the following nonlinear equations:
∂H(δ)∂δ=11+m∘∘m∘∘+1∑k=11[ℏ(δ)][φ1(z(k:m∘∘)|δ)−φ1(z(k−1:m∘∘)|δ)]=0, |
where φ1(z(k:m∘∘)|δ) is defined in (3.2) and φ1(z(k−1:m∘∘)|δ) has the same expression with z(k−1:m∘∘).
Similarly, the minimum spacing distance estimator of δ is created by minimizing the following function.
H∙(δ)=m∘∘+1∑k=1Δ[ℏk(δ),1m∘∘+1], |
where Δ(u1,u2) is the suitable distance. According to Ref. [46], for Δ(u1,u2)=|u1−u2|, Δ(u1,u2)=|logu1−logu2| are referred to the MSAD and MSALD, respectively. As a result, the MSAD estimate (MSADE) and MSALD estimate (MSALDE) of δ are provided by minimizing the following functions:
H∙(δ)=m∘∘+1∑k=1|ℏk(δ)−1m∘∘+1|, | (4.1) |
and
H∙(δ)=m∘∘+1∑k=1|log(ℏk(δ))−log(1m∘∘+1)|, | (4.2) |
with respect to δ. Equivalently to (4.1) and (4.2), the MSADE ˆδ7 and MSALDE ˆδ8 are provided by solving the nonlinear equations
∂H∙(δ)∂δ=m∘∘+1∑k=1ℏk(δ)−1m∘∘+1|ℏk(δ)−1m∘∘+1|[φ1(z(k:m∘∘)|δ)−φ1(z(k−1:m∘∘)|δ)]=0, |
and
∂H∙(δ)∂δ=m∘∘+1∑k=1log(ℏk(δ))−log(1m∘∘+1)|log(ℏk(δ))−log(1m∘∘+1)|[φ1(z(k:m∘∘)|δ)−φ1(z(k−1:m∘∘)|δ)]=0, |
where φ1(z(k:m∘∘)|δ) and φ1(z(k−1:m∘∘)|δ) are defined above.
In addition to the above, the MPSE ⃜δ6 of δ for the AUD under SRS is obtained. Let Z(1),Z(2),...,Z(m∘∘) be SRS of size m∘∘ from CDF (1.2), and the uniform spacings in this situation are
ℏ∙l(δ)=F(z(l)|δ)−F(z(l−1)|δ),l=1,2,...,m∘∘, |
where F(z(0)|δ)=0,F(z(m∘∘+1)|δ)=1, such as m∘∘+1∑l=1ℏ∙l(δ)=1.
The MPSE ⃜δ6 of δ is provided by maximizing the following function:
K(δ)=11+m∘∘m∘∘+1∑l=1ln[ℏ∙l(δ)]. | (4.3) |
Equivalent to (4.3), the MPSE ⃜δ6 of δ is produced by solving the following nonlinear equation numerically:
∂K(δ)∂δ=11+m∘∘m∘∘+1∑l=11[ℏ∙l(δ)][φ′1(z(l)|δ)−φ′1(z(l−1)|δ)]=0, |
where φ′1(z(l)|δ) is defined in (3.6), and φ′1(z(l−1)|δ) has the same expression with z(l−1).
Furthermore, MSADE ⃜δ7 and MSALDE ⃜δ8 are obtained by solving numerically the following equations:
K∙(δ)=m∘∘+1∑k=1|ℏ∙l(δ)−1m∘∘+1|, | (4.4) |
and
K∙(δ)=m∘∘+1∑k=1|log(ℏ∙l(δ))−log(1m∘∘+1)|, | (4.5) |
with respect to δ. Equivalently to (4.4) and (4.5), the MSADE ⃜δ7 and MSALDE ⃜δ8 are provided by solving the nonlinear equations
∂K∙(δ)∂δ=m∘∘+1∑l=1ℏ∙l(δ)−1m∘∘+1|ℏ∙l(δ)−1m∘∘+1|[φ1(z(l)|δ)−φ1(z(l−1)|δ)]=0, |
and
∂K∙(δ)∂δ=m∘∘+1∑l=1log(ℏ∙l(δ))−log(1m∘∘+1)|log(ℏ∙l(δ))−log(1m∘∘+1)|[φ1(z(l)|δ)−φ1(z(l−1)|δ)]=0, |
where, φ1(z(l)|δ) and φ1(z(l−1)|δ) are defined above.
This section offers the LS estimate (LSE), WLS estimate (WLSE), and PS estimate (PSE) for the AUD parameter based on RSS and SRS methods.
Let Z(1:m∘∘),Z(2:m∘∘),...,Z(m∘∘:m∘∘) be an observed ordered RSS with size m∘∘=sv, from the AUD. The LSE ˆδ9 and WLSE ˆδ10 are derived by minimizing the following functions with regard to δ:
γ=m∘∘∑k=1[F(z(k:m∘∘)|δ)−km∘∘+1]2, | (5.1) |
and
γ′=m∘∘∑k=1(m∘∘+1)2(m∘∘+2)k(m∘∘−k+1)[F(z(k:m∘∘)|δ)−km∘∘+1]2. | (5.2) |
These estimators ˆδ9 are ˆδ10, which are equivalent to (5.1) and (5.2), and can be obtained by solving the following equations numerically:
m∘∘∑k=1[F(z(k:m∘∘)|δ)−km∘∘+1]φ1(z(k:m∘∘)|δ)=0, |
and
m∘∘∑k=1(m∘∘+1)2(m∘∘+2)k(m∘∘−k+1)[F(z(k:m∘∘)|δ)−km∘∘+1]φ1(z(k:m∘∘)|δ)=0, |
where φ1(z(k:m∘∘)|δ) is defined before.
Additionally, suppose that Z(1),Z(2),...,Z(m∘∘) is an ordered SRS of size m∘∘ taken from the AUD. The LSE and WLSE ⃜δ9,⃜δ10 of δ are produced by solving numerically the following equations:
m∘∘∑l=1[F(z(l)|δ)−lm∘∘+1]φ1(z(l)|δ)=0, |
and
m∘∘∑l=1(m∘∘+1)2(m∘∘+2)l(m∘∘−l+1)[F(z(l)|δ)−lm∘∘+1]φ1(z(l)|δ)=0, |
where φ1(z(k:m∘∘)|δ) is defined before.
One of the often employed methods for estimating the Weibull distribution's parameters is the percentile approach, which differs from other estimation techniques in terms of its ease of computation and effectiveness in parameter estimation [47]. Here, PSE ˆδ11 of δ of the AUD is provided using RSS and SRS methods.
Consider Z(1:m∘∘),Z(2:m∘∘),...,Z(m∘∘:m∘∘) as an observed ordered RSS, with size m∘∘=sv, available from the AUD. From the PSE of the AUD's parameter one may get ˆδ11 by minimizing the following function and assuming that pk=km∘∘+1 is the estimate of F(z(k:m∘∘)|δ)
Λ=m∘∘∑k=1[z(k:m∘∘)−1δtan(p(k:m∘∘)tan−1(δ))], |
with respect to δ.
In the case of the SRS method, let Z(1),Z(2),...,Z(m∘∘) be an ordered SRS of size m∘∘ drawn from AUD. The PSE ⃜δ11 of δ is obtained, by minimizing the following equation:
Λ1=m∘∘∑l=1[z(l)−1δtan(p(l)tan−1(δ))], |
with respect to δ.
This section focuses on the examination of various estimation methods presented in this paper. The goal is to assess the efficacy of these methods in estimating model parameters through the generation of random datasets derived from the proposed model. Subsequently, these datasets will be ranked, and the estimation methods will be employed to identify the most recommended one. The simulation will be conducted with the assumption of a flawless ranking, outlined as follows:
● To generate an RSS from the AUD with a fixed set size s=5 and different cycle numbers v=3,10,24,40,60, and 90, the corresponding sample sizes m∘∘=sv=15,50,120,200,300, and 450 are employed.
● Generate an SRS from the AUD with the specified sample sizes, m∘∘ = 15, 50, 120, 200, 300, and 450.
● We have a set of estimates corresponding to each sample size, using the true parameter values (δ) of 0.15, 0.6, 1.0, 1.5, 2.0, and 2.5.
● To evaluate the effectiveness of the estimation methods, three measures are employed, which include the following:
Average of absolute bias (bias), |bias(^δδ)|= 1M∑Mi=1|^δδi−δδ|, mean squared errors (MSE), MSE=1M∑Mi=1(^δδi−δδ)2, mean absolute relative errors (MRE) MRE=1M∑Mi=1|^δδi−δδ|/δδ.
● The measures outlined in the previous step serve as objective benchmarks for evaluating the accuracy and reliability of the estimated parameters. Utilizing these evaluation metrics enables a comprehensive assessment of the performance of the estimation techniques. This evaluation process provides valuable insights into the effectiveness and appropriateness of these techniques for the particular model under consideration.
● By repeating this process multiple times through numerous iterations, we can obtain a reliable and robust assessment of the estimation techniques. This repeated evaluation helps ensure that the performance results are consistent and representative, contributing to a more thorough understanding of the effectiveness of these techniques in estimating the model parameters.
● The results of the evaluation measures are presented in Tables 1–12, encompassing both SRS and RSS. These tables offer a comprehensive summary of the outcomes obtained. In these tables, the magnitude of each value signifies its relative effectiveness when compared to all the estimation approaches examined in the study. Lower-ranked values indicate stronger and more significant performance relative to the investigated estimation methods. These tables serve as a valuable reference for assessing the relative power and significance of the different estimation techniques.
m∘∘ | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | ⃜δ | 0.5128{5} | 0.5108{4} | 0.5268{8} | 0.4521{1} | 0.5305{9} | 0.4879{3} | 0.4799{2} | 0.5257{7} | 0.5755{11} | 0.5345{10} | 0.5223{6} |
MSE | ⃜δ | 0.5886{4} | 0.5957{5} | 0.6356{9} | 0.4704{1} | 0.6343{8} | 0.5022{2} | 0.5088{3} | 0.6309{7} | 0.806{11} | 0.7126{10} | 0.6245{6} | |
MRE | ⃜δ | 3.4184{5} | 3.405{4} | 3.5117{8} | 3.0141{1} | 3.5368{9} | 3.2523{3} | 3.1997{2} | 3.5049{7} | 3.8366{11} | 3.563{10} | 3.4823{6} | |
∑Ranks | 14{5} | 13{4} | 25{8} | 3{1} | 26{9} | 8{3} | 7{2} | 21{7} | 33{11} | 30{10} | 18{6} | ||
50 | bias | ⃜δ | 0.3349{4} | 0.3408{6} | 0.3462{8} | 0.3171{1} | 0.337{5} | 0.329{3} | 0.327{2} | 0.3414{7} | 0.3703{11} | 0.361{10} | 0.3535{9} |
MSE | ⃜δ | 0.1991{4} | 0.2068{6} | 0.2138{8} | 0.1837{1} | 0.205{5} | 0.1905{2} | 0.1917{3} | 0.2082{7} | 0.2532{10} | 0.2582{11} | 0.2295{9} | |
MRE | ⃜δ | 2.2326{4} | 2.2718{6} | 2.3083{8} | 2.1143{1} | 2.2469{5} | 2.1934{3} | 2.18{2} | 2.2762{7} | 2.4686{11} | 2.4064{10} | 2.357{9} | |
∑Ranks | 12{4} | 18{6} | 24{8} | 3{1} | 15{5} | 8{3} | 7{2} | 21{7} | 32{11} | 31{10} | 27{9} | ||
120 | bias | ⃜δ | 0.2637{7} | 0.2659{8} | 0.2568{2} | 0.2537{1} | 0.2628{5} | 0.2617{4} | 0.2591{3} | 0.2635{6} | 0.2767{9} | 0.2825{11} | 0.279{10} |
MSE | ⃜δ | 0.1088{5} | 0.1116{8} | 0.1055{2} | 0.1044{1} | 0.1099{7} | 0.1089{6} | 0.1061{3} | 0.1073{4} | 0.1246{9} | 0.1374{11} | 0.1272{10} | |
MRE | ⃜δ | 1.7582{7} | 1.7728{8} | 1.7119{2} | 1.6911{1} | 1.7523{5} | 1.7446{4} | 1.7271{3} | 1.7564{6} | 1.8445{9} | 1.8832{11} | 1.86{10} | |
∑Ranks | 19{7} | 24{8} | 6{2} | 3{1} | 17{6} | 14{4} | 9{3} | 16{5} | 27{9} | 33{11} | 30{10} | ||
200 | bias | ⃜δ | 0.2313{8} | 0.2301{6} | 0.2294{4} | 0.2173{1} | 0.2272{2} | 0.2307{7} | 0.2277{3} | 0.2297{5} | 0.2403{9} | 0.2447{11} | 0.2438{10} |
MSE | ⃜δ | 0.0796{8} | 0.0781{5} | 0.0788{6} | 0.0722{1} | 0.0761{2} | 0.0791{7} | 0.0764{3} | 0.0769{4} | 0.0874{9} | 0.0958{11} | 0.0907{10} | |
MRE | ⃜δ | 1.5418{8} | 1.534{6} | 1.5293{4} | 1.4486{1} | 1.5149{2} | 1.5379{7} | 1.5181{3} | 1.5314{5} | 1.6019{9} | 1.6315{11} | 1.6256{10} | |
∑Ranks | 24{8} | 17{6} | 14{4.5} | 3{1} | 6{2} | 21{7} | 9{3} | 14{4.5} | 27{9} | 33{11} | 30{10} | ||
300 | bias | ⃜δ | 0.2075{4} | 0.2098{6} | 0.2108{8} | 0.1925{1} | 0.2059{3} | 0.2084{5} | 0.205{2} | 0.2106{7} | 0.2183{9} | 0.223{11} | 0.2207{10} |
MSE | ⃜δ | 0.0603{4} | 0.062{7} | 0.0629{8} | 0.0549{1} | 0.0602{3} | 0.0614{5} | 0.0593{2} | 0.0619{6} | 0.0686{9} | 0.0763{11} | 0.0701{10} | |
MRE | ⃜δ | 1.3836{4} | 1.3986{6} | 1.4053{8} | 1.283{1} | 1.3724{3} | 1.3896{5} | 1.3666{2} | 1.4037{7} | 1.4553{9} | 1.4864{11} | 1.4712{10} | |
∑Ranks | 12{4} | 19{6} | 24{8} | 3{1} | 9{3} | 15{5} | 6{2} | 20{7} | 27{9} | 33{11} | 30{10} | ||
450 | bias | ⃜δ | 0.191{8} | 0.1908{7} | 0.1869{3.5} | 0.1744{1} | 0.1891{5} | 0.1853{2} | 0.1869{3.5} | 0.1905{6} | 0.1957{9} | 0.2039{11} | 0.1996{10} |
MSE | ⃜δ | 0.0488{6} | 0.0492{8} | 0.047{3.5} | 0.0436{1} | 0.0487{5} | 0.0463{2} | 0.047{3.5} | 0.0489{7} | 0.0524{9} | 0.0611{11} | 0.0548{10} | |
MRE | ⃜δ | 1.2732{8} | 1.2723{7} | 1.2459{3} | 1.1625{1} | 1.261{5} | 1.2351{2} | 1.2463{4} | 1.2698{6} | 1.3047{9} | 1.3591{11} | 1.3308{10} | |
∑Ranks | 22{7.5} | 22{7.5} | 10{3} | 3{1} | 15{5} | 6{2} | 11{4} | 19{6} | 27{9} | 33{11} | 30{10} |
m∘∘ | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | ˆδ | 0.3505{1} | 0.395{5} | 0.4091{7} | 0.3525{2} | 0.4098{8} | 0.3829{4} | 0.37{3} | 0.3965{6} | 0.4737{11} | 0.4317{10} | 0.4258{9} |
MSE | ˆδ | 0.2218{1} | 0.3044{5} | 0.3299{7} | 0.2503{2} | 0.3354{8} | 0.2813{4} | 0.2668{3} | 0.3068{6} | 0.4836{11} | 0.4161{10} | 0.383{9} | |
MRE | ˆδ | 2.3369{1} | 2.6331{5} | 2.7272{7} | 2.3501{2} | 2.7317{8} | 2.5528{4} | 2.4666{3} | 2.6436{6} | 3.1579{11} | 2.8777{10} | 2.8388{9} | |
∑Ranks | 3{1} | 15{5} | 21{7} | 6{2} | 24{8} | 12{4} | 9{3} | 18{6} | 33{11} | 30{10} | 27{9} | ||
50 | bias | ˆδ | 0.2485{9} | 0.2123{5} | 0.2129{6} | 0.1925{1} | 0.213{7} | 0.2075{2} | 0.2086{3} | 0.212{4} | 0.2296{8} | 0.2735{11} | 0.2679{10} |
MSE | ˆδ | 0.094{9} | 0.0642{5} | 0.0652{7} | 0.0544{1} | 0.0648{6} | 0.0606{2} | 0.0624{3} | 0.0636{4} | 0.0773{8} | 0.1338{11} | 0.1145{10} | |
MRE | ˆδ | 1.6565{9} | 1.4152{5} | 1.4193{6} | 1.2837{1} | 1.4197{7} | 1.383{2} | 1.3908{3} | 1.4134{4} | 1.5306{8} | 1.823{11} | 1.7858{10} | |
∑Ranks | 27{9} | 15{5} | 19{6} | 3{1} | 20{7} | 6{2} | 9{3} | 12{4} | 24{8} | 33{11} | 30{10} | ||
120 | bias | ˆδ | 0.1991{9} | 0.1406{2} | 0.1423{4} | 0.1232{1} | 0.1427{5} | 0.1412{3} | 0.143{6} | 0.1462{7} | 0.1486{8} | 0.2087{11} | 0.2026{10} |
MSE | ˆδ | 0.0542{9} | 0.025{2} | 0.0258{6} | 0.0201{1} | 0.0257{5} | 0.0253{3} | 0.0256{4} | 0.0266{7} | 0.0283{8} | 0.0667{11} | 0.057{10} | |
MRE | ˆδ | 1.3271{9} | 0.9374{2} | 0.9488{4} | 0.8213{1} | 0.9511{5} | 0.9411{3} | 0.9531{6} | 0.9747{7} | 0.9906{8} | 1.3916{11} | 1.3509{10} | |
∑Ranks | 27{9} | 6{2} | 14{4} | 3{1} | 15{5} | 9{3} | 16{6} | 21{7} | 24{8} | 33{11} | 30{10} | ||
200 | bias | ˆδ | 0.1806{10} | 0.1085{2} | 0.1113{5} | 0.0928{1} | 0.1112{4} | 0.1106{3} | 0.1139{6} | 0.1148{7} | 0.1173{8} | 0.1853{11} | 0.1793{9} |
MSE | ˆδ | 0.0422{9} | 0.0152{2} | 0.0157{3.5} | 0.0117{1} | 0.0158{5} | 0.0157{3.5} | 0.0165{6} | 0.0169{7} | 0.0174{8} | 0.05{11} | 0.0429{10} | |
MRE | ˆδ | 1.204{10} | 0.7233{2} | 0.7423{5} | 0.6186{1} | 0.7416{4} | 0.7376{3} | 0.7596{6} | 0.7652{7} | 0.7821{8} | 1.2355{11} | 1.1956{9} | |
∑Ranks | 29{10} | 6{2} | 13.5{5} | 3{1} | 13{4} | 9.5{3} | 18{6} | 21{7} | 24{8} | 33{11} | 28{9} | ||
300 | bias | ˆδ | 0.1596{9} | 0.0902{4} | 0.09{3} | 0.0691{1} | 0.0905{5} | 0.0891{2} | 0.0912{6} | 0.0994{8} | 0.0934{7} | 0.1697{11} | 0.1663{10} |
MSE | ˆδ | 0.0325{9} | 0.0112{5} | 0.011{3} | 0.0073{1} | 0.0111{4} | 0.0109{2} | 0.0114{6} | 0.0142{8} | 0.0118{7} | 0.0405{11} | 0.0354{10} | |
MRE | ˆδ | 1.0638{9} | 0.6017{4} | 0.6001{3} | 0.4603{1} | 0.6035{5} | 0.5937{2} | 0.6078{6} | 0.6626{8} | 0.6227{7} | 1.1314{11} | 1.1087{10} | |
∑Ranks | 27{9} | 13{4} | 9{3} | 3{1} | 14{5} | 6{2} | 18{6} | 24{8} | 21{7} | 33{11} | 30{10} | ||
450 | bias | ˆδ | 0.1462{9} | 0.0824{8} | 0.0689{2} | 0.0478{1} | 0.0694{3} | 0.0698{4} | 0.0729{6} | 0.0761{7} | 0.0728{5} | 0.1577{11} | 0.1518{10} |
MSE | ˆδ | 0.0273{9} | 0.0114{8} | 0.0073{2} | 0.0041{1} | 0.0074{3.5} | 0.0074{3.5} | 0.0079{5.5} | 0.0097{7} | 0.0079{5.5} | 0.0337{11} | 0.0293{10} | |
MRE | ˆδ | 0.9747{9} | 0.5493{8} | 0.4592{2} | 0.3183{1} | 0.4629{3} | 0.4656{4} | 0.486{6} | 0.507{7} | 0.4853{5} | 1.0514{11} | 1.0123{10} | |
∑Ranks | 27{9} | 24{8} | 6{2} | 3{1} | 9.5{3} | 11.5{4} | 17.5{6} | 21{7} | 15.5{5} | 33{11} | 30{10} |
m∘∘ | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | ⃜δ | 0.6207{5} | 0.6075{4} | 0.6427{8} | 0.5986{2} | 0.6209{6} | 0.5592{1} | 0.6055{3} | 0.6366{7} | 0.7045{10} | 0.7067{11} | 0.6969{9} |
MSE | ⃜δ | 0.6293{5} | 0.5692{3} | 0.6515{7} | 0.5246{2} | 0.6296{6} | 0.4705{1} | 0.6066{4} | 0.6556{8} | 0.8866{10} | 0.9346{11} | 0.7847{9} | |
MRE | ⃜δ | 1.0346{5} | 1.0126{4} | 1.0711{8} | 0.9977{2} | 1.0349{6} | 0.932{1} | 1.0091{3} | 1.061{7} | 1.1742{10} | 1.1778{11} | 1.1615{9} | |
∑Ranks | 15{5} | 11{4} | 23{8} | 6{2} | 18{6} | 3{1} | 10{3} | 22{7} | 30{10} | 33{11} | 27{9} | ||
50 | bias | ⃜δ | 0.4557{8} | 0.4571{9} | 0.4129{4} | 0.4021{2} | 0.4086{3} | 0.3988{1} | 0.4154{5} | 0.4482{7} | 0.4369{6} | 0.4633{10} | 0.4807{11} |
MSE | ⃜δ | 0.297{9} | 0.2957{8} | 0.246{5} | 0.226{2} | 0.2334{3} | 0.2179{1} | 0.241{4} | 0.2817{7} | 0.2767{6} | 0.3094{10} | 0.3237{11} | |
MRE | ⃜δ | 0.7596{8} | 0.7618{9} | 0.6882{4} | 0.6701{2} | 0.6809{3} | 0.6647{1} | 0.6924{5} | 0.7471{7} | 0.7282{6} | 0.7722{10} | 0.8012{11} | |
∑Ranks | 25{8} | 26{9} | 13{4} | 6{2} | 9{3} | 3{1} | 14{5} | 21{7} | 18{6} | 30{10} | 33{11} | ||
120 | bias | ⃜δ | 0.3261{7} | 0.3161{5} | 0.2963{3} | 0.2886{2} | 0.3027{4} | 0.2852{1} | 0.3573{8} | 0.3194{6} | 0.3818{11} | 0.3685{10} | 0.3595{9} |
MSE | ⃜δ | 0.1668{7} | 0.1613{5} | 0.135{3} | 0.1274{2} | 0.138{4} | 0.1264{1} | 0.2051{9} | 0.1637{6} | 0.2333{11} | 0.2082{10} | 0.1993{8} | |
MRE | ⃜δ | 0.5435{7} | 0.5268{5} | 0.4939{3} | 0.4811{2} | 0.5044{4} | 0.4754{1} | 0.5955{8} | 0.5324{6} | 0.6364{11} | 0.6142{10} | 0.5991{9} | |
∑Ranks | 21{7} | 15{5} | 9{3} | 6{2} | 12{4} | 3{1} | 25{8} | 18{6} | 33{11} | 30{10} | 26{9} | ||
200 | bias | ⃜δ | 0.3121{8} | 0.2876{6} | 0.2792{4} | 0.2252{1} | 0.2871{5} | 0.2263{2} | 0.264{3} | 0.3165{9} | 0.291{7} | 0.3194{10} | 0.3455{11} |
MSE | ⃜δ | 0.1814{9} | 0.1597{7} | 0.144{4} | 0.0808{1} | 0.1537{5} | 0.0831{2} | 0.1324{3} | 0.1883{10} | 0.1551{6} | 0.1698{8} | 0.2015{11} | |
MRE | ⃜δ | 0.5202{8} | 0.4793{6} | 0.4653{4} | 0.3753{1} | 0.4785{5} | 0.3771{2} | 0.44{3} | 0.5275{9} | 0.485{7} | 0.5324{10} | 0.5758{11} | |
∑Ranks | 25{8} | 19{6} | 12{4} | 3{1} | 15{5} | 6{2} | 9{3} | 28{9.5} | 20{7} | 28{9.5} | 33{11} | ||
300 | bias | ⃜δ | 0.2609{6} | 0.2871{10} | 0.2688{8} | 0.1889{1} | 0.2707{9} | 0.1897{2} | 0.2442{5} | 0.2357{3} | 0.244{4} | 0.2623{7} | 0.2952{11} |
MSE | ⃜δ | 0.1497{7} | 0.182{11} | 0.1598{8} | 0.059{1} | 0.1632{9} | 0.062{2} | 0.1263{5} | 0.1124{3.5} | 0.1124{3.5} | 0.1267{6} | 0.1724{10} | |
MRE | ⃜δ | 0.4348{6} | 0.4786{10} | 0.448{8} | 0.3148{1} | 0.4511{9} | 0.3162{2} | 0.4071{5} | 0.3928{3} | 0.4067{4} | 0.4372{7} | 0.492{11} | |
∑Ranks | 19{6} | 31{10} | 24{8} | 3{1} | 27{9} | 6{2} | 15{5} | 9.5{3} | 11.5{4} | 20{7} | 32{11} | ||
450 | bias | ⃜δ | 0.2359{8.5} | 0.2146{3} | 0.2196{4} | 0.1484{1} | 0.2215{5} | 0.1498{2} | 0.239{10} | 0.2304{6} | 0.2359{8.5} | 0.2309{7} | 0.2523{11} |
MSE | ⃜δ | 0.1406{9} | 0.1139{4} | 0.1222{5} | 0.0368{1} | 0.1232{6} | 0.0375{2} | 0.1471{11} | 0.1298{8} | 0.1262{7} | 0.1117{3} | 0.1454{10} | |
MRE | ⃜δ | 0.3932{9} | 0.3576{3} | 0.3661{4} | 0.2474{1} | 0.3692{5} | 0.2497{2} | 0.3983{10} | 0.384{6} | 0.3931{8} | 0.3848{7} | 0.4205{11} | |
∑Ranks | 26.5{9} | 10{3} | 13{4} | 3{1} | 16{5} | 6{2} | 31{10} | 20{7} | 23.5{8} | 17{6} | 32{11} |
m∘∘ | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | ˆδ | 0.4538{1} | 0.472{3} | 0.5065{7} | 0.4879{5} | 0.4887{6} | 0.4678{2} | 0.4746{4} | 0.5331{8} | 0.543{9} | 0.5913{11} | 0.5554{10} |
MSE | ˆδ | 0.2993{1} | 0.316{3} | 0.3685{7} | 0.3255{5} | 0.3619{6} | 0.3087{2} | 0.3177{4} | 0.4032{8} | 0.4637{10} | 0.5488{11} | 0.4368{9} | |
MRE | ˆδ | 0.7563{1} | 0.7867{3} | 0.8442{7} | 0.8132{5} | 0.8145{6} | 0.7797{2} | 0.7909{4} | 0.8885{8} | 0.9049{9} | 0.9854{11} | 0.9257{10} | |
∑Ranks | 3{1} | 9{3} | 21{7} | 15{5} | 18{6} | 6{2} | 12{4} | 24{8} | 28{9} | 33{11} | 29{10} | ||
50 | bias | ˆδ | 0.3076{9} | 0.2821{8} | 0.201{1} | 0.2118{4} | 0.2073{3} | 0.2034{2} | 0.2238{6} | 0.2503{7} | 0.2234{5} | 0.3601{10} | 0.365{11} |
MSE | ˆδ | 0.1571{8} | 0.1676{9} | 0.0668{1} | 0.0736{4} | 0.072{3} | 0.0685{2} | 0.085{6} | 0.128{7} | 0.0804{5} | 0.1958{10} | 0.2026{11} | |
MRE | ˆδ | 0.5127{9} | 0.4701{8} | 0.3351{1} | 0.353{4} | 0.3455{3} | 0.3389{2} | 0.373{6} | 0.4171{7} | 0.3723{5} | 0.6002{10} | 0.6083{11} | |
∑Ranks | 26{9} | 25{8} | 3{1} | 12{4} | 9{3} | 6{2} | 18{6} | 21{7} | 15{5} | 30{10} | 33{11} | ||
120 | bias | ˆδ | 0.2623{10} | 0.146{8} | 0.083{2} | 0.0856{4} | 0.0844{3} | 0.0799{1} | 0.1431{7} | 0.1349{6} | 0.1195{5} | 0.2844{11} | 0.2593{9} |
MSE | ˆδ | 0.1549{11} | 0.0865{8} | 0.0114{2.5} | 0.0125{4} | 0.0114{2.5} | 0.0103{1} | 0.0809{7} | 0.0747{6} | 0.0508{5} | 0.1489{10} | 0.1346{9} | |
MRE | ˆδ | 0.4372{10} | 0.2433{8} | 0.1383{2} | 0.1426{4} | 0.1406{3} | 0.1332{1} | 0.2385{7} | 0.2248{6} | 0.1992{5} | 0.4739{11} | 0.4322{9} | |
∑Ranks | 31{10} | 24{8} | 6.5{2} | 12{4} | 8.5{3} | 3{1} | 21{7} | 18{6} | 15{5} | 32{11} | 27{9} | ||
200 | bias | ˆδ | 0.192{9} | 0.0877{8} | 0.0497{1} | 0.0499{2} | 0.051{4} | 0.0502{3} | 0.0738{7} | 0.0695{6} | 0.0688{5} | 0.2446{11} | 0.2316{10} |
MSE | ˆδ | 0.0998{9} | 0.0529{8} | 0.0039{1} | 0.0041{3} | 0.0049{4} | 0.004{2} | 0.0325{7} | 0.0291{6} | 0.0222{5} | 0.1347{11} | 0.1316{10} | |
MRE | ˆδ | 0.3201{9} | 0.1461{8} | 0.0829{1} | 0.0832{2} | 0.0851{4} | 0.0836{3} | 0.123{7} | 0.1159{6} | 0.1146{5} | 0.4077{11} | 0.386{10} | |
∑Ranks | 27{9} | 24{8} | 3{1} | 7{2} | 12{4} | 8{3} | 21{7} | 18{6} | 15{5} | 33{11} | 30{10} | ||
300 | bias | ˆδ | 0.1497{9} | 0.0474{7} | 0.0327{3.5} | 0.0323{1.5} | 0.0323{1.5} | 0.0327{3.5} | 0.0511{8} | 0.0426{5.5} | 0.0426{5.5} | 0.214{11} | 0.1883{10} |
MSE | ˆδ | 0.0736{9} | 0.0199{7} | 0.0017{2.5} | 0.0017{2.5} | 0.0017{2.5} | 0.0017{2.5} | 0.0223{8} | 0.0133{6} | 0.0112{5} | 0.1135{11} | 0.108{10} | |
MRE | ˆδ | 0.2496{9} | 0.0791{7} | 0.0545{3.5} | 0.0539{1.5} | 0.0539{1.5} | 0.0545{3.5} | 0.0852{8} | 0.071{5.5} | 0.071{5.5} | 0.3567{11} | 0.3139{10} | |
∑Ranks | 27{9} | 21{7} | 9.5{3.5} | 5.5{1.5} | 5.5{1.5} | 9.5{3.5} | 24{8} | 17{6} | 16{5} | 33{11} | 30{10} | ||
450 | bias | ˆδ | 0.1307{9} | 0.0459{8} | 0.0214{1} | 0.0223{4} | 0.022{3} | 0.0219{2} | 0.0336{6} | 0.0359{7} | 0.0289{5} | 0.1672{11} | 0.1428{10} |
MSE | ˆδ | 0.0693{9} | 0.0304{8} | 7e−04{1} | 8e−04{3} | 8e−04{3} | 8e−04{3} | 0.0136{6} | 0.0193{7} | 0.0082{5} | 0.0865{11} | 0.0754{10} | |
MRE | ˆδ | 0.2179{9} | 0.0765{8} | 0.0356{1} | 0.0371{4} | 0.0367{3} | 0.0365{2} | 0.056{6} | 0.0599{7} | 0.0481{5} | 0.2786{11} | 0.238{10} | |
∑Ranks | 23{9} | 20{8} | 10{1} | 18{7} | 16{5} | 14{3.5} | 14{3.5} | 17{6} | 11{2} | 29{11} | 26{10} |
m∘∘ | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | ⃜δ | 0.7122{6} | 0.6873{3} | 0.7245{7} | 0.7082{5} | 0.6979{4} | 0.6344{1} | 0.6844{2} | 0.8253{10} | 0.8014{8} | 0.8066{9} | 0.8412{11} |
MSE | ⃜δ | 0.8474{6} | 0.7629{3} | 0.8495{7} | 0.7981{4} | 0.8277{5} | 0.6614{1} | 0.7295{2} | 1.1297{9} | 1.1745{10} | 1.3548{11} | 1.1033{8} | |
MRE | ⃜δ | 0.7122{6} | 0.6873{3} | 0.7245{7} | 0.7082{5} | 0.6979{4} | 0.6344{1} | 0.6844{2} | 0.8253{10} | 0.8014{8} | 0.8066{9} | 0.8412{11} | |
∑Ranks | 18{6} | 9{3} | 21{7} | 14{5} | 13{4} | 3{1} | 6{2} | 29{9.5} | 26{8} | 29{9.5} | 30{11} | ||
50 | bias | ⃜δ | 0.4803{6} | 0.506{9} | 0.4083{3} | 0.3938{2} | 0.412{4} | 0.3902{1} | 0.5212{10} | 0.484{7} | 0.4515{5} | 0.5029{8} | 0.5381{11} |
MSE | ⃜δ | 0.4336{7} | 0.4738{9} | 0.2674{3} | 0.2539{2} | 0.2684{4} | 0.2452{1} | 0.5006{10} | 0.4405{8} | 0.3571{5} | 0.4333{6} | 0.5013{11} | |
MRE | ⃜δ | 0.4803{6} | 0.506{9} | 0.4083{3} | 0.3938{2} | 0.412{4} | 0.3902{1} | 0.5212{10} | 0.484{7} | 0.4515{5} | 0.5029{8} | 0.5381{11} | |
∑Ranks | 19{6} | 27{9} | 9{3} | 6{2} | 12{4} | 3{1} | 30{10} | 22{7.5} | 15{5} | 22{7.5} | 33{11} | ||
120 | bias | ⃜δ | 0.3303{7} | 0.356{8} | 0.3065{4} | 0.2456{1} | 0.2842{3} | 0.2541{2} | 0.3263{6} | 0.3208{5} | 0.3763{10} | 0.3653{9} | 0.394{11} |
MSE | ⃜δ | 0.2801{8} | 0.3012{9} | 0.2087{4} | 0.1004{1} | 0.1845{3} | 0.1067{2} | 0.2702{6} | 0.26{5} | 0.3326{10} | 0.2761{7} | 0.3575{11} | |
MRE | ⃜δ | 0.3303{7} | 0.356{8} | 0.3065{4} | 0.2456{1} | 0.2842{3} | 0.2541{2} | 0.3263{6} | 0.3208{5} | 0.3763{10} | 0.3653{9} | 0.394{11} | |
∑Ranks | 22{7} | 25{8.5} | 12{4} | 3{1} | 9{3} | 6{2} | 18{6} | 15{5} | 30{10} | 25{8.5} | 33{11} | ||
200 | bias | ⃜δ | 0.2903{8} | 0.319{10} | 0.2642{3} | 0.1795{1} | 0.2686{5} | 0.1896{2} | 0.2804{7} | 0.2646{4} | 0.2985{9} | 0.2799{6} | 0.3676{11} |
MSE | ⃜δ | 0.2652{9} | 0.3161{10} | 0.2133{4} | 0.0533{1} | 0.2146{5} | 0.0587{2} | 0.2464{7} | 0.2208{6} | 0.2651{8} | 0.1644{3} | 0.3641{11} | |
MRE | ⃜δ | 0.2903{8} | 0.319{10} | 0.2642{3} | 0.1795{1} | 0.2686{5} | 0.1896{2} | 0.2804{7} | 0.2646{4} | 0.2985{9} | 0.2799{6} | 0.3676{11} | |
∑Ranks | 25{8} | 30{10} | 10{3} | 3{1} | 15{5.5} | 6{2} | 21{7} | 14{4} | 26{9} | 15{5.5} | 33{11} | ||
300 | bias | ⃜δ | 0.2353{6} | 0.2451{9} | 0.2423{8} | 0.1477{1} | 0.2386{7} | 0.1489{2} | 0.2484{10} | 0.2341{5} | 0.2254{3} | 0.2319{4} | 0.2941{11} |
MSE | ⃜δ | 0.2032{6} | 0.2231{9} | 0.2123{8} | 0.0349{1} | 0.2096{7} | 0.0354{2} | 0.2314{10} | 0.1956{5} | 0.175{4} | 0.1323{3} | 0.2854{11} | |
MRE | ⃜δ | 0.2353{6} | 0.2451{9} | 0.2423{8} | 0.1477{1} | 0.2386{7} | 0.1489{2} | 0.2484{10} | 0.2341{5} | 0.2254{3} | 0.2319{4} | 0.2941{11} | |
∑Ranks | 18{6} | 27{9} | 24{8} | 3{1} | 21{7} | 6{2} | 30{10} | 15{5} | 10{3} | 11{4} | 33{11} | ||
450 | bias | ⃜δ | 0.2014{7} | 0.2114{10} | 0.1867{6} | 0.1257{2} | 0.1797{3} | 0.1243{1} | 0.211{9} | 0.2015{8} | 0.1802{4} | 0.1845{5} | 0.2343{11} |
MSE | ⃜δ | 0.1805{8} | 0.2013{10} | 0.1525{6} | 0.0253{2} | 0.1369{5} | 0.0241{1} | 0.1993{9} | 0.176{7} | 0.1145{4} | 0.0973{3} | 0.215{11} | |
MRE | ⃜δ | 0.2014{7} | 0.2114{10} | 0.1867{6} | 0.1257{2} | 0.1797{3} | 0.1243{1} | 0.211{9} | 0.2015{8} | 0.1802{4} | 0.1845{5} | 0.2343{11} | |
∑Ranks | 22{7} | 30{10} | 18{6} | 6{2} | 11{3} | 3{1} | 27{9} | 23{8} | 12{4} | 13{5} | 33{11} |
m∘∘ | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | ˆδ | 0.5275{6} | 0.5141{2} | 0.5221{3} | 0.5273{5} | 0.5268{4} | 0.4992{1} | 0.5335{7} | 0.614{9} | 0.5662{8} | 0.6926{11} | 0.6648{10} |
MSE | ˆδ | 0.5039{7} | 0.4254{2} | 0.4337{5} | 0.4281{3} | 0.4289{4} | 0.3892{1} | 0.4383{6} | 0.6202{9} | 0.5341{8} | 1.147{11} | 0.6721{10} | |
MRE | ˆδ | 0.5275{6} | 0.5141{2} | 0.5221{3} | 0.5273{5} | 0.5268{4} | 0.4992{1} | 0.5335{7} | 0.614{9} | 0.5662{8} | 0.6926{11} | 0.6648{10} | |
∑Ranks | 19{6} | 6{2} | 11{3} | 13{5} | 12{4} | 3{1} | 20{7} | 27{9} | 24{8} | 33{11} | 30{10} | ||
50 | bias | ˆδ | 0.3107{9} | 0.235{7} | 0.1668{2} | 0.1707{3} | 0.1729{4} | 0.1579{1} | 0.2146{6} | 0.238{8} | 0.1894{5} | 0.3776{10} | 0.416{11} |
MSE | ˆδ | 0.2806{10} | 0.1836{7} | 0.0433{2} | 0.0468{3} | 0.0486{4} | 0.0388{1} | 0.1309{6} | 0.1993{8} | 0.0699{5} | 0.2681{9} | 0.3842{11} | |
MRE | ˆδ | 0.3107{9} | 0.235{7} | 0.1668{2} | 0.1707{3} | 0.1729{4} | 0.1579{1} | 0.2146{6} | 0.238{8} | 0.1894{5} | 0.3776{10} | 0.416{11} | |
∑Ranks | 28{9} | 21{7} | 6{2} | 9{3} | 12{4} | 3{1} | 18{6} | 24{8} | 15{5} | 29{10} | 33{11} | ||
120 | bias | ˆδ | 0.2243{9} | 0.0964{7} | 0.0706{3} | 0.0681{1} | 0.0713{4} | 0.0699{2} | 0.0799{6} | 0.114{8} | 0.0776{5} | 0.251{11} | 0.2387{10} |
MSE | ˆδ | 0.2005{10} | 0.061{7} | 0.0077{2} | 0.0074{1} | 0.008{4} | 0.0078{3} | 0.0229{6} | 0.098{8} | 0.0142{5} | 0.1692{9} | 0.2032{11} | |
MRE | ˆδ | 0.2243{9} | 0.0964{7} | 0.0706{3} | 0.0681{1} | 0.0713{4} | 0.0699{2} | 0.0799{6} | 0.114{8} | 0.0776{5} | 0.251{11} | 0.2387{10} | |
∑Ranks | 28{9} | 21{7} | 8{3} | 3{1} | 12{4} | 7{2} | 18{6} | 24{8} | 15{5} | 31{10.5} | 31{10.5} | ||
200 | bias | ˆδ | 0.1698{11} | 0.0626{7} | 0.0417{1} | 0.0426{4} | 0.0421{3} | 0.0418{2} | 0.0448{6} | 0.0739{8} | 0.0441{5} | 0.1689{9} | 0.1696{10} |
MSE | ˆδ | 0.1455{11} | 0.0457{7} | 0.0027{1} | 0.0029{3.5} | 0.0028{2} | 0.0029{3.5} | 0.0032{6} | 0.0701{8} | 0.003{5} | 0.0785{9} | 0.1166{10} | |
MRE | ˆδ | 0.1698{11} | 0.0626{7} | 0.0417{1} | 0.0426{4} | 0.0421{3} | 0.0418{2} | 0.0448{6} | 0.0739{8} | 0.0441{5} | 0.1689{9} | 0.1696{10} | |
∑Ranks | 33{11} | 21{7} | 3{1} | 11.5{4} | 8{3} | 7.5{2} | 18{6} | 24{8} | 15{5} | 27{9} | 30{10} | ||
300 | bias | ˆδ | 0.1399{9} | 0.0433{8} | 0.0279{1} | 0.0289{4} | 0.0284{2} | 0.0287{3} | 0.0293{5} | 0.0406{7} | 0.0294{6} | 0.1418{11} | 0.1411{10} |
MSE | ˆδ | 0.118{11} | 0.031{8} | 0.0012{1} | 0.0013{4} | 0.0013{4} | 0.0013{4} | 0.0013{4} | 0.0283{7} | 0.0013{4} | 0.0708{9} | 0.1043{10} | |
MRE | ˆδ | 0.1399{9} | 0.0433{8} | 0.0279{1} | 0.0289{4} | 0.0284{2} | 0.0287{3} | 0.0293{5} | 0.0406{7} | 0.0294{6} | 0.1418{11} | 0.1411{10} | |
∑Ranks | 29{9} | 24{8} | 3{1} | 12{4} | 8{2} | 10{3} | 14{5} | 21{7} | 16{6} | 31{11} | 30{10} | ||
450 | bias | ˆδ | 0.1036{9} | 0.0221{7} | 0.0192{3} | 0.019{2} | 0.0187{1} | 0.0195{4} | 0.0196{5} | 0.0261{8} | 0.0211{6} | 0.113{10} | 0.1484{11} |
MSE | ˆδ | 0.0744{10} | 0.0081{7} | 6e−04{3.5} | 6e−04{3.5} | 5e−04{1} | 6e−04{3.5} | 6e−04{3.5} | 0.0159{8} | 7e−04{6} | 0.0457{9} | 0.1471{11} | |
MRE | ˆδ | 0.1036{9} | 0.0221{7} | 0.0192{3} | 0.019{2} | 0.0187{1} | 0.0195{4} | 0.0196{5} | 0.0261{8} | 0.0211{6} | 0.113{10} | 0.1484{11} | |
∑Ranks | 22{8} | 15{4} | 14.5{3} | 12.5{2} | 8{1} | 16.5{5} | 18.5{7} | 18{6} | 23{9.5} | 23{9.5} | 27{11} |
m∘∘ | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RTADE | WLSE | LTADE | MSADE | MSALDE |
15 | bias | ⃜δ | 0.8259{6} | 0.7838{3} | 0.8036{5} | 0.7894{4} | 0.8341{7} | 0.7285{1} | 0.7378{2} | 0.9492{9} | 0.8732{8} | 1.0216{11} | 0.9697{10} |
MSE | ⃜δ | 1.2727{7} | 1.0399{3} | 1.0808{4} | 1.0933{5} | 1.202{6} | 0.8775{1} | 0.9547{2} | 1.6659{10} | 1.4583{8} | 2.1721{11} | 1.6264{9} | |
MRE | ⃜δ | 0.5506{6} | 0.5225{3} | 0.5358{5} | 0.5263{4} | 0.5561{7} | 0.4857{1} | 0.4919{2} | 0.6328{9} | 0.5821{8} | 0.681{11} | 0.6465{10} | |
∑Ranks | 19{6} | 9{3} | 14{5} | 13{4} | 20{7} | 3{1} | 6{2} | 28{9} | 24{8} | 33{11} | 29{10} | ||
50 | bias | ⃜δ | 0.5183{7} | 0.586{10} | 0.4{2} | 0.4047{3} | 0.4139{4} | 0.3985{1} | 0.5567{9} | 0.5348{8} | 0.489{5} | 0.5173{6} | 0.6337{11} |
MSE | ⃜δ | 0.6396{7} | 0.8036{10} | 0.2791{2} | 0.2805{3} | 0.288{4} | 0.2613{1} | 0.7203{9} | 0.6572{8} | 0.4544{5} | 0.5237{6} | 0.8491{11} | |
MRE | ⃜δ | 0.3455{7} | 0.3907{10} | 0.2666{2} | 0.2698{3} | 0.276{4} | 0.2656{1} | 0.3711{9} | 0.3565{8} | 0.326{5} | 0.3449{6} | 0.4225{11} | |
∑Ranks | 21{7} | 30{10} | 6{2} | 9{3} | 12{4} | 3{1} | 27{9} | 24{8} | 15{5} | 18{6} | 33{11} | ||
120 | bias | ⃜δ | 0.3961{10} | 0.355{5} | 0.2711{3} | 0.2496{1} | 0.2806{4} | 0.2575{2} | 0.393{9} | 0.3723{7} | 0.3904{8} | 0.3606{6} | 0.4223{11} |
MSE | ⃜δ | 0.5109{10} | 0.4097{6} | 0.1418{3} | 0.1005{1} | 0.1596{4} | 0.1041{2} | 0.5078{9} | 0.4587{7} | 0.4643{8} | 0.2852{5} | 0.5133{11} | |
MRE | ⃜δ | 0.2641{10} | 0.2367{5} | 0.1807{3} | 0.1664{1} | 0.1871{4} | 0.1717{2} | 0.262{9} | 0.2482{7} | 0.2603{8} | 0.2404{6} | 0.2815{11} | |
∑Ranks | 30{10} | 16{5} | 9{3} | 3{1} | 12{4} | 6{2} | 27{9} | 21{7} | 24{8} | 17{6} | 33{11} | ||
200 | bias | ⃜δ | 0.2728{6} | 0.2857{7} | 0.2125{4} | 0.1934{1} | 0.2094{3} | 0.1975{2} | 0.2908{8} | 0.3021{9} | 0.3034{10} | 0.2703{5} | 0.3321{11} |
MSE | ⃜δ | 0.2776{6} | 0.3128{7} | 0.1143{4} | 0.0596{1} | 0.1093{3} | 0.0614{2} | 0.3489{8} | 0.3503{9} | 0.3585{10} | 0.1747{5} | 0.4016{11} | |
MRE | ⃜δ | 0.1819{6} | 0.1905{7} | 0.1417{4} | 0.1289{1} | 0.1396{3} | 0.1316{2} | 0.1939{8} | 0.2014{9} | 0.2023{10} | 0.1802{5} | 0.2214{11} | |
∑Ranks | 18{6} | 21{7} | 12{4} | 3{1} | 9{3} | 6{2} | 24{8} | 27{9} | 30{10} | 15{5} | 33{11} | ||
300 | bias | ⃜δ | 0.2244{5} | 0.2549{8} | 0.1945{4} | 0.1567{1} | 0.1871{3} | 0.1656{2} | 0.2356{6} | 0.2598{10} | 0.2597{9} | 0.2369{7} | 0.2841{11} |
MSE | ⃜δ | 0.2361{6} | 0.3395{10} | 0.1524{4} | 0.0393{1} | 0.1275{3} | 0.0433{2} | 0.257{7} | 0.3273{9} | 0.3211{8} | 0.1709{5} | 0.3588{11} | |
MRE | ⃜δ | 0.1496{5} | 0.1699{8} | 0.1297{4} | 0.1045{1} | 0.1248{3} | 0.1104{2} | 0.1571{6} | 0.1732{10} | 0.1731{9} | 0.1579{7} | 0.1894{11} | |
∑Ranks | 16{5} | 26{8.5} | 12{4} | 3{1} | 9{3} | 6{2} | 19{6.5} | 29{10} | 26{8.5} | 19{6.5} | 33{11} | ||
450 | bias | ⃜δ | 0.1999{8} | 0.1892{7} | 0.1614{3} | 0.1295{2} | 0.1625{4} | 0.1291{1} | 0.2165{10} | 0.1861{6} | 0.2033{9} | 0.1765 ^{\{5\}} | 0.2949 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2334 ^{\{9\}} | 0.222 ^{\{7\}} | 0.13 ^{\{5\}} | 0.0268 ^{\{2\}} | 0.1241 ^{\{4\}} | 0.0263 ^{\{1\}} | 0.2636 ^{\{10\}} | 0.2028 ^{\{6\}} | 0.2307 ^{\{8\}} | 0.0745 ^{\{3\}} | 0.4434 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1333 ^{\{8\}} | 0.1262 ^{\{7\}} | 0.1076 ^{\{3\}} | 0.0864 ^{\{2\}} | 0.1083 ^{\{4\}} | 0.086 ^{\{1\}} | 0.1443 ^{\{10\}} | 0.124 ^{\{6\}} | 0.1355 ^{\{9\}} | 0.1177 ^{\{5\}} | 0.1966 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 21 ^{\{7\}} | 11 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | 26 ^{\{9\}} | 13 ^{\{5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.5613 ^{\{5\}} | 0.5416 ^{\{3\}} | 0.5415 ^{\{2\}} | 0.5732 ^{\{7\}} | 0.5575 ^{\{4\}} | 0.512 ^{\{1\}} | 0.5678 ^{\{6\}} | 0.7597 ^{\{10\}} | 0.6059 ^{\{8\}} | 0.7398 ^{\{9\}} | 0.7922 ^{\{11\}} |
MSE | \hat{\delta} | 0.7281 ^{\{7\}} | 0.5044 ^{\{2\}} | 0.5163 ^{\{3\}} | 0.5459 ^{\{6\}} | 0.5328 ^{\{4\}} | 0.4343 ^{\{1\}} | 0.5351 ^{\{5\}} | 1.1729 ^{\{11\}} | 0.7324 ^{\{8\}} | 0.9953 ^{\{9\}} | 1.083 ^{\{10\}} | |
MRE | \hat{\delta} | 0.3742 ^{\{5\}} | 0.3611 ^{\{3\}} | 0.361 ^{\{2\}} | 0.3821 ^{\{7\}} | 0.3717 ^{\{4\}} | 0.3413 ^{\{1\}} | 0.3785 ^{\{6\}} | 0.5065 ^{\{10\}} | 0.404 ^{\{8\}} | 0.4932 ^{\{9\}} | 0.5281 ^{\{11\}} | |
\sum Ranks | 17 ^{\{5.5\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 20 ^{\{7\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 17 ^{\{5.5\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 27 ^{\{9\}} | 32 ^{\{11\}} | ||
50 | bias | \hat{\delta} | 0.3325 ^{\{9\}} | 0.1833 ^{\{6\}} | 0.1701 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1671 ^{\{1\}} | 0.1759 ^{\{4\}} | 0.1762 ^{\{5\}} | 0.2899 ^{\{8\}} | 0.1844 ^{\{7\}} | 0.3829 ^{\{10\}} | 0.4402 ^{\{11\}} |
MSE | \hat{\delta} | 0.4045 ^{\{10\}} | 0.1073 ^{\{7\}} | 0.0447 ^{\{1\}} | 0.0466 ^{\{3\}} | 0.0463 ^{\{2\}} | 0.0489 ^{\{4\}} | 0.0492 ^{\{5\}} | 0.4029 ^{\{9\}} | 0.0559 ^{\{6\}} | 0.3246 ^{\{8\}} | 0.5328 ^{\{11\}} | |
MRE | \hat{\delta} | 0.2216 ^{\{9\}} | 0.1222 ^{\{6\}} | 0.1134 ^{\{2\}} | 0.1138 ^{\{3\}} | 0.1114 ^{\{1\}} | 0.1172 ^{\{4\}} | 0.1175 ^{\{5\}} | 0.1933 ^{\{8\}} | 0.123 ^{\{7\}} | 0.2552 ^{\{10\}} | 0.2935 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 19 ^{\{6\}} | 5 ^{\{2\}} | 9 ^{\{3\}} | 4 ^{\{1\}} | 12 ^{\{4\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 20 ^{\{7\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.1905 ^{\{9\}} | 0.085 ^{\{7\}} | 0.0726 ^{\{2\}} | 0.0724 ^{\{1\}} | 0.0746 ^{\{4\}} | 0.0735 ^{\{3\}} | 0.0763 ^{\{5\}} | 0.1106 ^{\{8\}} | 0.0801 ^{\{6\}} | 0.2246 ^{\{10\}} | 0.256 ^{\{11\}} |
MSE | \hat{\delta} | 0.1833 ^{\{10\}} | 0.0383 ^{\{7\}} | 0.0084 ^{\{2.5\}} | 0.0083 ^{\{1\}} | 0.0086 ^{\{4\}} | 0.0084 ^{\{2.5\}} | 0.0093 ^{\{5\}} | 0.1197 ^{\{8\}} | 0.01 ^{\{6\}} | 0.1394 ^{\{9\}} | 0.3088 ^{\{11\}} | |
MRE | \hat{\delta} | 0.127 ^{\{9\}} | 0.0567 ^{\{7\}} | 0.0484 ^{\{2\}} | 0.0483 ^{\{1\}} | 0.0498 ^{\{4\}} | 0.049 ^{\{3\}} | 0.0509 ^{\{5\}} | 0.0737 ^{\{8\}} | 0.0534 ^{\{6\}} | 0.1497 ^{\{10\}} | 0.1707 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 6.5 ^{\{2\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 8.5 ^{\{3\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
200 | bias | \hat{\delta} | 0.1872 ^{\{10\}} | 0.0448 ^{\{2\}} | 0.0431 ^{\{1\}} | 0.0457 ^{\{3\}} | 0.0462 ^{\{4\}} | 0.0472 ^{\{6\}} | 0.0469 ^{\{5\}} | 0.0762 ^{\{8\}} | 0.0488 ^{\{7\}} | 0.1621 ^{\{9\}} | 0.2017 ^{\{11\}} |
MSE | \hat{\delta} | 0.2301 ^{\{10\}} | 0.0031 ^{\{2\}} | 0.003 ^{\{1\}} | 0.0034 ^{\{4\}} | 0.0033 ^{\{3\}} | 0.0035 ^{\{5.5\}} | 0.0035 ^{\{5.5\}} | 0.0961 ^{\{9\}} | 0.0038 ^{\{7\}} | 0.0727 ^{\{8\}} | 0.2481 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1248 ^{\{10\}} | 0.0299 ^{\{2\}} | 0.0287 ^{\{1\}} | 0.0304 ^{\{3\}} | 0.0308 ^{\{4\}} | 0.0314 ^{\{6\}} | 0.0312 ^{\{5\}} | 0.0508 ^{\{8\}} | 0.0325 ^{\{7\}} | 0.1081 ^{\{9\}} | 0.1345 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 17.5 ^{\{6\}} | 15.5 ^{\{5\}} | 25 ^{\{8\}} | 21 ^{\{7\}} | 26 ^{\{9\}} | 33 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1573 ^{\{10\}} | 0.0282 ^{\{1\}} | 0.0305 ^{\{4\}} | 0.0307 ^{\{5\}} | 0.0295 ^{\{2\}} | 0.0304 ^{\{3\}} | 0.031 ^{\{6.5\}} | 0.0368 ^{\{8\}} | 0.031 ^{\{6.5\}} | 0.135 ^{\{9\}} | 0.1622 ^{\{11\}} |
MSE | \hat{\delta} | 0.2056 ^{\{11\}} | 0.0013 ^{\{1\}} | 0.0015 ^{\{5.5\}} | 0.0015 ^{\{5.5\}} | 0.0014 ^{\{2.5\}} | 0.0014 ^{\{2.5\}} | 0.0015 ^{\{5.5\}} | 0.0276 ^{\{8\}} | 0.0015 ^{\{5.5\}} | 0.0507 ^{\{9\}} | 0.183 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1049 ^{\{10\}} | 0.0188 ^{\{1\}} | 0.0203 ^{\{4\}} | 0.0205 ^{\{5\}} | 0.0197 ^{\{2\}} | 0.0202 ^{\{3\}} | 0.0207 ^{\{6.5\}} | 0.0246 ^{\{8\}} | 0.0207 ^{\{6.5\}} | 0.09 ^{\{9\}} | 0.1081 ^{\{11\}} | |
\sum Ranks | 31 ^{\{10\}} | 3 ^{\{1\}} | 13.5 ^{\{4\}} | 15.5 ^{\{5\}} | 6.5 ^{\{2\}} | 8.5 ^{\{3\}} | 18.5 ^{\{6.5\}} | 24 ^{\{8\}} | 18.5 ^{\{6.5\}} | 27 ^{\{9\}} | 32 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1396 ^{\{11\}} | 0.0196 ^{\{2\}} | 0.0207 ^{\{6\}} | 0.0195 ^{\{1\}} | 0.0204 ^{\{3.5\}} | 0.0204 ^{\{3.5\}} | 0.0214 ^{\{7\}} | 0.034 ^{\{8\}} | 0.0205 ^{\{5\}} | 0.1083 ^{\{9\}} | 0.1232 ^{\{10\}} |
MSE | \hat{\delta} | 0.199 ^{\{11\}} | 6e-04 ^{\{1.5\}} | 7e-04 ^{\{5\}} | 6e-04 ^{\{1.5\}} | 7e-04 ^{\{5\}} | 7e-04 ^{\{5\}} | 7e-04 ^{\{5\}} | 0.0449 ^{\{8\}} | 7e-04 ^{\{5\}} | 0.0486 ^{\{9\}} | 0.1356 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0931 ^{\{11\}} | 0.0131 ^{\{2\}} | 0.0138 ^{\{6\}} | 0.013 ^{\{1\}} | 0.0136 ^{\{3.5\}} | 0.0136 ^{\{3.5\}} | 0.0143 ^{\{7\}} | 0.0227 ^{\{8\}} | 0.0137 ^{\{5\}} | 0.0722 ^{\{9\}} | 0.0821 ^{\{10\}} | |
\sum Ranks | 26 ^{\{11\}} | 9.5 ^{\{2\}} | 21 ^{\{8\}} | 7.5 ^{\{1\}} | 16 ^{\{3.5\}} | 16 ^{\{3.5\}} | 23 ^{\{9.5\}} | 17 ^{\{5\}} | 19 ^{\{6\}} | 20 ^{\{7\}} | 23 ^{\{9.5\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.8662 ^{\{3\}} | 0.89 ^{\{4\}} | 0.936 ^{\{5\}} | 0.9702 ^{\{7\}} | 0.9394 ^{\{6\}} | 0.8391 ^{\{1\}} | 0.8576 ^{\{2\}} | 1.139 ^{\{11\}} | 1.0388 ^{\{8\}} | 1.0907 ^{\{10\}} | 1.0534 ^{\{9\}} |
MSE | {\ddddot \delta} | 1.4064 ^{\{3\}} | 1.4249 ^{\{4\}} | 1.6365 ^{\{5\}} | 1.7863 ^{\{7\}} | 1.6449 ^{\{6\}} | 1.2631 ^{\{1\}} | 1.3114 ^{\{2\}} | 2.5605 ^{\{10\}} | 2.2348 ^{\{9\}} | 2.9563 ^{\{11\}} | 2.0211 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.4331 ^{\{3\}} | 0.445 ^{\{4\}} | 0.468 ^{\{5\}} | 0.4851 ^{\{7\}} | 0.4697 ^{\{6\}} | 0.4196 ^{\{1\}} | 0.4288 ^{\{2\}} | 0.5695 ^{\{11\}} | 0.5194 ^{\{8\}} | 0.5453 ^{\{10\}} | 0.5267 ^{\{9\}} | |
\sum Ranks | 9 ^{\{3\}} | 12 ^{\{4\}} | 15 ^{\{5\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 32 ^{\{11\}} | 25 ^{\{8\}} | 31 ^{\{10\}} | 26 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.5893 ^{\{7\}} | 0.6143 ^{\{9\}} | 0.4517 ^{\{2\}} | 0.4631 ^{\{4\}} | 0.4561 ^{\{3\}} | 0.4439 ^{\{1\}} | 0.5144 ^{\{6\}} | 0.6613 ^{\{10\}} | 0.4828 ^{\{5\}} | 0.6069 ^{\{8\}} | 0.7456 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.8981 ^{\{8\}} | 0.9587 ^{\{9\}} | 0.3418 ^{\{2\}} | 0.3854 ^{\{4\}} | 0.3458 ^{\{3\}} | 0.3249 ^{\{1\}} | 0.5695 ^{\{6\}} | 1.1788 ^{\{10\}} | 0.4004 ^{\{5\}} | 0.7547 ^{\{7\}} | 1.3034 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2946 ^{\{7\}} | 0.3071 ^{\{9\}} | 0.2259 ^{\{2\}} | 0.2316 ^{\{4\}} | 0.2281 ^{\{3\}} | 0.2219 ^{\{1\}} | 0.2572 ^{\{6\}} | 0.3307 ^{\{10\}} | 0.2414 ^{\{5\}} | 0.3035 ^{\{8\}} | 0.3728 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 27 ^{\{9\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 18 ^{\{6\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 23 ^{\{8\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.4366 ^{\{8\}} | 0.4407 ^{\{9\}} | 0.2887 ^{\{1\}} | 0.291 ^{\{2\}} | 0.2921 ^{\{4\}} | 0.292 ^{\{3\}} | 0.38 ^{\{6\}} | 0.4637 ^{\{10\}} | 0.3547 ^{\{5\}} | 0.3908 ^{\{7\}} | 0.4989 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.7198 ^{\{8\}} | 0.7406 ^{\{9\}} | 0.1352 ^{\{1\}} | 0.1371 ^{\{2\}} | 0.1377 ^{\{4\}} | 0.1372 ^{\{3\}} | 0.4774 ^{\{7\}} | 0.8288 ^{\{11\}} | 0.33 ^{\{5\}} | 0.362 ^{\{6\}} | 0.8257 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.2183 ^{\{8\}} | 0.2204 ^{\{9\}} | 0.1444 ^{\{1\}} | 0.1455 ^{\{2\}} | 0.146 ^{\{3.5\}} | 0.146 ^{\{3.5\}} | 0.19 ^{\{6\}} | 0.2318 ^{\{10\}} | 0.1773 ^{\{5\}} | 0.1954 ^{\{7\}} | 0.2494 ^{\{11\}} | |
\sum Ranks | 24 ^{\{8\}} | 27 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 11.5 ^{\{4\}} | 9.5 ^{\{3\}} | 19 ^{\{6\}} | 31 ^{\{10\}} | 15 ^{\{5\}} | 20 ^{\{7\}} | 32 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.318 ^{\{8\}} | 0.3186 ^{\{9\}} | 0.2241 ^{\{3\}} | 0.2219 ^{\{1\}} | 0.2224 ^{\{2\}} | 0.2255 ^{\{4\}} | 0.3266 ^{\{10\}} | 0.3167 ^{\{7\}} | 0.3049 ^{\{6\}} | 0.3037 ^{\{5\}} | 0.3701 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.4703 ^{\{8\}} | 0.4776 ^{\{9\}} | 0.0866 ^{\{4\}} | 0.0783 ^{\{1\}} | 0.0803 ^{\{2\}} | 0.0811 ^{\{3\}} | 0.4872 ^{\{10\}} | 0.4586 ^{\{7\}} | 0.361 ^{\{6\}} | 0.2278 ^{\{5\}} | 0.5503 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.159 ^{\{8\}} | 0.1593 ^{\{9\}} | 0.112 ^{\{3\}} | 0.111 ^{\{1\}} | 0.1112 ^{\{2\}} | 0.1128 ^{\{4\}} | 0.1633 ^{\{10\}} | 0.1584 ^{\{7\}} | 0.1525 ^{\{6\}} | 0.1518 ^{\{5\}} | 0.185 ^{\{11\}} | |
\sum Ranks | 24 ^{\{8\}} | 27 ^{\{9\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 11 ^{\{4\}} | 30 ^{\{10\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.258 ^{\{6\}} | 0.261 ^{\{7\}} | 0.1862 ^{\{3\}} | 0.1821 ^{\{1\}} | 0.1857 ^{\{2\}} | 0.1869 ^{\{4\}} | 0.2793 ^{\{8\}} | 0.2918 ^{\{11\}} | 0.2893 ^{\{10\}} | 0.2431 ^{\{5\}} | 0.2841 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.3621 ^{\{7\}} | 0.3677 ^{\{8\}} | 0.0643 ^{\{3\}} | 0.0516 ^{\{1\}} | 0.0651 ^{\{4\}} | 0.0548 ^{\{2\}} | 0.4523 ^{\{10\}} | 0.4936 ^{\{11\}} | 0.4307 ^{\{9\}} | 0.1549 ^{\{5\}} | 0.3537 ^{\{6\}} | |
MRE | {\ddddot \delta} | 0.129 ^{\{6\}} | 0.1305 ^{\{7\}} | 0.0931 ^{\{3\}} | 0.091 ^{\{1\}} | 0.0929 ^{\{2\}} | 0.0935 ^{\{4\}} | 0.1396 ^{\{8\}} | 0.1459 ^{\{11\}} | 0.1447 ^{\{10\}} | 0.1216 ^{\{5\}} | 0.142 ^{\{9\}} | |
\sum Ranks | 19 ^{\{6\}} | 22 ^{\{7\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 8 ^{\{2\}} | 10 ^{\{4\}} | 26 ^{\{9\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | ||
450 | bias | {\ddddot \delta} | 0.212 ^{\{7\}} | 0.2088 ^{\{6\}} | 0.1503 ^{\{3\}} | 0.1492 ^{\{1\}} | 0.1583 ^{\{4\}} | 0.1497 ^{\{2\}} | 0.2339 ^{\{9\}} | 0.2292 ^{\{8\}} | 0.2624 ^{\{11\}} | 0.1916 ^{\{5\}} | 0.2373 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.2839 ^{\{7\}} | 0.2713 ^{\{6\}} | 0.0526 ^{\{3\}} | 0.0349 ^{\{1\}} | 0.0706 ^{\{4\}} | 0.035 ^{\{2\}} | 0.3701 ^{\{10\}} | 0.3634 ^{\{9\}} | 0.459 ^{\{11\}} | 0.0959 ^{\{5\}} | 0.3072 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.106 ^{\{7\}} | 0.1044 ^{\{6\}} | 0.0752 ^{\{3\}} | 0.0746 ^{\{1\}} | 0.0791 ^{\{4\}} | 0.0748 ^{\{2\}} | 0.1169 ^{\{9\}} | 0.1146 ^{\{8\}} | 0.1312 ^{\{11\}} | 0.0958 ^{\{5\}} | 0.1186 ^{\{10\}} | |
\sum Ranks | 21 ^{\{7\}} | 18 ^{\{6\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 6 ^{\{2\}} | 28 ^{\{9.5\}} | 25 ^{\{8\}} | 33 ^{\{11\}} | 15 ^{\{5\}} | 28 ^{\{9.5\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.6322 ^{\{4\}} | 0.6102 ^{\{2\}} | 0.6497 ^{\{5\}} | 0.6604 ^{\{7\}} | 0.6505 ^{\{6\}} | 0.5827 ^{\{1\}} | 0.6233 ^{\{3\}} | 0.8329 ^{\{10\}} | 0.7071 ^{\{8\}} | 0.8762 ^{\{11\}} | 0.8269 ^{\{9\}} |
MSE | \hat{\delta} | 0.9731 ^{\{8\}} | 0.6199 ^{\{2\}} | 0.781 ^{\{4\}} | 0.8186 ^{\{6\}} | 0.792 ^{\{5\}} | 0.5512 ^{\{1\}} | 0.6432 ^{\{3\}} | 1.5585 ^{\{11\}} | 0.9725 ^{\{7\}} | 1.5475 ^{\{10\}} | 1.2327 ^{\{9\}} | |
MRE | \hat{\delta} | 0.3161 ^{\{4\}} | 0.3051 ^{\{2\}} | 0.3248 ^{\{5\}} | 0.3302 ^{\{7\}} | 0.3253 ^{\{6\}} | 0.2913 ^{\{1\}} | 0.3116 ^{\{3\}} | 0.4165 ^{\{10\}} | 0.3536 ^{\{8\}} | 0.4381 ^{\{11\}} | 0.4135 ^{\{9\}} | |
\sum Ranks | 16 ^{\{5\}} | 6 ^{\{2\}} | 14 ^{\{4\}} | 20 ^{\{7\}} | 17 ^{\{6\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 31 ^{\{10\}} | 23 ^{\{8\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.3897 ^{\{9\}} | 0.193 ^{\{4\}} | 0.1927 ^{\{2\}} | 0.1894 ^{\{1\}} | 0.1929 ^{\{3\}} | 0.2032 ^{\{5\}} | 0.2036 ^{\{6\}} | 0.289 ^{\{8\}} | 0.2086 ^{\{7\}} | 0.3972 ^{\{11\}} | 0.397 ^{\{10\}} |
MSE | \hat{\delta} | 0.6241 ^{\{11\}} | 0.0645 ^{\{4\}} | 0.0593 ^{\{2\}} | 0.0566 ^{\{1\}} | 0.0596 ^{\{3\}} | 0.0651 ^{\{5\}} | 0.066 ^{\{6\}} | 0.4495 ^{\{9\}} | 0.0692 ^{\{7\}} | 0.3584 ^{\{8\}} | 0.4557 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1948 ^{\{9\}} | 0.0965 ^{\{3.5\}} | 0.0964 ^{\{2\}} | 0.0947 ^{\{1\}} | 0.0965 ^{\{3.5\}} | 0.1016 ^{\{5\}} | 0.1018 ^{\{6\}} | 0.1445 ^{\{8\}} | 0.1043 ^{\{7\}} | 0.1986 ^{\{11\}} | 0.1985 ^{\{10\}} | |
\sum Ranks | 29 ^{\{9\}} | 11.5 ^{\{4\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9.5 ^{\{3\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 25 ^{\{8\}} | 21 ^{\{7\}} | 30 ^{\{10.5\}} | 30 ^{\{10.5\}} | ||
120 | bias | \hat{\delta} | 0.2299 ^{\{9\}} | 0.0806 ^{\{1\}} | 0.0822 ^{\{2\}} | 0.0823 ^{\{3\}} | 0.0832 ^{\{4\}} | 0.0907 ^{\{7\}} | 0.0868 ^{\{5\}} | 0.1273 ^{\{8\}} | 0.0889 ^{\{6\}} | 0.2521 ^{\{10\}} | 0.2691 ^{\{11\}} |
MSE | \hat{\delta} | 0.2926 ^{\{10\}} | 0.0103 ^{\{1\}} | 0.0106 ^{\{2\}} | 0.0107 ^{\{3\}} | 0.0108 ^{\{4\}} | 0.0128 ^{\{7\}} | 0.0117 ^{\{5\}} | 0.1932 ^{\{8\}} | 0.0123 ^{\{6\}} | 0.2008 ^{\{9\}} | 0.3613 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1149 ^{\{9\}} | 0.0403 ^{\{1\}} | 0.0411 ^{\{2\}} | 0.0412 ^{\{3\}} | 0.0416 ^{\{4\}} | 0.0454 ^{\{7\}} | 0.0434 ^{\{5\}} | 0.0636 ^{\{8\}} | 0.0445 ^{\{6\}} | 0.1261 ^{\{10\}} | 0.1346 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
200 | bias | \hat{\delta} | 0.1779 ^{\{9\}} | 0.0504 ^{\{3\}} | 0.0495 ^{\{1\}} | 0.0502 ^{\{2\}} | 0.0508 ^{\{4\}} | 0.0547 ^{\{7\}} | 0.0527 ^{\{5\}} | 0.0742 ^{\{8\}} | 0.0536 ^{\{6\}} | 0.1814 ^{\{10\}} | 0.2188 ^{\{11\}} |
MSE | \hat{\delta} | 0.224 ^{\{10\}} | 0.004 ^{\{3\}} | 0.0038 ^{\{1\}} | 0.004 ^{\{3\}} | 0.004 ^{\{3\}} | 0.0047 ^{\{7\}} | 0.0043 ^{\{5\}} | 0.103 ^{\{9\}} | 0.0046 ^{\{6\}} | 0.0966 ^{\{8\}} | 0.3339 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0889 ^{\{9\}} | 0.0252 ^{\{3\}} | 0.0247 ^{\{1\}} | 0.0251 ^{\{2\}} | 0.0254 ^{\{4\}} | 0.0273 ^{\{7\}} | 0.0264 ^{\{5\}} | 0.0371 ^{\{8\}} | 0.0268 ^{\{6\}} | 0.0907 ^{\{10\}} | 0.1094 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 7 ^{\{2\}} | 11 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1527 ^{\{9\}} | 0.0336 ^{\{2.5\}} | 0.0336 ^{\{2.5\}} | 0.0334 ^{\{1\}} | 0.0339 ^{\{4\}} | 0.037 ^{\{7\}} | 0.0353 ^{\{5\}} | 0.0595 ^{\{8\}} | 0.0356 ^{\{6\}} | 0.1543 ^{\{10\}} | 0.1965 ^{\{11\}} |
MSE | \hat{\delta} | 0.2146 ^{\{10\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0022 ^{\{7\}} | 0.0019 ^{\{5\}} | 0.1098 ^{\{9\}} | 0.002 ^{\{6\}} | 0.0868 ^{\{8\}} | 0.3452 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0764 ^{\{9\}} | 0.0168 ^{\{2.5\}} | 0.0168 ^{\{2.5\}} | 0.0167 ^{\{1\}} | 0.0169 ^{\{4\}} | 0.0185 ^{\{7\}} | 0.0176 ^{\{5\}} | 0.0297 ^{\{8\}} | 0.0178 ^{\{6\}} | 0.0771 ^{\{10\}} | 0.0983 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 7.5 ^{\{2.5\}} | 7.5 ^{\{2.5\}} | 4.5 ^{\{1\}} | 10.5 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1452 ^{\{10\}} | 0.0224 ^{\{2\}} | 0.023 ^{\{4\}} | 0.0222 ^{\{1\}} | 0.0227 ^{\{3\}} | 0.025 ^{\{7\}} | 0.0239 ^{\{5\}} | 0.0359 ^{\{8\}} | 0.0243 ^{\{6\}} | 0.1194 ^{\{9\}} | 0.1483 ^{\{11\}} |
MSE | \hat{\delta} | 0.2516 ^{\{11\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 0.001 ^{\{7\}} | 9e-04 ^{\{5.5\}} | 0.0574 ^{\{9\}} | 9e-04 ^{\{5.5\}} | 0.047 ^{\{8\}} | 0.2342 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0726 ^{\{10\}} | 0.0112 ^{\{2\}} | 0.0115 ^{\{4\}} | 0.0111 ^{\{1\}} | 0.0114 ^{\{3\}} | 0.0125 ^{\{7\}} | 0.0119 ^{\{5\}} | 0.018 ^{\{8\}} | 0.0121 ^{\{6\}} | 0.0597 ^{\{9\}} | 0.0742 ^{\{11\}} | |
\sum Ranks | 25 ^{\{10\}} | 11.5 ^{\{2\}} | 15.5 ^{\{5\}} | 9.5 ^{\{1\}} | 13.5 ^{\{3\}} | 15 ^{\{4\}} | 20.5 ^{\{8\}} | 19 ^{\{6\}} | 22.5 ^{\{9\}} | 20 ^{\{7\}} | 26 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.9599 ^{\{2\}} | 0.9855 ^{\{3\}} | 1.1014 ^{\{5\}} | 1.1374 ^{\{6\}} | 1.1475 ^{\{7\}} | 0.9352 ^{\{1\}} | 1.0073 ^{\{4\}} | 1.3039 ^{\{11\}} | 1.157 ^{\{8\}} | 1.1786 ^{\{9\}} | 1.1824 ^{\{10\}} |
MSE | {\ddddot \delta} | 1.7187 ^{\{3\}} | 1.6923 ^{\{2\}} | 2.3321 ^{\{5\}} | 2.4383 ^{\{6\}} | 2.5806 ^{\{8\}} | 1.5886 ^{\{1\}} | 1.8703 ^{\{4\}} | 3.5516 ^{\{11\}} | 2.8096 ^{\{9\}} | 2.8769 ^{\{10\}} | 2.4776 ^{\{7\}} | |
MRE | {\ddddot \delta} | 0.384 ^{\{2\}} | 0.3942 ^{\{3\}} | 0.4406 ^{\{5\}} | 0.4549 ^{\{6\}} | 0.459 ^{\{7\}} | 0.3741 ^{\{1\}} | 0.4029 ^{\{4\}} | 0.5216 ^{\{11\}} | 0.4628 ^{\{8\}} | 0.4714 ^{\{9\}} | 0.473 ^{\{10\}} | |
\sum Ranks | 7 ^{\{2\}} | 8 ^{\{3\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 22 ^{\{7\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 33 ^{\{11\}} | 25 ^{\{8\}} | 28 ^{\{10\}} | 27 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.5636 ^{\{7\}} | 0.5986 ^{\{8\}} | 0.5265 ^{\{2\}} | 0.53 ^{\{3\}} | 0.5391 ^{\{5\}} | 0.5024 ^{\{1\}} | 0.5325 ^{\{4\}} | 0.7652 ^{\{11\}} | 0.5466 ^{\{6\}} | 0.6536 ^{\{9\}} | 0.7347 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.7067 ^{\{7\}} | 0.8341 ^{\{8\}} | 0.4737 ^{\{2\}} | 0.5305 ^{\{6\}} | 0.503 ^{\{4\}} | 0.435 ^{\{1\}} | 0.482 ^{\{3\}} | 1.7478 ^{\{11\}} | 0.5132 ^{\{5\}} | 0.9315 ^{\{9\}} | 1.3096 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.2254 ^{\{7\}} | 0.2395 ^{\{8\}} | 0.2106 ^{\{2\}} | 0.212 ^{\{3\}} | 0.2156 ^{\{5\}} | 0.201 ^{\{1\}} | 0.213 ^{\{4\}} | 0.3061 ^{\{11\}} | 0.2187 ^{\{6\}} | 0.2614 ^{\{9\}} | 0.2939 ^{\{10\}} | |
\sum Ranks | 21 ^{\{7\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 14 ^{\{5\}} | 3 ^{\{1\}} | 11 ^{\{3\}} | 33 ^{\{11\}} | 17 ^{\{6\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | ||
120 | bias | {\ddddot \delta} | 0.4462 ^{\{7\}} | 0.4787 ^{\{9\}} | 0.334 ^{\{1\}} | 0.3388 ^{\{2\}} | 0.3415 ^{\{3\}} | 0.3453 ^{\{4\}} | 0.3614 ^{\{6\}} | 0.5359 ^{\{11\}} | 0.3552 ^{\{5\}} | 0.457 ^{\{8\}} | 0.5352 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.7607 ^{\{8\}} | 0.877 ^{\{9\}} | 0.1793 ^{\{1\}} | 0.1808 ^{\{2\}} | 0.1832 ^{\{3\}} | 0.189 ^{\{4\}} | 0.3259 ^{\{6\}} | 1.2275 ^{\{11\}} | 0.2236 ^{\{5\}} | 0.4848 ^{\{7\}} | 1.0708 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.1785 ^{\{7\}} | 0.1915 ^{\{9\}} | 0.1336 ^{\{1\}} | 0.1355 ^{\{2\}} | 0.1366 ^{\{3\}} | 0.1381 ^{\{4\}} | 0.1446 ^{\{6\}} | 0.2144 ^{\{11\}} | 0.1421 ^{\{5\}} | 0.1828 ^{\{8\}} | 0.2141 ^{\{10\}} | |
\sum Ranks | 22 ^{\{7\}} | 27 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 15 ^{\{5\}} | 23 ^{\{8\}} | 30 ^{\{10\}} | ||
200 | bias | {\ddddot \delta} | 0.4358 ^{\{10\}} | 0.4021 ^{\{8\}} | 0.248 ^{\{1\}} | 0.2526 ^{\{3\}} | 0.2509 ^{\{2\}} | 0.2633 ^{\{4\}} | 0.3284 ^{\{6\}} | 0.4068 ^{\{9\}} | 0.2919 ^{\{5\}} | 0.3362 ^{\{7\}} | 0.4777 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.9925 ^{\{10\}} | 0.8236 ^{\{9\}} | 0.0967 ^{\{1\}} | 0.1001 ^{\{2\}} | 0.1006 ^{\{3\}} | 0.1128 ^{\{4\}} | 0.4511 ^{\{7\}} | 0.8184 ^{\{8\}} | 0.2007 ^{\{5\}} | 0.2805 ^{\{6\}} | 1.0014 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1743 ^{\{10\}} | 0.1609 ^{\{8\}} | 0.0992 ^{\{1\}} | 0.1011 ^{\{3\}} | 0.1004 ^{\{2\}} | 0.1053 ^{\{4\}} | 0.1314 ^{\{6\}} | 0.1627 ^{\{9\}} | 0.1167 ^{\{5\}} | 0.1345 ^{\{7\}} | 0.1911 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 12 ^{\{4\}} | 19 ^{\{6\}} | 26 ^{\{9\}} | 15 ^{\{5\}} | 20 ^{\{7\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.3835 ^{\{11\}} | 0.3358 ^{\{8\}} | 0.206 ^{\{2\}} | 0.2007 ^{\{1\}} | 0.2086 ^{\{3\}} | 0.2142 ^{\{4\}} | 0.2656 ^{\{5\}} | 0.3661 ^{\{10\}} | 0.2788 ^{\{7\}} | 0.2723 ^{\{6\}} | 0.3589 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.9468 ^{\{11\}} | 0.7071 ^{\{8\}} | 0.0672 ^{\{2\}} | 0.0627 ^{\{1\}} | 0.0681 ^{\{3\}} | 0.0749 ^{\{4\}} | 0.3498 ^{\{6\}} | 0.8202 ^{\{10\}} | 0.363 ^{\{7\}} | 0.1516 ^{\{5\}} | 0.7172 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.1534 ^{\{11\}} | 0.1343 ^{\{8\}} | 0.0824 ^{\{2\}} | 0.0803 ^{\{1\}} | 0.0835 ^{\{3\}} | 0.0857 ^{\{4\}} | 0.1062 ^{\{5\}} | 0.1464 ^{\{10\}} | 0.1115 ^{\{7\}} | 0.1089 ^{\{6\}} | 0.1435 ^{\{9\}} | |
\sum Ranks | 33 ^{\{11\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 16 ^{\{5\}} | 30 ^{\{10\}} | 21 ^{\{7\}} | 17 ^{\{6\}} | 27 ^{\{9\}} | ||
450 | bias | {\ddddot \delta} | 0.2793 ^{\{9\}} | 0.2534 ^{\{7\}} | 0.1634 ^{\{2\}} | 0.1628 ^{\{1\}} | 0.1714 ^{\{3\}} | 0.182 ^{\{4\}} | 0.2577 ^{\{8\}} | 0.295 ^{\{11\}} | 0.243 ^{\{6\}} | 0.2212 ^{\{5\}} | 0.291 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.5946 ^{\{10\}} | 0.4777 ^{\{8\}} | 0.0423 ^{\{2\}} | 0.0405 ^{\{1\}} | 0.0468 ^{\{3\}} | 0.0521 ^{\{4\}} | 0.4753 ^{\{7\}} | 0.6681 ^{\{11\}} | 0.3999 ^{\{6\}} | 0.1162 ^{\{5\}} | 0.5314 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.1117 ^{\{9\}} | 0.1013 ^{\{7\}} | 0.0653 ^{\{2\}} | 0.0651 ^{\{1\}} | 0.0686 ^{\{3\}} | 0.0728 ^{\{4\}} | 0.1031 ^{\{8\}} | 0.118 ^{\{11\}} | 0.0972 ^{\{6\}} | 0.0885 ^{\{5\}} | 0.1164 ^{\{10\}} | |
\sum Ranks | 28 ^{\{9\}} | 22 ^{\{7\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 23 ^{\{8\}} | 33 ^{\{11\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 29 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.6278 ^{\{1\}} | 0.6804 ^{\{2\}} | 0.7479 ^{\{6\}} | 0.7486 ^{\{7\}} | 0.7441 ^{\{5\}} | 0.6932 ^{\{3\}} | 0.7387 ^{\{4\}} | 0.9368 ^{\{10\}} | 0.8054 ^{\{8\}} | 0.9378 ^{\{11\}} | 0.9052 ^{\{9\}} |
MSE | \hat{\delta} | 0.8588 ^{\{3\}} | 0.7567 ^{\{1\}} | 1.1269 ^{\{7\}} | 1.108 ^{\{6\}} | 1.1045 ^{\{5\}} | 0.7758 ^{\{2\}} | 0.9299 ^{\{4\}} | 2.1615 ^{\{11\}} | 1.3529 ^{\{8\}} | 1.6869 ^{\{10\}} | 1.432 ^{\{9\}} | |
MRE | \hat{\delta} | 0.2511 ^{\{1\}} | 0.2721 ^{\{2\}} | 0.2991 ^{\{6\}} | 0.2994 ^{\{7\}} | 0.2976 ^{\{5\}} | 0.2773 ^{\{3\}} | 0.2955 ^{\{4\}} | 0.3747 ^{\{10\}} | 0.3222 ^{\{8\}} | 0.3751 ^{\{11\}} | 0.3621 ^{\{9\}} | |
\sum Ranks | 5 ^{\{1.5\}} | 5 ^{\{1.5\}} | 19 ^{\{6\}} | 20 ^{\{7\}} | 15 ^{\{5\}} | 8 ^{\{3\}} | 12 ^{\{4\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.4159 ^{\{10\}} | 0.2217 ^{\{2\}} | 0.2222 ^{\{3\}} | 0.2189 ^{\{1\}} | 0.2275 ^{\{5\}} | 0.2386 ^{\{6\}} | 0.2239 ^{\{4\}} | 0.3112 ^{\{8\}} | 0.2453 ^{\{7\}} | 0.4475 ^{\{11\}} | 0.3909 ^{\{9\}} |
MSE | \hat{\delta} | 0.7329 ^{\{11\}} | 0.0773 ^{\{2\}} | 0.0774 ^{\{3\}} | 0.077 ^{\{1\}} | 0.0823 ^{\{5\}} | 0.0898 ^{\{6\}} | 0.0815 ^{\{4\}} | 0.5289 ^{\{10\}} | 0.0992 ^{\{7\}} | 0.4726 ^{\{9\}} | 0.3113 ^{\{8\}} | |
MRE | \hat{\delta} | 0.1664 ^{\{10\}} | 0.0887 ^{\{2\}} | 0.0889 ^{\{3\}} | 0.0876 ^{\{1\}} | 0.091 ^{\{5\}} | 0.0955 ^{\{6\}} | 0.0896 ^{\{4\}} | 0.1245 ^{\{8\}} | 0.0981 ^{\{7\}} | 0.179 ^{\{11\}} | 0.1564 ^{\{9\}} | |
\sum Ranks | 31 ^{\{10.5\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 12 ^{\{4\}} | 26 ^{\{8.5\}} | 21 ^{\{7\}} | 31 ^{\{10.5\}} | 26 ^{\{8.5\}} | ||
120 | bias | \hat{\delta} | 0.3167 ^{\{11\}} | 0.0899 ^{\{1\}} | 0.0967 ^{\{3\}} | 0.097 ^{\{4\}} | 0.0963 ^{\{2\}} | 0.1102 ^{\{7\}} | 0.0999 ^{\{5\}} | 0.156 ^{\{8\}} | 0.1032 ^{\{6\}} | 0.2892 ^{\{10\}} | 0.244 ^{\{9\}} |
MSE | \hat{\delta} | 0.6865 ^{\{11\}} | 0.0126 ^{\{1\}} | 0.0149 ^{\{4\}} | 0.0147 ^{\{3\}} | 0.0145 ^{\{2\}} | 0.0185 ^{\{7\}} | 0.0158 ^{\{5\}} | 0.3438 ^{\{10\}} | 0.0169 ^{\{6\}} | 0.2536 ^{\{9\}} | 0.1786 ^{\{8\}} | |
MRE | \hat{\delta} | 0.1267 ^{\{11\}} | 0.036 ^{\{1\}} | 0.0387 ^{\{3\}} | 0.0388 ^{\{4\}} | 0.0385 ^{\{2\}} | 0.0441 ^{\{7\}} | 0.0399 ^{\{5\}} | 0.0624 ^{\{8\}} | 0.0413 ^{\{6\}} | 0.1157 ^{\{10\}} | 0.0976 ^{\{9\}} | |
\sum Ranks | 33 ^{\{11\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 26 ^{\{8.5\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 26 ^{\{8.5\}} | ||
200 | bias | \hat{\delta} | 0.2146 ^{\{9\}} | 0.056 ^{\{2\}} | 0.0592 ^{\{4\}} | 0.0554 ^{\{1\}} | 0.0586 ^{\{3\}} | 0.0649 ^{\{7\}} | 0.0611 ^{\{5\}} | 0.0712 ^{\{8\}} | 0.0625 ^{\{6\}} | 0.2248 ^{\{10\}} | 0.2259 ^{\{11\}} |
MSE | \hat{\delta} | 0.362 ^{\{11\}} | 0.0049 ^{\{1\}} | 0.0055 ^{\{4\}} | 0.005 ^{\{2\}} | 0.0053 ^{\{3\}} | 0.0064 ^{\{7\}} | 0.0057 ^{\{5\}} | 0.0783 ^{\{8\}} | 0.0062 ^{\{6\}} | 0.1747 ^{\{9\}} | 0.3609 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0859 ^{\{9\}} | 0.0224 ^{\{2\}} | 0.0237 ^{\{4\}} | 0.0221 ^{\{1\}} | 0.0234 ^{\{3\}} | 0.026 ^{\{7\}} | 0.0244 ^{\{5\}} | 0.0285 ^{\{8\}} | 0.025 ^{\{6\}} | 0.0899 ^{\{10\}} | 0.0903 ^{\{11\}} | |
\sum Ranks | 29 ^{\{9.5\}} | 5 ^{\{2\}} | 12 ^{\{4\}} | 4 ^{\{1\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{9.5\}} | 32 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1586 ^{\{9\}} | 0.0373 ^{\{1.5\}} | 0.0385 ^{\{3\}} | 0.0373 ^{\{1.5\}} | 0.0403 ^{\{4\}} | 0.0445 ^{\{7\}} | 0.042 ^{\{5.5\}} | 0.0619 ^{\{8\}} | 0.042 ^{\{5.5\}} | 0.1637 ^{\{10\}} | 0.1866 ^{\{11\}} |
MSE | \hat{\delta} | 0.2146 ^{\{10\}} | 0.0022 ^{\{1.5\}} | 0.0023 ^{\{3\}} | 0.0022 ^{\{1.5\}} | 0.0026 ^{\{4\}} | 0.0031 ^{\{7\}} | 0.0028 ^{\{6\}} | 0.1238 ^{\{9\}} | 0.0027 ^{\{5\}} | 0.1014 ^{\{8\}} | 0.2935 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0635 ^{\{9\}} | 0.0149 ^{\{1.5\}} | 0.0154 ^{\{3\}} | 0.0149 ^{\{1.5\}} | 0.0161 ^{\{4\}} | 0.0178 ^{\{7\}} | 0.0168 ^{\{5.5\}} | 0.0247 ^{\{8\}} | 0.0168 ^{\{5.5\}} | 0.0655 ^{\{10\}} | 0.0746 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 4.5 ^{\{1.5\}} | 9 ^{\{3\}} | 4.5 ^{\{1.5\}} | 12 ^{\{4\}} | 21 ^{\{7\}} | 17 ^{\{6\}} | 25 ^{\{8\}} | 16 ^{\{5\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1285 ^{\{9\}} | 0.0248 ^{\{1.5\}} | 0.0256 ^{\{3\}} | 0.0248 ^{\{1.5\}} | 0.0257 ^{\{4\}} | 0.0301 ^{\{7\}} | 0.0276 ^{\{5\}} | 0.0441 ^{\{8\}} | 0.028 ^{\{6\}} | 0.1326 ^{\{10\}} | 0.1563 ^{\{11\}} |
MSE | \hat{\delta} | 0.1537 ^{\{10\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.0014 ^{\{7\}} | 0.0012 ^{\{5\}} | 0.0994 ^{\{9\}} | 0.0013 ^{\{6\}} | 0.07 ^{\{8\}} | 0.2914 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0514 ^{\{9\}} | 0.0099 ^{\{1.5\}} | 0.0102 ^{\{3\}} | 0.0099 ^{\{1.5\}} | 0.0103 ^{\{4\}} | 0.0121 ^{\{7\}} | 0.011 ^{\{5\}} | 0.0177 ^{\{8\}} | 0.0112 ^{\{6\}} | 0.053 ^{\{10\}} | 0.0625 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 5.5 ^{\{1.5\}} | 8.5 ^{\{3\}} | 5.5 ^{\{1.5\}} | 10.5 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} |
● The ratio of the MSE for SRS to the MSE for RSS is provided in Table 13. This ratio helps to gauge the comparative performance of SRS and RSS in terms of MSE, offering insights into the efficiency of these sampling methods.
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | ||||||||||||
15 | \hat{\delta} | 2.65374 | 1.95696 | 1.92664 | 1.87934 | 1.89117 | 1.78528 | 1.90705 | 2.05639 | 1.66667 | 1.71257 | 1.63055 |
50 | \hat{\delta} | 2.11809 | 3.22118 | 3.27914 | 3.37684 | 3.16358 | 3.14356 | 3.07212 | 3.27358 | 3.27555 | 1.92975 | 2.00437 |
120 | \hat{\delta} | 2.00738 | 4.46400 | 4.08915 | 5.19403 | 4.27626 | 4.30435 | 4.14453 | 4.03383 | 4.40283 | 2.05997 | 2.23158 |
200 | \hat{\delta} | 1.88626 | 5.13816 | 5.01911 | 6.17094 | 4.81646 | 5.03822 | 4.63030 | 4.55030 | 5.02299 | 1.91600 | 2.11422 |
300 | \hat{\delta} | 1.85538 | 5.53571 | 5.71818 | 7.52055 | 5.42342 | 5.63303 | 5.20175 | 4.35915 | 5.81356 | 1.88395 | 1.98023 |
450 | \hat{\delta} | 1.78755 | 4.31579 | 6.43836 | 10.63415 | 6.58108 | 6.25676 | 5.94937 | 5.04124 | 6.63291 | 1.81306 | 1.87031 |
\delta=0.6 | ||||||||||||
15 | \hat{\delta} | 2.10257 | 1.80127 | 1.76798 | 1.61167 | 1.73971 | 1.52413 | 1.90935 | 1.62599 | 1.91201 | 1.70299 | 1.79647 |
50 | \hat{\delta} | 1.89052 | 1.76432 | 3.68263 | 3.07065 | 3.24167 | 3.18102 | 2.83529 | 2.20078 | 3.44154 | 1.58018 | 1.59773 |
120 | \hat{\delta} | 1.07682 | 1.86474 | 11.84211 | 10.19200 | 12.10526 | 12.27184 | 2.53523 | 2.19143 | 4.59252 | 1.39825 | 1.48068 |
200 | \hat{\delta} | 1.81764 | 3.01890 | 36.92308 | 19.70732 | 31.36735 | 20.77500 | 4.07385 | 6.47079 | 6.98649 | 1.26058 | 1.53116 |
300 | \hat{\delta} | 2.03397 | 9.14573 | 94.00000 | 34.70588 | 96.00000 | 36.47059 | 5.66368 | 8.45113 | 10.03571 | 1.11630 | 1.59630 |
450 | \hat{\delta} | 2.02886 | 3.74671 | 174.57143 | 46.00000 | 154.00000 | 46.87500 | 10.81618 | 6.72539 | 15.39024 | 1.29133 | 1.92838 |
\delta=1.0 | ||||||||||||
15 | \hat{\delta} | 1.68168 | 1.79337 | 1.95873 | 1.86428 | 1.92982 | 1.69938 | 1.66439 | 1.82151 | 2.19903 | 1.18117 | 1.64157 |
50 | \hat{\delta} | 1.54526 | 2.58061 | 6.17552 | 5.42521 | 5.52263 | 6.31959 | 3.82429 | 2.21024 | 5.10873 | 1.61619 | 1.30479 |
120 | \hat{\delta} | 1.39701 | 4.93770 | 27.10390 | 13.56757 | 23.06250 | 13.67949 | 11.79913 | 2.65306 | 23.42254 | 1.63180 | 1.75935 |
200 | \hat{\delta} | 1.82268 | 6.91685 | 79.00000 | 18.37931 | 76.64286 | 20.24138 | 77.00000 | 3.14979 | 88.36667 | 2.09427 | 3.12264 |
300 | \hat{\delta} | 1.72203 | 7.19677 | 176.91667 | 26.84615 | 161.23077 | 27.23077 | 178.00000 | 6.91166 | 134.61538 | 1.86864 | 2.73634 |
450 | \hat{\delta} | 2.42608 | 24.85185 | 254.16667 | 42.16667 | 273.80000 | 40.16667 | 332.16667 | 11.06918 | 163.57143 | 2.12910 | 1.46159 |
\delta=1.5 | ||||||||||||
15 | \hat{\delta} | 1.74797 | 2.06166 | 2.09336 | 2.00275 | 2.25601 | 2.02049 | 1.78415 | 1.42033 | 1.99113 | 2.18236 | 1.50175 |
50 | \hat{\delta} | 1.58121 | 7.48928 | 6.24385 | 6.01931 | 6.22030 | 5.34356 | 14.64024 | 1.63117 | 8.12880 | 1.61337 | 1.59366 |
120 | \hat{\delta} | 2.78723 | 10.69713 | 16.88095 | 12.10843 | 18.55814 | 12.39286 | 54.60215 | 3.83208 | 46.43000 | 2.04591 | 1.66224 |
200 | \hat{\delta} | 1.20643 | 100.90323 | 38.10000 | 17.52941 | 33.12121 | 17.54286 | 99.68571 | 3.64516 | 94.34211 | 2.40303 | 1.61870 |
300 | \hat{\delta} | 1.14835 | 261.15385 | 101.60000 | 26.20000 | 91.07143 | 30.92857 | 171.33333 | 11.85870 | 214.06667 | 3.37081 | 1.96066 |
450 | \hat{\delta} | 1.17286 | 370.00000 | 185.71429 | 44.66667 | 177.28571 | 37.57143 | 376.57143 | 4.51670 | 329.57143 | 1.53292 | 3.26991 |
\delta=2.0 | ||||||||||||
15 | \hat{\delta} | 1.44528 | 2.29860 | 2.09539 | 2.18214 | 2.07689 | 2.29155 | 2.03887 | 1.64293 | 2.29799 | 1.91037 | 1.63957 |
50 | \hat{\delta} | 1.43903 | 14.86357 | 5.76391 | 6.80919 | 5.80201 | 4.99078 | 8.62879 | 2.62247 | 5.78613 | 2.10575 | 2.86022 |
120 | \hat{\delta} | 2.46001 | 71.90291 | 12.75472 | 12.81308 | 12.75000 | 10.71875 | 40.80342 | 4.28986 | 26.82927 | 1.80279 | 2.28536 |
200 | \hat{\delta} | 2.09955 | 119.40000 | 22.78947 | 19.57500 | 20.07500 | 17.25532 | 113.30233 | 4.45243 | 78.47826 | 2.35818 | 1.64810 |
300 | \hat{\delta} | 1.68733 | 204.27778 | 35.72222 | 28.66667 | 36.16667 | 24.90909 | 238.05263 | 4.49545 | 215.35000 | 1.78456 | 1.02462 |
450 | \hat{\delta} | 1.12838 | 339.12500 | 65.75000 | 43.62500 | 88.25000 | 35.00000 | 411.22222 | 6.33101 | 510.00000 | 2.04043 | 1.31170 |
\delta=2.5 | ||||||||||||
15 | \hat{\delta} | 2.00128 | 2.23642 | 2.06948 | 2.20063 | 2.33644 | 2.04769 | 2.01129 | 1.64312 | 2.07672 | 1.70544 | 1.73017 |
50 | \hat{\delta} | 0.96425 | 10.79043 | 6.12016 | 6.88961 | 6.11179 | 4.84410 | 5.91411 | 3.30459 | 5.17339 | 1.97101 | 4.20687 |
120 | \hat{\delta} | 1.10808 | 69.60317 | 12.03356 | 12.29932 | 12.63448 | 10.21622 | 20.62658 | 3.57039 | 13.23077 | 1.91167 | 5.99552 |
200 | \hat{\delta} | 2.74171 | 168.08163 | 17.58182 | 20.02000 | 18.98113 | 17.62500 | 79.14035 | 10.45211 | 32.37097 | 1.60561 | 2.77473 |
300 | \hat{\delta} | 4.41193 | 321.40909 | 29.21739 | 28.50000 | 26.19231 | 24.16129 | 124.92857 | 6.62520 | 134.44444 | 1.49507 | 2.44361 |
450 | \hat{\delta} | 3.86858 | 477.70000 | 42.30000 | 40.50000 | 46.80000 | 37.21429 | 396.08333 | 6.72133 | 307.61538 | 1.66000 | 1.82361 |
● For a thorough and detailed analysis of the estimates, we present both their partial and total ranks in Tables 14 and 15 for the SRS and RSS, respectively. These rank tables offer a more nuanced and comprehensive perspective on the performance and comparative effectiveness of each estimation approach, facilitating a deeper understanding of their relative strengths and weaknesses.
Parameter | m^ {\circ \circ} | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | 15 | 5.0 | 4.0 | 8.0 | 1.0 | 9.0 | 3.0 | 2.0 | 7.0 | 11.0 | 10.0 | 6.0 |
50 | 4.0 | 6.0 | 8.0 | 1.0 | 5.0 | 3.0 | 2.0 | 7.0 | 11.0 | 10.0 | 9.0 | |
120 | 7.0 | 8.0 | 2.0 | 1.0 | 6.0 | 4.0 | 3.0 | 5.0 | 9.0 | 11.0 | 10.0 | |
200 | 8.0 | 6.0 | 4.5 | 1.0 | 2.0 | 7.0 | 3.0 | 4.5 | 9.0 | 11.0 | 10.0 | |
300 | 4.0 | 6.0 | 8.0 | 1.0 | 3.0 | 5.0 | 2.0 | 7.0 | 9.0 | 11.0 | 10.0 | |
450 | 7.5 | 7.5 | 3.0 | 1.0 | 5.0 | 2.0 | 4.0 | 6.0 | 9.0 | 11.0 | 10.0 | |
\delta=0.6 | 15 | 5.0 | 4.0 | 8.0 | 2.0 | 6.0 | 1.0 | 3.0 | 7.0 | 10.0 | 11.0 | 9.0 |
50 | 8.0 | 9.0 | 4.0 | 2.0 | 3.0 | 1.0 | 5.0 | 7.0 | 6.0 | 10.0 | 11.0 | |
120 | 7.0 | 5.0 | 3.0 | 2.0 | 4.0 | 1.0 | 8.0 | 6.0 | 11.0 | 10.0 | 9.0 | |
200 | 8.0 | 6.0 | 4.0 | 1.0 | 5.0 | 2.0 | 3.0 | 9.5 | 7.0 | 9.5 | 11.0 | |
300 | 6.0 | 10.0 | 8.0 | 1.0 | 9.0 | 2.0 | 5.0 | 3.0 | 4.0 | 7.0 | 11.0 | |
450 | 9.0 | 3.0 | 4.0 | 1.0 | 5.0 | 2.0 | 10.0 | 7.0 | 8.0 | 6.0 | 11.0 | |
\delta=1.0 | 15 | 6.0 | 3.0 | 7.0 | 5.0 | 4.0 | 1.0 | 2.0 | 9.5 | 8.0 | 9.5 | 11.0 |
50 | 6.0 | 9.0 | 3.0 | 2.0 | 4.0 | 1.0 | 10.0 | 7.5 | 5.0 | 7.5 | 11.0 | |
120 | 7.0 | 8.5 | 4.0 | 1.0 | 3.0 | 2.0 | 6.0 | 5.0 | 10.0 | 8.5 | 11.0 | |
200 | 8.0 | 10.0 | 3.0 | 1.0 | 5.5 | 2.0 | 7.0 | 4.0 | 9.0 | 5.5 | 11.0 | |
300 | 6.0 | 9.0 | 8.0 | 1.0 | 7.0 | 2.0 | 10.0 | 5.0 | 3.0 | 4.0 | 11.0 | |
450 | 7.0 | 10.0 | 6.0 | 2.0 | 3.0 | 1.0 | 9.0 | 8.0 | 4.0 | 5.0 | 11.0 | |
\delta=1.5 | 15 | 6.0 | 3.0 | 5.0 | 4.0 | 7.0 | 1.0 | 2.0 | 9.0 | 8.0 | 11.0 | 10.0 |
50 | 7.0 | 10.0 | 2.0 | 3.0 | 4.0 | 1.0 | 9.0 | 8.0 | 5.0 | 6.0 | 11.0 | |
120 | 10.0 | 5.0 | 3.0 | 1.0 | 4.0 | 2.0 | 9.0 | 7.0 | 8.0 | 6.0 | 11.0 | |
200 | 6.0 | 7.0 | 4.0 | 1.0 | 3.0 | 2.0 | 8.0 | 9.0 | 10.0 | 5.0 | 11.0 | |
300 | 5.0 | 8.5 | 4.0 | 1.0 | 3.0 | 2.0 | 6.5 | 10.0 | 8.5 | 6.5 | 11.0 | |
450 | 8.0 | 7.0 | 3.0 | 2.0 | 4.0 | 1.0 | 10.0 | 6.0 | 9.0 | 5.0 | 11.0 | |
\delta=2.0 | 15 | 3.0 | 4.0 | 5.0 | 7.0 | 6.0 | 1.0 | 2.0 | 11.0 | 8.0 | 10.0 | 9.0 |
50 | 7.0 | 9.0 | 2.0 | 4.0 | 3.0 | 1.0 | 6.0 | 10.0 | 5.0 | 8.0 | 11.0 | |
120 | 8.0 | 9.0 | 1.0 | 2.0 | 4.0 | 3.0 | 6.0 | 10.0 | 5.0 | 7.0 | 11.0 | |
200 | 8.0 | 9.0 | 3.0 | 1.0 | 2.0 | 4.0 | 10.0 | 7.0 | 6.0 | 5.0 | 11.0 | |
300 | 6.0 | 7.0 | 3.0 | 1.0 | 2.0 | 4.0 | 9.0 | 11.0 | 10.0 | 5.0 | 8.0 | |
450 | 7.0 | 6.0 | 3.0 | 1.0 | 4.0 | 2.0 | 9.5 | 8.0 | 11.0 | 5.0 | 9.5 | |
\delta=2.5 | 15 | 2.0 | 3.0 | 5.0 | 6.0 | 7.0 | 1.0 | 4.0 | 11.0 | 8.0 | 10.0 | 9.0 |
50 | 7.0 | 8.0 | 2.0 | 4.0 | 5.0 | 1.0 | 3.0 | 11.0 | 6.0 | 9.0 | 10.0 | |
120 | 7.0 | 9.0 | 1.0 | 2.0 | 3.0 | 4.0 | 6.0 | 11.0 | 5.0 | 8.0 | 10.0 | |
200 | 10.0 | 8.0 | 1.0 | 3.0 | 2.0 | 4.0 | 6.0 | 9.0 | 5.0 | 7.0 | 11.0 | |
300 | 11.0 | 8.0 | 2.0 | 1.0 | 3.0 | 4.0 | 5.0 | 10.0 | 7.0 | 6.0 | 9.0 | |
450 | 9.0 | 7.0 | 2.0 | 1.0 | 3.0 | 4.0 | 8.0 | 11.0 | 6.0 | 5.0 | 10.0 | |
\sum Ranks | 245.5 | 251.5 | 146.5 | 72.0 | 157.5 | 84.0 | 213.0 | 284.0 | 273.5 | 282.0 | 366.5 | |
Overall Rank | 6 | 7 | 3 | 1 | 4 | 2 | 5 | 10 | 8 | 9 | 11 |
Parameter | m^ {\circ \circ} | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | 15 | 1.0 | 5.0 | 7.0 | 2.0 | 8.0 | 4.0 | 3.0 | 6.0 | 11.0 | 10.0 | 9.0 |
50 | 9.0 | 5.0 | 6.0 | 1.0 | 7.0 | 2.0 | 3.0 | 4.0 | 8.0 | 11.0 | 10.0 | |
120 | 9.0 | 2.0 | 4.0 | 1.0 | 5.0 | 3.0 | 6.0 | 7.0 | 8.0 | 11.0 | 10.0 | |
200 | 10.0 | 2.0 | 5.0 | 1.0 | 4.0 | 3.0 | 6.0 | 7.0 | 8.0 | 11.0 | 9.0 | |
300 | 9.0 | 4.0 | 3.0 | 1.0 | 5.0 | 2.0 | 6.0 | 8.0 | 7.0 | 11.0 | 10.0 | |
450 | 9.0 | 8.0 | 2.0 | 1.0 | 3.0 | 4.0 | 6.0 | 7.0 | 5.0 | 11.0 | 10.0 | |
\delta=0.6 | 15 | 1.0 | 3.0 | 7.0 | 5.0 | 6.0 | 2.0 | 4.0 | 8.0 | 9.0 | 11.0 | 10.0 |
50 | 9.0 | 8.0 | 1.0 | 4.0 | 3.0 | 2.0 | 6.0 | 7.0 | 5.0 | 10.0 | 11.0 | |
120 | 10.0 | 8.0 | 2.0 | 4.0 | 3.0 | 1.0 | 7.0 | 6.0 | 5.0 | 11.0 | 9.0 | |
200 | 9.0 | 8.0 | 1.0 | 2.0 | 4.0 | 3.0 | 7.0 | 6.0 | 5.0 | 11.0 | 10.0 | |
300 | 9.0 | 7.0 | 3.5 | 1.5 | 1.5 | 3.5 | 8.0 | 6.0 | 5.0 | 11.0 | 10.0 | |
450 | 9.0 | 8.0 | 1.0 | 7.0 | 5.0 | 3.5 | 3.5 | 6.0 | 2.0 | 11.0 | 10.0 | |
\delta=1.0 | 15 | 6.0 | 2.0 | 3.0 | 5.0 | 4.0 | 1.0 | 7.0 | 9.0 | 8.0 | 11.0 | 10.0 |
50 | 9.0 | 7.0 | 2.0 | 3.0 | 4.0 | 1.0 | 6.0 | 8.0 | 5.0 | 10.0 | 11.0 | |
120 | 9.0 | 7.0 | 3.0 | 1.0 | 4.0 | 2.0 | 6.0 | 8.0 | 5.0 | 10.5 | 10.5 | |
200 | 11.0 | 7.0 | 1.0 | 4.0 | 3.0 | 2.0 | 6.0 | 8.0 | 5.0 | 9.0 | 10.0 | |
300 | 9.0 | 8.0 | 1.0 | 4.0 | 2.0 | 3.0 | 5.0 | 7.0 | 6.0 | 11.0 | 10.0 | |
450 | 8.0 | 4.0 | 3.0 | 2.0 | 1.0 | 5.0 | 7.0 | 6.0 | 9.5 | 9.5 | 11.0 | |
\delta=1.5 | 15 | 5.5 | 3.0 | 2.0 | 7.0 | 4.0 | 1.0 | 5.5 | 10.0 | 8.0 | 9.0 | 11.0 |
50 | 9.5 | 6.0 | 2.0 | 3.0 | 1.0 | 4.0 | 5.0 | 8.0 | 7.0 | 9.5 | 11.0 | |
120 | 9.0 | 7.0 | 2.0 | 1.0 | 4.0 | 3.0 | 5.0 | 8.0 | 6.0 | 10.0 | 11.0 | |
200 | 10.0 | 2.0 | 1.0 | 3.0 | 4.0 | 6.0 | 5.0 | 8.0 | 7.0 | 9.0 | 11.0 | |
300 | 10.0 | 1.0 | 4.0 | 5.0 | 2.0 | 3.0 | 6.5 | 8.0 | 6.5 | 9.0 | 11.0 | |
450 | 11.0 | 2.0 | 8.0 | 1.0 | 3.5 | 3.5 | 9.5 | 5.0 | 6.0 | 7.0 | 9.5 | |
\delta=2.0 | 15 | 5.0 | 2.0 | 4.0 | 7.0 | 6.0 | 1.0 | 3.0 | 10.0 | 8.0 | 11.0 | 9.0 |
50 | 9.0 | 4.0 | 2.0 | 1.0 | 3.0 | 5.0 | 6.0 | 8.0 | 7.0 | 10.5 | 10.5 | |
120 | 9.0 | 1.0 | 2.0 | 3.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 10.0 | 11.0 | |
200 | 9.5 | 3.0 | 1.0 | 2.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
300 | 9.5 | 2.5 | 2.5 | 1.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
450 | 10.0 | 2.0 | 5.0 | 1.0 | 3.0 | 4.0 | 8.0 | 6.0 | 9.0 | 7.0 | 11.0 | |
\delta=2.5 | 15 | 1.5 | 1.5 | 6.0 | 7.0 | 5.0 | 3.0 | 4.0 | 10.0 | 8.0 | 11.0 | 9.0 |
50 | 10.5 | 2.0 | 3.0 | 1.0 | 5.0 | 6.0 | 4.0 | 8.5 | 7.0 | 10.5 | 8.5 | |
120 | 11.0 | 1.0 | 3.0 | 4.0 | 2.0 | 7.0 | 5.0 | 8.5 | 6.0 | 10.0 | 8.5 | |
200 | 9.5 | 2.0 | 4.0 | 1.0 | 3.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
300 | 9.5 | 1.5 | 3.0 | 1.5 | 4.0 | 7.0 | 6.0 | 8.0 | 5.0 | 9.5 | 11.0 | |
450 | 9.5 | 1.5 | 3.0 | 1.5 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
\sum Ranks | 304.5 | 148.0 | 113.0 | 100.5 | 138.0 | 135.5 | 200.0 | 270.0 | 237.0 | 362.0 | 367.5 | |
Overall Rank | 9 | 5 | 2 | 1 | 4 | 3 | 6 | 8 | 7 | 10 | 11 |
Upon careful analysis of the simulation results and the rankings presented in the tables, several conclusions can be drawn:
● It is noteworthy that for both SRS and RSS datasets, our model estimates exhibit the consistency property. This property implies that as the sample size increases, the estimates converge to the true parameter values.
● All three measures used exhibit a consistent trend: They decrease as the sample size increases. This pattern suggests that larger sample sizes lead to more accurate and precise parameter estimates.
● Based on our simulation results for both SRS and RSS datasets, it appears that the MPSE has the advantage in determining the quality of our estimates.
● From Table 13, it can be observed that the estimates obtained from the RSS datasets are more efficient compared to those obtained from the SRS datasets. This suggests that RSS is a more efficient sampling method in terms of producing estimates with lower MSE.
To highlight the practical utility of the proposed estimation methods, a real dataset was meticulously selected and is comprehensively elucidated in this section. The objective was to illustrate the practical applications of these proposed estimates by conducting an in-depth analysis of the real-world dataset. This analysis serves as a demonstration of how these estimation techniques can be applied to real-world data, showcasing their effectiveness and relevance in practical research and decision-making contexts. The used real dataset presents the firm's risk management cost-effectiveness and it was studied by Abd El-Bar et al. [48]. Its values are: 0.0432, 0.1271, 0.793, 0.0407, 0.0076, 0.037, 0.18, 0.1129, 0.09, 0.0535, 0.0783, 0.0093, 0.0851, 0.1753, 0.0036, 0.1597, 0.002, 0.1357, 0.0215, 0.0065, 0.079, 0.0329, 0.0458, 0.1192, 0.0431, 0.1245, 0.0255, 0.1396, 0.0122, 0.15, 0.14, 0.0529, 0.2222, 0.0315, 0.0389, 0.0297, 0.0608, 0.1833, 0.0279, 0.0694, 0.15, 0.0818, 0.2912, 0.1261, 0.0931, 0.0216, 0.0525, 0.1938, 0.0433, 0.0351, 0.0629, 0.0125, 0.0571, 0.0094, 0.0885, 0.0411, 0.004, 0.0582, 0.2172, 0.0434, 0.0509, 0.65, 0.0913, 0.1, 0.0375, 0.2886, 0.0206, 0.0028, 0.0407, 0.0849, 0.0612, 0.1333, 0.9755.
Table 16 provides a comprehensive summary of the descriptive analyses performed on the dataset under investigation. Figure 2 displays various graphical representations, including histograms, kernel density plots, violin plots, box plots, total time on test (TTT) plots, and quantile-quantile (Q-Q) plots. These visualizations and descriptive statistics collectively offer insights into the characteristics and distributions of the data, enhancing our understanding of the dataset's key features and patterns. The dataset was subjected to a Kolmogorov-Smirnov (KS) test to assess its compatibility with a specific model. The MLE was utilized to obtain the parameter estimates. The K-S distance (KSD) was computed to be 0.0812933, and the p-value (KSP) was found to be 0.720254. Based on these results, it is apparent that the AUD is a suitable candidate for fitting the firm's real dataset. To visually demonstrate this suitability, Figure 3 presents various graphical representations, including the probability-probability (P-P) plot, estimated CDF, estimated survival function (SF), and a histogram with the estimated PDF. These visualizations collectively suggest that the AUD is a suitable choice for modeling and fitting the firm's real dataset, as they align well with the distributional characteristics of the model.
m^ {\circ \circ} | Mean | Median | Skewness | Kurtosis | Range | Minimum | Maximum | Sum | |
data | 73 | 0.109733 | 0.0608 | 3.71542 | 17.9579 | 0.9735 | 0.002 | 0.9755 | 8.0105 |
Based on the theoretical findings discussed earlier, the dataset underwent an examination using two sampling techniques, SRS and RSS. Tables 17 and 18 present the SRS and RSS estimates, respectively, derived from the AUD. These estimates are provided for different sample sizes over five cycles, employing various estimation techniques. The process of generating the RSS and SRS observations was facilitated using the R-package. These tables collectively display the results of the estimation techniques applied to the dataset, allowing for a comprehensive comparison of the sampling methods and estimation procedures used. To demonstrate the superiority of RSS over SRS to various estimation methods, we conducted an evaluation using several goodness-of-fit statistics for the model. These statistics encompassed the Anderson-Darling test statistics (ADTS), Cramér-von Mises test statistics (CMTS), and KS test statistics (KSTS), along with their KSP. These tests and their p-values were utilized to assess how well the data conforms to the model, and their results can provide insights into the effectiveness of RSS compared to SRS in capturing the underlying distribution of the dataset. Estimates that outperformed their counterparts typically displayed larger p-values (greater than 5%) and lower goodness-of-fit values. Table 19 provides a comparative analysis between the SRS and RSS designs in terms of their goodness-of-fit values and KSPs. This comparison helps in assessing the relative effectiveness of SRS and RSS in fitting the dataset to the model, with a focus on identifying which design and estimation techniques yield better goodness-of-fit results. The fitting of the model to the dataset can be observed in Figures 4 and 5. Notably, the RSS design demonstrates superior performance compared to the SRS design in terms of efficiency. This is evident from the smaller goodness-of-fit values and the correspondingly larger KSPs. This superiority is consistently observed across all estimates, even when the same number of measurement units is considered. These findings underscore the advantages of RSS over SRS in terms of fitting the dataset to the model and obtaining more efficient estimates.
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
20 | {\ddddot \delta} | 14.2997 | 14.4682 | 14.3253 | 14.2344 | 14.2934 | 7.22796 | 13.5736 | 14.591 | 15.5268 | 23.1179 | 14.2344 |
35 | {\ddddot \delta} | 18.2715 | 18.3864 | 18.1745 | 18.2414 | 18.1516 | 51.3402 | 20.4428 | 19.3072 | 16.4006 | 15.145 | 17.8123 |
50 | {\ddddot \delta} | 14.7089 | 14.8449 | 14.6641 | 14.6879 | 14.6491 | 16.5 | 15.777 | 15.078 | 13.8907 | 13.9479 | 15.4683 |
65 | {\ddddot \delta} | 16.1061 | 16.1716 | 16.031 | 16.0896 | 16.0229 | 16.2323 | 17.0406 | 16.2854 | 15.298 | 14.9776 | 15.7568 |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PCE | RADE | WLSE | LADE | MSADE | MSALDE |
20 | \hat{{\delta}} | 14.2503 | 14.2662 | 13.8488 | 13.6955 | 13.7732 | 7.56834 | 13.3422 | 14.3021 | 15.4774 | 13.5672 | 17.3995 |
35 | \hat{{\delta}} | 12.5203 | 12.5202 | 12.3418 | 12.2565 | 12.3128 | 12.4091 | 13.0535 | 12.8861 | 11.94 | 14.5198 | 17.4009 |
50 | \hat{{\delta}} | 17.1027 | 17.0984 | 16.9476 | 16.9634 | 16.9351 | 15.6024 | 17.708 | 17.2244 | 16.471 | 18.3951 | 14.3959 |
65 | \hat{{\delta}} | 14.4861 | 14.4806 | 14.3786 | 14.4454 | 14.3728 | 14.4125 | 15.1468 | 14.4975 | 13.8117 | 13.7231 | 6.63895 |
Method | design | \hat{\delta} | ADTS | CMTS | KSTS | KSP |
MLE | SRS | 14.7089 | 0.761824 | 0.114911 | 0.117979 | 0.489566 |
RSS | 17.1027 | 0.387748 | 0.0472457 | 0.0751288 | 0.940393 | |
ADE | SRS | 14.8449 | 0.760685 | 0.115343 | 0.115999 | 0.511594 |
RSS | 17.0984 | 0.387747 | 0.0472331 | 0.0751671 | 0.940158 | |
CME | SRS | 14.6641 | 0.762704 | 0.114883 | 0.118639 | 0.482331 |
RSS | 16.9476 | 0.388744 | 0.047017 | 0.0765033 | 0.931604 | |
MPSE | SRS | 14.6879 | 0.762205 | 0.114891 | 0.118288 | 0.48617 |
RSS | 16.9634 | 0.388545 | 0.0470194 | 0.0763622 | 0.932538 | |
LSE | SRS | 14.6491 | 0.763056 | 0.114886 | 0.118861 | 0.479908 |
RSS | 16.9351 | 0.388917 | 0.0470186 | 0.0766156 | 0.930856 | |
PSE | SRS | 16.5 | 0.91112 | 0.157392 | 0.117831 | 0.491197 |
RSS | 15.6024 | 0.494113 | 0.0658479 | 0.0894908 | 0.818117 | |
RADE | SRS | 15.777 | 0.810594 | 0.131257 | 0.105954 | 0.6285 |
RSS | 17.708 | 0.403364 | 0.052323 | 0.0830061 | 0.881087 | |
WLSE | SRS | 15.078 | 0.76395 | 0.117256 | 0.112676 | 0.549461 |
RSS | 17.2244 | 0.388432 | 0.0477398 | 0.0750625 | 0.940799 | |
LADE | SRS | 13.8907 | 0.81995 | 0.123882 | 0.13058 | 0.361317 |
RSS | 16.471 | 0.405507 | 0.0492597 | 0.0808795 | 0.899158 | |
MSADE | SRS | 13.9479 | 0.812856 | 0.12257 | 0.12966 | 0.369911 |
RSS | 18.3951 | 0.455783 | 0.0655095 | 0.0940681 | 0.768166 | |
MSALDE | SRS | 15.4683 | 0.783456 | 0.123611 | 0.107303 | 0.612458 |
RSS | 14.3959 | 0.762225 | 0.120147 | 0.106991 | 0.616163 |
A brand-new bounded distribution called the arctan uniform distribution may be used to simulate several bounded real-world datasets that already exist. When accurately measuring the observation is difficult or expensive, RSS is a valuable strategy. In the present work, the parameter estimator of the arctan uniform distribution is regarded using RSS and SRS approaches. The PS, WLS, AD, ML, MSALD, CM, LS, MPS, RAD, LAD, and MSAD are a few of the well-known conventional estimating techniques that are used. A Monte Carlo simulation based on some accuracy measures is used to assess the effectiveness of the generated estimates. Based on the results of our simulations for both the SRS and RSS datasets, it appears that the MPS approach is preferred in evaluating the quality of suggested estimates compared to the others. A similar pattern of decline with larger sample sizes is seen in all criteria measures. This trend indicates that parameter estimates are more accurate and trustworthy with higher sample numbers. Estimates derived from the RSS datasets are more trustworthy than those derived from the SRS datasets. This suggests that RSS is a sampling strategy that produces estimates with a lower mean squared error than other sampling methods. Real data findings provide more evidence that the RSS design is superior to the SRS approach.
The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.
This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RG23048).
The authors declare no conflict of interest.
[1] | UN-Habitat, The Value of Sustainable Urbanization. World Cities Report, Nairobi, 2020. Available from: https://unhabitat.org/sites/default/files/2020/10/wcr_2020_report.pdf. |
[2] | Agence Française de Développement, Sustainable Cities. Focus, Paris, 2019. Available from: https://upfi-med.eib.org/wp-content/uploads/2020/04/AFD_CIS_FOCUS-VILLES_DURABLES_ENG_WEB-VF-BAT-1.pdf. |
[3] | Dixon T, Connaughton J, Green S (2018) Sustainable Futures in the Built Environment to 2050: A Foresight Approach to Construction and Development, John Wiley & Sons. https://doi.org/10.1002/9781119063834 |
[4] | IEA (International Energy Agency), Energy technology perspectives pathways to a clean energy system, 2012. Available from: https://iea.blob.core.windows.net/assets/7136f3eb-4394-47fd-9106-c478283fcf7f/ETP2012_free.pdf. |
[5] | UNEP (United Nation for Environment Programme), Transport. Investing in energy and resource efficiency, UNEP, 2011. Available from: https://wedocs.unep.org/bitstream/handle/20.500.11822/22013/10.0_transport.pdf?sequence=1&%3BisAllowed. |
[6] |
Bulkeley H, Broto VC, Maassen A (2013) Low-carbon transitions and the reconfiguration of urban infrastructure. Urban Studies 51: 1471–1486. https://doi.org/10.1177/0042098013500089 doi: 10.1177/0042098013500089
![]() |
[7] |
Dowling R, McGuirk P, Bulkeley H (2014) Retrofitting cities: Local governance in Sydney, Australia. Cities 38: 18–24. https://doi.org/10.1016/j.cities.2013.12.004 doi: 10.1016/j.cities.2013.12.004
![]() |
[8] |
Rutherford J, Jaglin S (2015) Introduction to the special issue—Urban energy governance: Local actions, capacities and politics. Energy Policy 78: 173–178. https://doi.org/10.1016/j.enpol.2014.11.033 doi: 10.1016/j.enpol.2014.11.033
![]() |
[9] | UN-Habitat, Sustainable Urban Energy Planning—A handbook for cities and towns in developing countries. UNEP, Nairobi, 2009. Available from: https://seors.unfccc.int/applications/seors/attachments/get_attachment?code=LUZ4E1JJHTISK0JLBY55WLV36ICQR6WT. |
[10] |
Webb J, Hawkey D, Tingey M (2016) Governing cities for sustainable energy: The UK case. Cities 54: 28–35. https://doi.org/10.1016/j.cities.2015.10.014 doi: 10.1016/j.cities.2015.10.014
![]() |
[11] |
Ji C, Choi M, Hong T, et al. (2021) Evaluation of the effect of a building energy efficiency certificate in reducing energy consumption in Korean apartments. Energy Build 248: 111168. https://doi.org/10.1016/j.enbuild.2021.111168 doi: 10.1016/j.enbuild.2021.111168
![]() |
[12] |
El Hafdaoui H, Jelti F, Khallaayoun A, et al. (2023) Energy and environmental national assessment of alternative fuel buses in Morocco. World Electr Veh J 14: 105. https://doi.org/10.3390/wevj14040105 doi: 10.3390/wevj14040105
![]() |
[13] |
Prafitasiwi AG, Rohman MA, Ongkowijoyo CS (2022) The occupant's awareness to achieve energy efficiency in campus building. Results Eng 14: 10039. https://doi.org/10.1016/j.rineng.2022.100397 doi: 10.1016/j.rineng.2022.100397
![]() |
[14] |
Cô té-Roy L, Moser S (2022) A kingdom of new cities: Morocco's national Villes Nouvelles strategy. Geoforum 131: 27–38. https://doi.org/10.1016/j.geoforum.2022.02.005 doi: 10.1016/j.geoforum.2022.02.005
![]() |
[15] | Delmastro, Chiara; De Bienassis, Tanguy; Goodson, Timothy; Lane, Kevin; Le Marois, Jean-Baptiste; Martinez-Gordon, Rafael; Husek, Martin, "Buildings, " IEA, 2021. Available from: https://www.iea.org/reports/buildings. |
[16] | Ministère de la Transition Energétique et du Développement Durable, Stratégie Bas Carbone à Long Terme—Maroc 2050, Rabat, 2021. Available from: https://unfccc.int/sites/default/files/resource/MAR_LTS_Dec2021.pdf. |
[17] | IEA (International Energy Agency), Transport—Improving the sustainability of passenger and freight transport, 2021. Available from: https://www.iea.org/topics/transport. |
[18] | Ministère de la Transition Energétique et du Développement Durable (MTEDD), Consommation Energetique par l'Administration—Fès et Meknès, SIREDD, Rabat, Morocco, 2012. Available from: https://siredd.environnement.gov.ma/fes-meknes/indicateur/DetailIndicateurPartial?idIndicateur=2988. |
[19] |
Chegari B, Tabaa M, Moutaouakkil F, et al. (2020) Local energy self-sufficiency for passive buildings: Case study of a typical Moroccan building. J Build Eng 29: 101164. https://doi.org/10.1016/j.jobe.2019.101164 doi: 10.1016/j.jobe.2019.101164
![]() |
[20] | Oubourhim A, El-Hami K (2020) Efficiency energy standards and labelling for residential appliances in Morocco. In Advanced Intelligent Systems for Sustainable Development, Marrakesh, Morocco, Springer, 97–109. https://doi.org/10.1007/978-3-030-36475-5_10 |
[21] |
El Majaty S, Touzani A, Kasseh Y (2023) Results and perspectives of the application of an energy management system based on ISO 50001 in administrative buildings—case of Morocco. Mater Today: Proc 72: 3233–323. https://doi.org/10.1016/j.matpr.2022.07.094 doi: 10.1016/j.matpr.2022.07.094
![]() |
[22] |
Merini I, Molina-García A, García-Cascales MS, et al. (2020) Analysis and comparison of energy efficiency code requirements for buildings: A Morocco—Spain case study. Energies 13: 5979. https://doi.org/10.3390/en13225979 doi: 10.3390/en13225979
![]() |
[23] |
Sghiouri H, Mezrhab A, Karkri M, et al. (2018) Shading devices optimization to enhance thermal comfort and energy performance of a residential building in Morocco. J Build Eng 18: 292–302. https://doi.org/10.1016/j.jobe.2018.03.018 doi: 10.1016/j.jobe.2018.03.018
![]() |
[24] |
Jihad AS, Tahiri M (2018) Forecasting the heating and cooling load of residential buildings by using a learning algorithm "gradient descent", Morocco. Case Studies Therm Eng 12: 85–93. https://doi.org/10.1016/j.csite.2018.03.006 doi: 10.1016/j.csite.2018.03.006
![]() |
[25] |
Romani Z, Draoui A, Allard F (2015) Metamodeling the heating and cooling energy needs and simultaneous building envelope optimization for low energy building design in Morocco. Energy Build 102: 139–148. https://doi.org/10.1016/j.enbuild.2015.04.014 doi: 10.1016/j.enbuild.2015.04.014
![]() |
[26] |
Sghiouri H, Charai M, Mezrhab A, et al. (2020) Comparison of passive cooling techniques in reducing overheating of clay-straw building in semi-arid climate. Build Simul 13: 65–88. https://doi.org/10.1007/s12273-019-0562-0 doi: 10.1007/s12273-019-0562-0
![]() |
[27] |
Bendara S, Bekkouche MA, Benouaz T, et al. (2019) Energy efficiency and insulation thickness according to the compactness index case of a studio apartment under saharan weather conditions. J Sol Energy Eng 141: 04101. https://doi.org/10.1115/1.4042455 doi: 10.1115/1.4042455
![]() |
[28] |
Rochd A, Benazzouz A, Ait Abdelmoula I, et al. (2021) Design and implementation of an AI-based & IoT-enabled home energy management system: A case study in Benguerir—Morocco. Energy Rep 7: 699–719. https://doi.org/10.1016/j.egyr.2021.07.084 doi: 10.1016/j.egyr.2021.07.084
![]() |
[29] |
Lebied M, Sick F, Choulli Z, et al. (2018) Improving the passive building energy efficiency through numerical simulation—A case study for Tetouan climate in northern of Morocco. Case Studies Therm Eng 11: 125–134. https://doi.org/10.1016/j.csite.2018.01.007 doi: 10.1016/j.csite.2018.01.007
![]() |
[30] |
Bouhal T, Fertahi S e.-D, Agrouaz Y, et al. (2018) Technical assessment, economic viability and investment risk analysis of solar heating/cooling systems in residential buildings in Morocco. Sol Energy 170: 1043–1062. https://doi.org/10.1016/j.solener.2018.06.032 doi: 10.1016/j.solener.2018.06.032
![]() |
[31] |
Swan LG, Ugursal VI (2009) Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable Sustainable Energy Rev 13: 1819–1835. https://doi.org/10.1016/j.rser.2008.09.033 doi: 10.1016/j.rser.2008.09.033
![]() |
[32] |
Martos A, Pacheco-Torres R, Ordóñ ez J, et al. (2016) Towards successful environmental performance of sustainable cities: Intervening sectors—A review. Renewable Sustainable Energy Rev 57: 479–495. https://doi.org/10.1016/j.rser.2015.12.095 doi: 10.1016/j.rser.2015.12.095
![]() |
[33] |
Howard B, Parshall L, Thompson J, et al. (2012) Spatial distribution of urban building energy consumption by end use. Energy Build 45: 141–151. https://doi.org/10.1016/j.enbuild.2011.10.061 doi: 10.1016/j.enbuild.2011.10.061
![]() |
[34] |
Pereira IM, Sad de Assis E (2013) Urban energy consumption mapping for energy management. Energy Policy 59: 257–269. https://doi.org/10.1016/j.enpol.2013.03.024 doi: 10.1016/j.enpol.2013.03.024
![]() |
[35] |
Mutani G, Todeschi V (2021) GIS-based urban energy modelling and energy efficiency scenarios using the energy performance certificate database. Energy Efficiency 14: 1–28. https://doi.org/10.1007/s12053-021-09962-z doi: 10.1007/s12053-021-09962-z
![]() |
[36] |
Todeschi V, Boghetti R, Kämpf JH, et al. (2021) Evaluation of urban-scale building energy-use models and tools—Application for the city of Fribourg, Switzerland. Sustainability 13: 1595. https://doi.org/10.3390/su13041595 doi: 10.3390/su13041595
![]() |
[37] | Population of Ifrane 2023, AZNations, 2023. Available from: https://www.aznations.com/population/ma/cities/ifrane-1.[Accessed 27 March 2023]. |
[38] | Ministère de l'Intérieur, Monographie Générale. La Région de Fès-Meknès, 2015. Available from: https://knowledge-uclga.org/IMG/pdf/regiondefesmeknes-2.pdf. |
[39] |
Sick F, Schade S, Mourtada A, et al. (2014) Dynamic building simulations for the establishment of a Moroccan thermal regulation for buildings. J Green Build 9: 145–165. https://doi.org/10.3992/1943-4618-9.1.145 doi: 10.3992/1943-4618-9.1.145
![]() |
[40] | Boujnah M, Jraida K, Farchi A, et al. (2016) Comparison of the calculation methods of heating and cooling. Int J Current Trends Eng Technol 2. Available from: http://ijctet.org/assets/upload/7371IJCTET2016120301.pdf. |
[41] |
Kharbouch Y, Ameur M (2021) Prediction of the impact of climate change on the thermal performance of walls and roof in Morocco. Int Rev Appl Sci Eng 13: 174–184. https://doi.org/10.1556/1848.2021.00330 doi: 10.1556/1848.2021.00330
![]() |
[42] | Morocco sets regulations for energy efficiency. Oxford Business Group, 2015.[Online]. Available: https://oxfordbusinessgroup.com/analysis/morocco-sets-regulations-energy-efficiency.[Accessed 11 November 2022]. |
[43] | AMEE (Agence Marocaine pour l'Efficacité Energétique), Règlement Thermique de Construction au Maroc. Rabat, 2018. Available from: https://www.amee.ma/sites/default/files/inline-files/Lereglementthermique.pdf. |
[44] | Bouroubat K, La construction durable: étude juridique comparative. HAL Open Science, Paris, 2017. Available from: https://theses.hal.science/tel-01617586/document. |
[45] | M'Gbra N, Touzani A (2013) Energy efficiency codes in residential buildings and energy efficiency improvement in commercial and hospital buildings in Morocco. Mid-Term Evaluation Report on the UNDP/GEP Project, 5–34. Available from: https://procurement-notices.undp.org/view_file.cfm?doc_id=35481. |
[46] | El Wardi FZ, Khabbazi A, Bencheikh C, et al. (2017) Insulation material for a model house in Zaouiat Sidi Abdessalam. In International Renewable and Sustainable Energy Conference (IRSEC), Tangier. https://doi.org/10.1109/IRSEC.2017.8477582 |
[47] |
Gounni A, Ouhaibi S, Belouaggadia N, et al. (2022) Impact of COVID-19 restrictions on building energy consumption using Phase Change Materials (PCM) and insulation: A case study in six climatic zones of Morocco. J Energy Storage 55: 105374. https://doi.org/10.1016/j.est.2022.105374 doi: 10.1016/j.est.2022.105374
![]() |
[48] | MHPV (Ministère de l'Habitat et de la Politique de la Ville), Guide des Bonnes Pratiques pour la Maitrise de l'Energie à l'Echelle de la Ville et de l'Habitat. Rabat, 2014. Available from: www.mhpv.gov.ma/wp-content/uploads/2021/11/Guide-de-bonnes-pratiques-pour-la-maitrise-de-l-energie.pdf. |
[49] | PEEB (Programme for Energy Efficiency in Buildings), Building Sector Brief: Morocco. Agence Française de Développement, Paris, 2019. Available from: https://www.peeb.build/imglib/downloads/PEEB_Morocco_Country Brief_Mar 2019.pdf. |
[50] | HCP (Haut-Commissariat au Plan), Les Indicateurs Sociaux du Maroc. Rabat, 2022. Available from: https://www.hcp.ma/Les-Indicateurs-sociaux-du-Maroc-Edition-2022_a3192.html#: ~: text=L'objectif%20de%20cette%20publication, une%20%C3%A9valuation%20des%20politiques%20publiques. |
[51] | Lahlimi Alami A, Prospective Maroc—Energie 2030. HCP (Haut-Commissariat au Plan), Rabat, 2022. Available from: https://www.hcp.ma/downloads/?tag=Prospective+Maroc+2030. |
[52] | Energy Efficiency in Buildings. AMEE, 2016. Available from: https://www.amee.ma/en/node/118.[Accessed 8 September 2022]. |
[53] | MTEDD (Ministère de la Transition Energétique et du Développement Durable), Campagne de Sensibilisation sur l'Economie d'Energie. 29 June 2022. Available from: https://www.mem.gov.ma/Pages/actualite.aspx?act=333.[Accessed 11 November 2022]. |
[54] | Ferreira D, Dey AK, Kostakos V (2011) Understanding human-smartphone concerns: A study of battery life. In International Conference of Pervasive Computing. https://doi.org/10.1007/978-3-642-21726-5_2 |
[55] | Karunarathna WKS, Jayaratne W, Dasanayaka S, et al. (2023) Factors affecting household's use of energy-saving appliances in Sri Lanka: An empirical study using a conceptualized technology acceptance model. Energy Effic, 16. https://doi.org/10.1007/s12053-023-10096-7 |
[56] |
Waris I, Hameed I (2020) Promoting environmentally sustainable consumption behavior: an empirical evaluation of purchase intention of energy-efficient appliances. Energy Effic 13: 1653–1664. https://doi.org/10.1007/s12053-020-09901-4 doi: 10.1007/s12053-020-09901-4
![]() |
[57] | HCP (Haut-Commissariat au Plan), Le secteur de l'emploi au Maroc. World Bank, Washington DC, 2021. Available from: https://www.hcp.ma/region-oriental/docs/Paysage%20de%20l%27%27emploi%20au%20Maroc%20_%20Recenser%20les%20obstacles%20a%20un%20marche%20du%20travail%20inclusif.pdf. |
[58] | Gustafson S, Hartman W, Sellers B, et al. (2015) Energy sustainability in Morocco. Worcester Polytechnic Institute, Worcester. Available from: https://web.wpi.edu/Pubs/E-project/Available/E-project-101615-143625/unrestricted/energy-iqp_report-final2.pdf. |
[59] |
Hu Q, Qian X, Shen X, et al. (2022) Investigations on vapor cloud explosion hazards and critical safe reserves of LPG tanks. J Loss Prev Process Ind 80: 104904. https://doi.org/10.1016/j.jlp.2022.104904 doi: 10.1016/j.jlp.2022.104904
![]() |
[60] | Zinecker A, Gagnon-Lebrun F, Touchette Y, et al. (2018) Swap: Reforming support for butane gas to invest in solar in Morocco. Int Inst Sustainable Dev. Available from: https://www.iisd.org/system/files/publications/swap-morocco-fr.pdf. |
[61] | MEME (Ministère de l'Energie, des Mines et de l'Environnement), Feuille de Route Nationale pour la Valorisation Energétique de la Biomasse. Rabat, 2021. Available from: https://www.mem.gov.ma/Lists/Lst_rapports/Attachments/32/Feuille de Route Nationale pour la Valorisation Energétique de la Biomasse à l'horizon 2030.pdf. |
[62] | Loutia M (2016) The applicability of geothermal energy for heating purposes in the region of Ifrane. Al Akhawayn University, Ifrane, 2016. Available from: www.aui.ma/sse-capstone-repository/pdf/spring2016/The Applicability Of Geothermal Energy For Heating Purposes In The Region of Ifrane.pdf. |
[63] |
Krarouch M, Lamghari S, Hamdi H, et al. (2020) Simulation and experimental investigation of a combined solar thermal and biomass heating system in Morocco. Energy Rep 6: 188–194. https://doi.org/10.1016/j.egyr.2020.11.270 doi: 10.1016/j.egyr.2020.11.270
![]() |
[64] | HCP (Haut-Commissariat au Plan), Caractéristiques Démographiques et Socio-Economiques—Province Ifrane. Rabat, 2022. Available from: https://www.hcp.ma/region-meknes/attachment/1605477/. |
[65] | HCP (Haut-Commissariat au Plan), Recensement Général de la Population et de l'Habitat 2014. HCP, Rabat, 2015. Available from: www.mhpv.gov.ma/wp-content/uploads/2019/12/RGPH-HABITAT.pdf. |
[66] | Driouchi A, Zouag N (2006) Eléments pour le Renforcement de l'Insertion du Maroc dans l'Economie de Croissance. Haut-Commissariat au Plan, Ifrane, 2006. Available from: https://www.hcp.ma/downloads/?tag=Prospective+Maroc+2030. |
[67] | MTEDD (Ministère de la Transition Energétique et du Développement Durable), Consommation énergétique par l'administration, 2019. Available from: https://siredd.environnement.gov.ma/fes-meknes/indicateur/DetailIndicateurPartial?idIndicateur=2988.[Accessed 3 September 2022]. |
[68] | Bami R (2022) Ifrane: L'énergie solaire remplace le bois. Yabiladi, 2022. Available from: https://www.yabiladi.com/article-societe-1636.html.[Accessed 18 November 2022]. |
[69] | MEMEE (Ministère de l'Energie, des Mines, de l'Eau et de l'Environnement), Stratégie Energétique Nationale—Horizon 2030. Rabat, 2021. Available from: https://www.mem.gov.ma/Lists/Lst_rapports/Attachments/33/Strat%C3%A9gue%20Nationale%20de%20l'Efficacit%C3%A9%20%C3%A9nerg%C3%A9tique%20%C3%A0%20l'horizon%202030.pdf. |
[70] | Laroussi I (2017) Cost Study and Analysis of PV Installation per Watt Capacity in Ifrane. Al Akhawayn University, Ifrane, 2017. Available from: http://www.aui.ma/sse-capstone-repository/pdf/fall2017/PV%20INSTALLATION%20COST%20IN%20MOROCCO.%20ILIAS%20LAROUSSI.pdf. |
[71] |
Arechkik A, Sekkat A, Loudiyi K, et al. (2019) Performance evaluation of different photovoltaic technologies in the region of Ifrane, Morocco. Energy Sustainable Dev 52: 96–103. https://doi.org/10.1016/j.esd.2019.07.007 doi: 10.1016/j.esd.2019.07.007
![]() |
[72] | Biodiesel Produced at AUI. Al Akhawayn University, Ifrane, 28 April 2016. Available from: http://www.aui.ma/en/media-room/news/al-akhawayn-news/3201-biodiesel-produced-at-aui.html.[Accessed 9 November 2022]. |
[73] | Derj A, Clean Energies Based Refurbishment of the Heating System of Al Akhawayn University Swimming Pool. Al Akhawayn University, Ifrane, 2015. Available from: www.aui.ma/sse-capstone-repository/pdf/Clean Energies Based Refurbishment of the Heating System of Al Akhawayn University Swimming Pool.pdf. |
[74] | Farissi A, Driouach L, Zarbane K, et al. (2021) Covid-19 impact on moroccan small and medium-sized enterprises: Can lean practices be an effective solution for getting out of crisis? Manage Syst Prod Eng 29: 83–90. https://doi.org/10.2478/mspe-2021-0011 |
[75] |
Yoo S-H (2005) Electricity consumption and economic growth: evidence from Korea. Energy Policy 33: 1627–1632. https://doi.org/10.2478/mspe-2021-0011 doi: 10.2478/mspe-2021-0011
![]() |
[76] | Fatmi A (2022) Student Handbook & Planner. Al Akhawayn University, Ifrane. Available from: www.aui.ma/Student-handbook_2021-2022.pdf. |
[77] | World Bank, The Social and Economic Impact of the Covid-19 Crisis in Morocco. Haut-Commissariat au Plan, Rabat, 2021. Available from: https://thedocs.worldbank.org/en/doc/852971598449488981-0280022020/original/ENGTheSocialandEconomicImpactoftheCovid19CrisisinMorocco.pdf. |
[78] |
Kharbouch Y, Mimet A, El Ganaoui M, et al. (2018) Thermal energy and economic analysis of a PCM-enhanced household envelope considering different climate zones in Morocco. Int J Sustainable Energy 37: 515–532. https://doi.org/10.1080/14786451.2017.1365076 doi: 10.1080/14786451.2017.1365076
![]() |
[79] |
Lachheb A, Allouhi A, Saadani R, et al. (2021) Thermal and economic analyses of different glazing systems for a commercial building in various Moroccan climates. Int J Energy Clean Environ 22: 15–41. https://doi.org/10.1615/InterJEnerCleanEnv.2020034790 doi: 10.1615/InterJEnerCleanEnv.2020034790
![]() |
[80] | Nacer H, Radoine H, Mastouri H, et al. (2021) Sustainability assessment of an existing school building in Ifrane Morocco using LEED and WELL certification and environmental approach. In 9th International Renewable and Sustainable Energy Conference (IRSEC). https://doi.org/10.1109/IRSEC53969.2021.9741142 |
[81] | Houzir M, Plan Sectoriel—Eco Construction et Bâ timent Durable. UNEP, Rabat, 2016. Available from: https://switchmed.eu/wp-content/uploads/2020/04/02.-Sectoral-plan-construction-Morocco-in-french.pdf. |
[82] | Beccali M, Finocchiaro P, Gentile V et al. (2017) Monitoring and energy performance assessment of an advanced DEC HVAC system in Morocco. In ISES Solar World Conference. https://doi.org/10.18086/swc.2017.28.01 |
[83] | Taimouri O, Souissi A (2019) Validation of a cooling loads calculation of an office building in Rabat Morocco based on manuel heat balance (Carrier Method). Int J Sci Technol Res 8: 2478–2484. Available from: https://www.ijstr.org/final-print/dec2019/Validation-Of-A-Cooling-Loads-Calculation-Of-An-Office-Building-In-Rabat-Morocco-Based-On-Manuel-Heat-Balance-carrier-Method.pdf. |
[84] | IEA (International Energy Agency), Decree n. 2-17-746 on Mandatory energy audits and energy audit organizations, 2019. Available from: https://www.iea.org/policies/8571-decree-n-2-17-746-on-mandatory-energy-audits-and-energy-audit-organisations.[Accessed 26 October 2022]. |
[85] | Chramate I, Assadiki R, Zerrouq F, et al. (2018) Energy audit in Moroccan industries. Asial Life Sciences. Available from: https://www.researchgate.net/publication/330553987_Energy_audit_in_Moroccan_industries. |
[86] |
Lillemo SC (2014) Measuring the effect of procrastination and environmental awareness on households' energy-saving behaviours: An empirical approach. Energy Policy 66: 249–256. https://doi.org/10.1016/j.enpol.2013.10.077 doi: 10.1016/j.enpol.2013.10.077
![]() |
[87] |
Kang NN, Cho SH, Kim JT (2012) The energy-saving effects of apartment residents' awareness and behavior. Energy Build 46: 112–122. https://doi.org/10.1016/j.enbuild.2011.10.039 doi: 10.1016/j.enbuild.2011.10.039
![]() |
[88] |
Biresselioglu ME, Nilsen M, Demir MH, et al. (2018) Examining the barriers and motivators affecting European decision-makers in the development of smart and green energy technologies. J Cleaner Prod 198: 417–429. https://doi.org/10.1016/j.jclepro.2018.06.308 doi: 10.1016/j.jclepro.2018.06.308
![]() |
[89] |
Hartwig J, Kockat J (2016) Macroeconomic effects of energetic building retrofit: input-output sensitivity analyses. Constr Manage Econ 34: 79–97. https://doi.org/10.1080/01446193.2016.1144928 doi: 10.1080/01446193.2016.1144928
![]() |
[90] |
Pikas E, Kurnitski J, Liias R, et al. (2015) Quantification of economic benefits of renovation of apartment buildings as a basis for cost optimal 2030 energy efficiency strategies. Energy Build 86: 151–160. https://doi.org/10.1016/j.enbuild.2014.10.004 doi: 10.1016/j.enbuild.2014.10.004
![]() |
[91] |
Ferreira M, Almeida M (2015) Benefits from energy related building renovation beyond costs, energy and emissions. Energy Procedia 78: 2397–2402. https://doi.org/10.1016/j.egypro.2015.11.199 doi: 10.1016/j.egypro.2015.11.199
![]() |
[92] |
Song X, Ye C, Li H, et al. (2016) Field study on energy economic assessment of office buildings envelope retrofitting in southern China. Sustainable Cities Soc 28: 154–161. https://doi.org/10.1016/j.scs.2016.08.029 doi: 10.1016/j.scs.2016.08.029
![]() |
[93] | Kaynakli O (2012) A review of the economical and optimum thermal insulation thickness for building applications. Renewable Sustainable Energy Rev 16,415–425. https://doi.org/10.1016/j.rser.2011.08.006 |
[94] |
Bambara J, Athienitis AK (2018) Energy and economic analysis for greenhouse envelope design. Trans ASABE 61: 1795–1810. https://doi.org/10.13031/trans.13025 doi: 10.13031/trans.13025
![]() |
[95] |
Struhala K, Ostrý M (2022) Life-Cycle Assessment of phase-change materials in buildings: A review. J Cleaner Prod 336: 130359. https://doi.org/10.1016/j.jclepro.2022.130359 doi: 10.1016/j.jclepro.2022.130359
![]() |
[96] |
Arumugam P, Ramalingam V, Vellaichamy P (2022) Effective PCM, insulation, natural and/or night ventilation techniques to enhance the thermal performance of buildings located in various climates—A review. Energy Build 258: 111840. https://doi.org/10.1016/j.enbuild.2022.111840 doi: 10.1016/j.enbuild.2022.111840
![]() |
[97] |
Jaffe AB, Stavins RN (1994) The energy-efficiency gap—What does it mean? Energy Policy 22: 804–810. https://doi.org/10.1016/0301-4215(94)90138-4 doi: 10.1016/0301-4215(94)90138-4
![]() |
[98] |
Backlund S, Thollander P, Palm J, et al. (2012) Extending the energy efficiency gap. Energy Policy 51: 392–396. https://doi.org/10.1016/j.enpol.2012.08.042 doi: 10.1016/j.enpol.2012.08.042
![]() |
[99] |
Gerarden TD, Newell RG, Stavins RN (2017) Assessing the energy-efficiency gap. J Econ Lit 55: 1486–1525. https://doi.org/10.1257/jel.20161360 doi: 10.1257/jel.20161360
![]() |
[100] |
Chai K-H, Yeo C (2012) Overcoming energy efficiency barriers through systems approach—A conceptual framework. Energy Policy 46: 460–472. https://doi.org/10.1016/j.enpol.2012.04.012 doi: 10.1016/j.enpol.2012.04.012
![]() |
[101] |
Allcott H (2011) Consumers' perceptions and misperceptions of energy costs. Am Econ Rev 101: 98–104. https://doi.org/10.1257/aer.101.3.98 doi: 10.1257/aer.101.3.98
![]() |
[102] |
Davis LW, Metcalf GE (2016) Does better information lead to better choices? Evidence from energy-efficiency labels. J Assoc Environ Resour Econ 3: 589–625. https://doi.org/10.1086/686252 doi: 10.1086/686252
![]() |
[103] |
Shen J (2012) Understanding the Determinants of Consumers' Willingness to Pay for Eco-Labeled Products: An Empirical Analysis of the China Environmental Label. J Serv Sci Manage 5: 87–94. https://doi.org/10.4236/jssm.2012.51011 doi: 10.4236/jssm.2012.51011
![]() |
[104] |
Poortinga W, Steg L, Vlek C, et al. (2003) Household preferences for energy-saving measures: A conjoint analysis. J Econ Psychol 24: 49–64. https://doi.org/10.1016/S0167-4870(02)00154-X doi: 10.1016/S0167-4870(02)00154-X
![]() |
[105] |
Banerjee A, Solomon BD (2003) Eco-labeling for energy efficiency and sustainability: a meta-evaluation of US programs. Energy Policy 31: 109–123. https://doi.org/10.1016/S0301-4215(02)00012-5 doi: 10.1016/S0301-4215(02)00012-5
![]() |
[106] |
Sammer K, Wüstenhagen R (2006) The influence of eco-labelling on consumer behaviour—results of a discrete choice analysis for washing machines. Bus Strategy Environ 15: 185–199. https://doi.org/10.1002/bse.522 doi: 10.1002/bse.522
![]() |
[107] |
Shen L, Sun Y (2016) Performance comparisons of two system sizing approaches for net zero energy building clusters under uncertainties. Energy Build 127: 10–21. https://doi.org/10.1016/j.enbuild.2016.05.072 doi: 10.1016/j.enbuild.2016.05.072
![]() |
[108] |
Good C, Andresen I, Hestnes AG (2015) Solar energy for net zero energy buildings—A comparison between solar thermal, PV and photovoltaic–thermal (PV/T) systems. Sol Energy 123: 986–996. https://doi.org/10.1016/j.solener.2015.10.013 doi: 10.1016/j.solener.2015.10.013
![]() |
[109] |
Harkouss F, Fardoun F, Biwole PH (2018) Passive design optimization of low energy buildings in different climates. Energy 165: 591–613, 2018. https://doi.org/10.1016/j.energy.2018.09.019 doi: 10.1016/j.energy.2018.09.019
![]() |
[110] |
Penna P, Prada A, Cappelletti F, et al. (2015) Multi-objectives optimization of energy efficiency measures in existing buildings. Energy Build 95: 57–69. https://doi.org/10.1016/j.enbuild.2014.11.003 doi: 10.1016/j.enbuild.2014.11.003
![]() |
[111] | Serbouti A, Rattal M, Boulal A, et al. (2018) Multi-Objective optimization of a family house performance and forecast of its energy needs by 2100. Int J Eng Technol 7: 7–10. Available from: https://www.sciencepubco.com/index.php/ijet/article/view/23235. |
[112] | ONEEP (Office National de l'Electricité et de l'Eau Potable), Tarif Général (MT). ONEE, 1 January 2017. Available from: http://www.one.org.ma/FR/pages/interne.asp?esp=1&id1=2&id2=35&id3=10&t2=1&t3=1.[Accessed 24 November 2022]. |
[113] | ONEEP (Office National de l'Electricité et de l'Eau Potable), Nos tarifs. ONEEP, 1 January 2017. Available from: http://www.one.org.ma/FR/pages/interne.asp?esp=1&id1=3&id2=113&t2=1.[Accessed 24 November 2022]. |
[114] |
Abdou N, EL Mghouchi Y, Hamdaoui S, et al. (2021) Multi-objective optimization of passive energy efficiency measures for net-zero energy building in Morocco. Build Environ 204: 108141. https://doi.org/10.1016/j.buildenv.2021.108141 doi: 10.1016/j.buildenv.2021.108141
![]() |
[115] |
Srinivas M (2011) Domestic solar hot water systems: Developments, evaluations and essentials for viability with a special reference to India. Renewable Sustainable Energy Rev 15: 3850–3861. https://doi.org/10.1016/j.rser.2011.07.006 doi: 10.1016/j.rser.2011.07.006
![]() |
[116] | Hudon K (2014) Chapter 20—Solar Energy—Water Heating. In Future Energy: Improved, Sustainable and Clean Options for our Planet. Elsevier Science, 433–451. https://doi.org/10.1016/B978-0-08-099424-6.00020-X |
[117] |
Bertoldi P (2022) Policies for energy conservation and sufficiency: Review of existing. Energy Build 26: 112075. https://doi.org/10.1016/j.enbuild.2022.112075 doi: 10.1016/j.enbuild.2022.112075
![]() |
[118] | Bertoldi P (2020) Chapter 4.3—Overview of the European Union policies to promote more sustainable behaviours in energy end-users, Energy and Behaviour: Towards a Low Carbon Future. Academic Press: 451–477. https://doi.org/10.1016/B978-0-12-818567-4.00018-1 |
[119] |
Herring H (2006) Energy efficiency—A critical view. Energy 31: 10–20. https://doi.org/10.1016/j.energy.2004.04.055 doi: 10.1016/j.energy.2004.04.055
![]() |
[120] |
Sorrell S, Gatersleben B, Druckman A (2020) The limits of energy sufficiency: A review of the evidence for rebound effects and negative spillovers from behavioural change. Energy Res Soc Sci 64: 101439. https://doi.org/10.1016/j.erss.2020.101439 doi: 10.1016/j.erss.2020.101439
![]() |
[121] | Sachs W (1999) The Power of Limits: An Inquiry into New Models of Wealth, in Planet Dialectics. Explorations in Environment and Development, London, ZED-BOOKS. Available from: https://www.researchgate.net/publication/310580761_The_power_of_limits. |
[122] | Brischke LA, Lehmann F, Leuser L, et al. (2015) Energy sufficiency in private households enabled by adequate appliances. In ECEEE Summer Study proceedings. Available from: https://epub.wupperinst.org/frontdoor/deliver/index/docId/5932/file/5932_Brischke.pdf. |
[123] |
Spangenberg JH, Lorek S (2019) Sufficiency and consumer behaviour: From theory to policy. Energy Policy 129: 1070–1079. https://doi.org/10.1016/j.enpol.2019.03.013 doi: 10.1016/j.enpol.2019.03.013
![]() |
[124] |
Heindl P, Kanschik P (2016) Ecological sufficiency, individual liberties, and distributive justice: Implications for policy making. Ecol Econ 126: 42–50. https://doi.org/10.1016/j.ecolecon.2016.03.019 doi: 10.1016/j.ecolecon.2016.03.019
![]() |
[125] | IEA (International Energy Agency), Energy Policies beyond IEA Countries: Morocco 2019. IEA, 2019. Available from: https://www.iea.org/reports/energy-policies-beyond-iea-countries-morocco-2019. |
[126] |
Palermo V, Bertoldi P, Apostolou M, et al. (2020) Assessment of climate change mitigation policies in 315 cities in the Covenant of Mayors initiative. Sustainable Cities Soc 60: 102258. https://doi.org/10.1016/j.scs.2020.102258 doi: 10.1016/j.scs.2020.102258
![]() |
[127] |
Kona A, Bertoldi P, Kilkis S (2019) Covenant of mayors: Local energy generation, methodology, policies and good practice examples. Energies 12: 985. https://doi.org/10.3390/en12060985 doi: 10.3390/en12060985
![]() |
[128] |
Tsemekidi Tzeiranaki S, Bertoldi P, Diluiso F, et al. (2019) Analysis of the EU residential energy consumption: Trends and determinants. Energies 12: 1065. https://doi.org/10.3390/en12061065 doi: 10.3390/en12061065
![]() |
[129] | Köppen W (1900) Klassification der Klimate nach Temperatur, Niederschlag and Jahreslauf. Petermanns Geographische Mitteilungen 6: 593–611. Available from: koeppen-geiger.vu-wien.ac.at/pdf/Koppen_1918.pdf. |
[130] |
Chen D, Chen HW (2013) Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environ Dev 6: 69–79. https://doi.org/10.1016/j.envdev.2013.03.007 doi: 10.1016/j.envdev.2013.03.007
![]() |
[131] |
Perez-Garcia A, Guardiola AP, Gómez-Martínez F, et al. (2018) Energy-saving potential of large housing stocks of listed buildings, case study: l'Eixample of Valencia. Sustainable Cities Soc 42: 59–81. https://doi.org/10.1016/j.scs.2018.06.018 doi: 10.1016/j.scs.2018.06.018
![]() |
[132] |
Wang X, Ding C, Zhou M, et al. (2023) Assessment of space heating consumption efficiency based on a household survey in the hot summer and cold winter climate zone in China. Energy 274: 127381. https://doi.org/10.1016/j.energy.2023.127381 doi: 10.1016/j.energy.2023.127381
![]() |
[133] |
Cao X, Yao R, Ding C, et al. (2021) Energy-quota-based integrated solutions for heating and cooling of residential buildings in the Hot Summer and Cold Winter zone in China. Energy Build 236: 110767. https://doi.org/10.1016/j.enbuild.2021.110767 doi: 10.1016/j.enbuild.2021.110767
![]() |
[134] |
Deng Y, Gou Z, Gui X, et al. (2021) Energy consumption characteristics and influential use behaviors in university dormitory buildings in China's hot summer-cold winter climate region. J Build Eng 33: 101870. https://doi.org/10.1016/j.jobe.2020.101870 doi: 10.1016/j.jobe.2020.101870
![]() |
[135] |
Liu H, Kojima S (2017) Evaluation on the energy consumption and thermal performance in different residential building types during mid-season in hot-summer and cold-winter zone in China. Proc Eng 180: 282–291. https://doi.org/10.1016/j.proeng.2017.04.187 doi: 10.1016/j.proeng.2017.04.187
![]() |
[136] |
Geraldi MS, Melo AP, Lamberts R, et al. (2022) Assessment of the energy consumption in non-residential building sector in Brazil. Energy Build 273: 112371. https://doi.org/10.1016/j.enbuild.2022.112371 doi: 10.1016/j.enbuild.2022.112371
![]() |
[137] |
El Hafdaoui H, El Alaoui H, Mahidat S, et al. (2023) Impact of hot arid climate on optimal placement of electric vehicle charging stations. Energies 16: 753. https://doi.org/10.3390/en16020753 doi: 10.3390/en16020753
![]() |
1. | Najwan Alsadat, Amal S. Hassan, Mohammed Elgarhy, Arne Johannssen, Ahmed M. Gemeay, Estimation methods based on ranked set sampling for the power logarithmic distribution, 2024, 14, 2045-2322, 10.1038/s41598-024-67693-4 | |
2. | Mohammed Elgarhy, Mohamed Kayid, Arne Johannssen, Mahmoud Elsehetry, Survival analysis based on an enhanced Rayleigh-inverted Weibull model, 2024, 10, 24058440, e35851, 10.1016/j.heliyon.2024.e35851 | |
3. | Muhammad Riaz, Anwar H. Joarder, M. Hafidz Omar, Tahir Mahmood, Nasir Abbas, On Approaching Normality Through Rectangular Distribution: Industrial Applications to Monitor Electron Gun and File Server Processes, 2025, 2214-1766, 10.1007/s44199-024-00102-x | |
4. | Fatimah A. Almulhim, Dalia Kamal Alnagar, ELsiddig Idriss Mohamed, Nuran M. Hassan, Dependent and independent sampling techniques for modeling radiation and failure data, 2025, 18, 16878507, 101377, 10.1016/j.jrras.2025.101377 | |
5. | Hatem Semary, Ahmad Abubakar Suleiman, Aliyu Ismail Ishaq, Jamilu Yunusa Falgore, Umar Kabir Abdullahi, Hanita Daud, Mohamed A. Abd Elgawad, Mohammad Elgarhy, A new modified Sine-Weibull distribution for modeling medical data with dynamic structures, 2025, 18, 16878507, 101427, 10.1016/j.jrras.2025.101427 |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.5128 ^{\{5\}} | 0.5108 ^{\{4\}} | 0.5268 ^{\{8\}} | 0.4521 ^{\{1\}} | 0.5305 ^{\{9\}} | 0.4879 ^{\{3\}} | 0.4799 ^{\{2\}} | 0.5257 ^{\{7\}} | 0.5755 ^{\{11\}} | 0.5345 ^{\{10\}} | 0.5223 ^{\{6\}} |
MSE | {\ddddot \delta} | 0.5886 ^{\{4\}} | 0.5957 ^{\{5\}} | 0.6356 ^{\{9\}} | 0.4704 ^{\{1\}} | 0.6343 ^{\{8\}} | 0.5022 ^{\{2\}} | 0.5088 ^{\{3\}} | 0.6309 ^{\{7\}} | 0.806 ^{\{11\}} | 0.7126 ^{\{10\}} | 0.6245 ^{\{6\}} | |
MRE | {\ddddot \delta} | 3.4184 ^{\{5\}} | 3.405 ^{\{4\}} | 3.5117 ^{\{8\}} | 3.0141 ^{\{1\}} | 3.5368 ^{\{9\}} | 3.2523 ^{\{3\}} | 3.1997 ^{\{2\}} | 3.5049 ^{\{7\}} | 3.8366 ^{\{11\}} | 3.563 ^{\{10\}} | 3.4823 ^{\{6\}} | |
\sum Ranks | 14 ^{\{5\}} | 13 ^{\{4\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 26 ^{\{9\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 21 ^{\{7\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | ||
50 | bias | {\ddddot \delta} | 0.3349 ^{\{4\}} | 0.3408 ^{\{6\}} | 0.3462 ^{\{8\}} | 0.3171 ^{\{1\}} | 0.337 ^{\{5\}} | 0.329 ^{\{3\}} | 0.327 ^{\{2\}} | 0.3414 ^{\{7\}} | 0.3703 ^{\{11\}} | 0.361 ^{\{10\}} | 0.3535 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.1991 ^{\{4\}} | 0.2068 ^{\{6\}} | 0.2138 ^{\{8\}} | 0.1837 ^{\{1\}} | 0.205 ^{\{5\}} | 0.1905 ^{\{2\}} | 0.1917 ^{\{3\}} | 0.2082 ^{\{7\}} | 0.2532 ^{\{10\}} | 0.2582 ^{\{11\}} | 0.2295 ^{\{9\}} | |
MRE | {\ddddot \delta} | 2.2326 ^{\{4\}} | 2.2718 ^{\{6\}} | 2.3083 ^{\{8\}} | 2.1143 ^{\{1\}} | 2.2469 ^{\{5\}} | 2.1934 ^{\{3\}} | 2.18 ^{\{2\}} | 2.2762 ^{\{7\}} | 2.4686 ^{\{11\}} | 2.4064 ^{\{10\}} | 2.357 ^{\{9\}} | |
\sum Ranks | 12 ^{\{4\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 21 ^{\{7\}} | 32 ^{\{11\}} | 31 ^{\{10\}} | 27 ^{\{9\}} | ||
120 | bias | {\ddddot \delta} | 0.2637 ^{\{7\}} | 0.2659 ^{\{8\}} | 0.2568 ^{\{2\}} | 0.2537 ^{\{1\}} | 0.2628 ^{\{5\}} | 0.2617 ^{\{4\}} | 0.2591 ^{\{3\}} | 0.2635 ^{\{6\}} | 0.2767 ^{\{9\}} | 0.2825 ^{\{11\}} | 0.279 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.1088 ^{\{5\}} | 0.1116 ^{\{8\}} | 0.1055 ^{\{2\}} | 0.1044 ^{\{1\}} | 0.1099 ^{\{7\}} | 0.1089 ^{\{6\}} | 0.1061 ^{\{3\}} | 0.1073 ^{\{4\}} | 0.1246 ^{\{9\}} | 0.1374 ^{\{11\}} | 0.1272 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.7582 ^{\{7\}} | 1.7728 ^{\{8\}} | 1.7119 ^{\{2\}} | 1.6911 ^{\{1\}} | 1.7523 ^{\{5\}} | 1.7446 ^{\{4\}} | 1.7271 ^{\{3\}} | 1.7564 ^{\{6\}} | 1.8445 ^{\{9\}} | 1.8832 ^{\{11\}} | 1.86 ^{\{10\}} | |
\sum Ranks | 19 ^{\{7\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 17 ^{\{6\}} | 14 ^{\{4\}} | 9 ^{\{3\}} | 16 ^{\{5\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
200 | bias | {\ddddot \delta} | 0.2313 ^{\{8\}} | 0.2301 ^{\{6\}} | 0.2294 ^{\{4\}} | 0.2173 ^{\{1\}} | 0.2272 ^{\{2\}} | 0.2307 ^{\{7\}} | 0.2277 ^{\{3\}} | 0.2297 ^{\{5\}} | 0.2403 ^{\{9\}} | 0.2447 ^{\{11\}} | 0.2438 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.0796 ^{\{8\}} | 0.0781 ^{\{5\}} | 0.0788 ^{\{6\}} | 0.0722 ^{\{1\}} | 0.0761 ^{\{2\}} | 0.0791 ^{\{7\}} | 0.0764 ^{\{3\}} | 0.0769 ^{\{4\}} | 0.0874 ^{\{9\}} | 0.0958 ^{\{11\}} | 0.0907 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.5418 ^{\{8\}} | 1.534 ^{\{6\}} | 1.5293 ^{\{4\}} | 1.4486 ^{\{1\}} | 1.5149 ^{\{2\}} | 1.5379 ^{\{7\}} | 1.5181 ^{\{3\}} | 1.5314 ^{\{5\}} | 1.6019 ^{\{9\}} | 1.6315 ^{\{11\}} | 1.6256 ^{\{10\}} | |
\sum Ranks | 24 ^{\{8\}} | 17 ^{\{6\}} | 14 ^{\{4.5\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 9 ^{\{3\}} | 14 ^{\{4.5\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
300 | bias | {\ddddot \delta} | 0.2075 ^{\{4\}} | 0.2098 ^{\{6\}} | 0.2108 ^{\{8\}} | 0.1925 ^{\{1\}} | 0.2059 ^{\{3\}} | 0.2084 ^{\{5\}} | 0.205 ^{\{2\}} | 0.2106 ^{\{7\}} | 0.2183 ^{\{9\}} | 0.223 ^{\{11\}} | 0.2207 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.0603 ^{\{4\}} | 0.062 ^{\{7\}} | 0.0629 ^{\{8\}} | 0.0549 ^{\{1\}} | 0.0602 ^{\{3\}} | 0.0614 ^{\{5\}} | 0.0593 ^{\{2\}} | 0.0619 ^{\{6\}} | 0.0686 ^{\{9\}} | 0.0763 ^{\{11\}} | 0.0701 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.3836 ^{\{4\}} | 1.3986 ^{\{6\}} | 1.4053 ^{\{8\}} | 1.283 ^{\{1\}} | 1.3724 ^{\{3\}} | 1.3896 ^{\{5\}} | 1.3666 ^{\{2\}} | 1.4037 ^{\{7\}} | 1.4553 ^{\{9\}} | 1.4864 ^{\{11\}} | 1.4712 ^{\{10\}} | |
\sum Ranks | 12 ^{\{4\}} | 19 ^{\{6\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 15 ^{\{5\}} | 6 ^{\{2\}} | 20 ^{\{7\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | {\ddddot \delta} | 0.191 ^{\{8\}} | 0.1908 ^{\{7\}} | 0.1869 ^{\{3.5\}} | 0.1744 ^{\{1\}} | 0.1891 ^{\{5\}} | 0.1853 ^{\{2\}} | 0.1869 ^{\{3.5\}} | 0.1905 ^{\{6\}} | 0.1957 ^{\{9\}} | 0.2039 ^{\{11\}} | 0.1996 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.0488 ^{\{6\}} | 0.0492 ^{\{8\}} | 0.047 ^{\{3.5\}} | 0.0436 ^{\{1\}} | 0.0487 ^{\{5\}} | 0.0463 ^{\{2\}} | 0.047 ^{\{3.5\}} | 0.0489 ^{\{7\}} | 0.0524 ^{\{9\}} | 0.0611 ^{\{11\}} | 0.0548 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.2732 ^{\{8\}} | 1.2723 ^{\{7\}} | 1.2459 ^{\{3\}} | 1.1625 ^{\{1\}} | 1.261 ^{\{5\}} | 1.2351 ^{\{2\}} | 1.2463 ^{\{4\}} | 1.2698 ^{\{6\}} | 1.3047 ^{\{9\}} | 1.3591 ^{\{11\}} | 1.3308 ^{\{10\}} | |
\sum Ranks | 22 ^{\{7.5\}} | 22 ^{\{7.5\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 6 ^{\{2\}} | 11 ^{\{4\}} | 19 ^{\{6\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.3505 ^{\{1\}} | 0.395 ^{\{5\}} | 0.4091 ^{\{7\}} | 0.3525 ^{\{2\}} | 0.4098 ^{\{8\}} | 0.3829 ^{\{4\}} | 0.37 ^{\{3\}} | 0.3965 ^{\{6\}} | 0.4737 ^{\{11\}} | 0.4317 ^{\{10\}} | 0.4258 ^{\{9\}} |
MSE | \hat{\delta} | 0.2218 ^{\{1\}} | 0.3044 ^{\{5\}} | 0.3299 ^{\{7\}} | 0.2503 ^{\{2\}} | 0.3354 ^{\{8\}} | 0.2813 ^{\{4\}} | 0.2668 ^{\{3\}} | 0.3068 ^{\{6\}} | 0.4836 ^{\{11\}} | 0.4161 ^{\{10\}} | 0.383 ^{\{9\}} | |
MRE | \hat{\delta} | 2.3369 ^{\{1\}} | 2.6331 ^{\{5\}} | 2.7272 ^{\{7\}} | 2.3501 ^{\{2\}} | 2.7317 ^{\{8\}} | 2.5528 ^{\{4\}} | 2.4666 ^{\{3\}} | 2.6436 ^{\{6\}} | 3.1579 ^{\{11\}} | 2.8777 ^{\{10\}} | 2.8388 ^{\{9\}} | |
\sum Ranks | 3 ^{\{1\}} | 15 ^{\{5\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 24 ^{\{8\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.2485 ^{\{9\}} | 0.2123 ^{\{5\}} | 0.2129 ^{\{6\}} | 0.1925 ^{\{1\}} | 0.213 ^{\{7\}} | 0.2075 ^{\{2\}} | 0.2086 ^{\{3\}} | 0.212 ^{\{4\}} | 0.2296 ^{\{8\}} | 0.2735 ^{\{11\}} | 0.2679 ^{\{10\}} |
MSE | \hat{\delta} | 0.094 ^{\{9\}} | 0.0642 ^{\{5\}} | 0.0652 ^{\{7\}} | 0.0544 ^{\{1\}} | 0.0648 ^{\{6\}} | 0.0606 ^{\{2\}} | 0.0624 ^{\{3\}} | 0.0636 ^{\{4\}} | 0.0773 ^{\{8\}} | 0.1338 ^{\{11\}} | 0.1145 ^{\{10\}} | |
MRE | \hat{\delta} | 1.6565 ^{\{9\}} | 1.4152 ^{\{5\}} | 1.4193 ^{\{6\}} | 1.2837 ^{\{1\}} | 1.4197 ^{\{7\}} | 1.383 ^{\{2\}} | 1.3908 ^{\{3\}} | 1.4134 ^{\{4\}} | 1.5306 ^{\{8\}} | 1.823 ^{\{11\}} | 1.7858 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 15 ^{\{5\}} | 19 ^{\{6\}} | 3 ^{\{1\}} | 20 ^{\{7\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
120 | bias | \hat{\delta} | 0.1991 ^{\{9\}} | 0.1406 ^{\{2\}} | 0.1423 ^{\{4\}} | 0.1232 ^{\{1\}} | 0.1427 ^{\{5\}} | 0.1412 ^{\{3\}} | 0.143 ^{\{6\}} | 0.1462 ^{\{7\}} | 0.1486 ^{\{8\}} | 0.2087 ^{\{11\}} | 0.2026 ^{\{10\}} |
MSE | \hat{\delta} | 0.0542 ^{\{9\}} | 0.025 ^{\{2\}} | 0.0258 ^{\{6\}} | 0.0201 ^{\{1\}} | 0.0257 ^{\{5\}} | 0.0253 ^{\{3\}} | 0.0256 ^{\{4\}} | 0.0266 ^{\{7\}} | 0.0283 ^{\{8\}} | 0.0667 ^{\{11\}} | 0.057 ^{\{10\}} | |
MRE | \hat{\delta} | 1.3271 ^{\{9\}} | 0.9374 ^{\{2\}} | 0.9488 ^{\{4\}} | 0.8213 ^{\{1\}} | 0.9511 ^{\{5\}} | 0.9411 ^{\{3\}} | 0.9531 ^{\{6\}} | 0.9747 ^{\{7\}} | 0.9906 ^{\{8\}} | 1.3916 ^{\{11\}} | 1.3509 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 6 ^{\{2\}} | 14 ^{\{4\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 9 ^{\{3\}} | 16 ^{\{6\}} | 21 ^{\{7\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
200 | bias | \hat{\delta} | 0.1806 ^{\{10\}} | 0.1085 ^{\{2\}} | 0.1113 ^{\{5\}} | 0.0928 ^{\{1\}} | 0.1112 ^{\{4\}} | 0.1106 ^{\{3\}} | 0.1139 ^{\{6\}} | 0.1148 ^{\{7\}} | 0.1173 ^{\{8\}} | 0.1853 ^{\{11\}} | 0.1793 ^{\{9\}} |
MSE | \hat{\delta} | 0.0422 ^{\{9\}} | 0.0152 ^{\{2\}} | 0.0157 ^{\{3.5\}} | 0.0117 ^{\{1\}} | 0.0158 ^{\{5\}} | 0.0157 ^{\{3.5\}} | 0.0165 ^{\{6\}} | 0.0169 ^{\{7\}} | 0.0174 ^{\{8\}} | 0.05 ^{\{11\}} | 0.0429 ^{\{10\}} | |
MRE | \hat{\delta} | 1.204 ^{\{10\}} | 0.7233 ^{\{2\}} | 0.7423 ^{\{5\}} | 0.6186 ^{\{1\}} | 0.7416 ^{\{4\}} | 0.7376 ^{\{3\}} | 0.7596 ^{\{6\}} | 0.7652 ^{\{7\}} | 0.7821 ^{\{8\}} | 1.2355 ^{\{11\}} | 1.1956 ^{\{9\}} | |
\sum Ranks | 29 ^{\{10\}} | 6 ^{\{2\}} | 13.5 ^{\{5\}} | 3 ^{\{1\}} | 13 ^{\{4\}} | 9.5 ^{\{3\}} | 18 ^{\{6\}} | 21 ^{\{7\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 28 ^{\{9\}} | ||
300 | bias | \hat{\delta} | 0.1596 ^{\{9\}} | 0.0902 ^{\{4\}} | 0.09 ^{\{3\}} | 0.0691 ^{\{1\}} | 0.0905 ^{\{5\}} | 0.0891 ^{\{2\}} | 0.0912 ^{\{6\}} | 0.0994 ^{\{8\}} | 0.0934 ^{\{7\}} | 0.1697 ^{\{11\}} | 0.1663 ^{\{10\}} |
MSE | \hat{\delta} | 0.0325 ^{\{9\}} | 0.0112 ^{\{5\}} | 0.011 ^{\{3\}} | 0.0073 ^{\{1\}} | 0.0111 ^{\{4\}} | 0.0109 ^{\{2\}} | 0.0114 ^{\{6\}} | 0.0142 ^{\{8\}} | 0.0118 ^{\{7\}} | 0.0405 ^{\{11\}} | 0.0354 ^{\{10\}} | |
MRE | \hat{\delta} | 1.0638 ^{\{9\}} | 0.6017 ^{\{4\}} | 0.6001 ^{\{3\}} | 0.4603 ^{\{1\}} | 0.6035 ^{\{5\}} | 0.5937 ^{\{2\}} | 0.6078 ^{\{6\}} | 0.6626 ^{\{8\}} | 0.6227 ^{\{7\}} | 1.1314 ^{\{11\}} | 1.1087 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 13 ^{\{4\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 14 ^{\{5\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 21 ^{\{7\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1462 ^{\{9\}} | 0.0824 ^{\{8\}} | 0.0689 ^{\{2\}} | 0.0478 ^{\{1\}} | 0.0694 ^{\{3\}} | 0.0698 ^{\{4\}} | 0.0729 ^{\{6\}} | 0.0761 ^{\{7\}} | 0.0728 ^{\{5\}} | 0.1577 ^{\{11\}} | 0.1518 ^{\{10\}} |
MSE | \hat{\delta} | 0.0273 ^{\{9\}} | 0.0114 ^{\{8\}} | 0.0073 ^{\{2\}} | 0.0041 ^{\{1\}} | 0.0074 ^{\{3.5\}} | 0.0074 ^{\{3.5\}} | 0.0079 ^{\{5.5\}} | 0.0097 ^{\{7\}} | 0.0079 ^{\{5.5\}} | 0.0337 ^{\{11\}} | 0.0293 ^{\{10\}} | |
MRE | \hat{\delta} | 0.9747 ^{\{9\}} | 0.5493 ^{\{8\}} | 0.4592 ^{\{2\}} | 0.3183 ^{\{1\}} | 0.4629 ^{\{3\}} | 0.4656 ^{\{4\}} | 0.486 ^{\{6\}} | 0.507 ^{\{7\}} | 0.4853 ^{\{5\}} | 1.0514 ^{\{11\}} | 1.0123 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9.5 ^{\{3\}} | 11.5 ^{\{4\}} | 17.5 ^{\{6\}} | 21 ^{\{7\}} | 15.5 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.6207 ^{\{5\}} | 0.6075 ^{\{4\}} | 0.6427 ^{\{8\}} | 0.5986 ^{\{2\}} | 0.6209 ^{\{6\}} | 0.5592 ^{\{1\}} | 0.6055 ^{\{3\}} | 0.6366 ^{\{7\}} | 0.7045 ^{\{10\}} | 0.7067 ^{\{11\}} | 0.6969 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.6293 ^{\{5\}} | 0.5692 ^{\{3\}} | 0.6515 ^{\{7\}} | 0.5246 ^{\{2\}} | 0.6296 ^{\{6\}} | 0.4705 ^{\{1\}} | 0.6066 ^{\{4\}} | 0.6556 ^{\{8\}} | 0.8866 ^{\{10\}} | 0.9346 ^{\{11\}} | 0.7847 ^{\{9\}} | |
MRE | {\ddddot \delta} | 1.0346 ^{\{5\}} | 1.0126 ^{\{4\}} | 1.0711 ^{\{8\}} | 0.9977 ^{\{2\}} | 1.0349 ^{\{6\}} | 0.932 ^{\{1\}} | 1.0091 ^{\{3\}} | 1.061 ^{\{7\}} | 1.1742 ^{\{10\}} | 1.1778 ^{\{11\}} | 1.1615 ^{\{9\}} | |
\sum Ranks | 15 ^{\{5\}} | 11 ^{\{4\}} | 23 ^{\{8\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 22 ^{\{7\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.4557 ^{\{8\}} | 0.4571 ^{\{9\}} | 0.4129 ^{\{4\}} | 0.4021 ^{\{2\}} | 0.4086 ^{\{3\}} | 0.3988 ^{\{1\}} | 0.4154 ^{\{5\}} | 0.4482 ^{\{7\}} | 0.4369 ^{\{6\}} | 0.4633 ^{\{10\}} | 0.4807 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.297 ^{\{9\}} | 0.2957 ^{\{8\}} | 0.246 ^{\{5\}} | 0.226 ^{\{2\}} | 0.2334 ^{\{3\}} | 0.2179 ^{\{1\}} | 0.241 ^{\{4\}} | 0.2817 ^{\{7\}} | 0.2767 ^{\{6\}} | 0.3094 ^{\{10\}} | 0.3237 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.7596 ^{\{8\}} | 0.7618 ^{\{9\}} | 0.6882 ^{\{4\}} | 0.6701 ^{\{2\}} | 0.6809 ^{\{3\}} | 0.6647 ^{\{1\}} | 0.6924 ^{\{5\}} | 0.7471 ^{\{7\}} | 0.7282 ^{\{6\}} | 0.7722 ^{\{10\}} | 0.8012 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 26 ^{\{9\}} | 13 ^{\{4\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 14 ^{\{5\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3261 ^{\{7\}} | 0.3161 ^{\{5\}} | 0.2963 ^{\{3\}} | 0.2886 ^{\{2\}} | 0.3027 ^{\{4\}} | 0.2852 ^{\{1\}} | 0.3573 ^{\{8\}} | 0.3194 ^{\{6\}} | 0.3818 ^{\{11\}} | 0.3685 ^{\{10\}} | 0.3595 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.1668 ^{\{7\}} | 0.1613 ^{\{5\}} | 0.135 ^{\{3\}} | 0.1274 ^{\{2\}} | 0.138 ^{\{4\}} | 0.1264 ^{\{1\}} | 0.2051 ^{\{9\}} | 0.1637 ^{\{6\}} | 0.2333 ^{\{11\}} | 0.2082 ^{\{10\}} | 0.1993 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.5435 ^{\{7\}} | 0.5268 ^{\{5\}} | 0.4939 ^{\{3\}} | 0.4811 ^{\{2\}} | 0.5044 ^{\{4\}} | 0.4754 ^{\{1\}} | 0.5955 ^{\{8\}} | 0.5324 ^{\{6\}} | 0.6364 ^{\{11\}} | 0.6142 ^{\{10\}} | 0.5991 ^{\{9\}} | |
\sum Ranks | 21 ^{\{7\}} | 15 ^{\{5\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | 26 ^{\{9\}} | ||
200 | bias | {\ddddot \delta} | 0.3121 ^{\{8\}} | 0.2876 ^{\{6\}} | 0.2792 ^{\{4\}} | 0.2252 ^{\{1\}} | 0.2871 ^{\{5\}} | 0.2263 ^{\{2\}} | 0.264 ^{\{3\}} | 0.3165 ^{\{9\}} | 0.291 ^{\{7\}} | 0.3194 ^{\{10\}} | 0.3455 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1814 ^{\{9\}} | 0.1597 ^{\{7\}} | 0.144 ^{\{4\}} | 0.0808 ^{\{1\}} | 0.1537 ^{\{5\}} | 0.0831 ^{\{2\}} | 0.1324 ^{\{3\}} | 0.1883 ^{\{10\}} | 0.1551 ^{\{6\}} | 0.1698 ^{\{8\}} | 0.2015 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.5202 ^{\{8\}} | 0.4793 ^{\{6\}} | 0.4653 ^{\{4\}} | 0.3753 ^{\{1\}} | 0.4785 ^{\{5\}} | 0.3771 ^{\{2\}} | 0.44 ^{\{3\}} | 0.5275 ^{\{9\}} | 0.485 ^{\{7\}} | 0.5324 ^{\{10\}} | 0.5758 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 19 ^{\{6\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 28 ^{\{9.5\}} | 20 ^{\{7\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2609 ^{\{6\}} | 0.2871 ^{\{10\}} | 0.2688 ^{\{8\}} | 0.1889 ^{\{1\}} | 0.2707 ^{\{9\}} | 0.1897 ^{\{2\}} | 0.2442 ^{\{5\}} | 0.2357 ^{\{3\}} | 0.244 ^{\{4\}} | 0.2623 ^{\{7\}} | 0.2952 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1497 ^{\{7\}} | 0.182 ^{\{11\}} | 0.1598 ^{\{8\}} | 0.059 ^{\{1\}} | 0.1632 ^{\{9\}} | 0.062 ^{\{2\}} | 0.1263 ^{\{5\}} | 0.1124 ^{\{3.5\}} | 0.1124 ^{\{3.5\}} | 0.1267 ^{\{6\}} | 0.1724 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.4348 ^{\{6\}} | 0.4786 ^{\{10\}} | 0.448 ^{\{8\}} | 0.3148 ^{\{1\}} | 0.4511 ^{\{9\}} | 0.3162 ^{\{2\}} | 0.4071 ^{\{5\}} | 0.3928 ^{\{3\}} | 0.4067 ^{\{4\}} | 0.4372 ^{\{7\}} | 0.492 ^{\{11\}} | |
\sum Ranks | 19 ^{\{6\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 6 ^{\{2\}} | 15 ^{\{5\}} | 9.5 ^{\{3\}} | 11.5 ^{\{4\}} | 20 ^{\{7\}} | 32 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.2359 ^{\{8.5\}} | 0.2146 ^{\{3\}} | 0.2196 ^{\{4\}} | 0.1484 ^{\{1\}} | 0.2215 ^{\{5\}} | 0.1498 ^{\{2\}} | 0.239 ^{\{10\}} | 0.2304 ^{\{6\}} | 0.2359 ^{\{8.5\}} | 0.2309 ^{\{7\}} | 0.2523 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1406 ^{\{9\}} | 0.1139 ^{\{4\}} | 0.1222 ^{\{5\}} | 0.0368 ^{\{1\}} | 0.1232 ^{\{6\}} | 0.0375 ^{\{2\}} | 0.1471 ^{\{11\}} | 0.1298 ^{\{8\}} | 0.1262 ^{\{7\}} | 0.1117 ^{\{3\}} | 0.1454 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.3932 ^{\{9\}} | 0.3576 ^{\{3\}} | 0.3661 ^{\{4\}} | 0.2474 ^{\{1\}} | 0.3692 ^{\{5\}} | 0.2497 ^{\{2\}} | 0.3983 ^{\{10\}} | 0.384 ^{\{6\}} | 0.3931 ^{\{8\}} | 0.3848 ^{\{7\}} | 0.4205 ^{\{11\}} | |
\sum Ranks | 26.5 ^{\{9\}} | 10 ^{\{3\}} | 13 ^{\{4\}} | 3 ^{\{1\}} | 16 ^{\{5\}} | 6 ^{\{2\}} | 31 ^{\{10\}} | 20 ^{\{7\}} | 23.5 ^{\{8\}} | 17 ^{\{6\}} | 32 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.4538 ^{\{1\}} | 0.472 ^{\{3\}} | 0.5065 ^{\{7\}} | 0.4879 ^{\{5\}} | 0.4887 ^{\{6\}} | 0.4678 ^{\{2\}} | 0.4746 ^{\{4\}} | 0.5331 ^{\{8\}} | 0.543 ^{\{9\}} | 0.5913 ^{\{11\}} | 0.5554 ^{\{10\}} |
MSE | \hat{\delta} | 0.2993 ^{\{1\}} | 0.316 ^{\{3\}} | 0.3685 ^{\{7\}} | 0.3255 ^{\{5\}} | 0.3619 ^{\{6\}} | 0.3087 ^{\{2\}} | 0.3177 ^{\{4\}} | 0.4032 ^{\{8\}} | 0.4637 ^{\{10\}} | 0.5488 ^{\{11\}} | 0.4368 ^{\{9\}} | |
MRE | \hat{\delta} | 0.7563 ^{\{1\}} | 0.7867 ^{\{3\}} | 0.8442 ^{\{7\}} | 0.8132 ^{\{5\}} | 0.8145 ^{\{6\}} | 0.7797 ^{\{2\}} | 0.7909 ^{\{4\}} | 0.8885 ^{\{8\}} | 0.9049 ^{\{9\}} | 0.9854 ^{\{11\}} | 0.9257 ^{\{10\}} | |
\sum Ranks | 3 ^{\{1\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 24 ^{\{8\}} | 28 ^{\{9\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | ||
50 | bias | \hat{\delta} | 0.3076 ^{\{9\}} | 0.2821 ^{\{8\}} | 0.201 ^{\{1\}} | 0.2118 ^{\{4\}} | 0.2073 ^{\{3\}} | 0.2034 ^{\{2\}} | 0.2238 ^{\{6\}} | 0.2503 ^{\{7\}} | 0.2234 ^{\{5\}} | 0.3601 ^{\{10\}} | 0.365 ^{\{11\}} |
MSE | \hat{\delta} | 0.1571 ^{\{8\}} | 0.1676 ^{\{9\}} | 0.0668 ^{\{1\}} | 0.0736 ^{\{4\}} | 0.072 ^{\{3\}} | 0.0685 ^{\{2\}} | 0.085 ^{\{6\}} | 0.128 ^{\{7\}} | 0.0804 ^{\{5\}} | 0.1958 ^{\{10\}} | 0.2026 ^{\{11\}} | |
MRE | \hat{\delta} | 0.5127 ^{\{9\}} | 0.4701 ^{\{8\}} | 0.3351 ^{\{1\}} | 0.353 ^{\{4\}} | 0.3455 ^{\{3\}} | 0.3389 ^{\{2\}} | 0.373 ^{\{6\}} | 0.4171 ^{\{7\}} | 0.3723 ^{\{5\}} | 0.6002 ^{\{10\}} | 0.6083 ^{\{11\}} | |
\sum Ranks | 26 ^{\{9\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.2623 ^{\{10\}} | 0.146 ^{\{8\}} | 0.083 ^{\{2\}} | 0.0856 ^{\{4\}} | 0.0844 ^{\{3\}} | 0.0799 ^{\{1\}} | 0.1431 ^{\{7\}} | 0.1349 ^{\{6\}} | 0.1195 ^{\{5\}} | 0.2844 ^{\{11\}} | 0.2593 ^{\{9\}} |
MSE | \hat{\delta} | 0.1549 ^{\{11\}} | 0.0865 ^{\{8\}} | 0.0114 ^{\{2.5\}} | 0.0125 ^{\{4\}} | 0.0114 ^{\{2.5\}} | 0.0103 ^{\{1\}} | 0.0809 ^{\{7\}} | 0.0747 ^{\{6\}} | 0.0508 ^{\{5\}} | 0.1489 ^{\{10\}} | 0.1346 ^{\{9\}} | |
MRE | \hat{\delta} | 0.4372 ^{\{10\}} | 0.2433 ^{\{8\}} | 0.1383 ^{\{2\}} | 0.1426 ^{\{4\}} | 0.1406 ^{\{3\}} | 0.1332 ^{\{1\}} | 0.2385 ^{\{7\}} | 0.2248 ^{\{6\}} | 0.1992 ^{\{5\}} | 0.4739 ^{\{11\}} | 0.4322 ^{\{9\}} | |
\sum Ranks | 31 ^{\{10\}} | 24 ^{\{8\}} | 6.5 ^{\{2\}} | 12 ^{\{4\}} | 8.5 ^{\{3\}} | 3 ^{\{1\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
200 | bias | \hat{\delta} | 0.192 ^{\{9\}} | 0.0877 ^{\{8\}} | 0.0497 ^{\{1\}} | 0.0499 ^{\{2\}} | 0.051 ^{\{4\}} | 0.0502 ^{\{3\}} | 0.0738 ^{\{7\}} | 0.0695 ^{\{6\}} | 0.0688 ^{\{5\}} | 0.2446 ^{\{11\}} | 0.2316 ^{\{10\}} |
MSE | \hat{\delta} | 0.0998 ^{\{9\}} | 0.0529 ^{\{8\}} | 0.0039 ^{\{1\}} | 0.0041 ^{\{3\}} | 0.0049 ^{\{4\}} | 0.004 ^{\{2\}} | 0.0325 ^{\{7\}} | 0.0291 ^{\{6\}} | 0.0222 ^{\{5\}} | 0.1347 ^{\{11\}} | 0.1316 ^{\{10\}} | |
MRE | \hat{\delta} | 0.3201 ^{\{9\}} | 0.1461 ^{\{8\}} | 0.0829 ^{\{1\}} | 0.0832 ^{\{2\}} | 0.0851 ^{\{4\}} | 0.0836 ^{\{3\}} | 0.123 ^{\{7\}} | 0.1159 ^{\{6\}} | 0.1146 ^{\{5\}} | 0.4077 ^{\{11\}} | 0.386 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 7 ^{\{2\}} | 12 ^{\{4\}} | 8 ^{\{3\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
300 | bias | \hat{\delta} | 0.1497 ^{\{9\}} | 0.0474 ^{\{7\}} | 0.0327 ^{\{3.5\}} | 0.0323 ^{\{1.5\}} | 0.0323 ^{\{1.5\}} | 0.0327 ^{\{3.5\}} | 0.0511 ^{\{8\}} | 0.0426 ^{\{5.5\}} | 0.0426 ^{\{5.5\}} | 0.214 ^{\{11\}} | 0.1883 ^{\{10\}} |
MSE | \hat{\delta} | 0.0736 ^{\{9\}} | 0.0199 ^{\{7\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0223 ^{\{8\}} | 0.0133 ^{\{6\}} | 0.0112 ^{\{5\}} | 0.1135 ^{\{11\}} | 0.108 ^{\{10\}} | |
MRE | \hat{\delta} | 0.2496 ^{\{9\}} | 0.0791 ^{\{7\}} | 0.0545 ^{\{3.5\}} | 0.0539 ^{\{1.5\}} | 0.0539 ^{\{1.5\}} | 0.0545 ^{\{3.5\}} | 0.0852 ^{\{8\}} | 0.071 ^{\{5.5\}} | 0.071 ^{\{5.5\}} | 0.3567 ^{\{11\}} | 0.3139 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 21 ^{\{7\}} | 9.5 ^{\{3.5\}} | 5.5 ^{\{1.5\}} | 5.5 ^{\{1.5\}} | 9.5 ^{\{3.5\}} | 24 ^{\{8\}} | 17 ^{\{6\}} | 16 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1307 ^{\{9\}} | 0.0459 ^{\{8\}} | 0.0214 ^{\{1\}} | 0.0223 ^{\{4\}} | 0.022 ^{\{3\}} | 0.0219 ^{\{2\}} | 0.0336 ^{\{6\}} | 0.0359 ^{\{7\}} | 0.0289 ^{\{5\}} | 0.1672 ^{\{11\}} | 0.1428 ^{\{10\}} |
MSE | \hat{\delta} | 0.0693 ^{\{9\}} | 0.0304 ^{\{8\}} | 7e-04 ^{\{1\}} | 8e-04 ^{\{3\}} | 8e-04 ^{\{3\}} | 8e-04 ^{\{3\}} | 0.0136 ^{\{6\}} | 0.0193 ^{\{7\}} | 0.0082 ^{\{5\}} | 0.0865 ^{\{11\}} | 0.0754 ^{\{10\}} | |
MRE | \hat{\delta} | 0.2179 ^{\{9\}} | 0.0765 ^{\{8\}} | 0.0356 ^{\{1\}} | 0.0371 ^{\{4\}} | 0.0367 ^{\{3\}} | 0.0365 ^{\{2\}} | 0.056 ^{\{6\}} | 0.0599 ^{\{7\}} | 0.0481 ^{\{5\}} | 0.2786 ^{\{11\}} | 0.238 ^{\{10\}} | |
\sum Ranks | 23 ^{\{9\}} | 20 ^{\{8\}} | 10 ^{\{1\}} | 18 ^{\{7\}} | 16 ^{\{5\}} | 14 ^{\{3.5\}} | 14 ^{\{3.5\}} | 17 ^{\{6\}} | 11 ^{\{2\}} | 29 ^{\{11\}} | 26 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.7122 ^{\{6\}} | 0.6873 ^{\{3\}} | 0.7245 ^{\{7\}} | 0.7082 ^{\{5\}} | 0.6979 ^{\{4\}} | 0.6344 ^{\{1\}} | 0.6844 ^{\{2\}} | 0.8253 ^{\{10\}} | 0.8014 ^{\{8\}} | 0.8066 ^{\{9\}} | 0.8412 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.8474 ^{\{6\}} | 0.7629 ^{\{3\}} | 0.8495 ^{\{7\}} | 0.7981 ^{\{4\}} | 0.8277 ^{\{5\}} | 0.6614 ^{\{1\}} | 0.7295 ^{\{2\}} | 1.1297 ^{\{9\}} | 1.1745 ^{\{10\}} | 1.3548 ^{\{11\}} | 1.1033 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.7122 ^{\{6\}} | 0.6873 ^{\{3\}} | 0.7245 ^{\{7\}} | 0.7082 ^{\{5\}} | 0.6979 ^{\{4\}} | 0.6344 ^{\{1\}} | 0.6844 ^{\{2\}} | 0.8253 ^{\{10\}} | 0.8014 ^{\{8\}} | 0.8066 ^{\{9\}} | 0.8412 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 14 ^{\{5\}} | 13 ^{\{4\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 29 ^{\{9.5\}} | 26 ^{\{8\}} | 29 ^{\{9.5\}} | 30 ^{\{11\}} | ||
50 | bias | {\ddddot \delta} | 0.4803 ^{\{6\}} | 0.506 ^{\{9\}} | 0.4083 ^{\{3\}} | 0.3938 ^{\{2\}} | 0.412 ^{\{4\}} | 0.3902 ^{\{1\}} | 0.5212 ^{\{10\}} | 0.484 ^{\{7\}} | 0.4515 ^{\{5\}} | 0.5029 ^{\{8\}} | 0.5381 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.4336 ^{\{7\}} | 0.4738 ^{\{9\}} | 0.2674 ^{\{3\}} | 0.2539 ^{\{2\}} | 0.2684 ^{\{4\}} | 0.2452 ^{\{1\}} | 0.5006 ^{\{10\}} | 0.4405 ^{\{8\}} | 0.3571 ^{\{5\}} | 0.4333 ^{\{6\}} | 0.5013 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.4803 ^{\{6\}} | 0.506 ^{\{9\}} | 0.4083 ^{\{3\}} | 0.3938 ^{\{2\}} | 0.412 ^{\{4\}} | 0.3902 ^{\{1\}} | 0.5212 ^{\{10\}} | 0.484 ^{\{7\}} | 0.4515 ^{\{5\}} | 0.5029 ^{\{8\}} | 0.5381 ^{\{11\}} | |
\sum Ranks | 19 ^{\{6\}} | 27 ^{\{9\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 30 ^{\{10\}} | 22 ^{\{7.5\}} | 15 ^{\{5\}} | 22 ^{\{7.5\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3303 ^{\{7\}} | 0.356 ^{\{8\}} | 0.3065 ^{\{4\}} | 0.2456 ^{\{1\}} | 0.2842 ^{\{3\}} | 0.2541 ^{\{2\}} | 0.3263 ^{\{6\}} | 0.3208 ^{\{5\}} | 0.3763 ^{\{10\}} | 0.3653 ^{\{9\}} | 0.394 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2801 ^{\{8\}} | 0.3012 ^{\{9\}} | 0.2087 ^{\{4\}} | 0.1004 ^{\{1\}} | 0.1845 ^{\{3\}} | 0.1067 ^{\{2\}} | 0.2702 ^{\{6\}} | 0.26 ^{\{5\}} | 0.3326 ^{\{10\}} | 0.2761 ^{\{7\}} | 0.3575 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.3303 ^{\{7\}} | 0.356 ^{\{8\}} | 0.3065 ^{\{4\}} | 0.2456 ^{\{1\}} | 0.2842 ^{\{3\}} | 0.2541 ^{\{2\}} | 0.3263 ^{\{6\}} | 0.3208 ^{\{5\}} | 0.3763 ^{\{10\}} | 0.3653 ^{\{9\}} | 0.394 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 25 ^{\{8.5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 30 ^{\{10\}} | 25 ^{\{8.5\}} | 33 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.2903 ^{\{8\}} | 0.319 ^{\{10\}} | 0.2642 ^{\{3\}} | 0.1795 ^{\{1\}} | 0.2686 ^{\{5\}} | 0.1896 ^{\{2\}} | 0.2804 ^{\{7\}} | 0.2646 ^{\{4\}} | 0.2985 ^{\{9\}} | 0.2799 ^{\{6\}} | 0.3676 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2652 ^{\{9\}} | 0.3161 ^{\{10\}} | 0.2133 ^{\{4\}} | 0.0533 ^{\{1\}} | 0.2146 ^{\{5\}} | 0.0587 ^{\{2\}} | 0.2464 ^{\{7\}} | 0.2208 ^{\{6\}} | 0.2651 ^{\{8\}} | 0.1644 ^{\{3\}} | 0.3641 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2903 ^{\{8\}} | 0.319 ^{\{10\}} | 0.2642 ^{\{3\}} | 0.1795 ^{\{1\}} | 0.2686 ^{\{5\}} | 0.1896 ^{\{2\}} | 0.2804 ^{\{7\}} | 0.2646 ^{\{4\}} | 0.2985 ^{\{9\}} | 0.2799 ^{\{6\}} | 0.3676 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 30 ^{\{10\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5.5\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 14 ^{\{4\}} | 26 ^{\{9\}} | 15 ^{\{5.5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2353 ^{\{6\}} | 0.2451 ^{\{9\}} | 0.2423 ^{\{8\}} | 0.1477 ^{\{1\}} | 0.2386 ^{\{7\}} | 0.1489 ^{\{2\}} | 0.2484 ^{\{10\}} | 0.2341 ^{\{5\}} | 0.2254 ^{\{3\}} | 0.2319 ^{\{4\}} | 0.2941 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2032 ^{\{6\}} | 0.2231 ^{\{9\}} | 0.2123 ^{\{8\}} | 0.0349 ^{\{1\}} | 0.2096 ^{\{7\}} | 0.0354 ^{\{2\}} | 0.2314 ^{\{10\}} | 0.1956 ^{\{5\}} | 0.175 ^{\{4\}} | 0.1323 ^{\{3\}} | 0.2854 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2353 ^{\{6\}} | 0.2451 ^{\{9\}} | 0.2423 ^{\{8\}} | 0.1477 ^{\{1\}} | 0.2386 ^{\{7\}} | 0.1489 ^{\{2\}} | 0.2484 ^{\{10\}} | 0.2341 ^{\{5\}} | 0.2254 ^{\{3\}} | 0.2319 ^{\{4\}} | 0.2941 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 33 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.2014 ^{\{7\}} | 0.2114 ^{\{10\}} | 0.1867 ^{\{6\}} | 0.1257 ^{\{2\}} | 0.1797 ^{\{3\}} | 0.1243 ^{\{1\}} | 0.211 ^{\{9\}} | 0.2015 ^{\{8\}} | 0.1802 ^{\{4\}} | 0.1845 ^{\{5\}} | 0.2343 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1805 ^{\{8\}} | 0.2013 ^{\{10\}} | 0.1525 ^{\{6\}} | 0.0253 ^{\{2\}} | 0.1369 ^{\{5\}} | 0.0241 ^{\{1\}} | 0.1993 ^{\{9\}} | 0.176 ^{\{7\}} | 0.1145 ^{\{4\}} | 0.0973 ^{\{3\}} | 0.215 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2014 ^{\{7\}} | 0.2114 ^{\{10\}} | 0.1867 ^{\{6\}} | 0.1257 ^{\{2\}} | 0.1797 ^{\{3\}} | 0.1243 ^{\{1\}} | 0.211 ^{\{9\}} | 0.2015 ^{\{8\}} | 0.1802 ^{\{4\}} | 0.1845 ^{\{5\}} | 0.2343 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | 6 ^{\{2\}} | 11 ^{\{3\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 23 ^{\{8\}} | 12 ^{\{4\}} | 13 ^{\{5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.5275 ^{\{6\}} | 0.5141 ^{\{2\}} | 0.5221 ^{\{3\}} | 0.5273 ^{\{5\}} | 0.5268 ^{\{4\}} | 0.4992 ^{\{1\}} | 0.5335 ^{\{7\}} | 0.614 ^{\{9\}} | 0.5662 ^{\{8\}} | 0.6926 ^{\{11\}} | 0.6648 ^{\{10\}} |
MSE | \hat{\delta} | 0.5039 ^{\{7\}} | 0.4254 ^{\{2\}} | 0.4337 ^{\{5\}} | 0.4281 ^{\{3\}} | 0.4289 ^{\{4\}} | 0.3892 ^{\{1\}} | 0.4383 ^{\{6\}} | 0.6202 ^{\{9\}} | 0.5341 ^{\{8\}} | 1.147 ^{\{11\}} | 0.6721 ^{\{10\}} | |
MRE | \hat{\delta} | 0.5275 ^{\{6\}} | 0.5141 ^{\{2\}} | 0.5221 ^{\{3\}} | 0.5273 ^{\{5\}} | 0.5268 ^{\{4\}} | 0.4992 ^{\{1\}} | 0.5335 ^{\{7\}} | 0.614 ^{\{9\}} | 0.5662 ^{\{8\}} | 0.6926 ^{\{11\}} | 0.6648 ^{\{10\}} | |
\sum Ranks | 19 ^{\{6\}} | 6 ^{\{2\}} | 11 ^{\{3\}} | 13 ^{\{5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 20 ^{\{7\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
50 | bias | \hat{\delta} | 0.3107 ^{\{9\}} | 0.235 ^{\{7\}} | 0.1668 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1729 ^{\{4\}} | 0.1579 ^{\{1\}} | 0.2146 ^{\{6\}} | 0.238 ^{\{8\}} | 0.1894 ^{\{5\}} | 0.3776 ^{\{10\}} | 0.416 ^{\{11\}} |
MSE | \hat{\delta} | 0.2806 ^{\{10\}} | 0.1836 ^{\{7\}} | 0.0433 ^{\{2\}} | 0.0468 ^{\{3\}} | 0.0486 ^{\{4\}} | 0.0388 ^{\{1\}} | 0.1309 ^{\{6\}} | 0.1993 ^{\{8\}} | 0.0699 ^{\{5\}} | 0.2681 ^{\{9\}} | 0.3842 ^{\{11\}} | |
MRE | \hat{\delta} | 0.3107 ^{\{9\}} | 0.235 ^{\{7\}} | 0.1668 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1729 ^{\{4\}} | 0.1579 ^{\{1\}} | 0.2146 ^{\{6\}} | 0.238 ^{\{8\}} | 0.1894 ^{\{5\}} | 0.3776 ^{\{10\}} | 0.416 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.2243 ^{\{9\}} | 0.0964 ^{\{7\}} | 0.0706 ^{\{3\}} | 0.0681 ^{\{1\}} | 0.0713 ^{\{4\}} | 0.0699 ^{\{2\}} | 0.0799 ^{\{6\}} | 0.114 ^{\{8\}} | 0.0776 ^{\{5\}} | 0.251 ^{\{11\}} | 0.2387 ^{\{10\}} |
MSE | \hat{\delta} | 0.2005 ^{\{10\}} | 0.061 ^{\{7\}} | 0.0077 ^{\{2\}} | 0.0074 ^{\{1\}} | 0.008 ^{\{4\}} | 0.0078 ^{\{3\}} | 0.0229 ^{\{6\}} | 0.098 ^{\{8\}} | 0.0142 ^{\{5\}} | 0.1692 ^{\{9\}} | 0.2032 ^{\{11\}} | |
MRE | \hat{\delta} | 0.2243 ^{\{9\}} | 0.0964 ^{\{7\}} | 0.0706 ^{\{3\}} | 0.0681 ^{\{1\}} | 0.0713 ^{\{4\}} | 0.0699 ^{\{2\}} | 0.0799 ^{\{6\}} | 0.114 ^{\{8\}} | 0.0776 ^{\{5\}} | 0.251 ^{\{11\}} | 0.2387 ^{\{10\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 8 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 7 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 31 ^{\{10.5\}} | 31 ^{\{10.5\}} | ||
200 | bias | \hat{\delta} | 0.1698 ^{\{11\}} | 0.0626 ^{\{7\}} | 0.0417 ^{\{1\}} | 0.0426 ^{\{4\}} | 0.0421 ^{\{3\}} | 0.0418 ^{\{2\}} | 0.0448 ^{\{6\}} | 0.0739 ^{\{8\}} | 0.0441 ^{\{5\}} | 0.1689 ^{\{9\}} | 0.1696 ^{\{10\}} |
MSE | \hat{\delta} | 0.1455 ^{\{11\}} | 0.0457 ^{\{7\}} | 0.0027 ^{\{1\}} | 0.0029 ^{\{3.5\}} | 0.0028 ^{\{2\}} | 0.0029 ^{\{3.5\}} | 0.0032 ^{\{6\}} | 0.0701 ^{\{8\}} | 0.003 ^{\{5\}} | 0.0785 ^{\{9\}} | 0.1166 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1698 ^{\{11\}} | 0.0626 ^{\{7\}} | 0.0417 ^{\{1\}} | 0.0426 ^{\{4\}} | 0.0421 ^{\{3\}} | 0.0418 ^{\{2\}} | 0.0448 ^{\{6\}} | 0.0739 ^{\{8\}} | 0.0441 ^{\{5\}} | 0.1689 ^{\{9\}} | 0.1696 ^{\{10\}} | |
\sum Ranks | 33 ^{\{11\}} | 21 ^{\{7\}} | 3 ^{\{1\}} | 11.5 ^{\{4\}} | 8 ^{\{3\}} | 7.5 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | ||
300 | bias | \hat{\delta} | 0.1399 ^{\{9\}} | 0.0433 ^{\{8\}} | 0.0279 ^{\{1\}} | 0.0289 ^{\{4\}} | 0.0284 ^{\{2\}} | 0.0287 ^{\{3\}} | 0.0293 ^{\{5\}} | 0.0406 ^{\{7\}} | 0.0294 ^{\{6\}} | 0.1418 ^{\{11\}} | 0.1411 ^{\{10\}} |
MSE | \hat{\delta} | 0.118 ^{\{11\}} | 0.031 ^{\{8\}} | 0.0012 ^{\{1\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0283 ^{\{7\}} | 0.0013 ^{\{4\}} | 0.0708 ^{\{9\}} | 0.1043 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1399 ^{\{9\}} | 0.0433 ^{\{8\}} | 0.0279 ^{\{1\}} | 0.0289 ^{\{4\}} | 0.0284 ^{\{2\}} | 0.0287 ^{\{3\}} | 0.0293 ^{\{5\}} | 0.0406 ^{\{7\}} | 0.0294 ^{\{6\}} | 0.1418 ^{\{11\}} | 0.1411 ^{\{10\}} | |
\sum Ranks | 29 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 8 ^{\{2\}} | 10 ^{\{3\}} | 14 ^{\{5\}} | 21 ^{\{7\}} | 16 ^{\{6\}} | 31 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1036 ^{\{9\}} | 0.0221 ^{\{7\}} | 0.0192 ^{\{3\}} | 0.019 ^{\{2\}} | 0.0187 ^{\{1\}} | 0.0195 ^{\{4\}} | 0.0196 ^{\{5\}} | 0.0261 ^{\{8\}} | 0.0211 ^{\{6\}} | 0.113 ^{\{10\}} | 0.1484 ^{\{11\}} |
MSE | \hat{\delta} | 0.0744 ^{\{10\}} | 0.0081 ^{\{7\}} | 6e-04 ^{\{3.5\}} | 6e-04 ^{\{3.5\}} | 5e-04 ^{\{1\}} | 6e-04 ^{\{3.5\}} | 6e-04 ^{\{3.5\}} | 0.0159 ^{\{8\}} | 7e-04 ^{\{6\}} | 0.0457 ^{\{9\}} | 0.1471 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1036 ^{\{9\}} | 0.0221 ^{\{7\}} | 0.0192 ^{\{3\}} | 0.019 ^{\{2\}} | 0.0187 ^{\{1\}} | 0.0195 ^{\{4\}} | 0.0196 ^{\{5\}} | 0.0261 ^{\{8\}} | 0.0211 ^{\{6\}} | 0.113 ^{\{10\}} | 0.1484 ^{\{11\}} | |
\sum Ranks | 22 ^{\{8\}} | 15 ^{\{4\}} | 14.5 ^{\{3\}} | 12.5 ^{\{2\}} | 8 ^{\{1\}} | 16.5 ^{\{5\}} | 18.5 ^{\{7\}} | 18 ^{\{6\}} | 23 ^{\{9.5\}} | 23 ^{\{9.5\}} | 27 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RTADE | WLSE | LTADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.8259 ^{\{6\}} | 0.7838 ^{\{3\}} | 0.8036 ^{\{5\}} | 0.7894 ^{\{4\}} | 0.8341 ^{\{7\}} | 0.7285 ^{\{1\}} | 0.7378 ^{\{2\}} | 0.9492 ^{\{9\}} | 0.8732 ^{\{8\}} | 1.0216 ^{\{11\}} | 0.9697 ^{\{10\}} |
MSE | {\ddddot \delta} | 1.2727 ^{\{7\}} | 1.0399 ^{\{3\}} | 1.0808 ^{\{4\}} | 1.0933 ^{\{5\}} | 1.202 ^{\{6\}} | 0.8775 ^{\{1\}} | 0.9547 ^{\{2\}} | 1.6659 ^{\{10\}} | 1.4583 ^{\{8\}} | 2.1721 ^{\{11\}} | 1.6264 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.5506 ^{\{6\}} | 0.5225 ^{\{3\}} | 0.5358 ^{\{5\}} | 0.5263 ^{\{4\}} | 0.5561 ^{\{7\}} | 0.4857 ^{\{1\}} | 0.4919 ^{\{2\}} | 0.6328 ^{\{9\}} | 0.5821 ^{\{8\}} | 0.681 ^{\{11\}} | 0.6465 ^{\{10\}} | |
\sum Ranks | 19 ^{\{6\}} | 9 ^{\{3\}} | 14 ^{\{5\}} | 13 ^{\{4\}} | 20 ^{\{7\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 28 ^{\{9\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | ||
50 | bias | {\ddddot \delta} | 0.5183 ^{\{7\}} | 0.586 ^{\{10\}} | 0.4 ^{\{2\}} | 0.4047 ^{\{3\}} | 0.4139 ^{\{4\}} | 0.3985 ^{\{1\}} | 0.5567 ^{\{9\}} | 0.5348 ^{\{8\}} | 0.489 ^{\{5\}} | 0.5173 ^{\{6\}} | 0.6337 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.6396 ^{\{7\}} | 0.8036 ^{\{10\}} | 0.2791 ^{\{2\}} | 0.2805 ^{\{3\}} | 0.288 ^{\{4\}} | 0.2613 ^{\{1\}} | 0.7203 ^{\{9\}} | 0.6572 ^{\{8\}} | 0.4544 ^{\{5\}} | 0.5237 ^{\{6\}} | 0.8491 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.3455 ^{\{7\}} | 0.3907 ^{\{10\}} | 0.2666 ^{\{2\}} | 0.2698 ^{\{3\}} | 0.276 ^{\{4\}} | 0.2656 ^{\{1\}} | 0.3711 ^{\{9\}} | 0.3565 ^{\{8\}} | 0.326 ^{\{5\}} | 0.3449 ^{\{6\}} | 0.4225 ^{\{11\}} | |
\sum Ranks | 21 ^{\{7\}} | 30 ^{\{10\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3961 ^{\{10\}} | 0.355 ^{\{5\}} | 0.2711 ^{\{3\}} | 0.2496 ^{\{1\}} | 0.2806 ^{\{4\}} | 0.2575 ^{\{2\}} | 0.393 ^{\{9\}} | 0.3723 ^{\{7\}} | 0.3904 ^{\{8\}} | 0.3606 ^{\{6\}} | 0.4223 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.5109 ^{\{10\}} | 0.4097 ^{\{6\}} | 0.1418 ^{\{3\}} | 0.1005 ^{\{1\}} | 0.1596 ^{\{4\}} | 0.1041 ^{\{2\}} | 0.5078 ^{\{9\}} | 0.4587 ^{\{7\}} | 0.4643 ^{\{8\}} | 0.2852 ^{\{5\}} | 0.5133 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2641 ^{\{10\}} | 0.2367 ^{\{5\}} | 0.1807 ^{\{3\}} | 0.1664 ^{\{1\}} | 0.1871 ^{\{4\}} | 0.1717 ^{\{2\}} | 0.262 ^{\{9\}} | 0.2482 ^{\{7\}} | 0.2603 ^{\{8\}} | 0.2404 ^{\{6\}} | 0.2815 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 16 ^{\{5\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 6 ^{\{2\}} | 27 ^{\{9\}} | 21 ^{\{7\}} | 24 ^{\{8\}} | 17 ^{\{6\}} | 33 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.2728 ^{\{6\}} | 0.2857 ^{\{7\}} | 0.2125 ^{\{4\}} | 0.1934 ^{\{1\}} | 0.2094 ^{\{3\}} | 0.1975 ^{\{2\}} | 0.2908 ^{\{8\}} | 0.3021 ^{\{9\}} | 0.3034 ^{\{10\}} | 0.2703 ^{\{5\}} | 0.3321 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2776 ^{\{6\}} | 0.3128 ^{\{7\}} | 0.1143 ^{\{4\}} | 0.0596 ^{\{1\}} | 0.1093 ^{\{3\}} | 0.0614 ^{\{2\}} | 0.3489 ^{\{8\}} | 0.3503 ^{\{9\}} | 0.3585 ^{\{10\}} | 0.1747 ^{\{5\}} | 0.4016 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1819 ^{\{6\}} | 0.1905 ^{\{7\}} | 0.1417 ^{\{4\}} | 0.1289 ^{\{1\}} | 0.1396 ^{\{3\}} | 0.1316 ^{\{2\}} | 0.1939 ^{\{8\}} | 0.2014 ^{\{9\}} | 0.2023 ^{\{10\}} | 0.1802 ^{\{5\}} | 0.2214 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 21 ^{\{7\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 24 ^{\{8\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2244 ^{\{5\}} | 0.2549 ^{\{8\}} | 0.1945 ^{\{4\}} | 0.1567 ^{\{1\}} | 0.1871 ^{\{3\}} | 0.1656 ^{\{2\}} | 0.2356 ^{\{6\}} | 0.2598 ^{\{10\}} | 0.2597 ^{\{9\}} | 0.2369 ^{\{7\}} | 0.2841 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2361 ^{\{6\}} | 0.3395 ^{\{10\}} | 0.1524 ^{\{4\}} | 0.0393 ^{\{1\}} | 0.1275 ^{\{3\}} | 0.0433 ^{\{2\}} | 0.257 ^{\{7\}} | 0.3273 ^{\{9\}} | 0.3211 ^{\{8\}} | 0.1709 ^{\{5\}} | 0.3588 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1496 ^{\{5\}} | 0.1699 ^{\{8\}} | 0.1297 ^{\{4\}} | 0.1045 ^{\{1\}} | 0.1248 ^{\{3\}} | 0.1104 ^{\{2\}} | 0.1571 ^{\{6\}} | 0.1732 ^{\{10\}} | 0.1731 ^{\{9\}} | 0.1579 ^{\{7\}} | 0.1894 ^{\{11\}} | |
\sum Ranks | 16 ^{\{5\}} | 26 ^{\{8.5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 19 ^{\{6.5\}} | 29 ^{\{10\}} | 26 ^{\{8.5\}} | 19 ^{\{6.5\}} | 33 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.1999 ^{\{8\}} | 0.1892 ^{\{7\}} | 0.1614 ^{\{3\}} | 0.1295 ^{\{2\}} | 0.1625 ^{\{4\}} | 0.1291 ^{\{1\}} | 0.2165 ^{\{10\}} | 0.1861 ^{\{6\}} | 0.2033 ^{\{9\}} | 0.1765 ^{\{5\}} | 0.2949 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2334 ^{\{9\}} | 0.222 ^{\{7\}} | 0.13 ^{\{5\}} | 0.0268 ^{\{2\}} | 0.1241 ^{\{4\}} | 0.0263 ^{\{1\}} | 0.2636 ^{\{10\}} | 0.2028 ^{\{6\}} | 0.2307 ^{\{8\}} | 0.0745 ^{\{3\}} | 0.4434 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1333 ^{\{8\}} | 0.1262 ^{\{7\}} | 0.1076 ^{\{3\}} | 0.0864 ^{\{2\}} | 0.1083 ^{\{4\}} | 0.086 ^{\{1\}} | 0.1443 ^{\{10\}} | 0.124 ^{\{6\}} | 0.1355 ^{\{9\}} | 0.1177 ^{\{5\}} | 0.1966 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 21 ^{\{7\}} | 11 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | 26 ^{\{9\}} | 13 ^{\{5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.5613 ^{\{5\}} | 0.5416 ^{\{3\}} | 0.5415 ^{\{2\}} | 0.5732 ^{\{7\}} | 0.5575 ^{\{4\}} | 0.512 ^{\{1\}} | 0.5678 ^{\{6\}} | 0.7597 ^{\{10\}} | 0.6059 ^{\{8\}} | 0.7398 ^{\{9\}} | 0.7922 ^{\{11\}} |
MSE | \hat{\delta} | 0.7281 ^{\{7\}} | 0.5044 ^{\{2\}} | 0.5163 ^{\{3\}} | 0.5459 ^{\{6\}} | 0.5328 ^{\{4\}} | 0.4343 ^{\{1\}} | 0.5351 ^{\{5\}} | 1.1729 ^{\{11\}} | 0.7324 ^{\{8\}} | 0.9953 ^{\{9\}} | 1.083 ^{\{10\}} | |
MRE | \hat{\delta} | 0.3742 ^{\{5\}} | 0.3611 ^{\{3\}} | 0.361 ^{\{2\}} | 0.3821 ^{\{7\}} | 0.3717 ^{\{4\}} | 0.3413 ^{\{1\}} | 0.3785 ^{\{6\}} | 0.5065 ^{\{10\}} | 0.404 ^{\{8\}} | 0.4932 ^{\{9\}} | 0.5281 ^{\{11\}} | |
\sum Ranks | 17 ^{\{5.5\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 20 ^{\{7\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 17 ^{\{5.5\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 27 ^{\{9\}} | 32 ^{\{11\}} | ||
50 | bias | \hat{\delta} | 0.3325 ^{\{9\}} | 0.1833 ^{\{6\}} | 0.1701 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1671 ^{\{1\}} | 0.1759 ^{\{4\}} | 0.1762 ^{\{5\}} | 0.2899 ^{\{8\}} | 0.1844 ^{\{7\}} | 0.3829 ^{\{10\}} | 0.4402 ^{\{11\}} |
MSE | \hat{\delta} | 0.4045 ^{\{10\}} | 0.1073 ^{\{7\}} | 0.0447 ^{\{1\}} | 0.0466 ^{\{3\}} | 0.0463 ^{\{2\}} | 0.0489 ^{\{4\}} | 0.0492 ^{\{5\}} | 0.4029 ^{\{9\}} | 0.0559 ^{\{6\}} | 0.3246 ^{\{8\}} | 0.5328 ^{\{11\}} | |
MRE | \hat{\delta} | 0.2216 ^{\{9\}} | 0.1222 ^{\{6\}} | 0.1134 ^{\{2\}} | 0.1138 ^{\{3\}} | 0.1114 ^{\{1\}} | 0.1172 ^{\{4\}} | 0.1175 ^{\{5\}} | 0.1933 ^{\{8\}} | 0.123 ^{\{7\}} | 0.2552 ^{\{10\}} | 0.2935 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 19 ^{\{6\}} | 5 ^{\{2\}} | 9 ^{\{3\}} | 4 ^{\{1\}} | 12 ^{\{4\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 20 ^{\{7\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.1905 ^{\{9\}} | 0.085 ^{\{7\}} | 0.0726 ^{\{2\}} | 0.0724 ^{\{1\}} | 0.0746 ^{\{4\}} | 0.0735 ^{\{3\}} | 0.0763 ^{\{5\}} | 0.1106 ^{\{8\}} | 0.0801 ^{\{6\}} | 0.2246 ^{\{10\}} | 0.256 ^{\{11\}} |
MSE | \hat{\delta} | 0.1833 ^{\{10\}} | 0.0383 ^{\{7\}} | 0.0084 ^{\{2.5\}} | 0.0083 ^{\{1\}} | 0.0086 ^{\{4\}} | 0.0084 ^{\{2.5\}} | 0.0093 ^{\{5\}} | 0.1197 ^{\{8\}} | 0.01 ^{\{6\}} | 0.1394 ^{\{9\}} | 0.3088 ^{\{11\}} | |
MRE | \hat{\delta} | 0.127 ^{\{9\}} | 0.0567 ^{\{7\}} | 0.0484 ^{\{2\}} | 0.0483 ^{\{1\}} | 0.0498 ^{\{4\}} | 0.049 ^{\{3\}} | 0.0509 ^{\{5\}} | 0.0737 ^{\{8\}} | 0.0534 ^{\{6\}} | 0.1497 ^{\{10\}} | 0.1707 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 6.5 ^{\{2\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 8.5 ^{\{3\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
200 | bias | \hat{\delta} | 0.1872 ^{\{10\}} | 0.0448 ^{\{2\}} | 0.0431 ^{\{1\}} | 0.0457 ^{\{3\}} | 0.0462 ^{\{4\}} | 0.0472 ^{\{6\}} | 0.0469 ^{\{5\}} | 0.0762 ^{\{8\}} | 0.0488 ^{\{7\}} | 0.1621 ^{\{9\}} | 0.2017 ^{\{11\}} |
MSE | \hat{\delta} | 0.2301 ^{\{10\}} | 0.0031 ^{\{2\}} | 0.003 ^{\{1\}} | 0.0034 ^{\{4\}} | 0.0033 ^{\{3\}} | 0.0035 ^{\{5.5\}} | 0.0035 ^{\{5.5\}} | 0.0961 ^{\{9\}} | 0.0038 ^{\{7\}} | 0.0727 ^{\{8\}} | 0.2481 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1248 ^{\{10\}} | 0.0299 ^{\{2\}} | 0.0287 ^{\{1\}} | 0.0304 ^{\{3\}} | 0.0308 ^{\{4\}} | 0.0314 ^{\{6\}} | 0.0312 ^{\{5\}} | 0.0508 ^{\{8\}} | 0.0325 ^{\{7\}} | 0.1081 ^{\{9\}} | 0.1345 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 17.5 ^{\{6\}} | 15.5 ^{\{5\}} | 25 ^{\{8\}} | 21 ^{\{7\}} | 26 ^{\{9\}} | 33 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1573 ^{\{10\}} | 0.0282 ^{\{1\}} | 0.0305 ^{\{4\}} | 0.0307 ^{\{5\}} | 0.0295 ^{\{2\}} | 0.0304 ^{\{3\}} | 0.031 ^{\{6.5\}} | 0.0368 ^{\{8\}} | 0.031 ^{\{6.5\}} | 0.135 ^{\{9\}} | 0.1622 ^{\{11\}} |
MSE | \hat{\delta} | 0.2056 ^{\{11\}} | 0.0013 ^{\{1\}} | 0.0015 ^{\{5.5\}} | 0.0015 ^{\{5.5\}} | 0.0014 ^{\{2.5\}} | 0.0014 ^{\{2.5\}} | 0.0015 ^{\{5.5\}} | 0.0276 ^{\{8\}} | 0.0015 ^{\{5.5\}} | 0.0507 ^{\{9\}} | 0.183 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1049 ^{\{10\}} | 0.0188 ^{\{1\}} | 0.0203 ^{\{4\}} | 0.0205 ^{\{5\}} | 0.0197 ^{\{2\}} | 0.0202 ^{\{3\}} | 0.0207 ^{\{6.5\}} | 0.0246 ^{\{8\}} | 0.0207 ^{\{6.5\}} | 0.09 ^{\{9\}} | 0.1081 ^{\{11\}} | |
\sum Ranks | 31 ^{\{10\}} | 3 ^{\{1\}} | 13.5 ^{\{4\}} | 15.5 ^{\{5\}} | 6.5 ^{\{2\}} | 8.5 ^{\{3\}} | 18.5 ^{\{6.5\}} | 24 ^{\{8\}} | 18.5 ^{\{6.5\}} | 27 ^{\{9\}} | 32 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1396 ^{\{11\}} | 0.0196 ^{\{2\}} | 0.0207 ^{\{6\}} | 0.0195 ^{\{1\}} | 0.0204 ^{\{3.5\}} | 0.0204 ^{\{3.5\}} | 0.0214 ^{\{7\}} | 0.034 ^{\{8\}} | 0.0205 ^{\{5\}} | 0.1083 ^{\{9\}} | 0.1232 ^{\{10\}} |
MSE | \hat{\delta} | 0.199 ^{\{11\}} | 6e-04 ^{\{1.5\}} | 7e-04 ^{\{5\}} | 6e-04 ^{\{1.5\}} | 7e-04 ^{\{5\}} | 7e-04 ^{\{5\}} | 7e-04 ^{\{5\}} | 0.0449 ^{\{8\}} | 7e-04 ^{\{5\}} | 0.0486 ^{\{9\}} | 0.1356 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0931 ^{\{11\}} | 0.0131 ^{\{2\}} | 0.0138 ^{\{6\}} | 0.013 ^{\{1\}} | 0.0136 ^{\{3.5\}} | 0.0136 ^{\{3.5\}} | 0.0143 ^{\{7\}} | 0.0227 ^{\{8\}} | 0.0137 ^{\{5\}} | 0.0722 ^{\{9\}} | 0.0821 ^{\{10\}} | |
\sum Ranks | 26 ^{\{11\}} | 9.5 ^{\{2\}} | 21 ^{\{8\}} | 7.5 ^{\{1\}} | 16 ^{\{3.5\}} | 16 ^{\{3.5\}} | 23 ^{\{9.5\}} | 17 ^{\{5\}} | 19 ^{\{6\}} | 20 ^{\{7\}} | 23 ^{\{9.5\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.8662 ^{\{3\}} | 0.89 ^{\{4\}} | 0.936 ^{\{5\}} | 0.9702 ^{\{7\}} | 0.9394 ^{\{6\}} | 0.8391 ^{\{1\}} | 0.8576 ^{\{2\}} | 1.139 ^{\{11\}} | 1.0388 ^{\{8\}} | 1.0907 ^{\{10\}} | 1.0534 ^{\{9\}} |
MSE | {\ddddot \delta} | 1.4064 ^{\{3\}} | 1.4249 ^{\{4\}} | 1.6365 ^{\{5\}} | 1.7863 ^{\{7\}} | 1.6449 ^{\{6\}} | 1.2631 ^{\{1\}} | 1.3114 ^{\{2\}} | 2.5605 ^{\{10\}} | 2.2348 ^{\{9\}} | 2.9563 ^{\{11\}} | 2.0211 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.4331 ^{\{3\}} | 0.445 ^{\{4\}} | 0.468 ^{\{5\}} | 0.4851 ^{\{7\}} | 0.4697 ^{\{6\}} | 0.4196 ^{\{1\}} | 0.4288 ^{\{2\}} | 0.5695 ^{\{11\}} | 0.5194 ^{\{8\}} | 0.5453 ^{\{10\}} | 0.5267 ^{\{9\}} | |
\sum Ranks | 9 ^{\{3\}} | 12 ^{\{4\}} | 15 ^{\{5\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 32 ^{\{11\}} | 25 ^{\{8\}} | 31 ^{\{10\}} | 26 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.5893 ^{\{7\}} | 0.6143 ^{\{9\}} | 0.4517 ^{\{2\}} | 0.4631 ^{\{4\}} | 0.4561 ^{\{3\}} | 0.4439 ^{\{1\}} | 0.5144 ^{\{6\}} | 0.6613 ^{\{10\}} | 0.4828 ^{\{5\}} | 0.6069 ^{\{8\}} | 0.7456 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.8981 ^{\{8\}} | 0.9587 ^{\{9\}} | 0.3418 ^{\{2\}} | 0.3854 ^{\{4\}} | 0.3458 ^{\{3\}} | 0.3249 ^{\{1\}} | 0.5695 ^{\{6\}} | 1.1788 ^{\{10\}} | 0.4004 ^{\{5\}} | 0.7547 ^{\{7\}} | 1.3034 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2946 ^{\{7\}} | 0.3071 ^{\{9\}} | 0.2259 ^{\{2\}} | 0.2316 ^{\{4\}} | 0.2281 ^{\{3\}} | 0.2219 ^{\{1\}} | 0.2572 ^{\{6\}} | 0.3307 ^{\{10\}} | 0.2414 ^{\{5\}} | 0.3035 ^{\{8\}} | 0.3728 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 27 ^{\{9\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 18 ^{\{6\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 23 ^{\{8\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.4366 ^{\{8\}} | 0.4407 ^{\{9\}} | 0.2887 ^{\{1\}} | 0.291 ^{\{2\}} | 0.2921 ^{\{4\}} | 0.292 ^{\{3\}} | 0.38 ^{\{6\}} | 0.4637 ^{\{10\}} | 0.3547 ^{\{5\}} | 0.3908 ^{\{7\}} | 0.4989 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.7198 ^{\{8\}} | 0.7406 ^{\{9\}} | 0.1352 ^{\{1\}} | 0.1371 ^{\{2\}} | 0.1377 ^{\{4\}} | 0.1372 ^{\{3\}} | 0.4774 ^{\{7\}} | 0.8288 ^{\{11\}} | 0.33 ^{\{5\}} | 0.362 ^{\{6\}} | 0.8257 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.2183 ^{\{8\}} | 0.2204 ^{\{9\}} | 0.1444 ^{\{1\}} | 0.1455 ^{\{2\}} | 0.146 ^{\{3.5\}} | 0.146 ^{\{3.5\}} | 0.19 ^{\{6\}} | 0.2318 ^{\{10\}} | 0.1773 ^{\{5\}} | 0.1954 ^{\{7\}} | 0.2494 ^{\{11\}} | |
\sum Ranks | 24 ^{\{8\}} | 27 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 11.5 ^{\{4\}} | 9.5 ^{\{3\}} | 19 ^{\{6\}} | 31 ^{\{10\}} | 15 ^{\{5\}} | 20 ^{\{7\}} | 32 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.318 ^{\{8\}} | 0.3186 ^{\{9\}} | 0.2241 ^{\{3\}} | 0.2219 ^{\{1\}} | 0.2224 ^{\{2\}} | 0.2255 ^{\{4\}} | 0.3266 ^{\{10\}} | 0.3167 ^{\{7\}} | 0.3049 ^{\{6\}} | 0.3037 ^{\{5\}} | 0.3701 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.4703 ^{\{8\}} | 0.4776 ^{\{9\}} | 0.0866 ^{\{4\}} | 0.0783 ^{\{1\}} | 0.0803 ^{\{2\}} | 0.0811 ^{\{3\}} | 0.4872 ^{\{10\}} | 0.4586 ^{\{7\}} | 0.361 ^{\{6\}} | 0.2278 ^{\{5\}} | 0.5503 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.159 ^{\{8\}} | 0.1593 ^{\{9\}} | 0.112 ^{\{3\}} | 0.111 ^{\{1\}} | 0.1112 ^{\{2\}} | 0.1128 ^{\{4\}} | 0.1633 ^{\{10\}} | 0.1584 ^{\{7\}} | 0.1525 ^{\{6\}} | 0.1518 ^{\{5\}} | 0.185 ^{\{11\}} | |
\sum Ranks | 24 ^{\{8\}} | 27 ^{\{9\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 11 ^{\{4\}} | 30 ^{\{10\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.258 ^{\{6\}} | 0.261 ^{\{7\}} | 0.1862 ^{\{3\}} | 0.1821 ^{\{1\}} | 0.1857 ^{\{2\}} | 0.1869 ^{\{4\}} | 0.2793 ^{\{8\}} | 0.2918 ^{\{11\}} | 0.2893 ^{\{10\}} | 0.2431 ^{\{5\}} | 0.2841 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.3621 ^{\{7\}} | 0.3677 ^{\{8\}} | 0.0643 ^{\{3\}} | 0.0516 ^{\{1\}} | 0.0651 ^{\{4\}} | 0.0548 ^{\{2\}} | 0.4523 ^{\{10\}} | 0.4936 ^{\{11\}} | 0.4307 ^{\{9\}} | 0.1549 ^{\{5\}} | 0.3537 ^{\{6\}} | |
MRE | {\ddddot \delta} | 0.129 ^{\{6\}} | 0.1305 ^{\{7\}} | 0.0931 ^{\{3\}} | 0.091 ^{\{1\}} | 0.0929 ^{\{2\}} | 0.0935 ^{\{4\}} | 0.1396 ^{\{8\}} | 0.1459 ^{\{11\}} | 0.1447 ^{\{10\}} | 0.1216 ^{\{5\}} | 0.142 ^{\{9\}} | |
\sum Ranks | 19 ^{\{6\}} | 22 ^{\{7\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 8 ^{\{2\}} | 10 ^{\{4\}} | 26 ^{\{9\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | ||
450 | bias | {\ddddot \delta} | 0.212 ^{\{7\}} | 0.2088 ^{\{6\}} | 0.1503 ^{\{3\}} | 0.1492 ^{\{1\}} | 0.1583 ^{\{4\}} | 0.1497 ^{\{2\}} | 0.2339 ^{\{9\}} | 0.2292 ^{\{8\}} | 0.2624 ^{\{11\}} | 0.1916 ^{\{5\}} | 0.2373 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.2839 ^{\{7\}} | 0.2713 ^{\{6\}} | 0.0526 ^{\{3\}} | 0.0349 ^{\{1\}} | 0.0706 ^{\{4\}} | 0.035 ^{\{2\}} | 0.3701 ^{\{10\}} | 0.3634 ^{\{9\}} | 0.459 ^{\{11\}} | 0.0959 ^{\{5\}} | 0.3072 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.106 ^{\{7\}} | 0.1044 ^{\{6\}} | 0.0752 ^{\{3\}} | 0.0746 ^{\{1\}} | 0.0791 ^{\{4\}} | 0.0748 ^{\{2\}} | 0.1169 ^{\{9\}} | 0.1146 ^{\{8\}} | 0.1312 ^{\{11\}} | 0.0958 ^{\{5\}} | 0.1186 ^{\{10\}} | |
\sum Ranks | 21 ^{\{7\}} | 18 ^{\{6\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 6 ^{\{2\}} | 28 ^{\{9.5\}} | 25 ^{\{8\}} | 33 ^{\{11\}} | 15 ^{\{5\}} | 28 ^{\{9.5\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.6322 ^{\{4\}} | 0.6102 ^{\{2\}} | 0.6497 ^{\{5\}} | 0.6604 ^{\{7\}} | 0.6505 ^{\{6\}} | 0.5827 ^{\{1\}} | 0.6233 ^{\{3\}} | 0.8329 ^{\{10\}} | 0.7071 ^{\{8\}} | 0.8762 ^{\{11\}} | 0.8269 ^{\{9\}} |
MSE | \hat{\delta} | 0.9731 ^{\{8\}} | 0.6199 ^{\{2\}} | 0.781 ^{\{4\}} | 0.8186 ^{\{6\}} | 0.792 ^{\{5\}} | 0.5512 ^{\{1\}} | 0.6432 ^{\{3\}} | 1.5585 ^{\{11\}} | 0.9725 ^{\{7\}} | 1.5475 ^{\{10\}} | 1.2327 ^{\{9\}} | |
MRE | \hat{\delta} | 0.3161 ^{\{4\}} | 0.3051 ^{\{2\}} | 0.3248 ^{\{5\}} | 0.3302 ^{\{7\}} | 0.3253 ^{\{6\}} | 0.2913 ^{\{1\}} | 0.3116 ^{\{3\}} | 0.4165 ^{\{10\}} | 0.3536 ^{\{8\}} | 0.4381 ^{\{11\}} | 0.4135 ^{\{9\}} | |
\sum Ranks | 16 ^{\{5\}} | 6 ^{\{2\}} | 14 ^{\{4\}} | 20 ^{\{7\}} | 17 ^{\{6\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 31 ^{\{10\}} | 23 ^{\{8\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.3897 ^{\{9\}} | 0.193 ^{\{4\}} | 0.1927 ^{\{2\}} | 0.1894 ^{\{1\}} | 0.1929 ^{\{3\}} | 0.2032 ^{\{5\}} | 0.2036 ^{\{6\}} | 0.289 ^{\{8\}} | 0.2086 ^{\{7\}} | 0.3972 ^{\{11\}} | 0.397 ^{\{10\}} |
MSE | \hat{\delta} | 0.6241 ^{\{11\}} | 0.0645 ^{\{4\}} | 0.0593 ^{\{2\}} | 0.0566 ^{\{1\}} | 0.0596 ^{\{3\}} | 0.0651 ^{\{5\}} | 0.066 ^{\{6\}} | 0.4495 ^{\{9\}} | 0.0692 ^{\{7\}} | 0.3584 ^{\{8\}} | 0.4557 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1948 ^{\{9\}} | 0.0965 ^{\{3.5\}} | 0.0964 ^{\{2\}} | 0.0947 ^{\{1\}} | 0.0965 ^{\{3.5\}} | 0.1016 ^{\{5\}} | 0.1018 ^{\{6\}} | 0.1445 ^{\{8\}} | 0.1043 ^{\{7\}} | 0.1986 ^{\{11\}} | 0.1985 ^{\{10\}} | |
\sum Ranks | 29 ^{\{9\}} | 11.5 ^{\{4\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9.5 ^{\{3\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 25 ^{\{8\}} | 21 ^{\{7\}} | 30 ^{\{10.5\}} | 30 ^{\{10.5\}} | ||
120 | bias | \hat{\delta} | 0.2299 ^{\{9\}} | 0.0806 ^{\{1\}} | 0.0822 ^{\{2\}} | 0.0823 ^{\{3\}} | 0.0832 ^{\{4\}} | 0.0907 ^{\{7\}} | 0.0868 ^{\{5\}} | 0.1273 ^{\{8\}} | 0.0889 ^{\{6\}} | 0.2521 ^{\{10\}} | 0.2691 ^{\{11\}} |
MSE | \hat{\delta} | 0.2926 ^{\{10\}} | 0.0103 ^{\{1\}} | 0.0106 ^{\{2\}} | 0.0107 ^{\{3\}} | 0.0108 ^{\{4\}} | 0.0128 ^{\{7\}} | 0.0117 ^{\{5\}} | 0.1932 ^{\{8\}} | 0.0123 ^{\{6\}} | 0.2008 ^{\{9\}} | 0.3613 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1149 ^{\{9\}} | 0.0403 ^{\{1\}} | 0.0411 ^{\{2\}} | 0.0412 ^{\{3\}} | 0.0416 ^{\{4\}} | 0.0454 ^{\{7\}} | 0.0434 ^{\{5\}} | 0.0636 ^{\{8\}} | 0.0445 ^{\{6\}} | 0.1261 ^{\{10\}} | 0.1346 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
200 | bias | \hat{\delta} | 0.1779 ^{\{9\}} | 0.0504 ^{\{3\}} | 0.0495 ^{\{1\}} | 0.0502 ^{\{2\}} | 0.0508 ^{\{4\}} | 0.0547 ^{\{7\}} | 0.0527 ^{\{5\}} | 0.0742 ^{\{8\}} | 0.0536 ^{\{6\}} | 0.1814 ^{\{10\}} | 0.2188 ^{\{11\}} |
MSE | \hat{\delta} | 0.224 ^{\{10\}} | 0.004 ^{\{3\}} | 0.0038 ^{\{1\}} | 0.004 ^{\{3\}} | 0.004 ^{\{3\}} | 0.0047 ^{\{7\}} | 0.0043 ^{\{5\}} | 0.103 ^{\{9\}} | 0.0046 ^{\{6\}} | 0.0966 ^{\{8\}} | 0.3339 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0889 ^{\{9\}} | 0.0252 ^{\{3\}} | 0.0247 ^{\{1\}} | 0.0251 ^{\{2\}} | 0.0254 ^{\{4\}} | 0.0273 ^{\{7\}} | 0.0264 ^{\{5\}} | 0.0371 ^{\{8\}} | 0.0268 ^{\{6\}} | 0.0907 ^{\{10\}} | 0.1094 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 7 ^{\{2\}} | 11 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1527 ^{\{9\}} | 0.0336 ^{\{2.5\}} | 0.0336 ^{\{2.5\}} | 0.0334 ^{\{1\}} | 0.0339 ^{\{4\}} | 0.037 ^{\{7\}} | 0.0353 ^{\{5\}} | 0.0595 ^{\{8\}} | 0.0356 ^{\{6\}} | 0.1543 ^{\{10\}} | 0.1965 ^{\{11\}} |
MSE | \hat{\delta} | 0.2146 ^{\{10\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0022 ^{\{7\}} | 0.0019 ^{\{5\}} | 0.1098 ^{\{9\}} | 0.002 ^{\{6\}} | 0.0868 ^{\{8\}} | 0.3452 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0764 ^{\{9\}} | 0.0168 ^{\{2.5\}} | 0.0168 ^{\{2.5\}} | 0.0167 ^{\{1\}} | 0.0169 ^{\{4\}} | 0.0185 ^{\{7\}} | 0.0176 ^{\{5\}} | 0.0297 ^{\{8\}} | 0.0178 ^{\{6\}} | 0.0771 ^{\{10\}} | 0.0983 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 7.5 ^{\{2.5\}} | 7.5 ^{\{2.5\}} | 4.5 ^{\{1\}} | 10.5 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1452 ^{\{10\}} | 0.0224 ^{\{2\}} | 0.023 ^{\{4\}} | 0.0222 ^{\{1\}} | 0.0227 ^{\{3\}} | 0.025 ^{\{7\}} | 0.0239 ^{\{5\}} | 0.0359 ^{\{8\}} | 0.0243 ^{\{6\}} | 0.1194 ^{\{9\}} | 0.1483 ^{\{11\}} |
MSE | \hat{\delta} | 0.2516 ^{\{11\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 0.001 ^{\{7\}} | 9e-04 ^{\{5.5\}} | 0.0574 ^{\{9\}} | 9e-04 ^{\{5.5\}} | 0.047 ^{\{8\}} | 0.2342 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0726 ^{\{10\}} | 0.0112 ^{\{2\}} | 0.0115 ^{\{4\}} | 0.0111 ^{\{1\}} | 0.0114 ^{\{3\}} | 0.0125 ^{\{7\}} | 0.0119 ^{\{5\}} | 0.018 ^{\{8\}} | 0.0121 ^{\{6\}} | 0.0597 ^{\{9\}} | 0.0742 ^{\{11\}} | |
\sum Ranks | 25 ^{\{10\}} | 11.5 ^{\{2\}} | 15.5 ^{\{5\}} | 9.5 ^{\{1\}} | 13.5 ^{\{3\}} | 15 ^{\{4\}} | 20.5 ^{\{8\}} | 19 ^{\{6\}} | 22.5 ^{\{9\}} | 20 ^{\{7\}} | 26 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.9599 ^{\{2\}} | 0.9855 ^{\{3\}} | 1.1014 ^{\{5\}} | 1.1374 ^{\{6\}} | 1.1475 ^{\{7\}} | 0.9352 ^{\{1\}} | 1.0073 ^{\{4\}} | 1.3039 ^{\{11\}} | 1.157 ^{\{8\}} | 1.1786 ^{\{9\}} | 1.1824 ^{\{10\}} |
MSE | {\ddddot \delta} | 1.7187 ^{\{3\}} | 1.6923 ^{\{2\}} | 2.3321 ^{\{5\}} | 2.4383 ^{\{6\}} | 2.5806 ^{\{8\}} | 1.5886 ^{\{1\}} | 1.8703 ^{\{4\}} | 3.5516 ^{\{11\}} | 2.8096 ^{\{9\}} | 2.8769 ^{\{10\}} | 2.4776 ^{\{7\}} | |
MRE | {\ddddot \delta} | 0.384 ^{\{2\}} | 0.3942 ^{\{3\}} | 0.4406 ^{\{5\}} | 0.4549 ^{\{6\}} | 0.459 ^{\{7\}} | 0.3741 ^{\{1\}} | 0.4029 ^{\{4\}} | 0.5216 ^{\{11\}} | 0.4628 ^{\{8\}} | 0.4714 ^{\{9\}} | 0.473 ^{\{10\}} | |
\sum Ranks | 7 ^{\{2\}} | 8 ^{\{3\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 22 ^{\{7\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 33 ^{\{11\}} | 25 ^{\{8\}} | 28 ^{\{10\}} | 27 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.5636 ^{\{7\}} | 0.5986 ^{\{8\}} | 0.5265 ^{\{2\}} | 0.53 ^{\{3\}} | 0.5391 ^{\{5\}} | 0.5024 ^{\{1\}} | 0.5325 ^{\{4\}} | 0.7652 ^{\{11\}} | 0.5466 ^{\{6\}} | 0.6536 ^{\{9\}} | 0.7347 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.7067 ^{\{7\}} | 0.8341 ^{\{8\}} | 0.4737 ^{\{2\}} | 0.5305 ^{\{6\}} | 0.503 ^{\{4\}} | 0.435 ^{\{1\}} | 0.482 ^{\{3\}} | 1.7478 ^{\{11\}} | 0.5132 ^{\{5\}} | 0.9315 ^{\{9\}} | 1.3096 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.2254 ^{\{7\}} | 0.2395 ^{\{8\}} | 0.2106 ^{\{2\}} | 0.212 ^{\{3\}} | 0.2156 ^{\{5\}} | 0.201 ^{\{1\}} | 0.213 ^{\{4\}} | 0.3061 ^{\{11\}} | 0.2187 ^{\{6\}} | 0.2614 ^{\{9\}} | 0.2939 ^{\{10\}} | |
\sum Ranks | 21 ^{\{7\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 14 ^{\{5\}} | 3 ^{\{1\}} | 11 ^{\{3\}} | 33 ^{\{11\}} | 17 ^{\{6\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | ||
120 | bias | {\ddddot \delta} | 0.4462 ^{\{7\}} | 0.4787 ^{\{9\}} | 0.334 ^{\{1\}} | 0.3388 ^{\{2\}} | 0.3415 ^{\{3\}} | 0.3453 ^{\{4\}} | 0.3614 ^{\{6\}} | 0.5359 ^{\{11\}} | 0.3552 ^{\{5\}} | 0.457 ^{\{8\}} | 0.5352 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.7607 ^{\{8\}} | 0.877 ^{\{9\}} | 0.1793 ^{\{1\}} | 0.1808 ^{\{2\}} | 0.1832 ^{\{3\}} | 0.189 ^{\{4\}} | 0.3259 ^{\{6\}} | 1.2275 ^{\{11\}} | 0.2236 ^{\{5\}} | 0.4848 ^{\{7\}} | 1.0708 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.1785 ^{\{7\}} | 0.1915 ^{\{9\}} | 0.1336 ^{\{1\}} | 0.1355 ^{\{2\}} | 0.1366 ^{\{3\}} | 0.1381 ^{\{4\}} | 0.1446 ^{\{6\}} | 0.2144 ^{\{11\}} | 0.1421 ^{\{5\}} | 0.1828 ^{\{8\}} | 0.2141 ^{\{10\}} | |
\sum Ranks | 22 ^{\{7\}} | 27 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 15 ^{\{5\}} | 23 ^{\{8\}} | 30 ^{\{10\}} | ||
200 | bias | {\ddddot \delta} | 0.4358 ^{\{10\}} | 0.4021 ^{\{8\}} | 0.248 ^{\{1\}} | 0.2526 ^{\{3\}} | 0.2509 ^{\{2\}} | 0.2633 ^{\{4\}} | 0.3284 ^{\{6\}} | 0.4068 ^{\{9\}} | 0.2919 ^{\{5\}} | 0.3362 ^{\{7\}} | 0.4777 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.9925 ^{\{10\}} | 0.8236 ^{\{9\}} | 0.0967 ^{\{1\}} | 0.1001 ^{\{2\}} | 0.1006 ^{\{3\}} | 0.1128 ^{\{4\}} | 0.4511 ^{\{7\}} | 0.8184 ^{\{8\}} | 0.2007 ^{\{5\}} | 0.2805 ^{\{6\}} | 1.0014 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1743 ^{\{10\}} | 0.1609 ^{\{8\}} | 0.0992 ^{\{1\}} | 0.1011 ^{\{3\}} | 0.1004 ^{\{2\}} | 0.1053 ^{\{4\}} | 0.1314 ^{\{6\}} | 0.1627 ^{\{9\}} | 0.1167 ^{\{5\}} | 0.1345 ^{\{7\}} | 0.1911 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 12 ^{\{4\}} | 19 ^{\{6\}} | 26 ^{\{9\}} | 15 ^{\{5\}} | 20 ^{\{7\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.3835 ^{\{11\}} | 0.3358 ^{\{8\}} | 0.206 ^{\{2\}} | 0.2007 ^{\{1\}} | 0.2086 ^{\{3\}} | 0.2142 ^{\{4\}} | 0.2656 ^{\{5\}} | 0.3661 ^{\{10\}} | 0.2788 ^{\{7\}} | 0.2723 ^{\{6\}} | 0.3589 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.9468 ^{\{11\}} | 0.7071 ^{\{8\}} | 0.0672 ^{\{2\}} | 0.0627 ^{\{1\}} | 0.0681 ^{\{3\}} | 0.0749 ^{\{4\}} | 0.3498 ^{\{6\}} | 0.8202 ^{\{10\}} | 0.363 ^{\{7\}} | 0.1516 ^{\{5\}} | 0.7172 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.1534 ^{\{11\}} | 0.1343 ^{\{8\}} | 0.0824 ^{\{2\}} | 0.0803 ^{\{1\}} | 0.0835 ^{\{3\}} | 0.0857 ^{\{4\}} | 0.1062 ^{\{5\}} | 0.1464 ^{\{10\}} | 0.1115 ^{\{7\}} | 0.1089 ^{\{6\}} | 0.1435 ^{\{9\}} | |
\sum Ranks | 33 ^{\{11\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 16 ^{\{5\}} | 30 ^{\{10\}} | 21 ^{\{7\}} | 17 ^{\{6\}} | 27 ^{\{9\}} | ||
450 | bias | {\ddddot \delta} | 0.2793 ^{\{9\}} | 0.2534 ^{\{7\}} | 0.1634 ^{\{2\}} | 0.1628 ^{\{1\}} | 0.1714 ^{\{3\}} | 0.182 ^{\{4\}} | 0.2577 ^{\{8\}} | 0.295 ^{\{11\}} | 0.243 ^{\{6\}} | 0.2212 ^{\{5\}} | 0.291 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.5946 ^{\{10\}} | 0.4777 ^{\{8\}} | 0.0423 ^{\{2\}} | 0.0405 ^{\{1\}} | 0.0468 ^{\{3\}} | 0.0521 ^{\{4\}} | 0.4753 ^{\{7\}} | 0.6681 ^{\{11\}} | 0.3999 ^{\{6\}} | 0.1162 ^{\{5\}} | 0.5314 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.1117 ^{\{9\}} | 0.1013 ^{\{7\}} | 0.0653 ^{\{2\}} | 0.0651 ^{\{1\}} | 0.0686 ^{\{3\}} | 0.0728 ^{\{4\}} | 0.1031 ^{\{8\}} | 0.118 ^{\{11\}} | 0.0972 ^{\{6\}} | 0.0885 ^{\{5\}} | 0.1164 ^{\{10\}} | |
\sum Ranks | 28 ^{\{9\}} | 22 ^{\{7\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 23 ^{\{8\}} | 33 ^{\{11\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 29 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.6278 ^{\{1\}} | 0.6804 ^{\{2\}} | 0.7479 ^{\{6\}} | 0.7486 ^{\{7\}} | 0.7441 ^{\{5\}} | 0.6932 ^{\{3\}} | 0.7387 ^{\{4\}} | 0.9368 ^{\{10\}} | 0.8054 ^{\{8\}} | 0.9378 ^{\{11\}} | 0.9052 ^{\{9\}} |
MSE | \hat{\delta} | 0.8588 ^{\{3\}} | 0.7567 ^{\{1\}} | 1.1269 ^{\{7\}} | 1.108 ^{\{6\}} | 1.1045 ^{\{5\}} | 0.7758 ^{\{2\}} | 0.9299 ^{\{4\}} | 2.1615 ^{\{11\}} | 1.3529 ^{\{8\}} | 1.6869 ^{\{10\}} | 1.432 ^{\{9\}} | |
MRE | \hat{\delta} | 0.2511 ^{\{1\}} | 0.2721 ^{\{2\}} | 0.2991 ^{\{6\}} | 0.2994 ^{\{7\}} | 0.2976 ^{\{5\}} | 0.2773 ^{\{3\}} | 0.2955 ^{\{4\}} | 0.3747 ^{\{10\}} | 0.3222 ^{\{8\}} | 0.3751 ^{\{11\}} | 0.3621 ^{\{9\}} | |
\sum Ranks | 5 ^{\{1.5\}} | 5 ^{\{1.5\}} | 19 ^{\{6\}} | 20 ^{\{7\}} | 15 ^{\{5\}} | 8 ^{\{3\}} | 12 ^{\{4\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.4159 ^{\{10\}} | 0.2217 ^{\{2\}} | 0.2222 ^{\{3\}} | 0.2189 ^{\{1\}} | 0.2275 ^{\{5\}} | 0.2386 ^{\{6\}} | 0.2239 ^{\{4\}} | 0.3112 ^{\{8\}} | 0.2453 ^{\{7\}} | 0.4475 ^{\{11\}} | 0.3909 ^{\{9\}} |
MSE | \hat{\delta} | 0.7329 ^{\{11\}} | 0.0773 ^{\{2\}} | 0.0774 ^{\{3\}} | 0.077 ^{\{1\}} | 0.0823 ^{\{5\}} | 0.0898 ^{\{6\}} | 0.0815 ^{\{4\}} | 0.5289 ^{\{10\}} | 0.0992 ^{\{7\}} | 0.4726 ^{\{9\}} | 0.3113 ^{\{8\}} | |
MRE | \hat{\delta} | 0.1664 ^{\{10\}} | 0.0887 ^{\{2\}} | 0.0889 ^{\{3\}} | 0.0876 ^{\{1\}} | 0.091 ^{\{5\}} | 0.0955 ^{\{6\}} | 0.0896 ^{\{4\}} | 0.1245 ^{\{8\}} | 0.0981 ^{\{7\}} | 0.179 ^{\{11\}} | 0.1564 ^{\{9\}} | |
\sum Ranks | 31 ^{\{10.5\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 12 ^{\{4\}} | 26 ^{\{8.5\}} | 21 ^{\{7\}} | 31 ^{\{10.5\}} | 26 ^{\{8.5\}} | ||
120 | bias | \hat{\delta} | 0.3167 ^{\{11\}} | 0.0899 ^{\{1\}} | 0.0967 ^{\{3\}} | 0.097 ^{\{4\}} | 0.0963 ^{\{2\}} | 0.1102 ^{\{7\}} | 0.0999 ^{\{5\}} | 0.156 ^{\{8\}} | 0.1032 ^{\{6\}} | 0.2892 ^{\{10\}} | 0.244 ^{\{9\}} |
MSE | \hat{\delta} | 0.6865 ^{\{11\}} | 0.0126 ^{\{1\}} | 0.0149 ^{\{4\}} | 0.0147 ^{\{3\}} | 0.0145 ^{\{2\}} | 0.0185 ^{\{7\}} | 0.0158 ^{\{5\}} | 0.3438 ^{\{10\}} | 0.0169 ^{\{6\}} | 0.2536 ^{\{9\}} | 0.1786 ^{\{8\}} | |
MRE | \hat{\delta} | 0.1267 ^{\{11\}} | 0.036 ^{\{1\}} | 0.0387 ^{\{3\}} | 0.0388 ^{\{4\}} | 0.0385 ^{\{2\}} | 0.0441 ^{\{7\}} | 0.0399 ^{\{5\}} | 0.0624 ^{\{8\}} | 0.0413 ^{\{6\}} | 0.1157 ^{\{10\}} | 0.0976 ^{\{9\}} | |
\sum Ranks | 33 ^{\{11\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 26 ^{\{8.5\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 26 ^{\{8.5\}} | ||
200 | bias | \hat{\delta} | 0.2146 ^{\{9\}} | 0.056 ^{\{2\}} | 0.0592 ^{\{4\}} | 0.0554 ^{\{1\}} | 0.0586 ^{\{3\}} | 0.0649 ^{\{7\}} | 0.0611 ^{\{5\}} | 0.0712 ^{\{8\}} | 0.0625 ^{\{6\}} | 0.2248 ^{\{10\}} | 0.2259 ^{\{11\}} |
MSE | \hat{\delta} | 0.362 ^{\{11\}} | 0.0049 ^{\{1\}} | 0.0055 ^{\{4\}} | 0.005 ^{\{2\}} | 0.0053 ^{\{3\}} | 0.0064 ^{\{7\}} | 0.0057 ^{\{5\}} | 0.0783 ^{\{8\}} | 0.0062 ^{\{6\}} | 0.1747 ^{\{9\}} | 0.3609 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0859 ^{\{9\}} | 0.0224 ^{\{2\}} | 0.0237 ^{\{4\}} | 0.0221 ^{\{1\}} | 0.0234 ^{\{3\}} | 0.026 ^{\{7\}} | 0.0244 ^{\{5\}} | 0.0285 ^{\{8\}} | 0.025 ^{\{6\}} | 0.0899 ^{\{10\}} | 0.0903 ^{\{11\}} | |
\sum Ranks | 29 ^{\{9.5\}} | 5 ^{\{2\}} | 12 ^{\{4\}} | 4 ^{\{1\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{9.5\}} | 32 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1586 ^{\{9\}} | 0.0373 ^{\{1.5\}} | 0.0385 ^{\{3\}} | 0.0373 ^{\{1.5\}} | 0.0403 ^{\{4\}} | 0.0445 ^{\{7\}} | 0.042 ^{\{5.5\}} | 0.0619 ^{\{8\}} | 0.042 ^{\{5.5\}} | 0.1637 ^{\{10\}} | 0.1866 ^{\{11\}} |
MSE | \hat{\delta} | 0.2146 ^{\{10\}} | 0.0022 ^{\{1.5\}} | 0.0023 ^{\{3\}} | 0.0022 ^{\{1.5\}} | 0.0026 ^{\{4\}} | 0.0031 ^{\{7\}} | 0.0028 ^{\{6\}} | 0.1238 ^{\{9\}} | 0.0027 ^{\{5\}} | 0.1014 ^{\{8\}} | 0.2935 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0635 ^{\{9\}} | 0.0149 ^{\{1.5\}} | 0.0154 ^{\{3\}} | 0.0149 ^{\{1.5\}} | 0.0161 ^{\{4\}} | 0.0178 ^{\{7\}} | 0.0168 ^{\{5.5\}} | 0.0247 ^{\{8\}} | 0.0168 ^{\{5.5\}} | 0.0655 ^{\{10\}} | 0.0746 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 4.5 ^{\{1.5\}} | 9 ^{\{3\}} | 4.5 ^{\{1.5\}} | 12 ^{\{4\}} | 21 ^{\{7\}} | 17 ^{\{6\}} | 25 ^{\{8\}} | 16 ^{\{5\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1285 ^{\{9\}} | 0.0248 ^{\{1.5\}} | 0.0256 ^{\{3\}} | 0.0248 ^{\{1.5\}} | 0.0257 ^{\{4\}} | 0.0301 ^{\{7\}} | 0.0276 ^{\{5\}} | 0.0441 ^{\{8\}} | 0.028 ^{\{6\}} | 0.1326 ^{\{10\}} | 0.1563 ^{\{11\}} |
MSE | \hat{\delta} | 0.1537 ^{\{10\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.0014 ^{\{7\}} | 0.0012 ^{\{5\}} | 0.0994 ^{\{9\}} | 0.0013 ^{\{6\}} | 0.07 ^{\{8\}} | 0.2914 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0514 ^{\{9\}} | 0.0099 ^{\{1.5\}} | 0.0102 ^{\{3\}} | 0.0099 ^{\{1.5\}} | 0.0103 ^{\{4\}} | 0.0121 ^{\{7\}} | 0.011 ^{\{5\}} | 0.0177 ^{\{8\}} | 0.0112 ^{\{6\}} | 0.053 ^{\{10\}} | 0.0625 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 5.5 ^{\{1.5\}} | 8.5 ^{\{3\}} | 5.5 ^{\{1.5\}} | 10.5 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | ||||||||||||
15 | \hat{\delta} | 2.65374 | 1.95696 | 1.92664 | 1.87934 | 1.89117 | 1.78528 | 1.90705 | 2.05639 | 1.66667 | 1.71257 | 1.63055 |
50 | \hat{\delta} | 2.11809 | 3.22118 | 3.27914 | 3.37684 | 3.16358 | 3.14356 | 3.07212 | 3.27358 | 3.27555 | 1.92975 | 2.00437 |
120 | \hat{\delta} | 2.00738 | 4.46400 | 4.08915 | 5.19403 | 4.27626 | 4.30435 | 4.14453 | 4.03383 | 4.40283 | 2.05997 | 2.23158 |
200 | \hat{\delta} | 1.88626 | 5.13816 | 5.01911 | 6.17094 | 4.81646 | 5.03822 | 4.63030 | 4.55030 | 5.02299 | 1.91600 | 2.11422 |
300 | \hat{\delta} | 1.85538 | 5.53571 | 5.71818 | 7.52055 | 5.42342 | 5.63303 | 5.20175 | 4.35915 | 5.81356 | 1.88395 | 1.98023 |
450 | \hat{\delta} | 1.78755 | 4.31579 | 6.43836 | 10.63415 | 6.58108 | 6.25676 | 5.94937 | 5.04124 | 6.63291 | 1.81306 | 1.87031 |
\delta=0.6 | ||||||||||||
15 | \hat{\delta} | 2.10257 | 1.80127 | 1.76798 | 1.61167 | 1.73971 | 1.52413 | 1.90935 | 1.62599 | 1.91201 | 1.70299 | 1.79647 |
50 | \hat{\delta} | 1.89052 | 1.76432 | 3.68263 | 3.07065 | 3.24167 | 3.18102 | 2.83529 | 2.20078 | 3.44154 | 1.58018 | 1.59773 |
120 | \hat{\delta} | 1.07682 | 1.86474 | 11.84211 | 10.19200 | 12.10526 | 12.27184 | 2.53523 | 2.19143 | 4.59252 | 1.39825 | 1.48068 |
200 | \hat{\delta} | 1.81764 | 3.01890 | 36.92308 | 19.70732 | 31.36735 | 20.77500 | 4.07385 | 6.47079 | 6.98649 | 1.26058 | 1.53116 |
300 | \hat{\delta} | 2.03397 | 9.14573 | 94.00000 | 34.70588 | 96.00000 | 36.47059 | 5.66368 | 8.45113 | 10.03571 | 1.11630 | 1.59630 |
450 | \hat{\delta} | 2.02886 | 3.74671 | 174.57143 | 46.00000 | 154.00000 | 46.87500 | 10.81618 | 6.72539 | 15.39024 | 1.29133 | 1.92838 |
\delta=1.0 | ||||||||||||
15 | \hat{\delta} | 1.68168 | 1.79337 | 1.95873 | 1.86428 | 1.92982 | 1.69938 | 1.66439 | 1.82151 | 2.19903 | 1.18117 | 1.64157 |
50 | \hat{\delta} | 1.54526 | 2.58061 | 6.17552 | 5.42521 | 5.52263 | 6.31959 | 3.82429 | 2.21024 | 5.10873 | 1.61619 | 1.30479 |
120 | \hat{\delta} | 1.39701 | 4.93770 | 27.10390 | 13.56757 | 23.06250 | 13.67949 | 11.79913 | 2.65306 | 23.42254 | 1.63180 | 1.75935 |
200 | \hat{\delta} | 1.82268 | 6.91685 | 79.00000 | 18.37931 | 76.64286 | 20.24138 | 77.00000 | 3.14979 | 88.36667 | 2.09427 | 3.12264 |
300 | \hat{\delta} | 1.72203 | 7.19677 | 176.91667 | 26.84615 | 161.23077 | 27.23077 | 178.00000 | 6.91166 | 134.61538 | 1.86864 | 2.73634 |
450 | \hat{\delta} | 2.42608 | 24.85185 | 254.16667 | 42.16667 | 273.80000 | 40.16667 | 332.16667 | 11.06918 | 163.57143 | 2.12910 | 1.46159 |
\delta=1.5 | ||||||||||||
15 | \hat{\delta} | 1.74797 | 2.06166 | 2.09336 | 2.00275 | 2.25601 | 2.02049 | 1.78415 | 1.42033 | 1.99113 | 2.18236 | 1.50175 |
50 | \hat{\delta} | 1.58121 | 7.48928 | 6.24385 | 6.01931 | 6.22030 | 5.34356 | 14.64024 | 1.63117 | 8.12880 | 1.61337 | 1.59366 |
120 | \hat{\delta} | 2.78723 | 10.69713 | 16.88095 | 12.10843 | 18.55814 | 12.39286 | 54.60215 | 3.83208 | 46.43000 | 2.04591 | 1.66224 |
200 | \hat{\delta} | 1.20643 | 100.90323 | 38.10000 | 17.52941 | 33.12121 | 17.54286 | 99.68571 | 3.64516 | 94.34211 | 2.40303 | 1.61870 |
300 | \hat{\delta} | 1.14835 | 261.15385 | 101.60000 | 26.20000 | 91.07143 | 30.92857 | 171.33333 | 11.85870 | 214.06667 | 3.37081 | 1.96066 |
450 | \hat{\delta} | 1.17286 | 370.00000 | 185.71429 | 44.66667 | 177.28571 | 37.57143 | 376.57143 | 4.51670 | 329.57143 | 1.53292 | 3.26991 |
\delta=2.0 | ||||||||||||
15 | \hat{\delta} | 1.44528 | 2.29860 | 2.09539 | 2.18214 | 2.07689 | 2.29155 | 2.03887 | 1.64293 | 2.29799 | 1.91037 | 1.63957 |
50 | \hat{\delta} | 1.43903 | 14.86357 | 5.76391 | 6.80919 | 5.80201 | 4.99078 | 8.62879 | 2.62247 | 5.78613 | 2.10575 | 2.86022 |
120 | \hat{\delta} | 2.46001 | 71.90291 | 12.75472 | 12.81308 | 12.75000 | 10.71875 | 40.80342 | 4.28986 | 26.82927 | 1.80279 | 2.28536 |
200 | \hat{\delta} | 2.09955 | 119.40000 | 22.78947 | 19.57500 | 20.07500 | 17.25532 | 113.30233 | 4.45243 | 78.47826 | 2.35818 | 1.64810 |
300 | \hat{\delta} | 1.68733 | 204.27778 | 35.72222 | 28.66667 | 36.16667 | 24.90909 | 238.05263 | 4.49545 | 215.35000 | 1.78456 | 1.02462 |
450 | \hat{\delta} | 1.12838 | 339.12500 | 65.75000 | 43.62500 | 88.25000 | 35.00000 | 411.22222 | 6.33101 | 510.00000 | 2.04043 | 1.31170 |
\delta=2.5 | ||||||||||||
15 | \hat{\delta} | 2.00128 | 2.23642 | 2.06948 | 2.20063 | 2.33644 | 2.04769 | 2.01129 | 1.64312 | 2.07672 | 1.70544 | 1.73017 |
50 | \hat{\delta} | 0.96425 | 10.79043 | 6.12016 | 6.88961 | 6.11179 | 4.84410 | 5.91411 | 3.30459 | 5.17339 | 1.97101 | 4.20687 |
120 | \hat{\delta} | 1.10808 | 69.60317 | 12.03356 | 12.29932 | 12.63448 | 10.21622 | 20.62658 | 3.57039 | 13.23077 | 1.91167 | 5.99552 |
200 | \hat{\delta} | 2.74171 | 168.08163 | 17.58182 | 20.02000 | 18.98113 | 17.62500 | 79.14035 | 10.45211 | 32.37097 | 1.60561 | 2.77473 |
300 | \hat{\delta} | 4.41193 | 321.40909 | 29.21739 | 28.50000 | 26.19231 | 24.16129 | 124.92857 | 6.62520 | 134.44444 | 1.49507 | 2.44361 |
450 | \hat{\delta} | 3.86858 | 477.70000 | 42.30000 | 40.50000 | 46.80000 | 37.21429 | 396.08333 | 6.72133 | 307.61538 | 1.66000 | 1.82361 |
Parameter | m^ {\circ \circ} | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | 15 | 5.0 | 4.0 | 8.0 | 1.0 | 9.0 | 3.0 | 2.0 | 7.0 | 11.0 | 10.0 | 6.0 |
50 | 4.0 | 6.0 | 8.0 | 1.0 | 5.0 | 3.0 | 2.0 | 7.0 | 11.0 | 10.0 | 9.0 | |
120 | 7.0 | 8.0 | 2.0 | 1.0 | 6.0 | 4.0 | 3.0 | 5.0 | 9.0 | 11.0 | 10.0 | |
200 | 8.0 | 6.0 | 4.5 | 1.0 | 2.0 | 7.0 | 3.0 | 4.5 | 9.0 | 11.0 | 10.0 | |
300 | 4.0 | 6.0 | 8.0 | 1.0 | 3.0 | 5.0 | 2.0 | 7.0 | 9.0 | 11.0 | 10.0 | |
450 | 7.5 | 7.5 | 3.0 | 1.0 | 5.0 | 2.0 | 4.0 | 6.0 | 9.0 | 11.0 | 10.0 | |
\delta=0.6 | 15 | 5.0 | 4.0 | 8.0 | 2.0 | 6.0 | 1.0 | 3.0 | 7.0 | 10.0 | 11.0 | 9.0 |
50 | 8.0 | 9.0 | 4.0 | 2.0 | 3.0 | 1.0 | 5.0 | 7.0 | 6.0 | 10.0 | 11.0 | |
120 | 7.0 | 5.0 | 3.0 | 2.0 | 4.0 | 1.0 | 8.0 | 6.0 | 11.0 | 10.0 | 9.0 | |
200 | 8.0 | 6.0 | 4.0 | 1.0 | 5.0 | 2.0 | 3.0 | 9.5 | 7.0 | 9.5 | 11.0 | |
300 | 6.0 | 10.0 | 8.0 | 1.0 | 9.0 | 2.0 | 5.0 | 3.0 | 4.0 | 7.0 | 11.0 | |
450 | 9.0 | 3.0 | 4.0 | 1.0 | 5.0 | 2.0 | 10.0 | 7.0 | 8.0 | 6.0 | 11.0 | |
\delta=1.0 | 15 | 6.0 | 3.0 | 7.0 | 5.0 | 4.0 | 1.0 | 2.0 | 9.5 | 8.0 | 9.5 | 11.0 |
50 | 6.0 | 9.0 | 3.0 | 2.0 | 4.0 | 1.0 | 10.0 | 7.5 | 5.0 | 7.5 | 11.0 | |
120 | 7.0 | 8.5 | 4.0 | 1.0 | 3.0 | 2.0 | 6.0 | 5.0 | 10.0 | 8.5 | 11.0 | |
200 | 8.0 | 10.0 | 3.0 | 1.0 | 5.5 | 2.0 | 7.0 | 4.0 | 9.0 | 5.5 | 11.0 | |
300 | 6.0 | 9.0 | 8.0 | 1.0 | 7.0 | 2.0 | 10.0 | 5.0 | 3.0 | 4.0 | 11.0 | |
450 | 7.0 | 10.0 | 6.0 | 2.0 | 3.0 | 1.0 | 9.0 | 8.0 | 4.0 | 5.0 | 11.0 | |
\delta=1.5 | 15 | 6.0 | 3.0 | 5.0 | 4.0 | 7.0 | 1.0 | 2.0 | 9.0 | 8.0 | 11.0 | 10.0 |
50 | 7.0 | 10.0 | 2.0 | 3.0 | 4.0 | 1.0 | 9.0 | 8.0 | 5.0 | 6.0 | 11.0 | |
120 | 10.0 | 5.0 | 3.0 | 1.0 | 4.0 | 2.0 | 9.0 | 7.0 | 8.0 | 6.0 | 11.0 | |
200 | 6.0 | 7.0 | 4.0 | 1.0 | 3.0 | 2.0 | 8.0 | 9.0 | 10.0 | 5.0 | 11.0 | |
300 | 5.0 | 8.5 | 4.0 | 1.0 | 3.0 | 2.0 | 6.5 | 10.0 | 8.5 | 6.5 | 11.0 | |
450 | 8.0 | 7.0 | 3.0 | 2.0 | 4.0 | 1.0 | 10.0 | 6.0 | 9.0 | 5.0 | 11.0 | |
\delta=2.0 | 15 | 3.0 | 4.0 | 5.0 | 7.0 | 6.0 | 1.0 | 2.0 | 11.0 | 8.0 | 10.0 | 9.0 |
50 | 7.0 | 9.0 | 2.0 | 4.0 | 3.0 | 1.0 | 6.0 | 10.0 | 5.0 | 8.0 | 11.0 | |
120 | 8.0 | 9.0 | 1.0 | 2.0 | 4.0 | 3.0 | 6.0 | 10.0 | 5.0 | 7.0 | 11.0 | |
200 | 8.0 | 9.0 | 3.0 | 1.0 | 2.0 | 4.0 | 10.0 | 7.0 | 6.0 | 5.0 | 11.0 | |
300 | 6.0 | 7.0 | 3.0 | 1.0 | 2.0 | 4.0 | 9.0 | 11.0 | 10.0 | 5.0 | 8.0 | |
450 | 7.0 | 6.0 | 3.0 | 1.0 | 4.0 | 2.0 | 9.5 | 8.0 | 11.0 | 5.0 | 9.5 | |
\delta=2.5 | 15 | 2.0 | 3.0 | 5.0 | 6.0 | 7.0 | 1.0 | 4.0 | 11.0 | 8.0 | 10.0 | 9.0 |
50 | 7.0 | 8.0 | 2.0 | 4.0 | 5.0 | 1.0 | 3.0 | 11.0 | 6.0 | 9.0 | 10.0 | |
120 | 7.0 | 9.0 | 1.0 | 2.0 | 3.0 | 4.0 | 6.0 | 11.0 | 5.0 | 8.0 | 10.0 | |
200 | 10.0 | 8.0 | 1.0 | 3.0 | 2.0 | 4.0 | 6.0 | 9.0 | 5.0 | 7.0 | 11.0 | |
300 | 11.0 | 8.0 | 2.0 | 1.0 | 3.0 | 4.0 | 5.0 | 10.0 | 7.0 | 6.0 | 9.0 | |
450 | 9.0 | 7.0 | 2.0 | 1.0 | 3.0 | 4.0 | 8.0 | 11.0 | 6.0 | 5.0 | 10.0 | |
\sum Ranks | 245.5 | 251.5 | 146.5 | 72.0 | 157.5 | 84.0 | 213.0 | 284.0 | 273.5 | 282.0 | 366.5 | |
Overall Rank | 6 | 7 | 3 | 1 | 4 | 2 | 5 | 10 | 8 | 9 | 11 |
Parameter | m^ {\circ \circ} | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | 15 | 1.0 | 5.0 | 7.0 | 2.0 | 8.0 | 4.0 | 3.0 | 6.0 | 11.0 | 10.0 | 9.0 |
50 | 9.0 | 5.0 | 6.0 | 1.0 | 7.0 | 2.0 | 3.0 | 4.0 | 8.0 | 11.0 | 10.0 | |
120 | 9.0 | 2.0 | 4.0 | 1.0 | 5.0 | 3.0 | 6.0 | 7.0 | 8.0 | 11.0 | 10.0 | |
200 | 10.0 | 2.0 | 5.0 | 1.0 | 4.0 | 3.0 | 6.0 | 7.0 | 8.0 | 11.0 | 9.0 | |
300 | 9.0 | 4.0 | 3.0 | 1.0 | 5.0 | 2.0 | 6.0 | 8.0 | 7.0 | 11.0 | 10.0 | |
450 | 9.0 | 8.0 | 2.0 | 1.0 | 3.0 | 4.0 | 6.0 | 7.0 | 5.0 | 11.0 | 10.0 | |
\delta=0.6 | 15 | 1.0 | 3.0 | 7.0 | 5.0 | 6.0 | 2.0 | 4.0 | 8.0 | 9.0 | 11.0 | 10.0 |
50 | 9.0 | 8.0 | 1.0 | 4.0 | 3.0 | 2.0 | 6.0 | 7.0 | 5.0 | 10.0 | 11.0 | |
120 | 10.0 | 8.0 | 2.0 | 4.0 | 3.0 | 1.0 | 7.0 | 6.0 | 5.0 | 11.0 | 9.0 | |
200 | 9.0 | 8.0 | 1.0 | 2.0 | 4.0 | 3.0 | 7.0 | 6.0 | 5.0 | 11.0 | 10.0 | |
300 | 9.0 | 7.0 | 3.5 | 1.5 | 1.5 | 3.5 | 8.0 | 6.0 | 5.0 | 11.0 | 10.0 | |
450 | 9.0 | 8.0 | 1.0 | 7.0 | 5.0 | 3.5 | 3.5 | 6.0 | 2.0 | 11.0 | 10.0 | |
\delta=1.0 | 15 | 6.0 | 2.0 | 3.0 | 5.0 | 4.0 | 1.0 | 7.0 | 9.0 | 8.0 | 11.0 | 10.0 |
50 | 9.0 | 7.0 | 2.0 | 3.0 | 4.0 | 1.0 | 6.0 | 8.0 | 5.0 | 10.0 | 11.0 | |
120 | 9.0 | 7.0 | 3.0 | 1.0 | 4.0 | 2.0 | 6.0 | 8.0 | 5.0 | 10.5 | 10.5 | |
200 | 11.0 | 7.0 | 1.0 | 4.0 | 3.0 | 2.0 | 6.0 | 8.0 | 5.0 | 9.0 | 10.0 | |
300 | 9.0 | 8.0 | 1.0 | 4.0 | 2.0 | 3.0 | 5.0 | 7.0 | 6.0 | 11.0 | 10.0 | |
450 | 8.0 | 4.0 | 3.0 | 2.0 | 1.0 | 5.0 | 7.0 | 6.0 | 9.5 | 9.5 | 11.0 | |
\delta=1.5 | 15 | 5.5 | 3.0 | 2.0 | 7.0 | 4.0 | 1.0 | 5.5 | 10.0 | 8.0 | 9.0 | 11.0 |
50 | 9.5 | 6.0 | 2.0 | 3.0 | 1.0 | 4.0 | 5.0 | 8.0 | 7.0 | 9.5 | 11.0 | |
120 | 9.0 | 7.0 | 2.0 | 1.0 | 4.0 | 3.0 | 5.0 | 8.0 | 6.0 | 10.0 | 11.0 | |
200 | 10.0 | 2.0 | 1.0 | 3.0 | 4.0 | 6.0 | 5.0 | 8.0 | 7.0 | 9.0 | 11.0 | |
300 | 10.0 | 1.0 | 4.0 | 5.0 | 2.0 | 3.0 | 6.5 | 8.0 | 6.5 | 9.0 | 11.0 | |
450 | 11.0 | 2.0 | 8.0 | 1.0 | 3.5 | 3.5 | 9.5 | 5.0 | 6.0 | 7.0 | 9.5 | |
\delta=2.0 | 15 | 5.0 | 2.0 | 4.0 | 7.0 | 6.0 | 1.0 | 3.0 | 10.0 | 8.0 | 11.0 | 9.0 |
50 | 9.0 | 4.0 | 2.0 | 1.0 | 3.0 | 5.0 | 6.0 | 8.0 | 7.0 | 10.5 | 10.5 | |
120 | 9.0 | 1.0 | 2.0 | 3.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 10.0 | 11.0 | |
200 | 9.5 | 3.0 | 1.0 | 2.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
300 | 9.5 | 2.5 | 2.5 | 1.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
450 | 10.0 | 2.0 | 5.0 | 1.0 | 3.0 | 4.0 | 8.0 | 6.0 | 9.0 | 7.0 | 11.0 | |
\delta=2.5 | 15 | 1.5 | 1.5 | 6.0 | 7.0 | 5.0 | 3.0 | 4.0 | 10.0 | 8.0 | 11.0 | 9.0 |
50 | 10.5 | 2.0 | 3.0 | 1.0 | 5.0 | 6.0 | 4.0 | 8.5 | 7.0 | 10.5 | 8.5 | |
120 | 11.0 | 1.0 | 3.0 | 4.0 | 2.0 | 7.0 | 5.0 | 8.5 | 6.0 | 10.0 | 8.5 | |
200 | 9.5 | 2.0 | 4.0 | 1.0 | 3.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
300 | 9.5 | 1.5 | 3.0 | 1.5 | 4.0 | 7.0 | 6.0 | 8.0 | 5.0 | 9.5 | 11.0 | |
450 | 9.5 | 1.5 | 3.0 | 1.5 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
\sum Ranks | 304.5 | 148.0 | 113.0 | 100.5 | 138.0 | 135.5 | 200.0 | 270.0 | 237.0 | 362.0 | 367.5 | |
Overall Rank | 9 | 5 | 2 | 1 | 4 | 3 | 6 | 8 | 7 | 10 | 11 |
m^ {\circ \circ} | Mean | Median | Skewness | Kurtosis | Range | Minimum | Maximum | Sum | |
data | 73 | 0.109733 | 0.0608 | 3.71542 | 17.9579 | 0.9735 | 0.002 | 0.9755 | 8.0105 |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
20 | {\ddddot \delta} | 14.2997 | 14.4682 | 14.3253 | 14.2344 | 14.2934 | 7.22796 | 13.5736 | 14.591 | 15.5268 | 23.1179 | 14.2344 |
35 | {\ddddot \delta} | 18.2715 | 18.3864 | 18.1745 | 18.2414 | 18.1516 | 51.3402 | 20.4428 | 19.3072 | 16.4006 | 15.145 | 17.8123 |
50 | {\ddddot \delta} | 14.7089 | 14.8449 | 14.6641 | 14.6879 | 14.6491 | 16.5 | 15.777 | 15.078 | 13.8907 | 13.9479 | 15.4683 |
65 | {\ddddot \delta} | 16.1061 | 16.1716 | 16.031 | 16.0896 | 16.0229 | 16.2323 | 17.0406 | 16.2854 | 15.298 | 14.9776 | 15.7568 |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PCE | RADE | WLSE | LADE | MSADE | MSALDE |
20 | \hat{{\delta}} | 14.2503 | 14.2662 | 13.8488 | 13.6955 | 13.7732 | 7.56834 | 13.3422 | 14.3021 | 15.4774 | 13.5672 | 17.3995 |
35 | \hat{{\delta}} | 12.5203 | 12.5202 | 12.3418 | 12.2565 | 12.3128 | 12.4091 | 13.0535 | 12.8861 | 11.94 | 14.5198 | 17.4009 |
50 | \hat{{\delta}} | 17.1027 | 17.0984 | 16.9476 | 16.9634 | 16.9351 | 15.6024 | 17.708 | 17.2244 | 16.471 | 18.3951 | 14.3959 |
65 | \hat{{\delta}} | 14.4861 | 14.4806 | 14.3786 | 14.4454 | 14.3728 | 14.4125 | 15.1468 | 14.4975 | 13.8117 | 13.7231 | 6.63895 |
Method | design | \hat{\delta} | ADTS | CMTS | KSTS | KSP |
MLE | SRS | 14.7089 | 0.761824 | 0.114911 | 0.117979 | 0.489566 |
RSS | 17.1027 | 0.387748 | 0.0472457 | 0.0751288 | 0.940393 | |
ADE | SRS | 14.8449 | 0.760685 | 0.115343 | 0.115999 | 0.511594 |
RSS | 17.0984 | 0.387747 | 0.0472331 | 0.0751671 | 0.940158 | |
CME | SRS | 14.6641 | 0.762704 | 0.114883 | 0.118639 | 0.482331 |
RSS | 16.9476 | 0.388744 | 0.047017 | 0.0765033 | 0.931604 | |
MPSE | SRS | 14.6879 | 0.762205 | 0.114891 | 0.118288 | 0.48617 |
RSS | 16.9634 | 0.388545 | 0.0470194 | 0.0763622 | 0.932538 | |
LSE | SRS | 14.6491 | 0.763056 | 0.114886 | 0.118861 | 0.479908 |
RSS | 16.9351 | 0.388917 | 0.0470186 | 0.0766156 | 0.930856 | |
PSE | SRS | 16.5 | 0.91112 | 0.157392 | 0.117831 | 0.491197 |
RSS | 15.6024 | 0.494113 | 0.0658479 | 0.0894908 | 0.818117 | |
RADE | SRS | 15.777 | 0.810594 | 0.131257 | 0.105954 | 0.6285 |
RSS | 17.708 | 0.403364 | 0.052323 | 0.0830061 | 0.881087 | |
WLSE | SRS | 15.078 | 0.76395 | 0.117256 | 0.112676 | 0.549461 |
RSS | 17.2244 | 0.388432 | 0.0477398 | 0.0750625 | 0.940799 | |
LADE | SRS | 13.8907 | 0.81995 | 0.123882 | 0.13058 | 0.361317 |
RSS | 16.471 | 0.405507 | 0.0492597 | 0.0808795 | 0.899158 | |
MSADE | SRS | 13.9479 | 0.812856 | 0.12257 | 0.12966 | 0.369911 |
RSS | 18.3951 | 0.455783 | 0.0655095 | 0.0940681 | 0.768166 | |
MSALDE | SRS | 15.4683 | 0.783456 | 0.123611 | 0.107303 | 0.612458 |
RSS | 14.3959 | 0.762225 | 0.120147 | 0.106991 | 0.616163 |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.5128 ^{\{5\}} | 0.5108 ^{\{4\}} | 0.5268 ^{\{8\}} | 0.4521 ^{\{1\}} | 0.5305 ^{\{9\}} | 0.4879 ^{\{3\}} | 0.4799 ^{\{2\}} | 0.5257 ^{\{7\}} | 0.5755 ^{\{11\}} | 0.5345 ^{\{10\}} | 0.5223 ^{\{6\}} |
MSE | {\ddddot \delta} | 0.5886 ^{\{4\}} | 0.5957 ^{\{5\}} | 0.6356 ^{\{9\}} | 0.4704 ^{\{1\}} | 0.6343 ^{\{8\}} | 0.5022 ^{\{2\}} | 0.5088 ^{\{3\}} | 0.6309 ^{\{7\}} | 0.806 ^{\{11\}} | 0.7126 ^{\{10\}} | 0.6245 ^{\{6\}} | |
MRE | {\ddddot \delta} | 3.4184 ^{\{5\}} | 3.405 ^{\{4\}} | 3.5117 ^{\{8\}} | 3.0141 ^{\{1\}} | 3.5368 ^{\{9\}} | 3.2523 ^{\{3\}} | 3.1997 ^{\{2\}} | 3.5049 ^{\{7\}} | 3.8366 ^{\{11\}} | 3.563 ^{\{10\}} | 3.4823 ^{\{6\}} | |
\sum Ranks | 14 ^{\{5\}} | 13 ^{\{4\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 26 ^{\{9\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 21 ^{\{7\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | ||
50 | bias | {\ddddot \delta} | 0.3349 ^{\{4\}} | 0.3408 ^{\{6\}} | 0.3462 ^{\{8\}} | 0.3171 ^{\{1\}} | 0.337 ^{\{5\}} | 0.329 ^{\{3\}} | 0.327 ^{\{2\}} | 0.3414 ^{\{7\}} | 0.3703 ^{\{11\}} | 0.361 ^{\{10\}} | 0.3535 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.1991 ^{\{4\}} | 0.2068 ^{\{6\}} | 0.2138 ^{\{8\}} | 0.1837 ^{\{1\}} | 0.205 ^{\{5\}} | 0.1905 ^{\{2\}} | 0.1917 ^{\{3\}} | 0.2082 ^{\{7\}} | 0.2532 ^{\{10\}} | 0.2582 ^{\{11\}} | 0.2295 ^{\{9\}} | |
MRE | {\ddddot \delta} | 2.2326 ^{\{4\}} | 2.2718 ^{\{6\}} | 2.3083 ^{\{8\}} | 2.1143 ^{\{1\}} | 2.2469 ^{\{5\}} | 2.1934 ^{\{3\}} | 2.18 ^{\{2\}} | 2.2762 ^{\{7\}} | 2.4686 ^{\{11\}} | 2.4064 ^{\{10\}} | 2.357 ^{\{9\}} | |
\sum Ranks | 12 ^{\{4\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 21 ^{\{7\}} | 32 ^{\{11\}} | 31 ^{\{10\}} | 27 ^{\{9\}} | ||
120 | bias | {\ddddot \delta} | 0.2637 ^{\{7\}} | 0.2659 ^{\{8\}} | 0.2568 ^{\{2\}} | 0.2537 ^{\{1\}} | 0.2628 ^{\{5\}} | 0.2617 ^{\{4\}} | 0.2591 ^{\{3\}} | 0.2635 ^{\{6\}} | 0.2767 ^{\{9\}} | 0.2825 ^{\{11\}} | 0.279 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.1088 ^{\{5\}} | 0.1116 ^{\{8\}} | 0.1055 ^{\{2\}} | 0.1044 ^{\{1\}} | 0.1099 ^{\{7\}} | 0.1089 ^{\{6\}} | 0.1061 ^{\{3\}} | 0.1073 ^{\{4\}} | 0.1246 ^{\{9\}} | 0.1374 ^{\{11\}} | 0.1272 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.7582 ^{\{7\}} | 1.7728 ^{\{8\}} | 1.7119 ^{\{2\}} | 1.6911 ^{\{1\}} | 1.7523 ^{\{5\}} | 1.7446 ^{\{4\}} | 1.7271 ^{\{3\}} | 1.7564 ^{\{6\}} | 1.8445 ^{\{9\}} | 1.8832 ^{\{11\}} | 1.86 ^{\{10\}} | |
\sum Ranks | 19 ^{\{7\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 17 ^{\{6\}} | 14 ^{\{4\}} | 9 ^{\{3\}} | 16 ^{\{5\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
200 | bias | {\ddddot \delta} | 0.2313 ^{\{8\}} | 0.2301 ^{\{6\}} | 0.2294 ^{\{4\}} | 0.2173 ^{\{1\}} | 0.2272 ^{\{2\}} | 0.2307 ^{\{7\}} | 0.2277 ^{\{3\}} | 0.2297 ^{\{5\}} | 0.2403 ^{\{9\}} | 0.2447 ^{\{11\}} | 0.2438 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.0796 ^{\{8\}} | 0.0781 ^{\{5\}} | 0.0788 ^{\{6\}} | 0.0722 ^{\{1\}} | 0.0761 ^{\{2\}} | 0.0791 ^{\{7\}} | 0.0764 ^{\{3\}} | 0.0769 ^{\{4\}} | 0.0874 ^{\{9\}} | 0.0958 ^{\{11\}} | 0.0907 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.5418 ^{\{8\}} | 1.534 ^{\{6\}} | 1.5293 ^{\{4\}} | 1.4486 ^{\{1\}} | 1.5149 ^{\{2\}} | 1.5379 ^{\{7\}} | 1.5181 ^{\{3\}} | 1.5314 ^{\{5\}} | 1.6019 ^{\{9\}} | 1.6315 ^{\{11\}} | 1.6256 ^{\{10\}} | |
\sum Ranks | 24 ^{\{8\}} | 17 ^{\{6\}} | 14 ^{\{4.5\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 9 ^{\{3\}} | 14 ^{\{4.5\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
300 | bias | {\ddddot \delta} | 0.2075 ^{\{4\}} | 0.2098 ^{\{6\}} | 0.2108 ^{\{8\}} | 0.1925 ^{\{1\}} | 0.2059 ^{\{3\}} | 0.2084 ^{\{5\}} | 0.205 ^{\{2\}} | 0.2106 ^{\{7\}} | 0.2183 ^{\{9\}} | 0.223 ^{\{11\}} | 0.2207 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.0603 ^{\{4\}} | 0.062 ^{\{7\}} | 0.0629 ^{\{8\}} | 0.0549 ^{\{1\}} | 0.0602 ^{\{3\}} | 0.0614 ^{\{5\}} | 0.0593 ^{\{2\}} | 0.0619 ^{\{6\}} | 0.0686 ^{\{9\}} | 0.0763 ^{\{11\}} | 0.0701 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.3836 ^{\{4\}} | 1.3986 ^{\{6\}} | 1.4053 ^{\{8\}} | 1.283 ^{\{1\}} | 1.3724 ^{\{3\}} | 1.3896 ^{\{5\}} | 1.3666 ^{\{2\}} | 1.4037 ^{\{7\}} | 1.4553 ^{\{9\}} | 1.4864 ^{\{11\}} | 1.4712 ^{\{10\}} | |
\sum Ranks | 12 ^{\{4\}} | 19 ^{\{6\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 15 ^{\{5\}} | 6 ^{\{2\}} | 20 ^{\{7\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | {\ddddot \delta} | 0.191 ^{\{8\}} | 0.1908 ^{\{7\}} | 0.1869 ^{\{3.5\}} | 0.1744 ^{\{1\}} | 0.1891 ^{\{5\}} | 0.1853 ^{\{2\}} | 0.1869 ^{\{3.5\}} | 0.1905 ^{\{6\}} | 0.1957 ^{\{9\}} | 0.2039 ^{\{11\}} | 0.1996 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.0488 ^{\{6\}} | 0.0492 ^{\{8\}} | 0.047 ^{\{3.5\}} | 0.0436 ^{\{1\}} | 0.0487 ^{\{5\}} | 0.0463 ^{\{2\}} | 0.047 ^{\{3.5\}} | 0.0489 ^{\{7\}} | 0.0524 ^{\{9\}} | 0.0611 ^{\{11\}} | 0.0548 ^{\{10\}} | |
MRE | {\ddddot \delta} | 1.2732 ^{\{8\}} | 1.2723 ^{\{7\}} | 1.2459 ^{\{3\}} | 1.1625 ^{\{1\}} | 1.261 ^{\{5\}} | 1.2351 ^{\{2\}} | 1.2463 ^{\{4\}} | 1.2698 ^{\{6\}} | 1.3047 ^{\{9\}} | 1.3591 ^{\{11\}} | 1.3308 ^{\{10\}} | |
\sum Ranks | 22 ^{\{7.5\}} | 22 ^{\{7.5\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 6 ^{\{2\}} | 11 ^{\{4\}} | 19 ^{\{6\}} | 27 ^{\{9\}} | 33 ^{\{11\}} | 30 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.3505 ^{\{1\}} | 0.395 ^{\{5\}} | 0.4091 ^{\{7\}} | 0.3525 ^{\{2\}} | 0.4098 ^{\{8\}} | 0.3829 ^{\{4\}} | 0.37 ^{\{3\}} | 0.3965 ^{\{6\}} | 0.4737 ^{\{11\}} | 0.4317 ^{\{10\}} | 0.4258 ^{\{9\}} |
MSE | \hat{\delta} | 0.2218 ^{\{1\}} | 0.3044 ^{\{5\}} | 0.3299 ^{\{7\}} | 0.2503 ^{\{2\}} | 0.3354 ^{\{8\}} | 0.2813 ^{\{4\}} | 0.2668 ^{\{3\}} | 0.3068 ^{\{6\}} | 0.4836 ^{\{11\}} | 0.4161 ^{\{10\}} | 0.383 ^{\{9\}} | |
MRE | \hat{\delta} | 2.3369 ^{\{1\}} | 2.6331 ^{\{5\}} | 2.7272 ^{\{7\}} | 2.3501 ^{\{2\}} | 2.7317 ^{\{8\}} | 2.5528 ^{\{4\}} | 2.4666 ^{\{3\}} | 2.6436 ^{\{6\}} | 3.1579 ^{\{11\}} | 2.8777 ^{\{10\}} | 2.8388 ^{\{9\}} | |
\sum Ranks | 3 ^{\{1\}} | 15 ^{\{5\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 24 ^{\{8\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.2485 ^{\{9\}} | 0.2123 ^{\{5\}} | 0.2129 ^{\{6\}} | 0.1925 ^{\{1\}} | 0.213 ^{\{7\}} | 0.2075 ^{\{2\}} | 0.2086 ^{\{3\}} | 0.212 ^{\{4\}} | 0.2296 ^{\{8\}} | 0.2735 ^{\{11\}} | 0.2679 ^{\{10\}} |
MSE | \hat{\delta} | 0.094 ^{\{9\}} | 0.0642 ^{\{5\}} | 0.0652 ^{\{7\}} | 0.0544 ^{\{1\}} | 0.0648 ^{\{6\}} | 0.0606 ^{\{2\}} | 0.0624 ^{\{3\}} | 0.0636 ^{\{4\}} | 0.0773 ^{\{8\}} | 0.1338 ^{\{11\}} | 0.1145 ^{\{10\}} | |
MRE | \hat{\delta} | 1.6565 ^{\{9\}} | 1.4152 ^{\{5\}} | 1.4193 ^{\{6\}} | 1.2837 ^{\{1\}} | 1.4197 ^{\{7\}} | 1.383 ^{\{2\}} | 1.3908 ^{\{3\}} | 1.4134 ^{\{4\}} | 1.5306 ^{\{8\}} | 1.823 ^{\{11\}} | 1.7858 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 15 ^{\{5\}} | 19 ^{\{6\}} | 3 ^{\{1\}} | 20 ^{\{7\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
120 | bias | \hat{\delta} | 0.1991 ^{\{9\}} | 0.1406 ^{\{2\}} | 0.1423 ^{\{4\}} | 0.1232 ^{\{1\}} | 0.1427 ^{\{5\}} | 0.1412 ^{\{3\}} | 0.143 ^{\{6\}} | 0.1462 ^{\{7\}} | 0.1486 ^{\{8\}} | 0.2087 ^{\{11\}} | 0.2026 ^{\{10\}} |
MSE | \hat{\delta} | 0.0542 ^{\{9\}} | 0.025 ^{\{2\}} | 0.0258 ^{\{6\}} | 0.0201 ^{\{1\}} | 0.0257 ^{\{5\}} | 0.0253 ^{\{3\}} | 0.0256 ^{\{4\}} | 0.0266 ^{\{7\}} | 0.0283 ^{\{8\}} | 0.0667 ^{\{11\}} | 0.057 ^{\{10\}} | |
MRE | \hat{\delta} | 1.3271 ^{\{9\}} | 0.9374 ^{\{2\}} | 0.9488 ^{\{4\}} | 0.8213 ^{\{1\}} | 0.9511 ^{\{5\}} | 0.9411 ^{\{3\}} | 0.9531 ^{\{6\}} | 0.9747 ^{\{7\}} | 0.9906 ^{\{8\}} | 1.3916 ^{\{11\}} | 1.3509 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 6 ^{\{2\}} | 14 ^{\{4\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 9 ^{\{3\}} | 16 ^{\{6\}} | 21 ^{\{7\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
200 | bias | \hat{\delta} | 0.1806 ^{\{10\}} | 0.1085 ^{\{2\}} | 0.1113 ^{\{5\}} | 0.0928 ^{\{1\}} | 0.1112 ^{\{4\}} | 0.1106 ^{\{3\}} | 0.1139 ^{\{6\}} | 0.1148 ^{\{7\}} | 0.1173 ^{\{8\}} | 0.1853 ^{\{11\}} | 0.1793 ^{\{9\}} |
MSE | \hat{\delta} | 0.0422 ^{\{9\}} | 0.0152 ^{\{2\}} | 0.0157 ^{\{3.5\}} | 0.0117 ^{\{1\}} | 0.0158 ^{\{5\}} | 0.0157 ^{\{3.5\}} | 0.0165 ^{\{6\}} | 0.0169 ^{\{7\}} | 0.0174 ^{\{8\}} | 0.05 ^{\{11\}} | 0.0429 ^{\{10\}} | |
MRE | \hat{\delta} | 1.204 ^{\{10\}} | 0.7233 ^{\{2\}} | 0.7423 ^{\{5\}} | 0.6186 ^{\{1\}} | 0.7416 ^{\{4\}} | 0.7376 ^{\{3\}} | 0.7596 ^{\{6\}} | 0.7652 ^{\{7\}} | 0.7821 ^{\{8\}} | 1.2355 ^{\{11\}} | 1.1956 ^{\{9\}} | |
\sum Ranks | 29 ^{\{10\}} | 6 ^{\{2\}} | 13.5 ^{\{5\}} | 3 ^{\{1\}} | 13 ^{\{4\}} | 9.5 ^{\{3\}} | 18 ^{\{6\}} | 21 ^{\{7\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 28 ^{\{9\}} | ||
300 | bias | \hat{\delta} | 0.1596 ^{\{9\}} | 0.0902 ^{\{4\}} | 0.09 ^{\{3\}} | 0.0691 ^{\{1\}} | 0.0905 ^{\{5\}} | 0.0891 ^{\{2\}} | 0.0912 ^{\{6\}} | 0.0994 ^{\{8\}} | 0.0934 ^{\{7\}} | 0.1697 ^{\{11\}} | 0.1663 ^{\{10\}} |
MSE | \hat{\delta} | 0.0325 ^{\{9\}} | 0.0112 ^{\{5\}} | 0.011 ^{\{3\}} | 0.0073 ^{\{1\}} | 0.0111 ^{\{4\}} | 0.0109 ^{\{2\}} | 0.0114 ^{\{6\}} | 0.0142 ^{\{8\}} | 0.0118 ^{\{7\}} | 0.0405 ^{\{11\}} | 0.0354 ^{\{10\}} | |
MRE | \hat{\delta} | 1.0638 ^{\{9\}} | 0.6017 ^{\{4\}} | 0.6001 ^{\{3\}} | 0.4603 ^{\{1\}} | 0.6035 ^{\{5\}} | 0.5937 ^{\{2\}} | 0.6078 ^{\{6\}} | 0.6626 ^{\{8\}} | 0.6227 ^{\{7\}} | 1.1314 ^{\{11\}} | 1.1087 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 13 ^{\{4\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 14 ^{\{5\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 21 ^{\{7\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1462 ^{\{9\}} | 0.0824 ^{\{8\}} | 0.0689 ^{\{2\}} | 0.0478 ^{\{1\}} | 0.0694 ^{\{3\}} | 0.0698 ^{\{4\}} | 0.0729 ^{\{6\}} | 0.0761 ^{\{7\}} | 0.0728 ^{\{5\}} | 0.1577 ^{\{11\}} | 0.1518 ^{\{10\}} |
MSE | \hat{\delta} | 0.0273 ^{\{9\}} | 0.0114 ^{\{8\}} | 0.0073 ^{\{2\}} | 0.0041 ^{\{1\}} | 0.0074 ^{\{3.5\}} | 0.0074 ^{\{3.5\}} | 0.0079 ^{\{5.5\}} | 0.0097 ^{\{7\}} | 0.0079 ^{\{5.5\}} | 0.0337 ^{\{11\}} | 0.0293 ^{\{10\}} | |
MRE | \hat{\delta} | 0.9747 ^{\{9\}} | 0.5493 ^{\{8\}} | 0.4592 ^{\{2\}} | 0.3183 ^{\{1\}} | 0.4629 ^{\{3\}} | 0.4656 ^{\{4\}} | 0.486 ^{\{6\}} | 0.507 ^{\{7\}} | 0.4853 ^{\{5\}} | 1.0514 ^{\{11\}} | 1.0123 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9.5 ^{\{3\}} | 11.5 ^{\{4\}} | 17.5 ^{\{6\}} | 21 ^{\{7\}} | 15.5 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.6207 ^{\{5\}} | 0.6075 ^{\{4\}} | 0.6427 ^{\{8\}} | 0.5986 ^{\{2\}} | 0.6209 ^{\{6\}} | 0.5592 ^{\{1\}} | 0.6055 ^{\{3\}} | 0.6366 ^{\{7\}} | 0.7045 ^{\{10\}} | 0.7067 ^{\{11\}} | 0.6969 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.6293 ^{\{5\}} | 0.5692 ^{\{3\}} | 0.6515 ^{\{7\}} | 0.5246 ^{\{2\}} | 0.6296 ^{\{6\}} | 0.4705 ^{\{1\}} | 0.6066 ^{\{4\}} | 0.6556 ^{\{8\}} | 0.8866 ^{\{10\}} | 0.9346 ^{\{11\}} | 0.7847 ^{\{9\}} | |
MRE | {\ddddot \delta} | 1.0346 ^{\{5\}} | 1.0126 ^{\{4\}} | 1.0711 ^{\{8\}} | 0.9977 ^{\{2\}} | 1.0349 ^{\{6\}} | 0.932 ^{\{1\}} | 1.0091 ^{\{3\}} | 1.061 ^{\{7\}} | 1.1742 ^{\{10\}} | 1.1778 ^{\{11\}} | 1.1615 ^{\{9\}} | |
\sum Ranks | 15 ^{\{5\}} | 11 ^{\{4\}} | 23 ^{\{8\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 22 ^{\{7\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.4557 ^{\{8\}} | 0.4571 ^{\{9\}} | 0.4129 ^{\{4\}} | 0.4021 ^{\{2\}} | 0.4086 ^{\{3\}} | 0.3988 ^{\{1\}} | 0.4154 ^{\{5\}} | 0.4482 ^{\{7\}} | 0.4369 ^{\{6\}} | 0.4633 ^{\{10\}} | 0.4807 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.297 ^{\{9\}} | 0.2957 ^{\{8\}} | 0.246 ^{\{5\}} | 0.226 ^{\{2\}} | 0.2334 ^{\{3\}} | 0.2179 ^{\{1\}} | 0.241 ^{\{4\}} | 0.2817 ^{\{7\}} | 0.2767 ^{\{6\}} | 0.3094 ^{\{10\}} | 0.3237 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.7596 ^{\{8\}} | 0.7618 ^{\{9\}} | 0.6882 ^{\{4\}} | 0.6701 ^{\{2\}} | 0.6809 ^{\{3\}} | 0.6647 ^{\{1\}} | 0.6924 ^{\{5\}} | 0.7471 ^{\{7\}} | 0.7282 ^{\{6\}} | 0.7722 ^{\{10\}} | 0.8012 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 26 ^{\{9\}} | 13 ^{\{4\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 14 ^{\{5\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3261 ^{\{7\}} | 0.3161 ^{\{5\}} | 0.2963 ^{\{3\}} | 0.2886 ^{\{2\}} | 0.3027 ^{\{4\}} | 0.2852 ^{\{1\}} | 0.3573 ^{\{8\}} | 0.3194 ^{\{6\}} | 0.3818 ^{\{11\}} | 0.3685 ^{\{10\}} | 0.3595 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.1668 ^{\{7\}} | 0.1613 ^{\{5\}} | 0.135 ^{\{3\}} | 0.1274 ^{\{2\}} | 0.138 ^{\{4\}} | 0.1264 ^{\{1\}} | 0.2051 ^{\{9\}} | 0.1637 ^{\{6\}} | 0.2333 ^{\{11\}} | 0.2082 ^{\{10\}} | 0.1993 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.5435 ^{\{7\}} | 0.5268 ^{\{5\}} | 0.4939 ^{\{3\}} | 0.4811 ^{\{2\}} | 0.5044 ^{\{4\}} | 0.4754 ^{\{1\}} | 0.5955 ^{\{8\}} | 0.5324 ^{\{6\}} | 0.6364 ^{\{11\}} | 0.6142 ^{\{10\}} | 0.5991 ^{\{9\}} | |
\sum Ranks | 21 ^{\{7\}} | 15 ^{\{5\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | 26 ^{\{9\}} | ||
200 | bias | {\ddddot \delta} | 0.3121 ^{\{8\}} | 0.2876 ^{\{6\}} | 0.2792 ^{\{4\}} | 0.2252 ^{\{1\}} | 0.2871 ^{\{5\}} | 0.2263 ^{\{2\}} | 0.264 ^{\{3\}} | 0.3165 ^{\{9\}} | 0.291 ^{\{7\}} | 0.3194 ^{\{10\}} | 0.3455 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1814 ^{\{9\}} | 0.1597 ^{\{7\}} | 0.144 ^{\{4\}} | 0.0808 ^{\{1\}} | 0.1537 ^{\{5\}} | 0.0831 ^{\{2\}} | 0.1324 ^{\{3\}} | 0.1883 ^{\{10\}} | 0.1551 ^{\{6\}} | 0.1698 ^{\{8\}} | 0.2015 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.5202 ^{\{8\}} | 0.4793 ^{\{6\}} | 0.4653 ^{\{4\}} | 0.3753 ^{\{1\}} | 0.4785 ^{\{5\}} | 0.3771 ^{\{2\}} | 0.44 ^{\{3\}} | 0.5275 ^{\{9\}} | 0.485 ^{\{7\}} | 0.5324 ^{\{10\}} | 0.5758 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 19 ^{\{6\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 28 ^{\{9.5\}} | 20 ^{\{7\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2609 ^{\{6\}} | 0.2871 ^{\{10\}} | 0.2688 ^{\{8\}} | 0.1889 ^{\{1\}} | 0.2707 ^{\{9\}} | 0.1897 ^{\{2\}} | 0.2442 ^{\{5\}} | 0.2357 ^{\{3\}} | 0.244 ^{\{4\}} | 0.2623 ^{\{7\}} | 0.2952 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1497 ^{\{7\}} | 0.182 ^{\{11\}} | 0.1598 ^{\{8\}} | 0.059 ^{\{1\}} | 0.1632 ^{\{9\}} | 0.062 ^{\{2\}} | 0.1263 ^{\{5\}} | 0.1124 ^{\{3.5\}} | 0.1124 ^{\{3.5\}} | 0.1267 ^{\{6\}} | 0.1724 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.4348 ^{\{6\}} | 0.4786 ^{\{10\}} | 0.448 ^{\{8\}} | 0.3148 ^{\{1\}} | 0.4511 ^{\{9\}} | 0.3162 ^{\{2\}} | 0.4071 ^{\{5\}} | 0.3928 ^{\{3\}} | 0.4067 ^{\{4\}} | 0.4372 ^{\{7\}} | 0.492 ^{\{11\}} | |
\sum Ranks | 19 ^{\{6\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 6 ^{\{2\}} | 15 ^{\{5\}} | 9.5 ^{\{3\}} | 11.5 ^{\{4\}} | 20 ^{\{7\}} | 32 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.2359 ^{\{8.5\}} | 0.2146 ^{\{3\}} | 0.2196 ^{\{4\}} | 0.1484 ^{\{1\}} | 0.2215 ^{\{5\}} | 0.1498 ^{\{2\}} | 0.239 ^{\{10\}} | 0.2304 ^{\{6\}} | 0.2359 ^{\{8.5\}} | 0.2309 ^{\{7\}} | 0.2523 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1406 ^{\{9\}} | 0.1139 ^{\{4\}} | 0.1222 ^{\{5\}} | 0.0368 ^{\{1\}} | 0.1232 ^{\{6\}} | 0.0375 ^{\{2\}} | 0.1471 ^{\{11\}} | 0.1298 ^{\{8\}} | 0.1262 ^{\{7\}} | 0.1117 ^{\{3\}} | 0.1454 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.3932 ^{\{9\}} | 0.3576 ^{\{3\}} | 0.3661 ^{\{4\}} | 0.2474 ^{\{1\}} | 0.3692 ^{\{5\}} | 0.2497 ^{\{2\}} | 0.3983 ^{\{10\}} | 0.384 ^{\{6\}} | 0.3931 ^{\{8\}} | 0.3848 ^{\{7\}} | 0.4205 ^{\{11\}} | |
\sum Ranks | 26.5 ^{\{9\}} | 10 ^{\{3\}} | 13 ^{\{4\}} | 3 ^{\{1\}} | 16 ^{\{5\}} | 6 ^{\{2\}} | 31 ^{\{10\}} | 20 ^{\{7\}} | 23.5 ^{\{8\}} | 17 ^{\{6\}} | 32 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.4538 ^{\{1\}} | 0.472 ^{\{3\}} | 0.5065 ^{\{7\}} | 0.4879 ^{\{5\}} | 0.4887 ^{\{6\}} | 0.4678 ^{\{2\}} | 0.4746 ^{\{4\}} | 0.5331 ^{\{8\}} | 0.543 ^{\{9\}} | 0.5913 ^{\{11\}} | 0.5554 ^{\{10\}} |
MSE | \hat{\delta} | 0.2993 ^{\{1\}} | 0.316 ^{\{3\}} | 0.3685 ^{\{7\}} | 0.3255 ^{\{5\}} | 0.3619 ^{\{6\}} | 0.3087 ^{\{2\}} | 0.3177 ^{\{4\}} | 0.4032 ^{\{8\}} | 0.4637 ^{\{10\}} | 0.5488 ^{\{11\}} | 0.4368 ^{\{9\}} | |
MRE | \hat{\delta} | 0.7563 ^{\{1\}} | 0.7867 ^{\{3\}} | 0.8442 ^{\{7\}} | 0.8132 ^{\{5\}} | 0.8145 ^{\{6\}} | 0.7797 ^{\{2\}} | 0.7909 ^{\{4\}} | 0.8885 ^{\{8\}} | 0.9049 ^{\{9\}} | 0.9854 ^{\{11\}} | 0.9257 ^{\{10\}} | |
\sum Ranks | 3 ^{\{1\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 24 ^{\{8\}} | 28 ^{\{9\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | ||
50 | bias | \hat{\delta} | 0.3076 ^{\{9\}} | 0.2821 ^{\{8\}} | 0.201 ^{\{1\}} | 0.2118 ^{\{4\}} | 0.2073 ^{\{3\}} | 0.2034 ^{\{2\}} | 0.2238 ^{\{6\}} | 0.2503 ^{\{7\}} | 0.2234 ^{\{5\}} | 0.3601 ^{\{10\}} | 0.365 ^{\{11\}} |
MSE | \hat{\delta} | 0.1571 ^{\{8\}} | 0.1676 ^{\{9\}} | 0.0668 ^{\{1\}} | 0.0736 ^{\{4\}} | 0.072 ^{\{3\}} | 0.0685 ^{\{2\}} | 0.085 ^{\{6\}} | 0.128 ^{\{7\}} | 0.0804 ^{\{5\}} | 0.1958 ^{\{10\}} | 0.2026 ^{\{11\}} | |
MRE | \hat{\delta} | 0.5127 ^{\{9\}} | 0.4701 ^{\{8\}} | 0.3351 ^{\{1\}} | 0.353 ^{\{4\}} | 0.3455 ^{\{3\}} | 0.3389 ^{\{2\}} | 0.373 ^{\{6\}} | 0.4171 ^{\{7\}} | 0.3723 ^{\{5\}} | 0.6002 ^{\{10\}} | 0.6083 ^{\{11\}} | |
\sum Ranks | 26 ^{\{9\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 30 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.2623 ^{\{10\}} | 0.146 ^{\{8\}} | 0.083 ^{\{2\}} | 0.0856 ^{\{4\}} | 0.0844 ^{\{3\}} | 0.0799 ^{\{1\}} | 0.1431 ^{\{7\}} | 0.1349 ^{\{6\}} | 0.1195 ^{\{5\}} | 0.2844 ^{\{11\}} | 0.2593 ^{\{9\}} |
MSE | \hat{\delta} | 0.1549 ^{\{11\}} | 0.0865 ^{\{8\}} | 0.0114 ^{\{2.5\}} | 0.0125 ^{\{4\}} | 0.0114 ^{\{2.5\}} | 0.0103 ^{\{1\}} | 0.0809 ^{\{7\}} | 0.0747 ^{\{6\}} | 0.0508 ^{\{5\}} | 0.1489 ^{\{10\}} | 0.1346 ^{\{9\}} | |
MRE | \hat{\delta} | 0.4372 ^{\{10\}} | 0.2433 ^{\{8\}} | 0.1383 ^{\{2\}} | 0.1426 ^{\{4\}} | 0.1406 ^{\{3\}} | 0.1332 ^{\{1\}} | 0.2385 ^{\{7\}} | 0.2248 ^{\{6\}} | 0.1992 ^{\{5\}} | 0.4739 ^{\{11\}} | 0.4322 ^{\{9\}} | |
\sum Ranks | 31 ^{\{10\}} | 24 ^{\{8\}} | 6.5 ^{\{2\}} | 12 ^{\{4\}} | 8.5 ^{\{3\}} | 3 ^{\{1\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
200 | bias | \hat{\delta} | 0.192 ^{\{9\}} | 0.0877 ^{\{8\}} | 0.0497 ^{\{1\}} | 0.0499 ^{\{2\}} | 0.051 ^{\{4\}} | 0.0502 ^{\{3\}} | 0.0738 ^{\{7\}} | 0.0695 ^{\{6\}} | 0.0688 ^{\{5\}} | 0.2446 ^{\{11\}} | 0.2316 ^{\{10\}} |
MSE | \hat{\delta} | 0.0998 ^{\{9\}} | 0.0529 ^{\{8\}} | 0.0039 ^{\{1\}} | 0.0041 ^{\{3\}} | 0.0049 ^{\{4\}} | 0.004 ^{\{2\}} | 0.0325 ^{\{7\}} | 0.0291 ^{\{6\}} | 0.0222 ^{\{5\}} | 0.1347 ^{\{11\}} | 0.1316 ^{\{10\}} | |
MRE | \hat{\delta} | 0.3201 ^{\{9\}} | 0.1461 ^{\{8\}} | 0.0829 ^{\{1\}} | 0.0832 ^{\{2\}} | 0.0851 ^{\{4\}} | 0.0836 ^{\{3\}} | 0.123 ^{\{7\}} | 0.1159 ^{\{6\}} | 0.1146 ^{\{5\}} | 0.4077 ^{\{11\}} | 0.386 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 7 ^{\{2\}} | 12 ^{\{4\}} | 8 ^{\{3\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
300 | bias | \hat{\delta} | 0.1497 ^{\{9\}} | 0.0474 ^{\{7\}} | 0.0327 ^{\{3.5\}} | 0.0323 ^{\{1.5\}} | 0.0323 ^{\{1.5\}} | 0.0327 ^{\{3.5\}} | 0.0511 ^{\{8\}} | 0.0426 ^{\{5.5\}} | 0.0426 ^{\{5.5\}} | 0.214 ^{\{11\}} | 0.1883 ^{\{10\}} |
MSE | \hat{\delta} | 0.0736 ^{\{9\}} | 0.0199 ^{\{7\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0017 ^{\{2.5\}} | 0.0223 ^{\{8\}} | 0.0133 ^{\{6\}} | 0.0112 ^{\{5\}} | 0.1135 ^{\{11\}} | 0.108 ^{\{10\}} | |
MRE | \hat{\delta} | 0.2496 ^{\{9\}} | 0.0791 ^{\{7\}} | 0.0545 ^{\{3.5\}} | 0.0539 ^{\{1.5\}} | 0.0539 ^{\{1.5\}} | 0.0545 ^{\{3.5\}} | 0.0852 ^{\{8\}} | 0.071 ^{\{5.5\}} | 0.071 ^{\{5.5\}} | 0.3567 ^{\{11\}} | 0.3139 ^{\{10\}} | |
\sum Ranks | 27 ^{\{9\}} | 21 ^{\{7\}} | 9.5 ^{\{3.5\}} | 5.5 ^{\{1.5\}} | 5.5 ^{\{1.5\}} | 9.5 ^{\{3.5\}} | 24 ^{\{8\}} | 17 ^{\{6\}} | 16 ^{\{5\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1307 ^{\{9\}} | 0.0459 ^{\{8\}} | 0.0214 ^{\{1\}} | 0.0223 ^{\{4\}} | 0.022 ^{\{3\}} | 0.0219 ^{\{2\}} | 0.0336 ^{\{6\}} | 0.0359 ^{\{7\}} | 0.0289 ^{\{5\}} | 0.1672 ^{\{11\}} | 0.1428 ^{\{10\}} |
MSE | \hat{\delta} | 0.0693 ^{\{9\}} | 0.0304 ^{\{8\}} | 7e-04 ^{\{1\}} | 8e-04 ^{\{3\}} | 8e-04 ^{\{3\}} | 8e-04 ^{\{3\}} | 0.0136 ^{\{6\}} | 0.0193 ^{\{7\}} | 0.0082 ^{\{5\}} | 0.0865 ^{\{11\}} | 0.0754 ^{\{10\}} | |
MRE | \hat{\delta} | 0.2179 ^{\{9\}} | 0.0765 ^{\{8\}} | 0.0356 ^{\{1\}} | 0.0371 ^{\{4\}} | 0.0367 ^{\{3\}} | 0.0365 ^{\{2\}} | 0.056 ^{\{6\}} | 0.0599 ^{\{7\}} | 0.0481 ^{\{5\}} | 0.2786 ^{\{11\}} | 0.238 ^{\{10\}} | |
\sum Ranks | 23 ^{\{9\}} | 20 ^{\{8\}} | 10 ^{\{1\}} | 18 ^{\{7\}} | 16 ^{\{5\}} | 14 ^{\{3.5\}} | 14 ^{\{3.5\}} | 17 ^{\{6\}} | 11 ^{\{2\}} | 29 ^{\{11\}} | 26 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.7122 ^{\{6\}} | 0.6873 ^{\{3\}} | 0.7245 ^{\{7\}} | 0.7082 ^{\{5\}} | 0.6979 ^{\{4\}} | 0.6344 ^{\{1\}} | 0.6844 ^{\{2\}} | 0.8253 ^{\{10\}} | 0.8014 ^{\{8\}} | 0.8066 ^{\{9\}} | 0.8412 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.8474 ^{\{6\}} | 0.7629 ^{\{3\}} | 0.8495 ^{\{7\}} | 0.7981 ^{\{4\}} | 0.8277 ^{\{5\}} | 0.6614 ^{\{1\}} | 0.7295 ^{\{2\}} | 1.1297 ^{\{9\}} | 1.1745 ^{\{10\}} | 1.3548 ^{\{11\}} | 1.1033 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.7122 ^{\{6\}} | 0.6873 ^{\{3\}} | 0.7245 ^{\{7\}} | 0.7082 ^{\{5\}} | 0.6979 ^{\{4\}} | 0.6344 ^{\{1\}} | 0.6844 ^{\{2\}} | 0.8253 ^{\{10\}} | 0.8014 ^{\{8\}} | 0.8066 ^{\{9\}} | 0.8412 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 14 ^{\{5\}} | 13 ^{\{4\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 29 ^{\{9.5\}} | 26 ^{\{8\}} | 29 ^{\{9.5\}} | 30 ^{\{11\}} | ||
50 | bias | {\ddddot \delta} | 0.4803 ^{\{6\}} | 0.506 ^{\{9\}} | 0.4083 ^{\{3\}} | 0.3938 ^{\{2\}} | 0.412 ^{\{4\}} | 0.3902 ^{\{1\}} | 0.5212 ^{\{10\}} | 0.484 ^{\{7\}} | 0.4515 ^{\{5\}} | 0.5029 ^{\{8\}} | 0.5381 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.4336 ^{\{7\}} | 0.4738 ^{\{9\}} | 0.2674 ^{\{3\}} | 0.2539 ^{\{2\}} | 0.2684 ^{\{4\}} | 0.2452 ^{\{1\}} | 0.5006 ^{\{10\}} | 0.4405 ^{\{8\}} | 0.3571 ^{\{5\}} | 0.4333 ^{\{6\}} | 0.5013 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.4803 ^{\{6\}} | 0.506 ^{\{9\}} | 0.4083 ^{\{3\}} | 0.3938 ^{\{2\}} | 0.412 ^{\{4\}} | 0.3902 ^{\{1\}} | 0.5212 ^{\{10\}} | 0.484 ^{\{7\}} | 0.4515 ^{\{5\}} | 0.5029 ^{\{8\}} | 0.5381 ^{\{11\}} | |
\sum Ranks | 19 ^{\{6\}} | 27 ^{\{9\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 30 ^{\{10\}} | 22 ^{\{7.5\}} | 15 ^{\{5\}} | 22 ^{\{7.5\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3303 ^{\{7\}} | 0.356 ^{\{8\}} | 0.3065 ^{\{4\}} | 0.2456 ^{\{1\}} | 0.2842 ^{\{3\}} | 0.2541 ^{\{2\}} | 0.3263 ^{\{6\}} | 0.3208 ^{\{5\}} | 0.3763 ^{\{10\}} | 0.3653 ^{\{9\}} | 0.394 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2801 ^{\{8\}} | 0.3012 ^{\{9\}} | 0.2087 ^{\{4\}} | 0.1004 ^{\{1\}} | 0.1845 ^{\{3\}} | 0.1067 ^{\{2\}} | 0.2702 ^{\{6\}} | 0.26 ^{\{5\}} | 0.3326 ^{\{10\}} | 0.2761 ^{\{7\}} | 0.3575 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.3303 ^{\{7\}} | 0.356 ^{\{8\}} | 0.3065 ^{\{4\}} | 0.2456 ^{\{1\}} | 0.2842 ^{\{3\}} | 0.2541 ^{\{2\}} | 0.3263 ^{\{6\}} | 0.3208 ^{\{5\}} | 0.3763 ^{\{10\}} | 0.3653 ^{\{9\}} | 0.394 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 25 ^{\{8.5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 30 ^{\{10\}} | 25 ^{\{8.5\}} | 33 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.2903 ^{\{8\}} | 0.319 ^{\{10\}} | 0.2642 ^{\{3\}} | 0.1795 ^{\{1\}} | 0.2686 ^{\{5\}} | 0.1896 ^{\{2\}} | 0.2804 ^{\{7\}} | 0.2646 ^{\{4\}} | 0.2985 ^{\{9\}} | 0.2799 ^{\{6\}} | 0.3676 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2652 ^{\{9\}} | 0.3161 ^{\{10\}} | 0.2133 ^{\{4\}} | 0.0533 ^{\{1\}} | 0.2146 ^{\{5\}} | 0.0587 ^{\{2\}} | 0.2464 ^{\{7\}} | 0.2208 ^{\{6\}} | 0.2651 ^{\{8\}} | 0.1644 ^{\{3\}} | 0.3641 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2903 ^{\{8\}} | 0.319 ^{\{10\}} | 0.2642 ^{\{3\}} | 0.1795 ^{\{1\}} | 0.2686 ^{\{5\}} | 0.1896 ^{\{2\}} | 0.2804 ^{\{7\}} | 0.2646 ^{\{4\}} | 0.2985 ^{\{9\}} | 0.2799 ^{\{6\}} | 0.3676 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 30 ^{\{10\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5.5\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 14 ^{\{4\}} | 26 ^{\{9\}} | 15 ^{\{5.5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2353 ^{\{6\}} | 0.2451 ^{\{9\}} | 0.2423 ^{\{8\}} | 0.1477 ^{\{1\}} | 0.2386 ^{\{7\}} | 0.1489 ^{\{2\}} | 0.2484 ^{\{10\}} | 0.2341 ^{\{5\}} | 0.2254 ^{\{3\}} | 0.2319 ^{\{4\}} | 0.2941 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2032 ^{\{6\}} | 0.2231 ^{\{9\}} | 0.2123 ^{\{8\}} | 0.0349 ^{\{1\}} | 0.2096 ^{\{7\}} | 0.0354 ^{\{2\}} | 0.2314 ^{\{10\}} | 0.1956 ^{\{5\}} | 0.175 ^{\{4\}} | 0.1323 ^{\{3\}} | 0.2854 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2353 ^{\{6\}} | 0.2451 ^{\{9\}} | 0.2423 ^{\{8\}} | 0.1477 ^{\{1\}} | 0.2386 ^{\{7\}} | 0.1489 ^{\{2\}} | 0.2484 ^{\{10\}} | 0.2341 ^{\{5\}} | 0.2254 ^{\{3\}} | 0.2319 ^{\{4\}} | 0.2941 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 33 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.2014 ^{\{7\}} | 0.2114 ^{\{10\}} | 0.1867 ^{\{6\}} | 0.1257 ^{\{2\}} | 0.1797 ^{\{3\}} | 0.1243 ^{\{1\}} | 0.211 ^{\{9\}} | 0.2015 ^{\{8\}} | 0.1802 ^{\{4\}} | 0.1845 ^{\{5\}} | 0.2343 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.1805 ^{\{8\}} | 0.2013 ^{\{10\}} | 0.1525 ^{\{6\}} | 0.0253 ^{\{2\}} | 0.1369 ^{\{5\}} | 0.0241 ^{\{1\}} | 0.1993 ^{\{9\}} | 0.176 ^{\{7\}} | 0.1145 ^{\{4\}} | 0.0973 ^{\{3\}} | 0.215 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2014 ^{\{7\}} | 0.2114 ^{\{10\}} | 0.1867 ^{\{6\}} | 0.1257 ^{\{2\}} | 0.1797 ^{\{3\}} | 0.1243 ^{\{1\}} | 0.211 ^{\{9\}} | 0.2015 ^{\{8\}} | 0.1802 ^{\{4\}} | 0.1845 ^{\{5\}} | 0.2343 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | 6 ^{\{2\}} | 11 ^{\{3\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 23 ^{\{8\}} | 12 ^{\{4\}} | 13 ^{\{5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.5275 ^{\{6\}} | 0.5141 ^{\{2\}} | 0.5221 ^{\{3\}} | 0.5273 ^{\{5\}} | 0.5268 ^{\{4\}} | 0.4992 ^{\{1\}} | 0.5335 ^{\{7\}} | 0.614 ^{\{9\}} | 0.5662 ^{\{8\}} | 0.6926 ^{\{11\}} | 0.6648 ^{\{10\}} |
MSE | \hat{\delta} | 0.5039 ^{\{7\}} | 0.4254 ^{\{2\}} | 0.4337 ^{\{5\}} | 0.4281 ^{\{3\}} | 0.4289 ^{\{4\}} | 0.3892 ^{\{1\}} | 0.4383 ^{\{6\}} | 0.6202 ^{\{9\}} | 0.5341 ^{\{8\}} | 1.147 ^{\{11\}} | 0.6721 ^{\{10\}} | |
MRE | \hat{\delta} | 0.5275 ^{\{6\}} | 0.5141 ^{\{2\}} | 0.5221 ^{\{3\}} | 0.5273 ^{\{5\}} | 0.5268 ^{\{4\}} | 0.4992 ^{\{1\}} | 0.5335 ^{\{7\}} | 0.614 ^{\{9\}} | 0.5662 ^{\{8\}} | 0.6926 ^{\{11\}} | 0.6648 ^{\{10\}} | |
\sum Ranks | 19 ^{\{6\}} | 6 ^{\{2\}} | 11 ^{\{3\}} | 13 ^{\{5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 20 ^{\{7\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 30 ^{\{10\}} | ||
50 | bias | \hat{\delta} | 0.3107 ^{\{9\}} | 0.235 ^{\{7\}} | 0.1668 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1729 ^{\{4\}} | 0.1579 ^{\{1\}} | 0.2146 ^{\{6\}} | 0.238 ^{\{8\}} | 0.1894 ^{\{5\}} | 0.3776 ^{\{10\}} | 0.416 ^{\{11\}} |
MSE | \hat{\delta} | 0.2806 ^{\{10\}} | 0.1836 ^{\{7\}} | 0.0433 ^{\{2\}} | 0.0468 ^{\{3\}} | 0.0486 ^{\{4\}} | 0.0388 ^{\{1\}} | 0.1309 ^{\{6\}} | 0.1993 ^{\{8\}} | 0.0699 ^{\{5\}} | 0.2681 ^{\{9\}} | 0.3842 ^{\{11\}} | |
MRE | \hat{\delta} | 0.3107 ^{\{9\}} | 0.235 ^{\{7\}} | 0.1668 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1729 ^{\{4\}} | 0.1579 ^{\{1\}} | 0.2146 ^{\{6\}} | 0.238 ^{\{8\}} | 0.1894 ^{\{5\}} | 0.3776 ^{\{10\}} | 0.416 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.2243 ^{\{9\}} | 0.0964 ^{\{7\}} | 0.0706 ^{\{3\}} | 0.0681 ^{\{1\}} | 0.0713 ^{\{4\}} | 0.0699 ^{\{2\}} | 0.0799 ^{\{6\}} | 0.114 ^{\{8\}} | 0.0776 ^{\{5\}} | 0.251 ^{\{11\}} | 0.2387 ^{\{10\}} |
MSE | \hat{\delta} | 0.2005 ^{\{10\}} | 0.061 ^{\{7\}} | 0.0077 ^{\{2\}} | 0.0074 ^{\{1\}} | 0.008 ^{\{4\}} | 0.0078 ^{\{3\}} | 0.0229 ^{\{6\}} | 0.098 ^{\{8\}} | 0.0142 ^{\{5\}} | 0.1692 ^{\{9\}} | 0.2032 ^{\{11\}} | |
MRE | \hat{\delta} | 0.2243 ^{\{9\}} | 0.0964 ^{\{7\}} | 0.0706 ^{\{3\}} | 0.0681 ^{\{1\}} | 0.0713 ^{\{4\}} | 0.0699 ^{\{2\}} | 0.0799 ^{\{6\}} | 0.114 ^{\{8\}} | 0.0776 ^{\{5\}} | 0.251 ^{\{11\}} | 0.2387 ^{\{10\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 8 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 7 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 31 ^{\{10.5\}} | 31 ^{\{10.5\}} | ||
200 | bias | \hat{\delta} | 0.1698 ^{\{11\}} | 0.0626 ^{\{7\}} | 0.0417 ^{\{1\}} | 0.0426 ^{\{4\}} | 0.0421 ^{\{3\}} | 0.0418 ^{\{2\}} | 0.0448 ^{\{6\}} | 0.0739 ^{\{8\}} | 0.0441 ^{\{5\}} | 0.1689 ^{\{9\}} | 0.1696 ^{\{10\}} |
MSE | \hat{\delta} | 0.1455 ^{\{11\}} | 0.0457 ^{\{7\}} | 0.0027 ^{\{1\}} | 0.0029 ^{\{3.5\}} | 0.0028 ^{\{2\}} | 0.0029 ^{\{3.5\}} | 0.0032 ^{\{6\}} | 0.0701 ^{\{8\}} | 0.003 ^{\{5\}} | 0.0785 ^{\{9\}} | 0.1166 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1698 ^{\{11\}} | 0.0626 ^{\{7\}} | 0.0417 ^{\{1\}} | 0.0426 ^{\{4\}} | 0.0421 ^{\{3\}} | 0.0418 ^{\{2\}} | 0.0448 ^{\{6\}} | 0.0739 ^{\{8\}} | 0.0441 ^{\{5\}} | 0.1689 ^{\{9\}} | 0.1696 ^{\{10\}} | |
\sum Ranks | 33 ^{\{11\}} | 21 ^{\{7\}} | 3 ^{\{1\}} | 11.5 ^{\{4\}} | 8 ^{\{3\}} | 7.5 ^{\{2\}} | 18 ^{\{6\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | ||
300 | bias | \hat{\delta} | 0.1399 ^{\{9\}} | 0.0433 ^{\{8\}} | 0.0279 ^{\{1\}} | 0.0289 ^{\{4\}} | 0.0284 ^{\{2\}} | 0.0287 ^{\{3\}} | 0.0293 ^{\{5\}} | 0.0406 ^{\{7\}} | 0.0294 ^{\{6\}} | 0.1418 ^{\{11\}} | 0.1411 ^{\{10\}} |
MSE | \hat{\delta} | 0.118 ^{\{11\}} | 0.031 ^{\{8\}} | 0.0012 ^{\{1\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0013 ^{\{4\}} | 0.0283 ^{\{7\}} | 0.0013 ^{\{4\}} | 0.0708 ^{\{9\}} | 0.1043 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1399 ^{\{9\}} | 0.0433 ^{\{8\}} | 0.0279 ^{\{1\}} | 0.0289 ^{\{4\}} | 0.0284 ^{\{2\}} | 0.0287 ^{\{3\}} | 0.0293 ^{\{5\}} | 0.0406 ^{\{7\}} | 0.0294 ^{\{6\}} | 0.1418 ^{\{11\}} | 0.1411 ^{\{10\}} | |
\sum Ranks | 29 ^{\{9\}} | 24 ^{\{8\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 8 ^{\{2\}} | 10 ^{\{3\}} | 14 ^{\{5\}} | 21 ^{\{7\}} | 16 ^{\{6\}} | 31 ^{\{11\}} | 30 ^{\{10\}} | ||
450 | bias | \hat{\delta} | 0.1036 ^{\{9\}} | 0.0221 ^{\{7\}} | 0.0192 ^{\{3\}} | 0.019 ^{\{2\}} | 0.0187 ^{\{1\}} | 0.0195 ^{\{4\}} | 0.0196 ^{\{5\}} | 0.0261 ^{\{8\}} | 0.0211 ^{\{6\}} | 0.113 ^{\{10\}} | 0.1484 ^{\{11\}} |
MSE | \hat{\delta} | 0.0744 ^{\{10\}} | 0.0081 ^{\{7\}} | 6e-04 ^{\{3.5\}} | 6e-04 ^{\{3.5\}} | 5e-04 ^{\{1\}} | 6e-04 ^{\{3.5\}} | 6e-04 ^{\{3.5\}} | 0.0159 ^{\{8\}} | 7e-04 ^{\{6\}} | 0.0457 ^{\{9\}} | 0.1471 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1036 ^{\{9\}} | 0.0221 ^{\{7\}} | 0.0192 ^{\{3\}} | 0.019 ^{\{2\}} | 0.0187 ^{\{1\}} | 0.0195 ^{\{4\}} | 0.0196 ^{\{5\}} | 0.0261 ^{\{8\}} | 0.0211 ^{\{6\}} | 0.113 ^{\{10\}} | 0.1484 ^{\{11\}} | |
\sum Ranks | 22 ^{\{8\}} | 15 ^{\{4\}} | 14.5 ^{\{3\}} | 12.5 ^{\{2\}} | 8 ^{\{1\}} | 16.5 ^{\{5\}} | 18.5 ^{\{7\}} | 18 ^{\{6\}} | 23 ^{\{9.5\}} | 23 ^{\{9.5\}} | 27 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RTADE | WLSE | LTADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.8259 ^{\{6\}} | 0.7838 ^{\{3\}} | 0.8036 ^{\{5\}} | 0.7894 ^{\{4\}} | 0.8341 ^{\{7\}} | 0.7285 ^{\{1\}} | 0.7378 ^{\{2\}} | 0.9492 ^{\{9\}} | 0.8732 ^{\{8\}} | 1.0216 ^{\{11\}} | 0.9697 ^{\{10\}} |
MSE | {\ddddot \delta} | 1.2727 ^{\{7\}} | 1.0399 ^{\{3\}} | 1.0808 ^{\{4\}} | 1.0933 ^{\{5\}} | 1.202 ^{\{6\}} | 0.8775 ^{\{1\}} | 0.9547 ^{\{2\}} | 1.6659 ^{\{10\}} | 1.4583 ^{\{8\}} | 2.1721 ^{\{11\}} | 1.6264 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.5506 ^{\{6\}} | 0.5225 ^{\{3\}} | 0.5358 ^{\{5\}} | 0.5263 ^{\{4\}} | 0.5561 ^{\{7\}} | 0.4857 ^{\{1\}} | 0.4919 ^{\{2\}} | 0.6328 ^{\{9\}} | 0.5821 ^{\{8\}} | 0.681 ^{\{11\}} | 0.6465 ^{\{10\}} | |
\sum Ranks | 19 ^{\{6\}} | 9 ^{\{3\}} | 14 ^{\{5\}} | 13 ^{\{4\}} | 20 ^{\{7\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 28 ^{\{9\}} | 24 ^{\{8\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | ||
50 | bias | {\ddddot \delta} | 0.5183 ^{\{7\}} | 0.586 ^{\{10\}} | 0.4 ^{\{2\}} | 0.4047 ^{\{3\}} | 0.4139 ^{\{4\}} | 0.3985 ^{\{1\}} | 0.5567 ^{\{9\}} | 0.5348 ^{\{8\}} | 0.489 ^{\{5\}} | 0.5173 ^{\{6\}} | 0.6337 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.6396 ^{\{7\}} | 0.8036 ^{\{10\}} | 0.2791 ^{\{2\}} | 0.2805 ^{\{3\}} | 0.288 ^{\{4\}} | 0.2613 ^{\{1\}} | 0.7203 ^{\{9\}} | 0.6572 ^{\{8\}} | 0.4544 ^{\{5\}} | 0.5237 ^{\{6\}} | 0.8491 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.3455 ^{\{7\}} | 0.3907 ^{\{10\}} | 0.2666 ^{\{2\}} | 0.2698 ^{\{3\}} | 0.276 ^{\{4\}} | 0.2656 ^{\{1\}} | 0.3711 ^{\{9\}} | 0.3565 ^{\{8\}} | 0.326 ^{\{5\}} | 0.3449 ^{\{6\}} | 0.4225 ^{\{11\}} | |
\sum Ranks | 21 ^{\{7\}} | 30 ^{\{10\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 27 ^{\{9\}} | 24 ^{\{8\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.3961 ^{\{10\}} | 0.355 ^{\{5\}} | 0.2711 ^{\{3\}} | 0.2496 ^{\{1\}} | 0.2806 ^{\{4\}} | 0.2575 ^{\{2\}} | 0.393 ^{\{9\}} | 0.3723 ^{\{7\}} | 0.3904 ^{\{8\}} | 0.3606 ^{\{6\}} | 0.4223 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.5109 ^{\{10\}} | 0.4097 ^{\{6\}} | 0.1418 ^{\{3\}} | 0.1005 ^{\{1\}} | 0.1596 ^{\{4\}} | 0.1041 ^{\{2\}} | 0.5078 ^{\{9\}} | 0.4587 ^{\{7\}} | 0.4643 ^{\{8\}} | 0.2852 ^{\{5\}} | 0.5133 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2641 ^{\{10\}} | 0.2367 ^{\{5\}} | 0.1807 ^{\{3\}} | 0.1664 ^{\{1\}} | 0.1871 ^{\{4\}} | 0.1717 ^{\{2\}} | 0.262 ^{\{9\}} | 0.2482 ^{\{7\}} | 0.2603 ^{\{8\}} | 0.2404 ^{\{6\}} | 0.2815 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 16 ^{\{5\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 6 ^{\{2\}} | 27 ^{\{9\}} | 21 ^{\{7\}} | 24 ^{\{8\}} | 17 ^{\{6\}} | 33 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.2728 ^{\{6\}} | 0.2857 ^{\{7\}} | 0.2125 ^{\{4\}} | 0.1934 ^{\{1\}} | 0.2094 ^{\{3\}} | 0.1975 ^{\{2\}} | 0.2908 ^{\{8\}} | 0.3021 ^{\{9\}} | 0.3034 ^{\{10\}} | 0.2703 ^{\{5\}} | 0.3321 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2776 ^{\{6\}} | 0.3128 ^{\{7\}} | 0.1143 ^{\{4\}} | 0.0596 ^{\{1\}} | 0.1093 ^{\{3\}} | 0.0614 ^{\{2\}} | 0.3489 ^{\{8\}} | 0.3503 ^{\{9\}} | 0.3585 ^{\{10\}} | 0.1747 ^{\{5\}} | 0.4016 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1819 ^{\{6\}} | 0.1905 ^{\{7\}} | 0.1417 ^{\{4\}} | 0.1289 ^{\{1\}} | 0.1396 ^{\{3\}} | 0.1316 ^{\{2\}} | 0.1939 ^{\{8\}} | 0.2014 ^{\{9\}} | 0.2023 ^{\{10\}} | 0.1802 ^{\{5\}} | 0.2214 ^{\{11\}} | |
\sum Ranks | 18 ^{\{6\}} | 21 ^{\{7\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 24 ^{\{8\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.2244 ^{\{5\}} | 0.2549 ^{\{8\}} | 0.1945 ^{\{4\}} | 0.1567 ^{\{1\}} | 0.1871 ^{\{3\}} | 0.1656 ^{\{2\}} | 0.2356 ^{\{6\}} | 0.2598 ^{\{10\}} | 0.2597 ^{\{9\}} | 0.2369 ^{\{7\}} | 0.2841 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2361 ^{\{6\}} | 0.3395 ^{\{10\}} | 0.1524 ^{\{4\}} | 0.0393 ^{\{1\}} | 0.1275 ^{\{3\}} | 0.0433 ^{\{2\}} | 0.257 ^{\{7\}} | 0.3273 ^{\{9\}} | 0.3211 ^{\{8\}} | 0.1709 ^{\{5\}} | 0.3588 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1496 ^{\{5\}} | 0.1699 ^{\{8\}} | 0.1297 ^{\{4\}} | 0.1045 ^{\{1\}} | 0.1248 ^{\{3\}} | 0.1104 ^{\{2\}} | 0.1571 ^{\{6\}} | 0.1732 ^{\{10\}} | 0.1731 ^{\{9\}} | 0.1579 ^{\{7\}} | 0.1894 ^{\{11\}} | |
\sum Ranks | 16 ^{\{5\}} | 26 ^{\{8.5\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 6 ^{\{2\}} | 19 ^{\{6.5\}} | 29 ^{\{10\}} | 26 ^{\{8.5\}} | 19 ^{\{6.5\}} | 33 ^{\{11\}} | ||
450 | bias | {\ddddot \delta} | 0.1999 ^{\{8\}} | 0.1892 ^{\{7\}} | 0.1614 ^{\{3\}} | 0.1295 ^{\{2\}} | 0.1625 ^{\{4\}} | 0.1291 ^{\{1\}} | 0.2165 ^{\{10\}} | 0.1861 ^{\{6\}} | 0.2033 ^{\{9\}} | 0.1765 ^{\{5\}} | 0.2949 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.2334 ^{\{9\}} | 0.222 ^{\{7\}} | 0.13 ^{\{5\}} | 0.0268 ^{\{2\}} | 0.1241 ^{\{4\}} | 0.0263 ^{\{1\}} | 0.2636 ^{\{10\}} | 0.2028 ^{\{6\}} | 0.2307 ^{\{8\}} | 0.0745 ^{\{3\}} | 0.4434 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1333 ^{\{8\}} | 0.1262 ^{\{7\}} | 0.1076 ^{\{3\}} | 0.0864 ^{\{2\}} | 0.1083 ^{\{4\}} | 0.086 ^{\{1\}} | 0.1443 ^{\{10\}} | 0.124 ^{\{6\}} | 0.1355 ^{\{9\}} | 0.1177 ^{\{5\}} | 0.1966 ^{\{11\}} | |
\sum Ranks | 25 ^{\{8\}} | 21 ^{\{7\}} | 11 ^{\{3\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 30 ^{\{10\}} | 18 ^{\{6\}} | 26 ^{\{9\}} | 13 ^{\{5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.5613 ^{\{5\}} | 0.5416 ^{\{3\}} | 0.5415 ^{\{2\}} | 0.5732 ^{\{7\}} | 0.5575 ^{\{4\}} | 0.512 ^{\{1\}} | 0.5678 ^{\{6\}} | 0.7597 ^{\{10\}} | 0.6059 ^{\{8\}} | 0.7398 ^{\{9\}} | 0.7922 ^{\{11\}} |
MSE | \hat{\delta} | 0.7281 ^{\{7\}} | 0.5044 ^{\{2\}} | 0.5163 ^{\{3\}} | 0.5459 ^{\{6\}} | 0.5328 ^{\{4\}} | 0.4343 ^{\{1\}} | 0.5351 ^{\{5\}} | 1.1729 ^{\{11\}} | 0.7324 ^{\{8\}} | 0.9953 ^{\{9\}} | 1.083 ^{\{10\}} | |
MRE | \hat{\delta} | 0.3742 ^{\{5\}} | 0.3611 ^{\{3\}} | 0.361 ^{\{2\}} | 0.3821 ^{\{7\}} | 0.3717 ^{\{4\}} | 0.3413 ^{\{1\}} | 0.3785 ^{\{6\}} | 0.5065 ^{\{10\}} | 0.404 ^{\{8\}} | 0.4932 ^{\{9\}} | 0.5281 ^{\{11\}} | |
\sum Ranks | 17 ^{\{5.5\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 20 ^{\{7\}} | 12 ^{\{4\}} | 3 ^{\{1\}} | 17 ^{\{5.5\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 27 ^{\{9\}} | 32 ^{\{11\}} | ||
50 | bias | \hat{\delta} | 0.3325 ^{\{9\}} | 0.1833 ^{\{6\}} | 0.1701 ^{\{2\}} | 0.1707 ^{\{3\}} | 0.1671 ^{\{1\}} | 0.1759 ^{\{4\}} | 0.1762 ^{\{5\}} | 0.2899 ^{\{8\}} | 0.1844 ^{\{7\}} | 0.3829 ^{\{10\}} | 0.4402 ^{\{11\}} |
MSE | \hat{\delta} | 0.4045 ^{\{10\}} | 0.1073 ^{\{7\}} | 0.0447 ^{\{1\}} | 0.0466 ^{\{3\}} | 0.0463 ^{\{2\}} | 0.0489 ^{\{4\}} | 0.0492 ^{\{5\}} | 0.4029 ^{\{9\}} | 0.0559 ^{\{6\}} | 0.3246 ^{\{8\}} | 0.5328 ^{\{11\}} | |
MRE | \hat{\delta} | 0.2216 ^{\{9\}} | 0.1222 ^{\{6\}} | 0.1134 ^{\{2\}} | 0.1138 ^{\{3\}} | 0.1114 ^{\{1\}} | 0.1172 ^{\{4\}} | 0.1175 ^{\{5\}} | 0.1933 ^{\{8\}} | 0.123 ^{\{7\}} | 0.2552 ^{\{10\}} | 0.2935 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 19 ^{\{6\}} | 5 ^{\{2\}} | 9 ^{\{3\}} | 4 ^{\{1\}} | 12 ^{\{4\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 20 ^{\{7\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
120 | bias | \hat{\delta} | 0.1905 ^{\{9\}} | 0.085 ^{\{7\}} | 0.0726 ^{\{2\}} | 0.0724 ^{\{1\}} | 0.0746 ^{\{4\}} | 0.0735 ^{\{3\}} | 0.0763 ^{\{5\}} | 0.1106 ^{\{8\}} | 0.0801 ^{\{6\}} | 0.2246 ^{\{10\}} | 0.256 ^{\{11\}} |
MSE | \hat{\delta} | 0.1833 ^{\{10\}} | 0.0383 ^{\{7\}} | 0.0084 ^{\{2.5\}} | 0.0083 ^{\{1\}} | 0.0086 ^{\{4\}} | 0.0084 ^{\{2.5\}} | 0.0093 ^{\{5\}} | 0.1197 ^{\{8\}} | 0.01 ^{\{6\}} | 0.1394 ^{\{9\}} | 0.3088 ^{\{11\}} | |
MRE | \hat{\delta} | 0.127 ^{\{9\}} | 0.0567 ^{\{7\}} | 0.0484 ^{\{2\}} | 0.0483 ^{\{1\}} | 0.0498 ^{\{4\}} | 0.049 ^{\{3\}} | 0.0509 ^{\{5\}} | 0.0737 ^{\{8\}} | 0.0534 ^{\{6\}} | 0.1497 ^{\{10\}} | 0.1707 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 21 ^{\{7\}} | 6.5 ^{\{2\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 8.5 ^{\{3\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
200 | bias | \hat{\delta} | 0.1872 ^{\{10\}} | 0.0448 ^{\{2\}} | 0.0431 ^{\{1\}} | 0.0457 ^{\{3\}} | 0.0462 ^{\{4\}} | 0.0472 ^{\{6\}} | 0.0469 ^{\{5\}} | 0.0762 ^{\{8\}} | 0.0488 ^{\{7\}} | 0.1621 ^{\{9\}} | 0.2017 ^{\{11\}} |
MSE | \hat{\delta} | 0.2301 ^{\{10\}} | 0.0031 ^{\{2\}} | 0.003 ^{\{1\}} | 0.0034 ^{\{4\}} | 0.0033 ^{\{3\}} | 0.0035 ^{\{5.5\}} | 0.0035 ^{\{5.5\}} | 0.0961 ^{\{9\}} | 0.0038 ^{\{7\}} | 0.0727 ^{\{8\}} | 0.2481 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1248 ^{\{10\}} | 0.0299 ^{\{2\}} | 0.0287 ^{\{1\}} | 0.0304 ^{\{3\}} | 0.0308 ^{\{4\}} | 0.0314 ^{\{6\}} | 0.0312 ^{\{5\}} | 0.0508 ^{\{8\}} | 0.0325 ^{\{7\}} | 0.1081 ^{\{9\}} | 0.1345 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 17.5 ^{\{6\}} | 15.5 ^{\{5\}} | 25 ^{\{8\}} | 21 ^{\{7\}} | 26 ^{\{9\}} | 33 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1573 ^{\{10\}} | 0.0282 ^{\{1\}} | 0.0305 ^{\{4\}} | 0.0307 ^{\{5\}} | 0.0295 ^{\{2\}} | 0.0304 ^{\{3\}} | 0.031 ^{\{6.5\}} | 0.0368 ^{\{8\}} | 0.031 ^{\{6.5\}} | 0.135 ^{\{9\}} | 0.1622 ^{\{11\}} |
MSE | \hat{\delta} | 0.2056 ^{\{11\}} | 0.0013 ^{\{1\}} | 0.0015 ^{\{5.5\}} | 0.0015 ^{\{5.5\}} | 0.0014 ^{\{2.5\}} | 0.0014 ^{\{2.5\}} | 0.0015 ^{\{5.5\}} | 0.0276 ^{\{8\}} | 0.0015 ^{\{5.5\}} | 0.0507 ^{\{9\}} | 0.183 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1049 ^{\{10\}} | 0.0188 ^{\{1\}} | 0.0203 ^{\{4\}} | 0.0205 ^{\{5\}} | 0.0197 ^{\{2\}} | 0.0202 ^{\{3\}} | 0.0207 ^{\{6.5\}} | 0.0246 ^{\{8\}} | 0.0207 ^{\{6.5\}} | 0.09 ^{\{9\}} | 0.1081 ^{\{11\}} | |
\sum Ranks | 31 ^{\{10\}} | 3 ^{\{1\}} | 13.5 ^{\{4\}} | 15.5 ^{\{5\}} | 6.5 ^{\{2\}} | 8.5 ^{\{3\}} | 18.5 ^{\{6.5\}} | 24 ^{\{8\}} | 18.5 ^{\{6.5\}} | 27 ^{\{9\}} | 32 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1396 ^{\{11\}} | 0.0196 ^{\{2\}} | 0.0207 ^{\{6\}} | 0.0195 ^{\{1\}} | 0.0204 ^{\{3.5\}} | 0.0204 ^{\{3.5\}} | 0.0214 ^{\{7\}} | 0.034 ^{\{8\}} | 0.0205 ^{\{5\}} | 0.1083 ^{\{9\}} | 0.1232 ^{\{10\}} |
MSE | \hat{\delta} | 0.199 ^{\{11\}} | 6e-04 ^{\{1.5\}} | 7e-04 ^{\{5\}} | 6e-04 ^{\{1.5\}} | 7e-04 ^{\{5\}} | 7e-04 ^{\{5\}} | 7e-04 ^{\{5\}} | 0.0449 ^{\{8\}} | 7e-04 ^{\{5\}} | 0.0486 ^{\{9\}} | 0.1356 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0931 ^{\{11\}} | 0.0131 ^{\{2\}} | 0.0138 ^{\{6\}} | 0.013 ^{\{1\}} | 0.0136 ^{\{3.5\}} | 0.0136 ^{\{3.5\}} | 0.0143 ^{\{7\}} | 0.0227 ^{\{8\}} | 0.0137 ^{\{5\}} | 0.0722 ^{\{9\}} | 0.0821 ^{\{10\}} | |
\sum Ranks | 26 ^{\{11\}} | 9.5 ^{\{2\}} | 21 ^{\{8\}} | 7.5 ^{\{1\}} | 16 ^{\{3.5\}} | 16 ^{\{3.5\}} | 23 ^{\{9.5\}} | 17 ^{\{5\}} | 19 ^{\{6\}} | 20 ^{\{7\}} | 23 ^{\{9.5\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.8662 ^{\{3\}} | 0.89 ^{\{4\}} | 0.936 ^{\{5\}} | 0.9702 ^{\{7\}} | 0.9394 ^{\{6\}} | 0.8391 ^{\{1\}} | 0.8576 ^{\{2\}} | 1.139 ^{\{11\}} | 1.0388 ^{\{8\}} | 1.0907 ^{\{10\}} | 1.0534 ^{\{9\}} |
MSE | {\ddddot \delta} | 1.4064 ^{\{3\}} | 1.4249 ^{\{4\}} | 1.6365 ^{\{5\}} | 1.7863 ^{\{7\}} | 1.6449 ^{\{6\}} | 1.2631 ^{\{1\}} | 1.3114 ^{\{2\}} | 2.5605 ^{\{10\}} | 2.2348 ^{\{9\}} | 2.9563 ^{\{11\}} | 2.0211 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.4331 ^{\{3\}} | 0.445 ^{\{4\}} | 0.468 ^{\{5\}} | 0.4851 ^{\{7\}} | 0.4697 ^{\{6\}} | 0.4196 ^{\{1\}} | 0.4288 ^{\{2\}} | 0.5695 ^{\{11\}} | 0.5194 ^{\{8\}} | 0.5453 ^{\{10\}} | 0.5267 ^{\{9\}} | |
\sum Ranks | 9 ^{\{3\}} | 12 ^{\{4\}} | 15 ^{\{5\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 32 ^{\{11\}} | 25 ^{\{8\}} | 31 ^{\{10\}} | 26 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.5893 ^{\{7\}} | 0.6143 ^{\{9\}} | 0.4517 ^{\{2\}} | 0.4631 ^{\{4\}} | 0.4561 ^{\{3\}} | 0.4439 ^{\{1\}} | 0.5144 ^{\{6\}} | 0.6613 ^{\{10\}} | 0.4828 ^{\{5\}} | 0.6069 ^{\{8\}} | 0.7456 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.8981 ^{\{8\}} | 0.9587 ^{\{9\}} | 0.3418 ^{\{2\}} | 0.3854 ^{\{4\}} | 0.3458 ^{\{3\}} | 0.3249 ^{\{1\}} | 0.5695 ^{\{6\}} | 1.1788 ^{\{10\}} | 0.4004 ^{\{5\}} | 0.7547 ^{\{7\}} | 1.3034 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.2946 ^{\{7\}} | 0.3071 ^{\{9\}} | 0.2259 ^{\{2\}} | 0.2316 ^{\{4\}} | 0.2281 ^{\{3\}} | 0.2219 ^{\{1\}} | 0.2572 ^{\{6\}} | 0.3307 ^{\{10\}} | 0.2414 ^{\{5\}} | 0.3035 ^{\{8\}} | 0.3728 ^{\{11\}} | |
\sum Ranks | 22 ^{\{7\}} | 27 ^{\{9\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 18 ^{\{6\}} | 30 ^{\{10\}} | 15 ^{\{5\}} | 23 ^{\{8\}} | 33 ^{\{11\}} | ||
120 | bias | {\ddddot \delta} | 0.4366 ^{\{8\}} | 0.4407 ^{\{9\}} | 0.2887 ^{\{1\}} | 0.291 ^{\{2\}} | 0.2921 ^{\{4\}} | 0.292 ^{\{3\}} | 0.38 ^{\{6\}} | 0.4637 ^{\{10\}} | 0.3547 ^{\{5\}} | 0.3908 ^{\{7\}} | 0.4989 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.7198 ^{\{8\}} | 0.7406 ^{\{9\}} | 0.1352 ^{\{1\}} | 0.1371 ^{\{2\}} | 0.1377 ^{\{4\}} | 0.1372 ^{\{3\}} | 0.4774 ^{\{7\}} | 0.8288 ^{\{11\}} | 0.33 ^{\{5\}} | 0.362 ^{\{6\}} | 0.8257 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.2183 ^{\{8\}} | 0.2204 ^{\{9\}} | 0.1444 ^{\{1\}} | 0.1455 ^{\{2\}} | 0.146 ^{\{3.5\}} | 0.146 ^{\{3.5\}} | 0.19 ^{\{6\}} | 0.2318 ^{\{10\}} | 0.1773 ^{\{5\}} | 0.1954 ^{\{7\}} | 0.2494 ^{\{11\}} | |
\sum Ranks | 24 ^{\{8\}} | 27 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 11.5 ^{\{4\}} | 9.5 ^{\{3\}} | 19 ^{\{6\}} | 31 ^{\{10\}} | 15 ^{\{5\}} | 20 ^{\{7\}} | 32 ^{\{11\}} | ||
200 | bias | {\ddddot \delta} | 0.318 ^{\{8\}} | 0.3186 ^{\{9\}} | 0.2241 ^{\{3\}} | 0.2219 ^{\{1\}} | 0.2224 ^{\{2\}} | 0.2255 ^{\{4\}} | 0.3266 ^{\{10\}} | 0.3167 ^{\{7\}} | 0.3049 ^{\{6\}} | 0.3037 ^{\{5\}} | 0.3701 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.4703 ^{\{8\}} | 0.4776 ^{\{9\}} | 0.0866 ^{\{4\}} | 0.0783 ^{\{1\}} | 0.0803 ^{\{2\}} | 0.0811 ^{\{3\}} | 0.4872 ^{\{10\}} | 0.4586 ^{\{7\}} | 0.361 ^{\{6\}} | 0.2278 ^{\{5\}} | 0.5503 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.159 ^{\{8\}} | 0.1593 ^{\{9\}} | 0.112 ^{\{3\}} | 0.111 ^{\{1\}} | 0.1112 ^{\{2\}} | 0.1128 ^{\{4\}} | 0.1633 ^{\{10\}} | 0.1584 ^{\{7\}} | 0.1525 ^{\{6\}} | 0.1518 ^{\{5\}} | 0.185 ^{\{11\}} | |
\sum Ranks | 24 ^{\{8\}} | 27 ^{\{9\}} | 10 ^{\{3\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 11 ^{\{4\}} | 30 ^{\{10\}} | 21 ^{\{7\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.258 ^{\{6\}} | 0.261 ^{\{7\}} | 0.1862 ^{\{3\}} | 0.1821 ^{\{1\}} | 0.1857 ^{\{2\}} | 0.1869 ^{\{4\}} | 0.2793 ^{\{8\}} | 0.2918 ^{\{11\}} | 0.2893 ^{\{10\}} | 0.2431 ^{\{5\}} | 0.2841 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.3621 ^{\{7\}} | 0.3677 ^{\{8\}} | 0.0643 ^{\{3\}} | 0.0516 ^{\{1\}} | 0.0651 ^{\{4\}} | 0.0548 ^{\{2\}} | 0.4523 ^{\{10\}} | 0.4936 ^{\{11\}} | 0.4307 ^{\{9\}} | 0.1549 ^{\{5\}} | 0.3537 ^{\{6\}} | |
MRE | {\ddddot \delta} | 0.129 ^{\{6\}} | 0.1305 ^{\{7\}} | 0.0931 ^{\{3\}} | 0.091 ^{\{1\}} | 0.0929 ^{\{2\}} | 0.0935 ^{\{4\}} | 0.1396 ^{\{8\}} | 0.1459 ^{\{11\}} | 0.1447 ^{\{10\}} | 0.1216 ^{\{5\}} | 0.142 ^{\{9\}} | |
\sum Ranks | 19 ^{\{6\}} | 22 ^{\{7\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 8 ^{\{2\}} | 10 ^{\{4\}} | 26 ^{\{9\}} | 33 ^{\{11\}} | 29 ^{\{10\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | ||
450 | bias | {\ddddot \delta} | 0.212 ^{\{7\}} | 0.2088 ^{\{6\}} | 0.1503 ^{\{3\}} | 0.1492 ^{\{1\}} | 0.1583 ^{\{4\}} | 0.1497 ^{\{2\}} | 0.2339 ^{\{9\}} | 0.2292 ^{\{8\}} | 0.2624 ^{\{11\}} | 0.1916 ^{\{5\}} | 0.2373 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.2839 ^{\{7\}} | 0.2713 ^{\{6\}} | 0.0526 ^{\{3\}} | 0.0349 ^{\{1\}} | 0.0706 ^{\{4\}} | 0.035 ^{\{2\}} | 0.3701 ^{\{10\}} | 0.3634 ^{\{9\}} | 0.459 ^{\{11\}} | 0.0959 ^{\{5\}} | 0.3072 ^{\{8\}} | |
MRE | {\ddddot \delta} | 0.106 ^{\{7\}} | 0.1044 ^{\{6\}} | 0.0752 ^{\{3\}} | 0.0746 ^{\{1\}} | 0.0791 ^{\{4\}} | 0.0748 ^{\{2\}} | 0.1169 ^{\{9\}} | 0.1146 ^{\{8\}} | 0.1312 ^{\{11\}} | 0.0958 ^{\{5\}} | 0.1186 ^{\{10\}} | |
\sum Ranks | 21 ^{\{7\}} | 18 ^{\{6\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 6 ^{\{2\}} | 28 ^{\{9.5\}} | 25 ^{\{8\}} | 33 ^{\{11\}} | 15 ^{\{5\}} | 28 ^{\{9.5\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.6322 ^{\{4\}} | 0.6102 ^{\{2\}} | 0.6497 ^{\{5\}} | 0.6604 ^{\{7\}} | 0.6505 ^{\{6\}} | 0.5827 ^{\{1\}} | 0.6233 ^{\{3\}} | 0.8329 ^{\{10\}} | 0.7071 ^{\{8\}} | 0.8762 ^{\{11\}} | 0.8269 ^{\{9\}} |
MSE | \hat{\delta} | 0.9731 ^{\{8\}} | 0.6199 ^{\{2\}} | 0.781 ^{\{4\}} | 0.8186 ^{\{6\}} | 0.792 ^{\{5\}} | 0.5512 ^{\{1\}} | 0.6432 ^{\{3\}} | 1.5585 ^{\{11\}} | 0.9725 ^{\{7\}} | 1.5475 ^{\{10\}} | 1.2327 ^{\{9\}} | |
MRE | \hat{\delta} | 0.3161 ^{\{4\}} | 0.3051 ^{\{2\}} | 0.3248 ^{\{5\}} | 0.3302 ^{\{7\}} | 0.3253 ^{\{6\}} | 0.2913 ^{\{1\}} | 0.3116 ^{\{3\}} | 0.4165 ^{\{10\}} | 0.3536 ^{\{8\}} | 0.4381 ^{\{11\}} | 0.4135 ^{\{9\}} | |
\sum Ranks | 16 ^{\{5\}} | 6 ^{\{2\}} | 14 ^{\{4\}} | 20 ^{\{7\}} | 17 ^{\{6\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 31 ^{\{10\}} | 23 ^{\{8\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.3897 ^{\{9\}} | 0.193 ^{\{4\}} | 0.1927 ^{\{2\}} | 0.1894 ^{\{1\}} | 0.1929 ^{\{3\}} | 0.2032 ^{\{5\}} | 0.2036 ^{\{6\}} | 0.289 ^{\{8\}} | 0.2086 ^{\{7\}} | 0.3972 ^{\{11\}} | 0.397 ^{\{10\}} |
MSE | \hat{\delta} | 0.6241 ^{\{11\}} | 0.0645 ^{\{4\}} | 0.0593 ^{\{2\}} | 0.0566 ^{\{1\}} | 0.0596 ^{\{3\}} | 0.0651 ^{\{5\}} | 0.066 ^{\{6\}} | 0.4495 ^{\{9\}} | 0.0692 ^{\{7\}} | 0.3584 ^{\{8\}} | 0.4557 ^{\{10\}} | |
MRE | \hat{\delta} | 0.1948 ^{\{9\}} | 0.0965 ^{\{3.5\}} | 0.0964 ^{\{2\}} | 0.0947 ^{\{1\}} | 0.0965 ^{\{3.5\}} | 0.1016 ^{\{5\}} | 0.1018 ^{\{6\}} | 0.1445 ^{\{8\}} | 0.1043 ^{\{7\}} | 0.1986 ^{\{11\}} | 0.1985 ^{\{10\}} | |
\sum Ranks | 29 ^{\{9\}} | 11.5 ^{\{4\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9.5 ^{\{3\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 25 ^{\{8\}} | 21 ^{\{7\}} | 30 ^{\{10.5\}} | 30 ^{\{10.5\}} | ||
120 | bias | \hat{\delta} | 0.2299 ^{\{9\}} | 0.0806 ^{\{1\}} | 0.0822 ^{\{2\}} | 0.0823 ^{\{3\}} | 0.0832 ^{\{4\}} | 0.0907 ^{\{7\}} | 0.0868 ^{\{5\}} | 0.1273 ^{\{8\}} | 0.0889 ^{\{6\}} | 0.2521 ^{\{10\}} | 0.2691 ^{\{11\}} |
MSE | \hat{\delta} | 0.2926 ^{\{10\}} | 0.0103 ^{\{1\}} | 0.0106 ^{\{2\}} | 0.0107 ^{\{3\}} | 0.0108 ^{\{4\}} | 0.0128 ^{\{7\}} | 0.0117 ^{\{5\}} | 0.1932 ^{\{8\}} | 0.0123 ^{\{6\}} | 0.2008 ^{\{9\}} | 0.3613 ^{\{11\}} | |
MRE | \hat{\delta} | 0.1149 ^{\{9\}} | 0.0403 ^{\{1\}} | 0.0411 ^{\{2\}} | 0.0412 ^{\{3\}} | 0.0416 ^{\{4\}} | 0.0454 ^{\{7\}} | 0.0434 ^{\{5\}} | 0.0636 ^{\{8\}} | 0.0445 ^{\{6\}} | 0.1261 ^{\{10\}} | 0.1346 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 33 ^{\{11\}} | ||
200 | bias | \hat{\delta} | 0.1779 ^{\{9\}} | 0.0504 ^{\{3\}} | 0.0495 ^{\{1\}} | 0.0502 ^{\{2\}} | 0.0508 ^{\{4\}} | 0.0547 ^{\{7\}} | 0.0527 ^{\{5\}} | 0.0742 ^{\{8\}} | 0.0536 ^{\{6\}} | 0.1814 ^{\{10\}} | 0.2188 ^{\{11\}} |
MSE | \hat{\delta} | 0.224 ^{\{10\}} | 0.004 ^{\{3\}} | 0.0038 ^{\{1\}} | 0.004 ^{\{3\}} | 0.004 ^{\{3\}} | 0.0047 ^{\{7\}} | 0.0043 ^{\{5\}} | 0.103 ^{\{9\}} | 0.0046 ^{\{6\}} | 0.0966 ^{\{8\}} | 0.3339 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0889 ^{\{9\}} | 0.0252 ^{\{3\}} | 0.0247 ^{\{1\}} | 0.0251 ^{\{2\}} | 0.0254 ^{\{4\}} | 0.0273 ^{\{7\}} | 0.0264 ^{\{5\}} | 0.0371 ^{\{8\}} | 0.0268 ^{\{6\}} | 0.0907 ^{\{10\}} | 0.1094 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 7 ^{\{2\}} | 11 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1527 ^{\{9\}} | 0.0336 ^{\{2.5\}} | 0.0336 ^{\{2.5\}} | 0.0334 ^{\{1\}} | 0.0339 ^{\{4\}} | 0.037 ^{\{7\}} | 0.0353 ^{\{5\}} | 0.0595 ^{\{8\}} | 0.0356 ^{\{6\}} | 0.1543 ^{\{10\}} | 0.1965 ^{\{11\}} |
MSE | \hat{\delta} | 0.2146 ^{\{10\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0018 ^{\{2.5\}} | 0.0022 ^{\{7\}} | 0.0019 ^{\{5\}} | 0.1098 ^{\{9\}} | 0.002 ^{\{6\}} | 0.0868 ^{\{8\}} | 0.3452 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0764 ^{\{9\}} | 0.0168 ^{\{2.5\}} | 0.0168 ^{\{2.5\}} | 0.0167 ^{\{1\}} | 0.0169 ^{\{4\}} | 0.0185 ^{\{7\}} | 0.0176 ^{\{5\}} | 0.0297 ^{\{8\}} | 0.0178 ^{\{6\}} | 0.0771 ^{\{10\}} | 0.0983 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 7.5 ^{\{2.5\}} | 7.5 ^{\{2.5\}} | 4.5 ^{\{1\}} | 10.5 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1452 ^{\{10\}} | 0.0224 ^{\{2\}} | 0.023 ^{\{4\}} | 0.0222 ^{\{1\}} | 0.0227 ^{\{3\}} | 0.025 ^{\{7\}} | 0.0239 ^{\{5\}} | 0.0359 ^{\{8\}} | 0.0243 ^{\{6\}} | 0.1194 ^{\{9\}} | 0.1483 ^{\{11\}} |
MSE | \hat{\delta} | 0.2516 ^{\{11\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 8e-04 ^{\{2.5\}} | 0.001 ^{\{7\}} | 9e-04 ^{\{5.5\}} | 0.0574 ^{\{9\}} | 9e-04 ^{\{5.5\}} | 0.047 ^{\{8\}} | 0.2342 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0726 ^{\{10\}} | 0.0112 ^{\{2\}} | 0.0115 ^{\{4\}} | 0.0111 ^{\{1\}} | 0.0114 ^{\{3\}} | 0.0125 ^{\{7\}} | 0.0119 ^{\{5\}} | 0.018 ^{\{8\}} | 0.0121 ^{\{6\}} | 0.0597 ^{\{9\}} | 0.0742 ^{\{11\}} | |
\sum Ranks | 25 ^{\{10\}} | 11.5 ^{\{2\}} | 15.5 ^{\{5\}} | 9.5 ^{\{1\}} | 13.5 ^{\{3\}} | 15 ^{\{4\}} | 20.5 ^{\{8\}} | 19 ^{\{6\}} | 22.5 ^{\{9\}} | 20 ^{\{7\}} | 26 ^{\{11\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | {\ddddot \delta} | 0.9599 ^{\{2\}} | 0.9855 ^{\{3\}} | 1.1014 ^{\{5\}} | 1.1374 ^{\{6\}} | 1.1475 ^{\{7\}} | 0.9352 ^{\{1\}} | 1.0073 ^{\{4\}} | 1.3039 ^{\{11\}} | 1.157 ^{\{8\}} | 1.1786 ^{\{9\}} | 1.1824 ^{\{10\}} |
MSE | {\ddddot \delta} | 1.7187 ^{\{3\}} | 1.6923 ^{\{2\}} | 2.3321 ^{\{5\}} | 2.4383 ^{\{6\}} | 2.5806 ^{\{8\}} | 1.5886 ^{\{1\}} | 1.8703 ^{\{4\}} | 3.5516 ^{\{11\}} | 2.8096 ^{\{9\}} | 2.8769 ^{\{10\}} | 2.4776 ^{\{7\}} | |
MRE | {\ddddot \delta} | 0.384 ^{\{2\}} | 0.3942 ^{\{3\}} | 0.4406 ^{\{5\}} | 0.4549 ^{\{6\}} | 0.459 ^{\{7\}} | 0.3741 ^{\{1\}} | 0.4029 ^{\{4\}} | 0.5216 ^{\{11\}} | 0.4628 ^{\{8\}} | 0.4714 ^{\{9\}} | 0.473 ^{\{10\}} | |
\sum Ranks | 7 ^{\{2\}} | 8 ^{\{3\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 22 ^{\{7\}} | 3 ^{\{1\}} | 12 ^{\{4\}} | 33 ^{\{11\}} | 25 ^{\{8\}} | 28 ^{\{10\}} | 27 ^{\{9\}} | ||
50 | bias | {\ddddot \delta} | 0.5636 ^{\{7\}} | 0.5986 ^{\{8\}} | 0.5265 ^{\{2\}} | 0.53 ^{\{3\}} | 0.5391 ^{\{5\}} | 0.5024 ^{\{1\}} | 0.5325 ^{\{4\}} | 0.7652 ^{\{11\}} | 0.5466 ^{\{6\}} | 0.6536 ^{\{9\}} | 0.7347 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.7067 ^{\{7\}} | 0.8341 ^{\{8\}} | 0.4737 ^{\{2\}} | 0.5305 ^{\{6\}} | 0.503 ^{\{4\}} | 0.435 ^{\{1\}} | 0.482 ^{\{3\}} | 1.7478 ^{\{11\}} | 0.5132 ^{\{5\}} | 0.9315 ^{\{9\}} | 1.3096 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.2254 ^{\{7\}} | 0.2395 ^{\{8\}} | 0.2106 ^{\{2\}} | 0.212 ^{\{3\}} | 0.2156 ^{\{5\}} | 0.201 ^{\{1\}} | 0.213 ^{\{4\}} | 0.3061 ^{\{11\}} | 0.2187 ^{\{6\}} | 0.2614 ^{\{9\}} | 0.2939 ^{\{10\}} | |
\sum Ranks | 21 ^{\{7\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 12 ^{\{4\}} | 14 ^{\{5\}} | 3 ^{\{1\}} | 11 ^{\{3\}} | 33 ^{\{11\}} | 17 ^{\{6\}} | 27 ^{\{9\}} | 30 ^{\{10\}} | ||
120 | bias | {\ddddot \delta} | 0.4462 ^{\{7\}} | 0.4787 ^{\{9\}} | 0.334 ^{\{1\}} | 0.3388 ^{\{2\}} | 0.3415 ^{\{3\}} | 0.3453 ^{\{4\}} | 0.3614 ^{\{6\}} | 0.5359 ^{\{11\}} | 0.3552 ^{\{5\}} | 0.457 ^{\{8\}} | 0.5352 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.7607 ^{\{8\}} | 0.877 ^{\{9\}} | 0.1793 ^{\{1\}} | 0.1808 ^{\{2\}} | 0.1832 ^{\{3\}} | 0.189 ^{\{4\}} | 0.3259 ^{\{6\}} | 1.2275 ^{\{11\}} | 0.2236 ^{\{5\}} | 0.4848 ^{\{7\}} | 1.0708 ^{\{10\}} | |
MRE | {\ddddot \delta} | 0.1785 ^{\{7\}} | 0.1915 ^{\{9\}} | 0.1336 ^{\{1\}} | 0.1355 ^{\{2\}} | 0.1366 ^{\{3\}} | 0.1381 ^{\{4\}} | 0.1446 ^{\{6\}} | 0.2144 ^{\{11\}} | 0.1421 ^{\{5\}} | 0.1828 ^{\{8\}} | 0.2141 ^{\{10\}} | |
\sum Ranks | 22 ^{\{7\}} | 27 ^{\{9\}} | 3 ^{\{1\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 18 ^{\{6\}} | 33 ^{\{11\}} | 15 ^{\{5\}} | 23 ^{\{8\}} | 30 ^{\{10\}} | ||
200 | bias | {\ddddot \delta} | 0.4358 ^{\{10\}} | 0.4021 ^{\{8\}} | 0.248 ^{\{1\}} | 0.2526 ^{\{3\}} | 0.2509 ^{\{2\}} | 0.2633 ^{\{4\}} | 0.3284 ^{\{6\}} | 0.4068 ^{\{9\}} | 0.2919 ^{\{5\}} | 0.3362 ^{\{7\}} | 0.4777 ^{\{11\}} |
MSE | {\ddddot \delta} | 0.9925 ^{\{10\}} | 0.8236 ^{\{9\}} | 0.0967 ^{\{1\}} | 0.1001 ^{\{2\}} | 0.1006 ^{\{3\}} | 0.1128 ^{\{4\}} | 0.4511 ^{\{7\}} | 0.8184 ^{\{8\}} | 0.2007 ^{\{5\}} | 0.2805 ^{\{6\}} | 1.0014 ^{\{11\}} | |
MRE | {\ddddot \delta} | 0.1743 ^{\{10\}} | 0.1609 ^{\{8\}} | 0.0992 ^{\{1\}} | 0.1011 ^{\{3\}} | 0.1004 ^{\{2\}} | 0.1053 ^{\{4\}} | 0.1314 ^{\{6\}} | 0.1627 ^{\{9\}} | 0.1167 ^{\{5\}} | 0.1345 ^{\{7\}} | 0.1911 ^{\{11\}} | |
\sum Ranks | 30 ^{\{10\}} | 25 ^{\{8\}} | 3 ^{\{1\}} | 8 ^{\{3\}} | 7 ^{\{2\}} | 12 ^{\{4\}} | 19 ^{\{6\}} | 26 ^{\{9\}} | 15 ^{\{5\}} | 20 ^{\{7\}} | 33 ^{\{11\}} | ||
300 | bias | {\ddddot \delta} | 0.3835 ^{\{11\}} | 0.3358 ^{\{8\}} | 0.206 ^{\{2\}} | 0.2007 ^{\{1\}} | 0.2086 ^{\{3\}} | 0.2142 ^{\{4\}} | 0.2656 ^{\{5\}} | 0.3661 ^{\{10\}} | 0.2788 ^{\{7\}} | 0.2723 ^{\{6\}} | 0.3589 ^{\{9\}} |
MSE | {\ddddot \delta} | 0.9468 ^{\{11\}} | 0.7071 ^{\{8\}} | 0.0672 ^{\{2\}} | 0.0627 ^{\{1\}} | 0.0681 ^{\{3\}} | 0.0749 ^{\{4\}} | 0.3498 ^{\{6\}} | 0.8202 ^{\{10\}} | 0.363 ^{\{7\}} | 0.1516 ^{\{5\}} | 0.7172 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.1534 ^{\{11\}} | 0.1343 ^{\{8\}} | 0.0824 ^{\{2\}} | 0.0803 ^{\{1\}} | 0.0835 ^{\{3\}} | 0.0857 ^{\{4\}} | 0.1062 ^{\{5\}} | 0.1464 ^{\{10\}} | 0.1115 ^{\{7\}} | 0.1089 ^{\{6\}} | 0.1435 ^{\{9\}} | |
\sum Ranks | 33 ^{\{11\}} | 24 ^{\{8\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 16 ^{\{5\}} | 30 ^{\{10\}} | 21 ^{\{7\}} | 17 ^{\{6\}} | 27 ^{\{9\}} | ||
450 | bias | {\ddddot \delta} | 0.2793 ^{\{9\}} | 0.2534 ^{\{7\}} | 0.1634 ^{\{2\}} | 0.1628 ^{\{1\}} | 0.1714 ^{\{3\}} | 0.182 ^{\{4\}} | 0.2577 ^{\{8\}} | 0.295 ^{\{11\}} | 0.243 ^{\{6\}} | 0.2212 ^{\{5\}} | 0.291 ^{\{10\}} |
MSE | {\ddddot \delta} | 0.5946 ^{\{10\}} | 0.4777 ^{\{8\}} | 0.0423 ^{\{2\}} | 0.0405 ^{\{1\}} | 0.0468 ^{\{3\}} | 0.0521 ^{\{4\}} | 0.4753 ^{\{7\}} | 0.6681 ^{\{11\}} | 0.3999 ^{\{6\}} | 0.1162 ^{\{5\}} | 0.5314 ^{\{9\}} | |
MRE | {\ddddot \delta} | 0.1117 ^{\{9\}} | 0.1013 ^{\{7\}} | 0.0653 ^{\{2\}} | 0.0651 ^{\{1\}} | 0.0686 ^{\{3\}} | 0.0728 ^{\{4\}} | 0.1031 ^{\{8\}} | 0.118 ^{\{11\}} | 0.0972 ^{\{6\}} | 0.0885 ^{\{5\}} | 0.1164 ^{\{10\}} | |
\sum Ranks | 28 ^{\{9\}} | 22 ^{\{7\}} | 6 ^{\{2\}} | 3 ^{\{1\}} | 9 ^{\{3\}} | 12 ^{\{4\}} | 23 ^{\{8\}} | 33 ^{\{11\}} | 18 ^{\{6\}} | 15 ^{\{5\}} | 29 ^{\{10\}} |
m^ {\circ \circ} | Measure | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
15 | bias | \hat{\delta} | 0.6278 ^{\{1\}} | 0.6804 ^{\{2\}} | 0.7479 ^{\{6\}} | 0.7486 ^{\{7\}} | 0.7441 ^{\{5\}} | 0.6932 ^{\{3\}} | 0.7387 ^{\{4\}} | 0.9368 ^{\{10\}} | 0.8054 ^{\{8\}} | 0.9378 ^{\{11\}} | 0.9052 ^{\{9\}} |
MSE | \hat{\delta} | 0.8588 ^{\{3\}} | 0.7567 ^{\{1\}} | 1.1269 ^{\{7\}} | 1.108 ^{\{6\}} | 1.1045 ^{\{5\}} | 0.7758 ^{\{2\}} | 0.9299 ^{\{4\}} | 2.1615 ^{\{11\}} | 1.3529 ^{\{8\}} | 1.6869 ^{\{10\}} | 1.432 ^{\{9\}} | |
MRE | \hat{\delta} | 0.2511 ^{\{1\}} | 0.2721 ^{\{2\}} | 0.2991 ^{\{6\}} | 0.2994 ^{\{7\}} | 0.2976 ^{\{5\}} | 0.2773 ^{\{3\}} | 0.2955 ^{\{4\}} | 0.3747 ^{\{10\}} | 0.3222 ^{\{8\}} | 0.3751 ^{\{11\}} | 0.3621 ^{\{9\}} | |
\sum Ranks | 5 ^{\{1.5\}} | 5 ^{\{1.5\}} | 19 ^{\{6\}} | 20 ^{\{7\}} | 15 ^{\{5\}} | 8 ^{\{3\}} | 12 ^{\{4\}} | 31 ^{\{10\}} | 24 ^{\{8\}} | 32 ^{\{11\}} | 27 ^{\{9\}} | ||
50 | bias | \hat{\delta} | 0.4159 ^{\{10\}} | 0.2217 ^{\{2\}} | 0.2222 ^{\{3\}} | 0.2189 ^{\{1\}} | 0.2275 ^{\{5\}} | 0.2386 ^{\{6\}} | 0.2239 ^{\{4\}} | 0.3112 ^{\{8\}} | 0.2453 ^{\{7\}} | 0.4475 ^{\{11\}} | 0.3909 ^{\{9\}} |
MSE | \hat{\delta} | 0.7329 ^{\{11\}} | 0.0773 ^{\{2\}} | 0.0774 ^{\{3\}} | 0.077 ^{\{1\}} | 0.0823 ^{\{5\}} | 0.0898 ^{\{6\}} | 0.0815 ^{\{4\}} | 0.5289 ^{\{10\}} | 0.0992 ^{\{7\}} | 0.4726 ^{\{9\}} | 0.3113 ^{\{8\}} | |
MRE | \hat{\delta} | 0.1664 ^{\{10\}} | 0.0887 ^{\{2\}} | 0.0889 ^{\{3\}} | 0.0876 ^{\{1\}} | 0.091 ^{\{5\}} | 0.0955 ^{\{6\}} | 0.0896 ^{\{4\}} | 0.1245 ^{\{8\}} | 0.0981 ^{\{7\}} | 0.179 ^{\{11\}} | 0.1564 ^{\{9\}} | |
\sum Ranks | 31 ^{\{10.5\}} | 6 ^{\{2\}} | 9 ^{\{3\}} | 3 ^{\{1\}} | 15 ^{\{5\}} | 18 ^{\{6\}} | 12 ^{\{4\}} | 26 ^{\{8.5\}} | 21 ^{\{7\}} | 31 ^{\{10.5\}} | 26 ^{\{8.5\}} | ||
120 | bias | \hat{\delta} | 0.3167 ^{\{11\}} | 0.0899 ^{\{1\}} | 0.0967 ^{\{3\}} | 0.097 ^{\{4\}} | 0.0963 ^{\{2\}} | 0.1102 ^{\{7\}} | 0.0999 ^{\{5\}} | 0.156 ^{\{8\}} | 0.1032 ^{\{6\}} | 0.2892 ^{\{10\}} | 0.244 ^{\{9\}} |
MSE | \hat{\delta} | 0.6865 ^{\{11\}} | 0.0126 ^{\{1\}} | 0.0149 ^{\{4\}} | 0.0147 ^{\{3\}} | 0.0145 ^{\{2\}} | 0.0185 ^{\{7\}} | 0.0158 ^{\{5\}} | 0.3438 ^{\{10\}} | 0.0169 ^{\{6\}} | 0.2536 ^{\{9\}} | 0.1786 ^{\{8\}} | |
MRE | \hat{\delta} | 0.1267 ^{\{11\}} | 0.036 ^{\{1\}} | 0.0387 ^{\{3\}} | 0.0388 ^{\{4\}} | 0.0385 ^{\{2\}} | 0.0441 ^{\{7\}} | 0.0399 ^{\{5\}} | 0.0624 ^{\{8\}} | 0.0413 ^{\{6\}} | 0.1157 ^{\{10\}} | 0.0976 ^{\{9\}} | |
\sum Ranks | 33 ^{\{11\}} | 3 ^{\{1\}} | 10 ^{\{3\}} | 11 ^{\{4\}} | 6 ^{\{2\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 26 ^{\{8.5\}} | 18 ^{\{6\}} | 29 ^{\{10\}} | 26 ^{\{8.5\}} | ||
200 | bias | \hat{\delta} | 0.2146 ^{\{9\}} | 0.056 ^{\{2\}} | 0.0592 ^{\{4\}} | 0.0554 ^{\{1\}} | 0.0586 ^{\{3\}} | 0.0649 ^{\{7\}} | 0.0611 ^{\{5\}} | 0.0712 ^{\{8\}} | 0.0625 ^{\{6\}} | 0.2248 ^{\{10\}} | 0.2259 ^{\{11\}} |
MSE | \hat{\delta} | 0.362 ^{\{11\}} | 0.0049 ^{\{1\}} | 0.0055 ^{\{4\}} | 0.005 ^{\{2\}} | 0.0053 ^{\{3\}} | 0.0064 ^{\{7\}} | 0.0057 ^{\{5\}} | 0.0783 ^{\{8\}} | 0.0062 ^{\{6\}} | 0.1747 ^{\{9\}} | 0.3609 ^{\{10\}} | |
MRE | \hat{\delta} | 0.0859 ^{\{9\}} | 0.0224 ^{\{2\}} | 0.0237 ^{\{4\}} | 0.0221 ^{\{1\}} | 0.0234 ^{\{3\}} | 0.026 ^{\{7\}} | 0.0244 ^{\{5\}} | 0.0285 ^{\{8\}} | 0.025 ^{\{6\}} | 0.0899 ^{\{10\}} | 0.0903 ^{\{11\}} | |
\sum Ranks | 29 ^{\{9.5\}} | 5 ^{\{2\}} | 12 ^{\{4\}} | 4 ^{\{1\}} | 9 ^{\{3\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 24 ^{\{8\}} | 18 ^{\{6\}} | 29 ^{\{9.5\}} | 32 ^{\{11\}} | ||
300 | bias | \hat{\delta} | 0.1586 ^{\{9\}} | 0.0373 ^{\{1.5\}} | 0.0385 ^{\{3\}} | 0.0373 ^{\{1.5\}} | 0.0403 ^{\{4\}} | 0.0445 ^{\{7\}} | 0.042 ^{\{5.5\}} | 0.0619 ^{\{8\}} | 0.042 ^{\{5.5\}} | 0.1637 ^{\{10\}} | 0.1866 ^{\{11\}} |
MSE | \hat{\delta} | 0.2146 ^{\{10\}} | 0.0022 ^{\{1.5\}} | 0.0023 ^{\{3\}} | 0.0022 ^{\{1.5\}} | 0.0026 ^{\{4\}} | 0.0031 ^{\{7\}} | 0.0028 ^{\{6\}} | 0.1238 ^{\{9\}} | 0.0027 ^{\{5\}} | 0.1014 ^{\{8\}} | 0.2935 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0635 ^{\{9\}} | 0.0149 ^{\{1.5\}} | 0.0154 ^{\{3\}} | 0.0149 ^{\{1.5\}} | 0.0161 ^{\{4\}} | 0.0178 ^{\{7\}} | 0.0168 ^{\{5.5\}} | 0.0247 ^{\{8\}} | 0.0168 ^{\{5.5\}} | 0.0655 ^{\{10\}} | 0.0746 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 4.5 ^{\{1.5\}} | 9 ^{\{3\}} | 4.5 ^{\{1.5\}} | 12 ^{\{4\}} | 21 ^{\{7\}} | 17 ^{\{6\}} | 25 ^{\{8\}} | 16 ^{\{5\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} | ||
450 | bias | \hat{\delta} | 0.1285 ^{\{9\}} | 0.0248 ^{\{1.5\}} | 0.0256 ^{\{3\}} | 0.0248 ^{\{1.5\}} | 0.0257 ^{\{4\}} | 0.0301 ^{\{7\}} | 0.0276 ^{\{5\}} | 0.0441 ^{\{8\}} | 0.028 ^{\{6\}} | 0.1326 ^{\{10\}} | 0.1563 ^{\{11\}} |
MSE | \hat{\delta} | 0.1537 ^{\{10\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.001 ^{\{2.5\}} | 0.0014 ^{\{7\}} | 0.0012 ^{\{5\}} | 0.0994 ^{\{9\}} | 0.0013 ^{\{6\}} | 0.07 ^{\{8\}} | 0.2914 ^{\{11\}} | |
MRE | \hat{\delta} | 0.0514 ^{\{9\}} | 0.0099 ^{\{1.5\}} | 0.0102 ^{\{3\}} | 0.0099 ^{\{1.5\}} | 0.0103 ^{\{4\}} | 0.0121 ^{\{7\}} | 0.011 ^{\{5\}} | 0.0177 ^{\{8\}} | 0.0112 ^{\{6\}} | 0.053 ^{\{10\}} | 0.0625 ^{\{11\}} | |
\sum Ranks | 28 ^{\{9.5\}} | 5.5 ^{\{1.5\}} | 8.5 ^{\{3\}} | 5.5 ^{\{1.5\}} | 10.5 ^{\{4\}} | 21 ^{\{7\}} | 15 ^{\{5\}} | 25 ^{\{8\}} | 18 ^{\{6\}} | 28 ^{\{9.5\}} | 33 ^{\{11\}} |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | ||||||||||||
15 | \hat{\delta} | 2.65374 | 1.95696 | 1.92664 | 1.87934 | 1.89117 | 1.78528 | 1.90705 | 2.05639 | 1.66667 | 1.71257 | 1.63055 |
50 | \hat{\delta} | 2.11809 | 3.22118 | 3.27914 | 3.37684 | 3.16358 | 3.14356 | 3.07212 | 3.27358 | 3.27555 | 1.92975 | 2.00437 |
120 | \hat{\delta} | 2.00738 | 4.46400 | 4.08915 | 5.19403 | 4.27626 | 4.30435 | 4.14453 | 4.03383 | 4.40283 | 2.05997 | 2.23158 |
200 | \hat{\delta} | 1.88626 | 5.13816 | 5.01911 | 6.17094 | 4.81646 | 5.03822 | 4.63030 | 4.55030 | 5.02299 | 1.91600 | 2.11422 |
300 | \hat{\delta} | 1.85538 | 5.53571 | 5.71818 | 7.52055 | 5.42342 | 5.63303 | 5.20175 | 4.35915 | 5.81356 | 1.88395 | 1.98023 |
450 | \hat{\delta} | 1.78755 | 4.31579 | 6.43836 | 10.63415 | 6.58108 | 6.25676 | 5.94937 | 5.04124 | 6.63291 | 1.81306 | 1.87031 |
\delta=0.6 | ||||||||||||
15 | \hat{\delta} | 2.10257 | 1.80127 | 1.76798 | 1.61167 | 1.73971 | 1.52413 | 1.90935 | 1.62599 | 1.91201 | 1.70299 | 1.79647 |
50 | \hat{\delta} | 1.89052 | 1.76432 | 3.68263 | 3.07065 | 3.24167 | 3.18102 | 2.83529 | 2.20078 | 3.44154 | 1.58018 | 1.59773 |
120 | \hat{\delta} | 1.07682 | 1.86474 | 11.84211 | 10.19200 | 12.10526 | 12.27184 | 2.53523 | 2.19143 | 4.59252 | 1.39825 | 1.48068 |
200 | \hat{\delta} | 1.81764 | 3.01890 | 36.92308 | 19.70732 | 31.36735 | 20.77500 | 4.07385 | 6.47079 | 6.98649 | 1.26058 | 1.53116 |
300 | \hat{\delta} | 2.03397 | 9.14573 | 94.00000 | 34.70588 | 96.00000 | 36.47059 | 5.66368 | 8.45113 | 10.03571 | 1.11630 | 1.59630 |
450 | \hat{\delta} | 2.02886 | 3.74671 | 174.57143 | 46.00000 | 154.00000 | 46.87500 | 10.81618 | 6.72539 | 15.39024 | 1.29133 | 1.92838 |
\delta=1.0 | ||||||||||||
15 | \hat{\delta} | 1.68168 | 1.79337 | 1.95873 | 1.86428 | 1.92982 | 1.69938 | 1.66439 | 1.82151 | 2.19903 | 1.18117 | 1.64157 |
50 | \hat{\delta} | 1.54526 | 2.58061 | 6.17552 | 5.42521 | 5.52263 | 6.31959 | 3.82429 | 2.21024 | 5.10873 | 1.61619 | 1.30479 |
120 | \hat{\delta} | 1.39701 | 4.93770 | 27.10390 | 13.56757 | 23.06250 | 13.67949 | 11.79913 | 2.65306 | 23.42254 | 1.63180 | 1.75935 |
200 | \hat{\delta} | 1.82268 | 6.91685 | 79.00000 | 18.37931 | 76.64286 | 20.24138 | 77.00000 | 3.14979 | 88.36667 | 2.09427 | 3.12264 |
300 | \hat{\delta} | 1.72203 | 7.19677 | 176.91667 | 26.84615 | 161.23077 | 27.23077 | 178.00000 | 6.91166 | 134.61538 | 1.86864 | 2.73634 |
450 | \hat{\delta} | 2.42608 | 24.85185 | 254.16667 | 42.16667 | 273.80000 | 40.16667 | 332.16667 | 11.06918 | 163.57143 | 2.12910 | 1.46159 |
\delta=1.5 | ||||||||||||
15 | \hat{\delta} | 1.74797 | 2.06166 | 2.09336 | 2.00275 | 2.25601 | 2.02049 | 1.78415 | 1.42033 | 1.99113 | 2.18236 | 1.50175 |
50 | \hat{\delta} | 1.58121 | 7.48928 | 6.24385 | 6.01931 | 6.22030 | 5.34356 | 14.64024 | 1.63117 | 8.12880 | 1.61337 | 1.59366 |
120 | \hat{\delta} | 2.78723 | 10.69713 | 16.88095 | 12.10843 | 18.55814 | 12.39286 | 54.60215 | 3.83208 | 46.43000 | 2.04591 | 1.66224 |
200 | \hat{\delta} | 1.20643 | 100.90323 | 38.10000 | 17.52941 | 33.12121 | 17.54286 | 99.68571 | 3.64516 | 94.34211 | 2.40303 | 1.61870 |
300 | \hat{\delta} | 1.14835 | 261.15385 | 101.60000 | 26.20000 | 91.07143 | 30.92857 | 171.33333 | 11.85870 | 214.06667 | 3.37081 | 1.96066 |
450 | \hat{\delta} | 1.17286 | 370.00000 | 185.71429 | 44.66667 | 177.28571 | 37.57143 | 376.57143 | 4.51670 | 329.57143 | 1.53292 | 3.26991 |
\delta=2.0 | ||||||||||||
15 | \hat{\delta} | 1.44528 | 2.29860 | 2.09539 | 2.18214 | 2.07689 | 2.29155 | 2.03887 | 1.64293 | 2.29799 | 1.91037 | 1.63957 |
50 | \hat{\delta} | 1.43903 | 14.86357 | 5.76391 | 6.80919 | 5.80201 | 4.99078 | 8.62879 | 2.62247 | 5.78613 | 2.10575 | 2.86022 |
120 | \hat{\delta} | 2.46001 | 71.90291 | 12.75472 | 12.81308 | 12.75000 | 10.71875 | 40.80342 | 4.28986 | 26.82927 | 1.80279 | 2.28536 |
200 | \hat{\delta} | 2.09955 | 119.40000 | 22.78947 | 19.57500 | 20.07500 | 17.25532 | 113.30233 | 4.45243 | 78.47826 | 2.35818 | 1.64810 |
300 | \hat{\delta} | 1.68733 | 204.27778 | 35.72222 | 28.66667 | 36.16667 | 24.90909 | 238.05263 | 4.49545 | 215.35000 | 1.78456 | 1.02462 |
450 | \hat{\delta} | 1.12838 | 339.12500 | 65.75000 | 43.62500 | 88.25000 | 35.00000 | 411.22222 | 6.33101 | 510.00000 | 2.04043 | 1.31170 |
\delta=2.5 | ||||||||||||
15 | \hat{\delta} | 2.00128 | 2.23642 | 2.06948 | 2.20063 | 2.33644 | 2.04769 | 2.01129 | 1.64312 | 2.07672 | 1.70544 | 1.73017 |
50 | \hat{\delta} | 0.96425 | 10.79043 | 6.12016 | 6.88961 | 6.11179 | 4.84410 | 5.91411 | 3.30459 | 5.17339 | 1.97101 | 4.20687 |
120 | \hat{\delta} | 1.10808 | 69.60317 | 12.03356 | 12.29932 | 12.63448 | 10.21622 | 20.62658 | 3.57039 | 13.23077 | 1.91167 | 5.99552 |
200 | \hat{\delta} | 2.74171 | 168.08163 | 17.58182 | 20.02000 | 18.98113 | 17.62500 | 79.14035 | 10.45211 | 32.37097 | 1.60561 | 2.77473 |
300 | \hat{\delta} | 4.41193 | 321.40909 | 29.21739 | 28.50000 | 26.19231 | 24.16129 | 124.92857 | 6.62520 | 134.44444 | 1.49507 | 2.44361 |
450 | \hat{\delta} | 3.86858 | 477.70000 | 42.30000 | 40.50000 | 46.80000 | 37.21429 | 396.08333 | 6.72133 | 307.61538 | 1.66000 | 1.82361 |
Parameter | m^ {\circ \circ} | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | 15 | 5.0 | 4.0 | 8.0 | 1.0 | 9.0 | 3.0 | 2.0 | 7.0 | 11.0 | 10.0 | 6.0 |
50 | 4.0 | 6.0 | 8.0 | 1.0 | 5.0 | 3.0 | 2.0 | 7.0 | 11.0 | 10.0 | 9.0 | |
120 | 7.0 | 8.0 | 2.0 | 1.0 | 6.0 | 4.0 | 3.0 | 5.0 | 9.0 | 11.0 | 10.0 | |
200 | 8.0 | 6.0 | 4.5 | 1.0 | 2.0 | 7.0 | 3.0 | 4.5 | 9.0 | 11.0 | 10.0 | |
300 | 4.0 | 6.0 | 8.0 | 1.0 | 3.0 | 5.0 | 2.0 | 7.0 | 9.0 | 11.0 | 10.0 | |
450 | 7.5 | 7.5 | 3.0 | 1.0 | 5.0 | 2.0 | 4.0 | 6.0 | 9.0 | 11.0 | 10.0 | |
\delta=0.6 | 15 | 5.0 | 4.0 | 8.0 | 2.0 | 6.0 | 1.0 | 3.0 | 7.0 | 10.0 | 11.0 | 9.0 |
50 | 8.0 | 9.0 | 4.0 | 2.0 | 3.0 | 1.0 | 5.0 | 7.0 | 6.0 | 10.0 | 11.0 | |
120 | 7.0 | 5.0 | 3.0 | 2.0 | 4.0 | 1.0 | 8.0 | 6.0 | 11.0 | 10.0 | 9.0 | |
200 | 8.0 | 6.0 | 4.0 | 1.0 | 5.0 | 2.0 | 3.0 | 9.5 | 7.0 | 9.5 | 11.0 | |
300 | 6.0 | 10.0 | 8.0 | 1.0 | 9.0 | 2.0 | 5.0 | 3.0 | 4.0 | 7.0 | 11.0 | |
450 | 9.0 | 3.0 | 4.0 | 1.0 | 5.0 | 2.0 | 10.0 | 7.0 | 8.0 | 6.0 | 11.0 | |
\delta=1.0 | 15 | 6.0 | 3.0 | 7.0 | 5.0 | 4.0 | 1.0 | 2.0 | 9.5 | 8.0 | 9.5 | 11.0 |
50 | 6.0 | 9.0 | 3.0 | 2.0 | 4.0 | 1.0 | 10.0 | 7.5 | 5.0 | 7.5 | 11.0 | |
120 | 7.0 | 8.5 | 4.0 | 1.0 | 3.0 | 2.0 | 6.0 | 5.0 | 10.0 | 8.5 | 11.0 | |
200 | 8.0 | 10.0 | 3.0 | 1.0 | 5.5 | 2.0 | 7.0 | 4.0 | 9.0 | 5.5 | 11.0 | |
300 | 6.0 | 9.0 | 8.0 | 1.0 | 7.0 | 2.0 | 10.0 | 5.0 | 3.0 | 4.0 | 11.0 | |
450 | 7.0 | 10.0 | 6.0 | 2.0 | 3.0 | 1.0 | 9.0 | 8.0 | 4.0 | 5.0 | 11.0 | |
\delta=1.5 | 15 | 6.0 | 3.0 | 5.0 | 4.0 | 7.0 | 1.0 | 2.0 | 9.0 | 8.0 | 11.0 | 10.0 |
50 | 7.0 | 10.0 | 2.0 | 3.0 | 4.0 | 1.0 | 9.0 | 8.0 | 5.0 | 6.0 | 11.0 | |
120 | 10.0 | 5.0 | 3.0 | 1.0 | 4.0 | 2.0 | 9.0 | 7.0 | 8.0 | 6.0 | 11.0 | |
200 | 6.0 | 7.0 | 4.0 | 1.0 | 3.0 | 2.0 | 8.0 | 9.0 | 10.0 | 5.0 | 11.0 | |
300 | 5.0 | 8.5 | 4.0 | 1.0 | 3.0 | 2.0 | 6.5 | 10.0 | 8.5 | 6.5 | 11.0 | |
450 | 8.0 | 7.0 | 3.0 | 2.0 | 4.0 | 1.0 | 10.0 | 6.0 | 9.0 | 5.0 | 11.0 | |
\delta=2.0 | 15 | 3.0 | 4.0 | 5.0 | 7.0 | 6.0 | 1.0 | 2.0 | 11.0 | 8.0 | 10.0 | 9.0 |
50 | 7.0 | 9.0 | 2.0 | 4.0 | 3.0 | 1.0 | 6.0 | 10.0 | 5.0 | 8.0 | 11.0 | |
120 | 8.0 | 9.0 | 1.0 | 2.0 | 4.0 | 3.0 | 6.0 | 10.0 | 5.0 | 7.0 | 11.0 | |
200 | 8.0 | 9.0 | 3.0 | 1.0 | 2.0 | 4.0 | 10.0 | 7.0 | 6.0 | 5.0 | 11.0 | |
300 | 6.0 | 7.0 | 3.0 | 1.0 | 2.0 | 4.0 | 9.0 | 11.0 | 10.0 | 5.0 | 8.0 | |
450 | 7.0 | 6.0 | 3.0 | 1.0 | 4.0 | 2.0 | 9.5 | 8.0 | 11.0 | 5.0 | 9.5 | |
\delta=2.5 | 15 | 2.0 | 3.0 | 5.0 | 6.0 | 7.0 | 1.0 | 4.0 | 11.0 | 8.0 | 10.0 | 9.0 |
50 | 7.0 | 8.0 | 2.0 | 4.0 | 5.0 | 1.0 | 3.0 | 11.0 | 6.0 | 9.0 | 10.0 | |
120 | 7.0 | 9.0 | 1.0 | 2.0 | 3.0 | 4.0 | 6.0 | 11.0 | 5.0 | 8.0 | 10.0 | |
200 | 10.0 | 8.0 | 1.0 | 3.0 | 2.0 | 4.0 | 6.0 | 9.0 | 5.0 | 7.0 | 11.0 | |
300 | 11.0 | 8.0 | 2.0 | 1.0 | 3.0 | 4.0 | 5.0 | 10.0 | 7.0 | 6.0 | 9.0 | |
450 | 9.0 | 7.0 | 2.0 | 1.0 | 3.0 | 4.0 | 8.0 | 11.0 | 6.0 | 5.0 | 10.0 | |
\sum Ranks | 245.5 | 251.5 | 146.5 | 72.0 | 157.5 | 84.0 | 213.0 | 284.0 | 273.5 | 282.0 | 366.5 | |
Overall Rank | 6 | 7 | 3 | 1 | 4 | 2 | 5 | 10 | 8 | 9 | 11 |
Parameter | m^ {\circ \circ} | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
\delta=0.15 | 15 | 1.0 | 5.0 | 7.0 | 2.0 | 8.0 | 4.0 | 3.0 | 6.0 | 11.0 | 10.0 | 9.0 |
50 | 9.0 | 5.0 | 6.0 | 1.0 | 7.0 | 2.0 | 3.0 | 4.0 | 8.0 | 11.0 | 10.0 | |
120 | 9.0 | 2.0 | 4.0 | 1.0 | 5.0 | 3.0 | 6.0 | 7.0 | 8.0 | 11.0 | 10.0 | |
200 | 10.0 | 2.0 | 5.0 | 1.0 | 4.0 | 3.0 | 6.0 | 7.0 | 8.0 | 11.0 | 9.0 | |
300 | 9.0 | 4.0 | 3.0 | 1.0 | 5.0 | 2.0 | 6.0 | 8.0 | 7.0 | 11.0 | 10.0 | |
450 | 9.0 | 8.0 | 2.0 | 1.0 | 3.0 | 4.0 | 6.0 | 7.0 | 5.0 | 11.0 | 10.0 | |
\delta=0.6 | 15 | 1.0 | 3.0 | 7.0 | 5.0 | 6.0 | 2.0 | 4.0 | 8.0 | 9.0 | 11.0 | 10.0 |
50 | 9.0 | 8.0 | 1.0 | 4.0 | 3.0 | 2.0 | 6.0 | 7.0 | 5.0 | 10.0 | 11.0 | |
120 | 10.0 | 8.0 | 2.0 | 4.0 | 3.0 | 1.0 | 7.0 | 6.0 | 5.0 | 11.0 | 9.0 | |
200 | 9.0 | 8.0 | 1.0 | 2.0 | 4.0 | 3.0 | 7.0 | 6.0 | 5.0 | 11.0 | 10.0 | |
300 | 9.0 | 7.0 | 3.5 | 1.5 | 1.5 | 3.5 | 8.0 | 6.0 | 5.0 | 11.0 | 10.0 | |
450 | 9.0 | 8.0 | 1.0 | 7.0 | 5.0 | 3.5 | 3.5 | 6.0 | 2.0 | 11.0 | 10.0 | |
\delta=1.0 | 15 | 6.0 | 2.0 | 3.0 | 5.0 | 4.0 | 1.0 | 7.0 | 9.0 | 8.0 | 11.0 | 10.0 |
50 | 9.0 | 7.0 | 2.0 | 3.0 | 4.0 | 1.0 | 6.0 | 8.0 | 5.0 | 10.0 | 11.0 | |
120 | 9.0 | 7.0 | 3.0 | 1.0 | 4.0 | 2.0 | 6.0 | 8.0 | 5.0 | 10.5 | 10.5 | |
200 | 11.0 | 7.0 | 1.0 | 4.0 | 3.0 | 2.0 | 6.0 | 8.0 | 5.0 | 9.0 | 10.0 | |
300 | 9.0 | 8.0 | 1.0 | 4.0 | 2.0 | 3.0 | 5.0 | 7.0 | 6.0 | 11.0 | 10.0 | |
450 | 8.0 | 4.0 | 3.0 | 2.0 | 1.0 | 5.0 | 7.0 | 6.0 | 9.5 | 9.5 | 11.0 | |
\delta=1.5 | 15 | 5.5 | 3.0 | 2.0 | 7.0 | 4.0 | 1.0 | 5.5 | 10.0 | 8.0 | 9.0 | 11.0 |
50 | 9.5 | 6.0 | 2.0 | 3.0 | 1.0 | 4.0 | 5.0 | 8.0 | 7.0 | 9.5 | 11.0 | |
120 | 9.0 | 7.0 | 2.0 | 1.0 | 4.0 | 3.0 | 5.0 | 8.0 | 6.0 | 10.0 | 11.0 | |
200 | 10.0 | 2.0 | 1.0 | 3.0 | 4.0 | 6.0 | 5.0 | 8.0 | 7.0 | 9.0 | 11.0 | |
300 | 10.0 | 1.0 | 4.0 | 5.0 | 2.0 | 3.0 | 6.5 | 8.0 | 6.5 | 9.0 | 11.0 | |
450 | 11.0 | 2.0 | 8.0 | 1.0 | 3.5 | 3.5 | 9.5 | 5.0 | 6.0 | 7.0 | 9.5 | |
\delta=2.0 | 15 | 5.0 | 2.0 | 4.0 | 7.0 | 6.0 | 1.0 | 3.0 | 10.0 | 8.0 | 11.0 | 9.0 |
50 | 9.0 | 4.0 | 2.0 | 1.0 | 3.0 | 5.0 | 6.0 | 8.0 | 7.0 | 10.5 | 10.5 | |
120 | 9.0 | 1.0 | 2.0 | 3.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 10.0 | 11.0 | |
200 | 9.5 | 3.0 | 1.0 | 2.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
300 | 9.5 | 2.5 | 2.5 | 1.0 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
450 | 10.0 | 2.0 | 5.0 | 1.0 | 3.0 | 4.0 | 8.0 | 6.0 | 9.0 | 7.0 | 11.0 | |
\delta=2.5 | 15 | 1.5 | 1.5 | 6.0 | 7.0 | 5.0 | 3.0 | 4.0 | 10.0 | 8.0 | 11.0 | 9.0 |
50 | 10.5 | 2.0 | 3.0 | 1.0 | 5.0 | 6.0 | 4.0 | 8.5 | 7.0 | 10.5 | 8.5 | |
120 | 11.0 | 1.0 | 3.0 | 4.0 | 2.0 | 7.0 | 5.0 | 8.5 | 6.0 | 10.0 | 8.5 | |
200 | 9.5 | 2.0 | 4.0 | 1.0 | 3.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
300 | 9.5 | 1.5 | 3.0 | 1.5 | 4.0 | 7.0 | 6.0 | 8.0 | 5.0 | 9.5 | 11.0 | |
450 | 9.5 | 1.5 | 3.0 | 1.5 | 4.0 | 7.0 | 5.0 | 8.0 | 6.0 | 9.5 | 11.0 | |
\sum Ranks | 304.5 | 148.0 | 113.0 | 100.5 | 138.0 | 135.5 | 200.0 | 270.0 | 237.0 | 362.0 | 367.5 | |
Overall Rank | 9 | 5 | 2 | 1 | 4 | 3 | 6 | 8 | 7 | 10 | 11 |
m^ {\circ \circ} | Mean | Median | Skewness | Kurtosis | Range | Minimum | Maximum | Sum | |
data | 73 | 0.109733 | 0.0608 | 3.71542 | 17.9579 | 0.9735 | 0.002 | 0.9755 | 8.0105 |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PSE | RADE | WLSE | LADE | MSADE | MSALDE |
20 | {\ddddot \delta} | 14.2997 | 14.4682 | 14.3253 | 14.2344 | 14.2934 | 7.22796 | 13.5736 | 14.591 | 15.5268 | 23.1179 | 14.2344 |
35 | {\ddddot \delta} | 18.2715 | 18.3864 | 18.1745 | 18.2414 | 18.1516 | 51.3402 | 20.4428 | 19.3072 | 16.4006 | 15.145 | 17.8123 |
50 | {\ddddot \delta} | 14.7089 | 14.8449 | 14.6641 | 14.6879 | 14.6491 | 16.5 | 15.777 | 15.078 | 13.8907 | 13.9479 | 15.4683 |
65 | {\ddddot \delta} | 16.1061 | 16.1716 | 16.031 | 16.0896 | 16.0229 | 16.2323 | 17.0406 | 16.2854 | 15.298 | 14.9776 | 15.7568 |
m^ {\circ \circ} | Estimate | MLE | ADE | CME | MPSE | LSE | PCE | RADE | WLSE | LADE | MSADE | MSALDE |
20 | \hat{{\delta}} | 14.2503 | 14.2662 | 13.8488 | 13.6955 | 13.7732 | 7.56834 | 13.3422 | 14.3021 | 15.4774 | 13.5672 | 17.3995 |
35 | \hat{{\delta}} | 12.5203 | 12.5202 | 12.3418 | 12.2565 | 12.3128 | 12.4091 | 13.0535 | 12.8861 | 11.94 | 14.5198 | 17.4009 |
50 | \hat{{\delta}} | 17.1027 | 17.0984 | 16.9476 | 16.9634 | 16.9351 | 15.6024 | 17.708 | 17.2244 | 16.471 | 18.3951 | 14.3959 |
65 | \hat{{\delta}} | 14.4861 | 14.4806 | 14.3786 | 14.4454 | 14.3728 | 14.4125 | 15.1468 | 14.4975 | 13.8117 | 13.7231 | 6.63895 |
Method | design | \hat{\delta} | ADTS | CMTS | KSTS | KSP |
MLE | SRS | 14.7089 | 0.761824 | 0.114911 | 0.117979 | 0.489566 |
RSS | 17.1027 | 0.387748 | 0.0472457 | 0.0751288 | 0.940393 | |
ADE | SRS | 14.8449 | 0.760685 | 0.115343 | 0.115999 | 0.511594 |
RSS | 17.0984 | 0.387747 | 0.0472331 | 0.0751671 | 0.940158 | |
CME | SRS | 14.6641 | 0.762704 | 0.114883 | 0.118639 | 0.482331 |
RSS | 16.9476 | 0.388744 | 0.047017 | 0.0765033 | 0.931604 | |
MPSE | SRS | 14.6879 | 0.762205 | 0.114891 | 0.118288 | 0.48617 |
RSS | 16.9634 | 0.388545 | 0.0470194 | 0.0763622 | 0.932538 | |
LSE | SRS | 14.6491 | 0.763056 | 0.114886 | 0.118861 | 0.479908 |
RSS | 16.9351 | 0.388917 | 0.0470186 | 0.0766156 | 0.930856 | |
PSE | SRS | 16.5 | 0.91112 | 0.157392 | 0.117831 | 0.491197 |
RSS | 15.6024 | 0.494113 | 0.0658479 | 0.0894908 | 0.818117 | |
RADE | SRS | 15.777 | 0.810594 | 0.131257 | 0.105954 | 0.6285 |
RSS | 17.708 | 0.403364 | 0.052323 | 0.0830061 | 0.881087 | |
WLSE | SRS | 15.078 | 0.76395 | 0.117256 | 0.112676 | 0.549461 |
RSS | 17.2244 | 0.388432 | 0.0477398 | 0.0750625 | 0.940799 | |
LADE | SRS | 13.8907 | 0.81995 | 0.123882 | 0.13058 | 0.361317 |
RSS | 16.471 | 0.405507 | 0.0492597 | 0.0808795 | 0.899158 | |
MSADE | SRS | 13.9479 | 0.812856 | 0.12257 | 0.12966 | 0.369911 |
RSS | 18.3951 | 0.455783 | 0.0655095 | 0.0940681 | 0.768166 | |
MSALDE | SRS | 15.4683 | 0.783456 | 0.123611 | 0.107303 | 0.612458 |
RSS | 14.3959 | 0.762225 | 0.120147 | 0.106991 | 0.616163 |