The GIIPS economies are noted to suffer the most consequences of systemic crises. Regardless of their bad performance in crisis periods, their role(s) in asset allocation and portfolio management cannot go unnoticed. For effective portfolio management across divergent timescales, cross-market interdependencies cannot be side-lined. This study examines the conditional and unconditional co-movements of stock market returns of GIIPS economies incorporating investor fear in their time-frequency connectedness. As a result, the bi-, partial, and multiple wavelet approaches are employed. Our findings explicate that the high interdependencies between the stock market returns of GIIPS across all time scales are partly driven by investor fear, implying that extreme investor sentiment could influence stock market prices in GIIPS. The lagging role of Spanish stock market returns manifests at zero lags at high (lower) and medium frequencies (scales). At lower frequencies (higher scales), particularly quarterly-to-biannual and biannual-to-annual, Spanish and Irish stock markets, respectively, lag all other markets. Although portfolio diversification and safe haven benefits are minimal with GIIPS stocks, their volatilities could be hedged against by investing in the US VIX. Intriguing inferences for international portfolio and risk management are offered by our findings.
Citation: Samuel Kwaku Agyei, Ahmed Bossman. Investor sentiment and the interdependence structure of GIIPS stock market returns: A multiscale approach[J]. Quantitative Finance and Economics, 2023, 7(1): 87-116. doi: 10.3934/QFE.2023005
[1] | Yue Cao . Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28(1): 27-46. doi: 10.3934/era.2020003 |
[2] | Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324 |
[3] | Jianxia He, Qingyan Li . On the global well-posedness and exponential stability of 3D heat conducting incompressible Navier-Stokes equations with temperature-dependent coefficients and vacuum. Electronic Research Archive, 2024, 32(9): 5451-5477. doi: 10.3934/era.2024253 |
[4] | Yazhou Wang, Yuzhu Wang . Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199 |
[5] |
Guochun Wu, Han Wang, Yinghui Zhang .
Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in |
[6] | Jie Qi, Weike Wang . Global solutions to the Cauchy problem of BNSP equations in some classes of large data. Electronic Research Archive, 2024, 32(9): 5496-5541. doi: 10.3934/era.2024255 |
[7] | Hui Yang, Futao Ma, Wenjie Gao, Yuzhu Han . Blow-up properties of solutions to a class of $ p $-Kirchhoff evolution equations. Electronic Research Archive, 2022, 30(7): 2663-2680. doi: 10.3934/era.2022136 |
[8] | Yang Cao, Qiuting Zhao . Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, 2021, 29(6): 3833-3851. doi: 10.3934/era.2021064 |
[9] | José Luis Díaz Palencia, Saeed Ur Rahman, Saman Hanif . Regularity criteria for a two dimensional Erying-Powell fluid flowing in a MHD porous medium. Electronic Research Archive, 2022, 30(11): 3949-3976. doi: 10.3934/era.2022201 |
[10] | Zhonghua Qiao, Xuguang Yang . A multiple-relaxation-time lattice Boltzmann method with Beam-Warming scheme for a coupled chemotaxis-fluid model. Electronic Research Archive, 2020, 28(3): 1207-1225. doi: 10.3934/era.2020066 |
The GIIPS economies are noted to suffer the most consequences of systemic crises. Regardless of their bad performance in crisis periods, their role(s) in asset allocation and portfolio management cannot go unnoticed. For effective portfolio management across divergent timescales, cross-market interdependencies cannot be side-lined. This study examines the conditional and unconditional co-movements of stock market returns of GIIPS economies incorporating investor fear in their time-frequency connectedness. As a result, the bi-, partial, and multiple wavelet approaches are employed. Our findings explicate that the high interdependencies between the stock market returns of GIIPS across all time scales are partly driven by investor fear, implying that extreme investor sentiment could influence stock market prices in GIIPS. The lagging role of Spanish stock market returns manifests at zero lags at high (lower) and medium frequencies (scales). At lower frequencies (higher scales), particularly quarterly-to-biannual and biannual-to-annual, Spanish and Irish stock markets, respectively, lag all other markets. Although portfolio diversification and safe haven benefits are minimal with GIIPS stocks, their volatilities could be hedged against by investing in the US VIX. Intriguing inferences for international portfolio and risk management are offered by our findings.
We consider the compressible isentropic Navier-Stokes equations with degenerate viscosities in
{ρt+div(ρu)=0,(ρu)t+div(ρu⊗u)+∇P=divT, | (1) |
where
P=Aργ,γ>1, | (2) |
where
T=μ(ρ)(∇u+(∇u)⊤)+λ(ρ)divuI3, | (3) |
where
μ(ρ)=αρ,λ(ρ)=βρ, | (4) |
where the constants
α>0,2α+3β≥0. |
Here, the initial data are given by
(ρ,u)|t=0=(ρ0,u0)(x),x∈R3, | (5) |
and the far field behavior is given by
(ρ,u)→(0,0)as |x|→∞,t≥0. | (6) |
The aim of this paper is to prove a blow-up criterion for the regular solution to the Cauchy problem (1) with (5)-(6).
Throughout the paper, we adopt the following simplified notations for the standard homogeneous and inhomogeneous Sobolev space:
Dk,r={f∈L1loc(R3):|f|Dk,r=|∇kf|Lr<+∞},Dk=Dk,2(k≥2),D1={f∈L6(R3):|f|D1=|∇f|L2<∞},‖f‖X∩Y=‖f‖X+‖f‖Y,‖f‖s=‖f‖Hs(R3),|f|p=‖f‖Lp(R3),|f|Dk=‖f‖Dk(R3). |
A detailed study of homogeneous Sobolev space can be found in [5].
The compressible isentropic Navier-Stokes system is a well-known mathematical model, which has attracted great attention from the researchers, and some significant processes have been made in the well-posedness for this system.
When
−divT0+∇P(ρ0)=√ρ0g |
for some
When
μ(ρ)=αρδ1,λ(ρ)=βρδ2, | (7) |
where
δ1=1,δ2=0 or 1,α>0,α+β≥0, | (8) |
and (6), where the vacuum cannot appear in any local point. They [12] also prove the same existence result in
(ρ,u)→(ˉρ,0)as|x|→∞, | (9) |
with initial vacuum appearing in some open set or the far field, the constant
1<δ1=δ2≤min(3,γ+12),α>0,α+β≥0. | (10) |
We also refer readers to [3], [6], [10], [13], [18], [26] and references therein for other interesting progress for this compressible degenerate system, corresponding radiation hydrodynamic equations and magnetohydrodynamic equations.
It should be noted that one should not always expect the global existence of solutions with better regularities or general initial data because of Xin's results [23] and Rozanova's results [20]. It was proved that there is no global smooth solutions to (1), if the initial density has nontrivial compact support (
For constant viscosity, Beale-Kato-Majda [1] first proved that the maximum norm of the vorticity controls the blow-up of the smooth solutions to
limT→T∗∫T0|curlu|∞dt=∞, | (11) |
where
limT→T∗∫T0|D(u)|∞dt=∞, | (12) |
where the deformation tensor
When the viscosities depend on density in the form of (4), S. Zhu [25] introduced the regular solutions, which can be defined as
Definition 1.1. [25] Let
(A)(ρ,u) in [0,T]×R3 satisfies the Cauchy problem (1)with (5)−(6)in the sense of distributions;(B)ρ≥0,ργ−12∈C([0,T];H2), (ργ−12)t∈C([0,T];H1);(C)∇logρ∈C([0,T];D1), (∇logρ)t∈C([0,T];L2);(D)u∈C([0,T];H2)∩L2([0,T];D3), ut∈C([0,T];L2)∩L2([0,T];D1). |
The local existence of the regular solutions has been obtained by Zhu [25].
Theorem 1.2. [25] Let
ργ−120≥0,(ργ−120,u0)∈H2,∇logρ0∈D1, | (13) |
then there exist a small time
ρ∈C([0,T∗];H2),ρt∈C([0,T∗];H1). |
Based on Theorem 1.2, we establish the blow-up criterion for the regular solution in terms of
Theorem 1.3. Let
limT↦¯T(sup0≤t≤T|∇logρ|6+∫T0|D(u)|∞ dt)=+∞, | (14) |
and
limsupT↦¯T∫T0‖D(u)‖L∞∩D1,6 dt=+∞. | (15) |
The rest of the paper can be organized as follows. In Section 2, we will give the proof for the criterion (14). Section 3 is an appendix which will present some important lemmas which are frequently used in our proof, and also give the detail derivation for the desired system used in our following proof.
In this section, we give the proof for Theorem 1.3. We use a contradiction argument to prove
limT↦¯T(sup0≤t≤T|∇logρ|6+∫T0|D(u)|∞dt)=C0<+∞ | (16) |
for some constant
Notice that, one can also prove (15) by contradiction argument. Assume that
limsupT↦¯T∫T0‖D(u)‖L∞∩D1,6 dt=C′0<+∞ | (17) |
for some constant
limT↦¯Tsup0≤t≤T|∇logρ|6≤CC′0, |
which implies that under assumption (17), we have (16). Thus, if we prove that (14) holds, then (15) holds immediately.
In the rest part of this section, based on the assumption (16), we will prove that
From the definition of the regular solution, we know for
ϕ=ργ−12,ψ=2γ−1∇logϕ, | (18) |
{ϕt+u⋅∇ϕ+γ−12ϕdivu=0,ψt+∇(u⋅ψ)+∇divu=0,ut+u⋅∇u+2θϕ∇ϕ+Lu=ψ⋅Q(u), | (19) |
where
Lu=−div(α(∇u+(∇u)⊤)+βdivuI3), | (20) |
and terms
Q(u)=α(∇u+(∇u)⊤)+βdivuI3,θ=Aγγ−1. | (21) |
See our appendix for the detailed process of the reformulation.
For
ψt+3∑l=1Al∂lψ+Bψ+∇divu=0. | (22) |
Here
ψ=2γ−1∇ϕϕ=2γ−1∇ργ−12ργ−12=∇ρρ=∇logρ, | (23) |
combing this with
Under (16) and (19), we first show that the density
Lemma 2.1. Let
‖ρ‖L∞([0,T]×R3)+‖ϕ‖L∞([0,T];Lq)≤C,0≤T<¯T, |
where
Proof. First, it is obvious that
ϕ(t,x)=ϕ0(W(0,t,x))exp(−γ−12∫t0divu(s,W(s,t,x))ds), | (24) |
where
{ddtW(t,s,x)=u(t,W(t,s,x)),0≤t≤T,W(s,s,x)=x, 0≤s≤T, x∈R3. |
Then it is clear that
‖ϕ‖L∞([0,T]×R3)≤|ϕ0|∞exp(CC0)≤C. | (25) |
Similarly,
‖ρ‖L∞([0,T]×R3)≤C. | (26) |
Next, multiplying
ddt|ϕ|22≤C|divu|∞|ϕ|22, | (27) |
from (16), (27) and the Gronwall's inequality, we immediately obtain
‖ϕ‖L∞([0,T];L2)≤C. | (28) |
Combing (25)-(28) together, one has
‖ϕ‖L∞([0,T];Lq)≤C,q∈[2,+∞]. |
We complete the proof of this lemma.
Before go further, notice that
|∇ϕ|6=|ϕ∇logϕ|6=2γ−1|ϕ∇logρ|6≤C|ϕ|∞|∇logρ|6≤C, | (29) |
where we have used
Lemma 2.2. Let
sup0≤t≤T|u(t)|22+∫T0|∇u(t)|22dt≤C,0≤T<¯T, |
where
Proof. Multiplying
ddt|u|22+2∫R3(α|∇u|2+(α+β)(divu)2)dx=∫R32(−u⋅∇u⋅u−θ∇ϕ2⋅u+ψ⋅Q(u)⋅u)dx≡:L1+L2+L3. | (30) |
The right-hand side terms can be estimated as follows.
L1=−∫R32u⋅∇u⋅udx≤C|divu|∞|u|22,L2=2∫R3θϕ2divudx≤C|ϕ|22|divu|∞≤C|divu|∞,L3=∫R32ψ⋅Q(u)⋅udx≤C|ψ|6|∇u|2|u|3≤C|∇u|2|u|122|∇u|122≤α2|∇u|22+C|u|2|∇u|2≤α|∇u|22+C|u|22, | (31) |
where we have used (16), (23) and the facts
|u|3≤C|u|122|∇u|122. | (32) |
Thus (30) and (31) yield
ddt|u|22+α|∇u|22≤C(|divu|∞+1)|u|22+C|divu|∞. | (33) |
By the Gronwall's inequality, (16) and (33), we have
|u(t)|22+∫t0|∇u(s)|22ds≤C,0≤t≤T. | (34) |
This completes the proof of this lemma.
The next lemma provides the key estimates on
Lemma 2.3. Let
sup0≤t≤T(|∇u(t)|22+|∇ϕ(t)|22)+∫T0(|∇2u|22+|ut|22)dt≤C,0≤T<¯T, |
where
Proof. Multiplying
12ddt∫R3(α|∇u|2+(α+β)|divu|2)dx+∫R3(−Lu−θ∇ϕ2)2 dx=−α∫R3(u⋅∇u)⋅∇×curlu dx+∫R3(2α+β)(u⋅∇u)⋅∇divu dx+θ∫R3(ψ⋅Q(u))⋅∇ϕ2dx−θ∫R3(u⋅∇u)⋅∇ϕ2 dx+∫R3(ψ⋅Q(u))⋅Lu dx−θ∫R3ut⋅∇ϕ2 dx≡:9∑i=4Li, | (35) |
where we have used the fact that
−△u+∇divu=curl(curlu)=∇×curlu. |
First, from the standard elliptic estimate shown in Lemma 3.3, we have
|∇2u|22−C|θ∇ϕ2|22≤C|div(α(∇u+(∇u)⊤)+βdivuI3)|22−C|θ∇ϕ2|22≤C|div(α(∇u+(∇u)⊤)+βdivuI3)−θ∇ϕ2|22=C∫R3(−Lu−θ∇ϕ2)2dx. | (36) |
Second, we estimate the right-hand side of (35) term by term. According to
{u×curlu=12∇(|u|2)−u⋅∇u,∇×(a×b)=(b⋅∇)a−(a⋅∇)b+(divb)a−(diva)b, |
Hölder's inequality, Young's inequality, (16), (23), (29), Lemma 2.2, Lemma 3.1 and
|L4|=α|∫R3(u⋅∇)u⋅∇×curlu dx|=α|∫R3(curlu⋅∇×((u⋅∇)u))dx|=α|∫R3(curlu⋅∇×(u×curlu))dx|=α|∫R3(12|curlu|2divu−curlu⋅D(u)⋅curlu)dx|≤C|∇u|∞|∇u|22,|L5|=|∫R3(2α+β)(u⋅∇)u⋅∇divu dx|≤|∫R3(2α+β)(−∇u:∇u⊤divu+12(divu)3)dx|+C|∇ϕ|6|u|3|∇u|2|divu|∞≤C(|∇u|22|divu|∞+|u|122|∇u|122|∇u|2|divu|∞)≤C(|∇u|22+|u|2|∇u|2)|divu|∞≤C|divu|∞(|∇u|22+1),L6=θ∫R3(ψ⋅Q(u))⋅∇ϕ2 dx≤C|ψ|6|∇u|3|∇ϕ2|2≤C|∇u|122|∇2u|122|∇ϕ|2|ϕ|∞≤C|∇ϕ|22+C(ϵ)|∇u|22+ϵ|∇2u|22,|L7|=θ|∫R3(u⋅∇u)⋅∇ϕ2dx|=θ|−∫R3∇u:(∇u)⊤ϕ2dx−∫R3ϕ2u⋅∇(divu)dx| | (37) |
=θ|−∫R3∇u:(∇u)⊤ϕ2dx+∫R3(divu)2ϕ2dx+∫R2u⋅∇ϕ2divu dx|≤C(|∇u|22|ϕ2|∞+|u|2|∇ϕ|2|ϕ|∞|divu|∞)≤C(|∇u|22+|divu|∞|∇ϕ|2)≤C(|∇u|22+|divu|∞+|divu|∞|∇ϕ|22),L8=∫R3(ψ⋅Q(u))⋅Lu dx≤C|ψ|6|∇u|3|∇2u|2≤C|∇2u|322|∇u|122≤C(ϵ)|∇u|22+ϵ|∇2u|22,L9=−θ∫R3ut⋅∇ϕ2dx=θ∫R3ϕ2divut dx=θddt∫R3ϕ2divu dx−θ∫R3(ϕ2)tdivu dx=θddt∫R3ϕ2divu dx−θ∫R32ϕϕtdivu dx=θddt∫R3ϕ2divu dx+θ∫R3u⋅∇ϕ2divu dx+θ(γ−1)∫R3ϕ2(divu)2dx≤θddt∫R3ϕ2divu dx+C(|u|2|∇ϕ|2|ϕ|∞|divu|∞+|∇u|22|ϕ2|∞)≤θddt∫R3ϕ2divu dx+C(|∇ϕ|2|divu|∞+|∇u|22)≤θddt∫R3ϕ2divu dx+C(|∇u|22+|divu|∞+|divu|∞|∇ϕ|22), | (38) |
where
12ddt∫R3(α|∇u|2+(α+β)|divu|2−2θϕ2divu)dx+C|∇2u|22≤C((|∇u|22+|∇ϕ|22)(|divu|∞+1)+|divu|∞). | (39) |
Third, applying
(|∇ϕ|2)t+div(|∇ϕ|2u)+(γ−2)|∇ϕ|2divu=−2(∇ϕ)⊤⋅∇u⋅(∇ϕ)−(γ−1)ϕ∇ϕ⋅∇divu=−2(∇ϕ)⊤⋅D(u)⋅(∇ϕ)−(γ−1)ϕ∇ϕ⋅∇divu. | (40) |
Integrating (40) over
ddt|∇ϕ|22≤C(ϵ)(|D(u)|∞+1)|∇ϕ|22+ϵ|∇2u|22. | (41) |
Adding (41) to (39), from the Gronwall's inequality and (16), we immediately obtain
α|∇u(t)|22−2θ∫R3ϕ2divu dx+C|∇ϕ(t)|22+∫t0|∇2u(s)|22ds≤C, |
that is
α|∇u(t)|22+C|∇ϕ(t)|22+∫t0|∇2u(s)|22ds≤C+2θ∫R3ϕ2divu dx≤C(1+|∇u|2|ϕ|2|ϕ|∞)≤C+α4|∇u(t)|22, |
which implies
|∇u(t)|22+|∇ϕ(t)|22+∫t0|∇2u(s)|22ds≤C,0≤t≤T. |
Finally, due to
∫t0|ut|22ds≤C∫t0(|∇2u|22+|∇u|23|u|26+|ϕ|2∞|∇ϕ|22+|∇u|23|ψ|26)ds≤C. |
Thus we complete the proof of this lemma.
Next, we proceed to improve the regularity of
Lemma 2.4. Let
sup0≤t≤T(|ut(t)|22+|u(t)|D2)+∫T0|∇ut|22dt≤C,0≤T<¯T, | (42) |
where
Proof. From the standard elliptic estimate shown in Lemma 3.3 and
Lu=−ut−u⋅∇u−2θϕ∇ϕ+ψ⋅Q(u), | (43) |
one has
|u|D2≤C(|ut|2+|u⋅∇u|2+|ϕ∇ϕ|2+|ψ⋅Q(u)|2)≤C(|ut|2+|u|6|∇u|3+|ϕ|3|∇ϕ|6+|ψ|6|∇u|3)≤C(1+|ut|2+|u|6|∇u|122|∇2u|122+|∇u|122|∇2u|122)≤C(1+|ut|2+|∇2u|122)≤C(1+|ut|2)+12|u|D2, | (44) |
where we have used Sobolev inequalities, (16), (23), (29) and Lemmas 2.1-2.3. Then we immediately obtain that
|u|D2≤C(1+|ut|2). | (45) |
Next, differentiating
utt+Lut=−(u⋅∇u)t−2θ(ϕ∇ϕ)t+(ψ⋅Q(u))t. | (46) |
Multiplying (46) by
12ddt|ut|22+α|∇ut|22≤12ddt|ut|22+∫R3(α|∇ut|2+(α+β)|divut|2)dx=∫R3(−(u⋅∇u)t⋅ut+(ψ⋅Q(u))t⋅ut−2θ(ϕ∇ϕ)t⋅ut)dx≡:12∑i=10Li. | (47) |
Similarly, based on (16), (23),
L10=−∫R3(u⋅∇u)t⋅ut dx=−∫R3((ut⋅∇u)⋅ut+(u⋅∇ut)⋅ut)dx=−∫R3(ut⋅D(u)⋅ut−12(ut)2divu)dx≤C|D(u)|∞|ut|22,L11=∫R3(ψ⋅Q(u))t⋅ut dx=∫R3ψ⋅Q(u)t⋅ut dx+∫R3ψt⋅Q(u)⋅ut dx=∫R3ψ⋅Q(u)t⋅ut dx−∫R3∇divu⋅Q(u)⋅ut dx+∫R3u⋅ψdiv(Q(u)⋅ut)dx≤C(|ψ|6|∇ut|2|ut|3+|∇2u|2|Q(u)|∞|ut|2+|ψ|6|u|6|∇2u|2|ut|6+|ψ|6|u|6|Q(u)|6|∇ut|2)≤C(|∇ut|2|ut|122|∇ut|122+|∇2u|2|Q(u)|∞|ut|2+|∇u|6|∇ut|2+|∇2u|2|∇ut|2)≤α8|∇ut|22+C(1+|D(u)|∞)(|ut|22+|u|2D2),L12=−∫R32θ(ϕ∇ϕ)t⋅ut dx=θ∫R3(ϕ2)tdivutdx=2θ∫R3ϕϕtdivutdx=−2θ∫R3ϕ(u⋅∇ϕ+γ−12ϕdivu)divutdx=−θ∫R3(u⋅∇ϕ2+(γ−1)ϕ2divu)divutdx | (48) |
=−θ(γ−1)2∫R3ϕ2(divu)2tdx−θ∫R3u⋅∇ϕ2divutdx=−θ(γ−1)2ddt∫R3ϕ2(divu)2dx+θ(γ−1)∫R3uϕϕt(divu)2dx−θ∫R3u⋅∇ϕ2divutdx=−θ(γ−1)2ddt∫R3ϕ2(divu)2dx−θ(γ−1)∫R3uϕ(u⋅∇ϕ)(divu)2dx−θ(γ−1)22∫R3uϕ2(divu)3dx−θ∫R3u⋅∇ϕ2divutdx=−θ(γ−1)2ddt∫R3ϕ2(divu)2dx+θ(γ−1)2∫R3uϕ2∇(divu)2dx+θ(γ−1)(3−γ)2∫R3ϕ2(divu)3dx−θ∫R3u⋅∇ϕ2divutdx≤−θ(γ−1)2ddt∫R3ϕ2(divu)2dx+C(|u|∞|ϕ|2∞|∇u|2|∇2u|2+|ϕ|2∞|D(u)|∞|∇u|22+|ϕ|∞|∇ϕ|2|u|∞|∇ut|2)≤−θ(γ−1)2ddt∫R3ϕ2(divu)2dx+C(|u|∞||∇2u|2+|D(u)|∞+|u|∞|∇ut|2) | (49) |
≤−θ(γ−1)2ddt∫R3ϕ2(divu)2dx+α4|∇ut|22+C(1+|D(u)|∞+|u|2D2), | (50) |
where we also used Hölder's inequality, Young's inequality and
|u|∞≤C|u|W1,3≤C(|u|122|∇u|122+|∇u|12|∇2u|12). | (51) |
It is clear from (47)-(50) and (45) that
ddt(|ut|22+|ϕdivu|22)+|∇ut|22≤C(1+|∇2u|2+|D(u)|∞)|ut|22. | (52) |
Integrating (52) over
|ut(t)|22+|ϕdivu(t)|22+∫tτ|∇ut(s)|22ds≤|ut(τ)|22+|ϕdivu(τ)|22+C∫tτ((1+|∇2u|2+|D(u)|∞)|ut|22)(s)ds. | (53) |
From the momentum equations
|ut(τ)|2≤C(|u⋅∇u|2+|ϕ∇ϕ|2+|Lu|2+|ψ⋅Q(u)|2)(τ)≤C(|u|∞|∇u|2+|ϕ|∞|∇ϕ|2+|u|D2+|ψ|6|∇u|3)(τ), | (54) |
which, together with the definition of regular solution, gives
limsupτ→0|ut(τ)|2≤C(|u0|∞|∇u0|2+|ϕ0|∞|∇ϕ0|2+|u0|D2+|ψ0|6|∇u0|3)≤C0. | (55) |
Letting
|ut(t)|22+|u(t)|2D2+∫t0|∇ut(s)|22ds≤C,0≤t≤T. | (56) |
This completes the proof of this lemma.
The following lemma gives bounds of
Lemma 2.5. Let
sup0≤t≤T(‖ϕ(t)‖W1,6+|ϕt(t)|6)+∫T0|u(t)|2D2,6dt≤C,0≤T<¯T, | (57) |
where
Proof. First, taking
sup0≤t≤T‖ϕ(t)‖W1,6≤C,0≤T<¯T. |
Second, one has
|ϕt|6=|u⋅∇ϕ+γ−12ϕdivu|6≤C(|∇ϕ|6|u|∞+|ϕ|∞|divu|6)≤C, | (58) |
where we have used Lemmas 2.3-2.4 and
Third, according to
Lu=−ut−u⋅∇u−2θϕ∇ϕ+ψ⋅Q(u), | (59) |
and the standard elliptic estimate shown in Lemma 3.3, one has
|∇2u|6≤C(|ut|6+|u⋅∇u|6+|ϕ∇ϕ|6+|ψ⋅Q(u)|6)≤C(|∇ut|2+|u|∞|∇u|6+|ϕ|∞|∇ϕ|6+|ψ|6|Q(u)|∞)≤C(1+|∇ut|2+|D(u)|142|∇D(u)|346)≤C(1+|∇ut|2+|∇2u|346)≤C(1+|∇ut|2)+12|∇2u|6, | (60) |
where we have used (16), (23), (29), Lemmas 2.1-2.4 and
|divu|∞≤C|D(u)|∞,|D(u)|∞≤C|D(u)|142|∇D(u)|346. | (61) |
Thus, (60) implies that
|∇2u|6≤C(1+|∇ut|2). | (62) |
Combing (62) with Lemma 2.4, one has
∫t0|u(s)|2D2,6ds≤C∫t0(1+|∇ut(s)|22)ds≤C,0≤t≤T. | (63) |
The proof of this lemma is completed.
Lemma 2.5 implies that
∫t0|∇u(⋅,s)|∞ds≤C, | (64) |
for any
Lemma 2.6. Let
sup0≤t≤T(|ϕ(t)|2D2+|ψ(t)|2D1+‖ϕt(t)‖21+|ψt(t)|22)+∫T0(|u(t)|2D3+|ϕtt(t)|22)dt≤C,0≤T<¯T, |
where
Proof. From
|u|D3≤C(|ut|D1+|u⋅∇u|D1+|ϕ∇ϕ|D1+|ψ⋅Q(u)|D1)≤C(|ut|D1+|u|∞|∇2u|2+|∇u|6|∇u|3+|ψ|6|∇2u|3+|∇ϕ|6|∇ϕ|3+|ϕ|∞|∇2ϕ|2+|∇ψ|2|D(u)|∞)≤C(1+|ut|D1+|ϕ|D2+|u|12D3+|ψ|D1|D(u)|∞)≤C(1+|ut|D1+|ϕ|D2+|ψ|D1|D(u)|∞)+12|u|D3, | (65) |
where we have used Young's inequality, Lemma 2.5, (16), (23), (29) and (61). Thus (65) offers that
|u|D3≤C(1+|ut|D1+|ϕ|D2+|D(u)|∞|ψ|D1). | (66) |
Next, applying
(∂iψ)t+3∑l=1Al∂l∂iψ+B∂iψ+∂i∇divu=(−∂i(Bψ)+B∂iψ)+3∑l=1(−∂i(Al)∂lψ). | (67) |
Multiplying (67) by
ddt|∇ψ|22≤C∫R3(|divA||∇ψ|2+|∇3u||∇ψ|+|∇ψ|2|∇u|+|∂i(Bψ)−B∂iψ||∇ψ|)dx≤C(|divA|∞|∇ψ|22+|∇3u|2|∇ψ|2+|∇ψ|22|∇u|∞+|∂i(Bψ)−B∂iψ|2|∇ψ|2), | (68) |
where
|∂i(Bψ)−B∂iψ|2=|Dζ(Bψ)−BDζψ|2≤C|∇2u|3|ψ|6≤C|∇2u|122|∇3u|122≤C|∇3u|122. | (69) |
Thus
ddt|∇ψ|22≤C(|∇u|∞|∇ψ|22+|∇3u|2|∇ψ|2+|∇3u|122|∇ψ|2). | (70) |
Combining (70) with (66) and Lemma 3.1, we have
ddt|ψ|2D1≤C(1+|∇u|∞)|ψ|2D1+C(1+|∇3u|2)|ψ|D1≤C(1+|∇u|∞)|ψ|2D1+C(1+|ϕ|2D2+|∇ut|22). | (71) |
On the other hand, let
0=(∇G)t+∇(∇u⋅G)+∇(∇G⋅u)+γ−12∇(Gdivu+ϕ∇divu), | (72) |
similarly to the previous step, we multiply (72) by
ddt|G|2D1≤C∫R3(|∇2u||G|+|∇u||∇G|+|∇ϕ||∇2u|+|ϕ||∇3u|)|∇G|dx≤C(|G|6|∇2u|3+|∇u|∞|∇G|2+|ϕ|∞|∇3u|2)|∇G|2≤C(|∇2u|122|∇3u|122+|∇u|∞|G|D1+|u|D3)|G|D1≤C(|u|12D3+|u|D3)|G|D1+C|∇u|∞|G|2D1≤C(1+|u|D3)|G|D1+C|∇u|∞|G|2D1≤C(1+|ut|D1+|ϕ|D2+|D(u)|∞|∇ψ|2)|G|D1+C|∇u|∞|G|2D1≤C(1+|ut|D1+|∇u|∞|ψ|D1)|G|D1+C(1+|∇u|∞)|G|2D1≤C(1+|∇u|∞)(|G|2D1+|ψ|2D1)+C(1+|∇ut|22), | (73) |
where we have used the Young's inequality, (29) and (66). This estimate, together with (71), gives that
ddt(|G|2D1+|ψ|2D1)≤C(1+|∇u|∞)(|G|2D1+|ψ|2D1)+C(1+|∇ut|22). | (74) |
Then the Gronwall's inequality, (42), (64) and (74) imply
|ϕ(t)|2D2+|ψ(t)|2D1≤C,0≤t≤T. | (75) |
Combing (75) with (66) and Lemma 2.4, one has
∫t0|u(s)|2D3ds≤C∫t0(1+|∇ut(s)|22)ds≤C,0≤t≤T. | (76) |
Finally, using the following relations
ψt=−∇(u⋅ψ)−∇divu, ϕt=−u⋅∇ϕ−γ−12ϕdivu,ϕtt=−ut⋅∇ϕ−u⋅∇ϕt−γ−12ϕtdivu−γ−12ϕdivut, | (77) |
according to Hölder's inequality, (16), (29), Lemmas 2.1-2.5, one has
|ψt|2≤C(|∇u⋅ψ|2+|u⋅∇ψ|2+|∇divu|2)≤C(|∇u|3|ψ|6+|u|∞|∇ψ|2+|∇2u|2)≤C,|ϕt|2≤C(|u⋅∇ϕ|2+|ϕdivu|2)≤C(|u|∞|∇ϕ|2+|ϕ|∞|∇u|2)≤C,|∇ϕt|2≤C(|∇(u⋅∇ϕ)|2+|∇(ϕdivu)|2)≤C(|∇u⋅∇ϕ|2+|∇2ϕ⋅u|2+|∇ϕdivu|2+|ϕ∇divu|2)≤C(|∇u|3|∇ϕ|6+|u|∞|∇2ϕ|2+|∇ϕ|6|∇u|3+|ϕ|∞|∇2u|2)≤C,|ϕtt|2≤C(|ut⋅∇ϕ|2+|u⋅∇ϕt|2+|ϕtdivu|2+|ϕdivut|2)≤C(|ut|6|∇ϕ|3+|u|∞|∇ϕt|2+|ϕt|6|∇u|3+|ϕ|∞|∇ut|2)≤C(1+|∇ut|2). | (78) |
Thus
sup0≤t≤T(‖ϕt(t)‖21+|ψt(t)|22)≤C, |
and according to (42), one has
∫T0|ϕtt(t)|22dt≤∫T0(1+|∇ut(t)|22)dt≤C. |
The proof of this lemma is completed.
Now we know from Lemmas 2.1-2.6 that, if the regular solution
(ργ−12,∇logρ,u)|t=¯T=limt→¯T(ργ−12,∇logρ,u) |
satisfies the conditions imposed on the initial data
In this subsection, we present some important lemmas which are frequently used in our previous proof. The first one is the well-known Gagliardo-Nirenberg inequality, which can be found in [9].
Lemma 3.1. [9] Let
|h|q≤C|∇h|cp|h|1−cr, | (79) |
where
c=(1r−1q)(1r−1p+13)−1,0≤c≤1. | (80) |
If
Some common versions of this inequality can be written as
|f|3≤C|f|122|∇f|122,|f|6≤C|∇f|2,|f|∞≤C|f|142|∇f|346, | (81) |
which have be used frequently in our previous proof.
The second one can be found in Majda [17], and we omit its proof.
Lemma 3.2. [17] Let positive constants
1r=1a+1b |
and
|Ds(fg)−fDsg|r≤Cs(|∇f|a|Ds−1g|b+|Dsf|b|g|a), | (82) |
|Ds(fg)−fDsg|r≤Cs(|∇f|a|Ds−1g|b+|Dsf|a|g|b), | (83) |
where
The third one is on the regularity estimates for Lam
{−αΔu−(α+β)∇divu=f,u→0as |x|→+∞, | (84) |
one has
Lemma 3.3. [21] If
|u|Dk+2,q≤C|f|Dk,q, | (85) |
where k is an integer and the constant
−Δu=f,u→0as |x|→+∞, | (86) |
then (85) holds and if
|u|D1,q≤C|g|Lq. | (87) |
The proof can be obtained via the classical estimates from harmonic analysis, which can be found in [21] or [22]. We omit it here.
Now we show that, via introducing new variables
ϕ=ργ−12,ψ=∇logρ=2γ−1∇ϕ/ϕ, | (88) |
the system (1) can be rewritten as
{ϕt+γ−12ϕdivu+u⋅∇ϕ=0,ψt+∇(u⋅ψ)+∇divu=0,ut+u⋅∇u+2θϕ∇ϕ+Lu=ψ⋅Q(u). | (89) |
Proof. First, from the momentum equation, one has
ρut+ρu⋅∇u+∇P−ρdiv(α(∇u+∇u⊤)+βdivuI3)=∇ρ⋅[α(∇u+∇u⊤)+βdivuI3], |
where
ut+u⋅∇u+Aγργ−2∇ρ−div(α(∇u+∇u⊤)+βdivuI3)=∇ρρ⋅[α(∇u+∇u⊤)+βdivuI3]. |
Denote
Lu=−div(α(∇u+∇u⊤)+βdivuI3),Q(u)=α(∇u+∇u⊤)+βdivuI3,θ=Aγγ−1, |
we have
ut+u⋅∇u+2θϕ∇ϕ+Lu=ψ⋅Q(u). | (90) |
Second, for
ψt=(∇logρ)t=∇(logρ)t=∇(ρtρ)=∇(−div(ρu)ρ)=∇(−∇ρ⋅u−ρdivuρ)=−∇(∇logρ⋅u+divu)=−∇divu−u⋅∇(∇logρ)−∇logρ⋅∇u⊤=−∇divu−u⋅∇ψ−ψ⋅∇u⊤=−∇divu−∇(u⋅ψ). | (91) |
Third, for
ϕt=(ργ−12)t=γ−12ργ−32ρt=γ−12ργ−12ρtρ=γ−12ργ−12−div(ρu)ρ=γ−12ϕ−ρdivu−∇ρ⋅uρ=−γ−12ϕdivu−u⋅∇ϕ. | (92) |
Combing (90)-(92) together, we complete the proof of the transformation.
The author sincerely appreciates Dr. Shengguo Zhu for his very helpful suggestions and discussions on the problem solved in this paper. The research of Y. Cao was supported in part by China Scholarship Council 201806230126 and National Natural Science Foundation of China under Grants 11571232.
Conflict of Interest: The authors declare that they have no conflict of interest.
[1] |
Adam AM (2020) Susceptibility of stock market returns to international economic policy: Evidence from effective transfer entropy of Africa with the implication for open innovation. J Open Innov Technol Mark Complex 6: 71. https://doi.org/10.3390/joitmc6030071 doi: 10.3390/joitmc6030071
![]() |
[2] |
Agyei SK (2022) Diversification benefits between stock returns from Ghana and Jamaica: Insights from time-frequency and VMD-based asymmetric quantile-on-quantile analysis. Math Probl Eng 2022: 1–16. https://doi.org/10.1155/2022/9375170 doi: 10.1155/2022/9375170
![]() |
[3] |
Agyei SK (2023) Emerging markets equities' response to geopolitical risk: Time-frequency evidence from the Russian-Ukrainian conflict era. Heliyon 9: e13319. https://doi.org/10.1016/j.heliyon.2023.e13319 doi: 10.1016/j.heliyon.2023.e13319
![]() |
[4] |
Agyei SK, Adam AM, Bossman A, et al. (2022a) Does volatility in cryptocurrencies drive the interconnectedness between the cryptocurrencies market? Insights from wavelets. Cogent Econ Financ 10: 2061682. https://doi.org/10.1080/23322039.2022.2061682 doi: 10.1080/23322039.2022.2061682
![]() |
[5] |
Agyei SK, Isshaq Z, Frimpong S, et al. (2021) COVID‐19 and food prices in sub‐Saharan Africa. Afr Dev Rev 33: S102-S113. https://doi.org/10.1111/1467-8268.12525 doi: 10.1111/1467-8268.12525
![]() |
[6] |
Agyei SK, Owusu Junior P, Bossman A, et al. (2022b). Spillovers and contagion between BRIC and G7 markets: New evidence from time-frequency analysis. PLoS ONE 17: e0271088. https://doi.org/10.1371/journal.pone.0271088 doi: 10.1371/journal.pone.0271088
![]() |
[7] |
Aharon DY, Umar Z, Vo XV (2021) Dynamic spillovers between the term structure of interest rates, bitcoin, and safe‑haven currencies. Financ Innov 7: 1–25. https://doi.org/10.1186/s40854-021-00274-w doi: 10.1186/s40854-021-00274-w
![]() |
[8] |
Ahmad AH, Aworinde OB (2021) Fiscal and external deficits nexus in GIIPS countries: Evidence from parametric and nonparametric causality tests. Int Adv Econ Res 27: 171–184. https://doi.org/10.1007/s11294-021-09829-0 doi: 10.1007/s11294-021-09829-0
![]() |
[9] |
Algieri B (2013) An empirical analysis of the nexus between external balance and government budget balance: The case of the GIIPS countries. Econ Syst 37: 233–253. https://doi.org/10.1016/j.ecosys.2012.11.002 doi: 10.1016/j.ecosys.2012.11.002
![]() |
[10] |
Algieri B (2014) Drivers of export demand: A focus on the GIIPS countries. World Econ 37: 1454–1482. https://doi.org/10.1111/twec.12153 doi: 10.1111/twec.12153
![]() |
[11] | Andreas K (2020) Twitter and traditional news media effect on Eurozone's stock market. International Hellenic University. |
[12] |
Andrikopoulos A, Samitas A, Kougepsakis K (2014) Volatility transmission across currencies and stock markets: GIIPS in crisis. Appl Financ Econ 24: 1261–1283. https://doi.org/10.1080/09603107.2014.925054 doi: 10.1080/09603107.2014.925054
![]() |
[13] |
Apergis N, Chi M, Lau K, et al. (2016) Media sentiment and CDS spread spillovers: Evidence from the GIIPS countries. Int Rev Financ Anal 47: 50–59. https://doi.org/10.1016/j.irfa.2016.06.010 doi: 10.1016/j.irfa.2016.06.010
![]() |
[14] |
Armah M, Amewu G, Bossman A (2022) Time-frequency analysis of financial stress and global commodities prices: Insights from wavelet-based approaches. Cogent Econ Financ 10: 2114161. https://doi.org/10.1080/23322039.2022.2114161 doi: 10.1080/23322039.2022.2114161
![]() |
[15] |
Asafo-Adjei E, Adam AM, Darkwa P (2021) Can crude oil price returns drive stock returns of oil producing countries in Africa? Evidence from bivariate and multiple wavelet. Macroecon Financ Emerg Mark Econ, 1–19. https://doi.org/10.1080/17520843.2021.1953864 doi: 10.1080/17520843.2021.1953864
![]() |
[16] |
Asafo-Adjei E, Agyapong D, Agyei SK, et al. (2020) Economic policy uncertainty and stock returns of Africa: A wavelet coherence analysis. Discrete Dyn Nat Soc 2020: 1–8. https://doi.org/10.1155/2020/8846507 doi: 10.1155/2020/8846507
![]() |
[17] |
Asafo-Adjei E, Bossman A, Boateng E, et al. (2022) A nonlinear approach to quantifying investor fear in stock markets of BRIC. Math Probl Eng 2022: 1–20. https://doi.org/10.1155/2022/9296973 doi: 10.1155/2022/9296973
![]() |
[18] |
Baur DG, Lucey BM (2010) Is gold a hedge or a safe haven? An analysis of stocks, bonds and gold. Financ Rev 45: 217–229. https://doi.org/10.1111/j.1540-6288.2010.00244.x doi: 10.1111/j.1540-6288.2010.00244.x
![]() |
[19] |
Beetsma R, Giuliodori M, de Jong F, et al. (2013) Spread the news: The impact of news on the European sovereign bond markets during the crisis. J Int Money Financ 34: 83–101. https://doi.org/10.1016/j.jimonfin.2012.11.005 doi: 10.1016/j.jimonfin.2012.11.005
![]() |
[20] |
Bossman A (2021) Information flow from COVID-19 pandemic to Islamic and conventional equities: An ICEEMDAN-induced transfer entropy analysis. Complexity 2021: 1–20. https://doi.org/10.1155/2021/4917051 doi: 10.1155/2021/4917051
![]() |
[21] |
Bossman A, Adam AM, Owusu Junior P, et al. (2022a) Assessing interdependence and contagion effects on the bond yield and stock returns nexus in Sub-Saharan Africa: Evidence from wavelet analysis. Sci Afr 16: e01232. https://doi.org/10.1016/j.sciaf.2022.e01232 doi: 10.1016/j.sciaf.2022.e01232
![]() |
[22] |
Bossman A, Agyei SK (2022a) ICEEMDAN-based transfer entropy between global commodity classes and African equities. Math Probl Eng 2022: 1–28. https://doi.org/10.1155/2022/8964989 doi: 10.1155/2022/8964989
![]() |
[23] |
Bossman A, Agyei SK (2022b) Interdependence structure of global commodity classes and African equity markets: A vector wavelet coherence analysis. Resour Policy 79: 103039. https://doi.org/10.1016/j.resourpol.2022.103039 doi: 10.1016/j.resourpol.2022.103039
![]() |
[24] |
Bossman A, Agyei SK, Owusu Junior P, et al. (2022b) Flights-to-and-from-quality with Islamic and conventional bonds in the COVID-19 pandemic era: ICEEMDAN-based transfer entropy. Complexity 2022: 1–25. https://doi.org/10.1155/2022/1027495 doi: 10.1155/2022/1027495
![]() |
[25] |
Bossman A, Agyei SK, Umar Z, et al. (2023) The impact of the US yield curve on sub-Saharan African equities. Financ Res Letters, 103636. https://doi.org/ 10.1016/j.frl.2023.103636 doi: 10.1016/j.frl.2023.103636
![]() |
[26] |
Bossman A, Owusu Junior P, Tiwari AK (2022c) Dynamic connectedness and spillovers between Islamic and conventional stock markets: time- and frequency-domain approach in COVID-19 era. Heliyon 8: e09215. https://doi.org/10.1016/J.HELIYON.2022.E09215 doi: 10.1016/J.HELIYON.2022.E09215
![]() |
[27] |
Bossman A, Teplova T, Umar Z (2022d) Do local and world COVID-19 media coverage drive stock markets? Time-frequency analysis of BRICS. Complexity 2022: 2249581. https://doi.org/10.1155/2022/2249581 doi: 10.1155/2022/2249581
![]() |
[28] |
Bossman A, Umar Z, Agyei SK, et al. (2022e) A new ICEEMDAN-based transfer entropy quantifying information flow between real estate and policy uncertainty. Res Econ, 189–205. https://doi.org/10.1016/j.rie.2022.07.002 doi: 10.1016/j.rie.2022.07.002
![]() |
[29] | Bouri E, Lien D, Roubaud D, et al. (2018) Fear linkages between the US and BRICS stock markets: A frequency-domain causality. Int J Econ Bus 25: 441–454. |
[30] |
Chiang S, Liu W, Suardi S, et al. (2021) United we stand divided we fall: The time-varying factors driving European Union stock returns. J Int Financ Mark Inst Money 71: 101316. https://doi.org/10.1016/j.intfin.2021.101316 doi: 10.1016/j.intfin.2021.101316
![]() |
[31] |
de Vries T, de Haan J (2016) Credit ratings and bond spreads of the GIIPS. Appl Econ Lett 23: 107–111. https://doi.org/10.1080/13504851.2015.1054063 doi: 10.1080/13504851.2015.1054063
![]() |
[32] |
Dergiades T, Milas C, Panagiotidis T (2015) Tweets, Google trends, and sovereign spreads in the GIIPS. Oxford Econ Pap 67: 406–432. https://doi.org/10.1093/oep/gpu046 doi: 10.1093/oep/gpu046
![]() |
[33] | Ewaida HYM (2017) The impact of sovereign debt on growth: An empirical study on GIIPS versus JUUSD countries. Eur Res Stud J 20: 607–633. |
[34] | Fama EF (1970) Efficient Market Hypothesis: A Review of Theory and Empirical Work. J Financ 25: 383–417. |
[35] |
Fernández-Macho J (2012) Wavelet multiple correlation and cross-correlation: A multiscale analysis of Eurozone stock markets. Phys A 391: 1097–1104. https://doi.org/10.1016/J.PHYSA.2011.11.002 doi: 10.1016/J.PHYSA.2011.11.002
![]() |
[36] |
Flavin TJ, Lagoa-varela D (2019) On the stability of stock-bond comovements across market conditions in the Eurozone periphery. Global Financ J December 2018: 100491. https://doi.org/10.1016/j.gfj.2019.100491 doi: 10.1016/j.gfj.2019.100491
![]() |
[37] |
Forbes KJ, Rigobon R (2001) Measuring contagion: conceptual and empirical issues. Int Financ Contagion, 43–66. https://doi.org/10.1007/978-1-4757-3314-3_3 doi: 10.1007/978-1-4757-3314-3_3
![]() |
[38] |
Forbes KJ, Rigobon R (2002) No contagion, only interdependence: Measuring stock market comovements. J Financ 57: 2223–2261. https://doi.org/10.1111/0022-1082.00494 doi: 10.1111/0022-1082.00494
![]() |
[39] |
Frimpong S, Gyamfi EN, Ishaq Z, et al. (2021) Can global economic policy uncertainty drive the interdependence of agricultural commodity prices? Evidence from partial wavelet coherence analysis. Complexity. https://doi.org/10.1155/2021/8848424 doi: 10.1155/2021/8848424
![]() |
[40] |
He X, Gokmenoglu KK, Kirikkaleli D, et al. (2021) Co-movement of foreign exchange rate returns and stock market returns in an emerging market: Evidence from the wavelet coherence approach. Int J Financ Econ 2020: 1–12. https://doi.org/10.1002/ijfe.2522 doi: 10.1002/ijfe.2522
![]() |
[41] | Heryán T, Ziegelbauer J (2016) Volatility of yields of government bonds among GIIPS countries during the sovereign debt crisis in the Euro area. Q J Econ Econ Policy 11: 62–74. |
[42] |
Islam R, Volkov V (2021) Contagion or interdependence? Comparing spillover indices. Empir Econ 63: 1403–1455. https://doi.org/10.1007/s00181-021-02169-2 doi: 10.1007/s00181-021-02169-2
![]() |
[43] | Kamaludin K, Sundarasen S, Ibrahim I (2021) Covid-19, Dow Jones and equity market movement in ASEAN-5 countries: evidence from wavelet analyses. Heliyon 7: e05851. |
[44] |
Karanasos M, Yfanti S, Hunter J (2022) Emerging stock market volatility and economic fundamentals: the importance of US uncertainty spillovers, financial and health crises. Ann Oper Res 313: 1077–1116. https://doi.org/10.1007/s10479-021-04042-y doi: 10.1007/s10479-021-04042-y
![]() |
[45] |
Kenourgios D, Umar Z, Lemonidi P (2020) On the effect of credit rating announcements on sovereign bonds: International evidence. Int Econ 163: 58–71. https://doi.org/10.1016/j.inteco.2020.04.006 doi: 10.1016/j.inteco.2020.04.006
![]() |
[46] |
Lee H (2021) Time-varying comovement of stock and treasury bond markets in Europe: A quantile regression approach. Int Rev Econ Financ 75: 1–20. https://doi.org/10.1016/j.iref.2021.03.020 doi: 10.1016/j.iref.2021.03.020
![]() |
[47] | Lo AW (2004) The adaptive markets hypothesis. J Portf Manage 30: 15–29. |
[48] | Magnus N, Blikstad D (2018) The GIIPS crisis in the context of the European Monetary Union: a political economy approach. Brazilian Keynesian Rev 4: 224–249. |
[49] |
Morlet J, Arens G, Fourgeau E, et al. (1982) Wave propagation and sampling theory - Part Ⅰ: Complex signal and scattering in multilayered media. Geophysics 47: 203–221. https://doi.org/10.1190/1.1441328 doi: 10.1190/1.1441328
![]() |
[50] | Muller UA, Dacorogna MM, Dav RD, et al. (1997) Volatilities of different time resolutions - Analyzing the dynamics of market components. J Empir Financ 4: 213–239. |
[51] |
Nazlioglu S, Altuntas M, Kilic E, et al. (2021) Purchasing power parity in GIIPS countries: evidence from unit root tests with breaks and non-linearity. Appl Econ Anal 30: 176–195. https://doi.org/10.1108/AEA-10-2020-0146 doi: 10.1108/AEA-10-2020-0146
![]() |
[52] |
Owusu Junior P, Adam AM, Asafo-Adjei E, et al. (2021) Time-frequency domain analysis of investor fear and expectations in stock markets of BRIC economies. Heliyon 7: e08211. https://doi.org/10.1016/j.heliyon.2021.e08211 doi: 10.1016/j.heliyon.2021.e08211
![]() |
[53] |
Owusu Junior P, Frimpong S, Adam AM, et al. (2021) COVID-19 as information transmitter to global equity markets: Evidence from CEEMDAN-based transfer entropy approach. Math Probl Eng 2021: 1–19. https://doi.org/10.1155/2021/8258778 doi: 10.1155/2021/8258778
![]() |
[54] | Rapach DE, Strauss JK, Zhou G (2013) International stock return predictability: what is the role of the United States? J Financ 68: 1633–1662. |
[55] | Reichlin P (2020) The GIIPS Countries in the Great Recession: Was it a Failure of the Monetary Union? Luiss School of European Political Economy. |
[56] |
Riaz Y, Shehzad CT, Umar Z (2020) The sovereign yield curve and credit ratings in GIIPS. Int Rev Financ 21: 895–916. https://doi.org/10.1111/irfi.12306 doi: 10.1111/irfi.12306
![]() |
[57] |
Rua A, Nunes LC (2009) International comovement of stock market returns: A wavelet analysis. J Empir Financ 16: 632–639. https://doi.org/10.1016/j.jempfin.2009.02.002 doi: 10.1016/j.jempfin.2009.02.002
![]() |
[58] | Sarwar G, Khan W (2017) The effect of US stock market uncertainty on emerging market returns. Emerg Mark Financ Trade 53: 1796–1811. |
[59] |
Shahzad SJH, Bouri E, et al. (2022) The hedge asset for BRICS stock markets: Bitcoin, gold or VIX. World Econ 45: 292–316. https://doi.org/10.1111/TWEC.13138 doi: 10.1111/TWEC.13138
![]() |
[60] |
Silva N (2021) Information transmission between stock and bond markets during the Eurozone debt crisis: evidence from industry returns. Spanish J Financ Account 50: 381–394. https://doi.org/10.1080/02102412.2020.1829422 doi: 10.1080/02102412.2020.1829422
![]() |
[61] |
Torrence C, Compo GP (1998) A Practical Guide to Wavelet Analysis. Bull Am Meteorol Soc 79: 61–78. https://doi.org/10.1175/1520-0477 doi: 10.1175/1520-0477
![]() |
[62] |
Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO-Monsoon system. J Clim 12: 2679–2690. https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2 doi: 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2
![]() |
[63] |
Umar Z, Bossman A, Choi S, et al. (2023) The relationship between global risk aversion and returns from safe-haven assets. Financ Res Lett 51: 103444. https://doi.org/10.1016/j.frl.2022.103444 doi: 10.1016/j.frl.2022.103444
![]() |
[64] |
Umar Z, Bossman A, Choi S, et al. (2022a) Are short stocks susceptible to geopolitical shocks? Time-Frequency evidence from the Russian-Ukrainian conflict. Financ Res Lett, 103388. https://doi.org/10.1016/j.frl.2022.103388 doi: 10.1016/j.frl.2022.103388
![]() |
[65] |
Umar Z, Gubareva M, Teplova T, et al. (2022b) Oil price shocks and the term structure of the US yield curve: a time-frequency analysis of spillovers and risk transmission. Ann Oper Res, 1–25. https://doi.org/10.1007/s10479-022-04786-1 doi: 10.1007/s10479-022-04786-1
![]() |
[66] |
Umar Z, Gubareva M, Yousaf I, et al. (2021) A tale of company fundamentals vs sentiment driven pricing: The case of GameStop. J Behav Exp Financ 30: 100501. https://doi.org/10.1016/j.jbef.2021.100501 doi: 10.1016/j.jbef.2021.100501
![]() |
![]() |
![]() |
1. | Xiaoqiang Dai, Wenke Li, Non-global solution for visco-elastic dynamical system with nonlinear source term in control problem, 2021, 29, 2688-1594, 4087, 10.3934/era.2021073 |