This paper develops the theory of discrete Dirac reduction of discrete Lagrange–Dirac systems with an abelian symmetry group acting on the configuration space. We begin with the linear theory and, then, we extend it to the nonlinear setting using retraction compatible charts. We consider the reduction of both the discrete Dirac structure and the discrete Lagrange–Pontryagin principle, and show that they both lead to the same discrete Lagrange–Poincaré–Dirac equations. The coordinatization of the discrete reduced spaces relies on the notion of discrete connections on principal bundles. At last, we demonstrate the method obtained by applying it to a charged particle in a magnetic field, and to the double spherical pendulum.
Citation: Álvaro Rodríguez Abella, Melvin Leok. Discrete Dirac reduction of implicit Lagrangian systems with abelian symmetry groups[J]. Journal of Geometric Mechanics, 2023, 15(1): 319-356. doi: 10.3934/jgm.2023013
[1] | Reham Ebrahim, Aya Abdelrazek, Hamed El-Shora, Abu Bakr El-Bediwi . Effect of ultraviolet radiation on molecular structure and photochemical compounds of Salvia hispanica medical seeds. AIMS Biophysics, 2022, 9(2): 172-181. doi: 10.3934/biophy.2022015 |
[2] | Mostean Bahreinipour, Hajar Zarei, Fariba Dashtestani, Jamal Rashidiani, Khadijeh Eskandari, Seyed Ali Moussavi Zarandi, Susan Kabudanian Ardestani, Hiroshi Watabe . Radioprotective effect of nanoceria and magnetic flower-like iron oxide microparticles on gamma radiation-induced damage in BSA protein. AIMS Biophysics, 2021, 8(2): 124-142. doi: 10.3934/biophy.2021010 |
[3] | Irina A. Zamulaeva, Kristina A. Churyukina, Olga N. Matchuk, Alexander A. Ivanov, Vyacheslav O. Saburov, Alexei L. Zhuze . Dimeric bisbenzimidazoles DB(n) in combination with ionizing radiation decrease number and clonogenic activity of MCF-7 breast cancer stem cells. AIMS Biophysics, 2020, 7(4): 339-361. doi: 10.3934/biophy.2020024 |
[4] | Derrick Lonsdale, Chandler Marrs . The potential of lipid soluble thiamine in the treatment of cancer. AIMS Biophysics, 2020, 7(1): 17-26. doi: 10.3934/biophy.2020002 |
[5] | Haliz Hussein, Hazhmat Ali, Zeki Mohamed, Majeed Mustafa, Khairi Abdullah, Asaad Alasady, Mayada Yalda . Thyroid function and hematological alterations in cardiac catheterization workers: a pre-post observational study on x-ray exposure. AIMS Biophysics, 2025, 12(1): 43-53. doi: 10.3934/biophy.2025004 |
[6] | Jaouhra Cherif, Anis Raddaoui, Ghofrane Ben Fraj, Asma Laabidi, Nada Souissi . Escherichia coli's response to low-dose ionizing radiation stress. AIMS Biophysics, 2024, 11(2): 130-141. doi: 10.3934/biophy.2024009 |
[7] | Francesca Ballarini, Mario P. Carante, Alessia Embriaco, Ricardo L. Ramos . Effects of ionizing radiation in biomolecules, cells and tissue/organs: basic mechanisms and applications for cancer therapy, medical imaging and radiation protection. AIMS Biophysics, 2022, 9(2): 108-112. doi: 10.3934/biophy.2022010 |
[8] | Etimad Alattar, Eqbal Radwan, Khitam Elwasife . Improvement in growth of plants under the effect of magnetized water. AIMS Biophysics, 2022, 9(4): 346-387. doi: 10.3934/biophy.2022029 |
[9] | Erma Prihastanti, Sumariyah Sumariyah, Febiasasti Trias Nugraheni . Increasing growth of monobulb garlic through the application of corona glow discharge plasma radiation and organic fertilizers. AIMS Biophysics, 2024, 11(1): 85-96. doi: 10.3934/biophy.2024006 |
[10] | Richard C Petersen . Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment. AIMS Biophysics, 2017, 4(2): 240-283. doi: 10.3934/biophy.2017.2.240 |
This paper develops the theory of discrete Dirac reduction of discrete Lagrange–Dirac systems with an abelian symmetry group acting on the configuration space. We begin with the linear theory and, then, we extend it to the nonlinear setting using retraction compatible charts. We consider the reduction of both the discrete Dirac structure and the discrete Lagrange–Pontryagin principle, and show that they both lead to the same discrete Lagrange–Poincaré–Dirac equations. The coordinatization of the discrete reduced spaces relies on the notion of discrete connections on principal bundles. At last, we demonstrate the method obtained by applying it to a charged particle in a magnetic field, and to the double spherical pendulum.
Let
The classical results of Lefschetz [13] say that the rational map associated to
There have been several improvements in this direction, by work of several authors, for instance [15] showed that for
Now, by adjunction, the canonical sheaf of
We succeed in this paper to find (respectively: conjecture) simple results for general such hypersurfaces.
Our work was motivated by a theorem obtained by the first author in a joint work with Schreyer [4] on canonical surfaces: if we have a polarization of type
The connection of the above result with the Lefschetz theorems is, as we already said, provided by adjunction, we have the following folklore result, a proof of which can be found for instance in [6] (a referee pointed out that the proof in the case of a principal polarization appears in 2.10 of [12], and that of course Green's proof works in general)
Lemma 1.1. Let
Let
If
(θ2,…,θd,∂θ1∂z1,…,∂θ1∂zg). |
Hence first of all the canonical map is an embedding if
This is our main result:
Theorem 1.2. Let
Then the canonical map
The first observation is: the hypothesis that we take a general such pair, and not any pair, is necessary in view of the cited result of [4].
The second observation is that the above result extends to more general situations, using a result on openness of birationality (this will be pursued elsewhere). This allows another proof of the theorem, obtained studying pull-backs of Theta divisors of hyperelliptic curves (observe that for Jacobians the Gauss map of the Theta divisor is a rational map, see [7] for a study of its degree).
Here we use the following nice result by Olivier Debarre [8]:
Theorem 1.3. Let
1. The branch divisor
2. The ramification divisor of
3. the local monodromies of the covering at the general points of
4. the Galois group of
The next question to which the previous result paves the way is: when is
An elementary application of the Severi double point formula [19] (see also [10], [2]) as an embedding obstruction, yields a necessary condition (observe that a similar argument was used by van de Ven in [20], in order to study the embeddings of Abelian varieties).
Theorem 1.4. Let
If the canonical map
d≥g+1. |
With some optimism (hoping for a simple result), but relying on the highly non-trivial positive result of the second author [6] concerning polarizations of type
Conjecture 1. Assume that
Then the canonical map
We end the paper discussing the conjecture.
We give first a quick outline of the strategy of the proof.
The first step 2.1 reduces to the case where the Pfaffian
Step 2.2 considers the particular case where
Step 2.3 shows that if
Step 2.4, the Key Step, shows that if
Step 2.5 finishes the proof, showing that, in each of the two possible cases corresponding to the subgroups of
We shall proceed by induction, basing on the following concept.
We shall say that a polarization type
Lemma 2.1. Assume that the polarization type
Proof. We let
There exists an étale covering
By induction, we may assume without loss of generality that all numbers
Then we have
Since by assumption
To contradict the second alternative, it suffices to show that the canonical system
Since then we would have as projection of the canonical map a rational map
F(x)=(x0,x1)≠F(gx)=(x0,ζx1), |
thereby separating the points of a general fibre.
Now, if there were only one non-zero eigenspace, the one for the eigenvalue
H0(X,OX(KX))=H0(X,π∗(OX′(KX′))=H0(X′,π∗π∗(OX′(KX′))= |
=⊕p1H0(X′,OX′(KX′+iη)), |
(here
But this is a contradiction, since the dimension
Here, we shall consider a similar situation, assuming that
We define
We consider the Gauss map of
f=Ψ∘ϕ, ϕ:X→Y, Ψ:Y→P. |
The essential features are that:
(i)
(ii)
Either the theorem is true, or, by contradiction, we have a factorization of
In this case
That the canonical map of
We prove here a result which might be known (but we could not find it in [1]; a referee points out that, under the stronger assumption that
Lemma 2.2. The general divisor in a linear system
Proof. In this case of a polarization of type
We consider, as before, the inverse image
The curve
The double covering
Hence
Assume now that
Hence the hyperelliptic curves in
We shall use the Grauert-Remmert [11] extension of Riemann's theorem, stating that finite coverings
Remark 1. Given a connected unramified covering
(1) Then the group of covering trasformations
G:=Aut(X→Y)≅NH/H, |
where
(2) The monodromy group
core(H)=∩γ∈ΓHγ=∩γ∈Γ(γ−1Hγ), |
which is also called the normal core of
(3) The two actions of the two above groups on the fibre over
We have in fact an antihomomorphism
Γ→Mon(X→Y) |
with kernel
(4) Factorizations of the covering
We consider the composition of finite coverings
To simplify our notation, we consider the corresponding composition of unramified covering spaces of Zariski open sets, and the corresponding fundamental groups
1→K1→H1→Γ1. |
Then the monodromy group of the Gauss map of
We shall now divide all the above groups by the normal subgroup
1→K→H→Γ, Γ=Mon(X0→P0). |
Since
● we have a surjection of the monodromy group
●
●
●
●
●
(I)
(II)
We consider now the case where there is a nontrivial factorization of the Gauss map
Define
1→K→ˆH→Γ, |
and set:
H′:=ˆH∩core(H), H″:=ˆH/H′, H″⊂SN. |
Obviously we have
● in case (I), where
(Ia)
(Ib)
● in case (II), where
(IIa)
(IIb)
(IIc)
We first consider cases b) and c) where the index of
Lemma 2.3. Cases (b) and (c), where the degree
Proof. Observe in fact that
X→Y→P, X→Σ→P, |
hence we have that the degree of
(2p)N=m(N2pm). |
Consider now the respective ramification divisors
Since
Since the branch locus is known to be irreducible, and reduced, and
From the equality
To show that these special cases cannot occur, we can use several arguments.
For the case
For the case
Z:=Σ×PY, |
so that there is a morphism of
If
Remark 2. Indeed, we know ([4]) that the monodromy group of
1→K→K1→H→Γ, |
where
At any rate, if
While, if
Excluded cases (b) and (c), we are left with case (a), where
H″⊂SN−1⇒ˆH⊂H, |
equivalently
Here, we can soon dispense of the case
For the case where
r(θi)=ζiθi. |
If
r(s(θi))=s(r−1(θi))=s(ζ−1θi)=ζ−1s(θi), |
hence we may assume without loss of generality that
s(θi)=θ−i, −i∈Z/p. |
It is then clear that
In the special case
ι(z)=−z+η. |
If for a general deformation of
Theorem 3.1. Let
Assume moreover that
If
d≥n+2=g+1. |
Proof. Assume the contrary,
Observe that the pull back of the hyperplane class of
The Severi double point formula yields see ([10], also [5])
m2=cn(Φ∗TP2n−TX), |
where
By virtue of the exact sequence
0→TX→TA|X→OX(X)→0, |
we obtain
m2=[(1+X)2n+2]n=(2n+2n)Xn+1⇔d(n+1)!=m=(2n+2n). |
To have a quick proof, let us also apply the double point formula to the section of
In view of the exact sequence
0→TY→TA|Y→OY(X)n−d+2→0, |
we obtain
m2=[(1+X)n+d+1Xn−d+1]n=(n+d+1d−1)Xn+1 |
equivalently,
d(n+1)!=m=(n+d+1d−1). |
Since, for
(n+1)(n+1)!=(2n+2n)⇔(n+2)!=(2n+2n+1). |
We have equality for
(n+3)(n+2)=n2+5n+6>2(2n+3)=4n+6. |
We are done with showing the desired assertion since we must have
Recall Conjecture 1:
Conjecture 2. Assume that
Then the canonical map
The first observation is that we can assume
The second remark is that we have a partial result which is similar to lemma 2.1
Lemma 4.1. Assume that the polarization type
Proof. As in lemma 2.1 we reduce to the following situation: we have
Since by assumption
Recalling that
H0(X,OX(KX))=⊕p1H0(X′,OX′(KX′+iη)), |
(here
Under our strong assumption
Already in the case of surfaces (
Were our conjecture too optimistic, then the question would arise about the exact range of validity for the statement of embedding of a general pair
the first author would like to thank Edoardo Sernesi and Michael Lönne for interesting conversations. Thanks to the second referee for useful suggestions on how to improve the exposition.
[1] | R. Abraham, J. Marsden, Foundations of Mechanics, 2nd edition, Addison-Wesley, 1978, (with the assistance of Tudor Ratiu and Richard Cushman). |
[2] | P. A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008. https://doi.org/10.1515/9781400830244 |
[3] | V. Arnold, On the differential geometry of Lie groups of infinite dimension and its applications to the hydrodynamics of perfect fluids, Ann. Fourier Inst., 16 (1966), 319–361. |
[4] | V. Arnold, Mathematical Methods of Classical Mechanics, vol. 60 of Graduate Texts in Mathematics, Springer-Verlag, 1989, Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein. |
[5] | M. Barbero Liñán, D. Martín de Diego, Bäcklund transformations in discrete variational principles for Lie–Poisson equations, in Discrete Mechanics, Geometric Integration and Lie–Butcher Series (eds. K. Ebrahimi-Fard and M. Barbero Liñán), Springer International Publishing, Cham, 2018,315–332. |
[6] |
A. Bloch, L. Colombo, F. Jiménez, The variational discretization of the constrained higher-order Lagrange–Poincaré equations, Discrete Contin. Dyn. Syst., 39 (2019), 309–344. https://doi.org/10.3934/dcds.2019013 doi: 10.3934/dcds.2019013
![]() |
[7] |
A. Bobenko, Y. Suris, Discrete Lagrangian reduction, discrete Euler–Poincaré equations, and semidirect products, Lett. Math. Phys., 49 (1999), 79–93. https://doi.org/10.1023/A:1007654605901 doi: 10.1023/A:1007654605901
![]() |
[8] | M. I. Caruso, J. Fernández, C. Tori, M. Zuccalli, Discrete mechanical systems in a Dirac setting: a proposal, 2022, URL https://arXiv.org/abs/2203.05600. |
[9] |
J. Fernández, M. Zuccalli, A geometric approach to discrete connections on principal bundles, J. Geom. Mech., 5 (2013), 433–444. https://doi.org/10.3934/jgm.2013.5.433 doi: 10.3934/jgm.2013.5.433
![]() |
[10] | E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-preserving algorithms for ordinary differential equations, vol. 31 of Springer Series in Computational Mathematics, 2nd edition, Springer-Verlag, 2006. |
[11] |
S. Jalnapurkar, M. Leok, J. Marsden, M. West, Discrete Routh reduction, J. Phys. A: Math. Gen., 39 (2006), 5521. https://doi.org/10.1088/0305-4470/39/19/S12 doi: 10.1088/0305-4470/39/19/S12
![]() |
[12] |
S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A: Math. Gen., 39 (2006), 5509. https://doi.org/10.1088/0305-4470/39/19/S11 doi: 10.1088/0305-4470/39/19/S11
![]() |
[13] |
T. Lee, M. Leok, N. Mcclamroch, Lagrangian mechanics and variational integrators on two-spheres, Int. J. Numer. Methods Eng., 79 (2009), 1147–1174. https://doi.org/10.1002/nme.2603 doi: 10.1002/nme.2603
![]() |
[14] | M. Leok, J. Marsden, A. Weinstein, A discrete theory of connections on principal bundles, 2005, URL https://arXiv.org/abs/math/0508338. |
[15] |
M. Leok, T. Ohsawa, Discrete Dirac structures and implicit discrete Lagrangian and Hamiltonian systems, AIP Conference Proceedings, 1260 (2010), 91–102. https://doi.org/10.1063/1.3479325 doi: 10.1063/1.3479325
![]() |
[16] |
M. Leok, T. Ohsawa, Variational and geometric structures of discrete Dirac mechanics, Found. Comput. Math., 11 (2011), 529–562. https://doi.org/10.1007/s10208-011-9096-2 doi: 10.1007/s10208-011-9096-2
![]() |
[17] |
M. Leok, J. Zhang, Discrete Hamiltonian variational integrators, IMA J. Numer. Anal., 31 (2011), 1497–1532. https://doi.org/10.1093/imanum/drq027 doi: 10.1093/imanum/drq027
![]() |
[18] |
Z. Ma, C. Rowley, Lie–Poisson integrators: A Hamiltonian, variational approach, Int. J. Numer. Methods Eng., 82 (2010), 1609–1644. https://doi.org/10.1002/nme.2812 doi: 10.1002/nme.2812
![]() |
[19] |
J. Marrero, D. Martín de Diego, E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313. https://doi.org/10.1088/0951-7715/19/6/006 doi: 10.1088/0951-7715/19/6/006
![]() |
[20] | J. Marsden, Lectures on Mechanics, Lecture note series. London Mathematical Society, Cambridge University Press, 1992. |
[21] |
J. Marsden, S. Pekarsky, S. Shkoller, Discrete Euler–Poincaré and Lie–Poisson equations, Nonlinearity, 12 (1999), 1647–1662. https://doi.org/10.1088/0951-7715/12/6/314 doi: 10.1088/0951-7715/12/6/314
![]() |
[22] |
J. Marsden, S. Pekarsky, S. Shkoller, Symmetry reduction of discrete Lagrangian mechanics on Lie groups, J. Geom. Phys., 36 (2000), 140–151. https://doi.org/10.1016/S0393-0440(00)00018-8 doi: 10.1016/S0393-0440(00)00018-8
![]() |
[23] | J. Marsden, T. Ratiu, Introduction to Mechanics and Symmetry, vol. 17 of Texts in Applied Mathematics, 2nd edition, Springer-Verlag, 1999. |
[24] |
J. Marsden, J. Scheurle, Lagrangian reduction and the double spherical pendulum, Z. angew. Math. Phys., 44 (1993), 17–43. https://doi.org/10.1007/BF00914351 doi: 10.1007/BF00914351
![]() |
[25] | J. E. Marsden, J. Scheurle, The reduced Euler-Lagrange equations, Fields Institute Communications, 1. |
[26] |
J. Marsden, A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5 (1974), 121–130. https://doi.org/10.1016/0034-4877(74)90021-4 doi: 10.1016/0034-4877(74)90021-4
![]() |
[27] |
J. Marsden, M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 317–514. https://doi.org/10.1017/S096249290100006X doi: 10.1017/S096249290100006X
![]() |
[28] | K. R. Meyer, Symmetries and integrals in mechanics, Dynamical Systems (ed. M. M. Peixoto), Academic Press, 1973,259–272. https://doi.org/10.1016/B978-0-12-550350-1.50025-4 |
[29] |
J. Moser, A. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Commun.Math. Phys., 139 (1991), 217–243. https://doi.org/10.1007/BF02352494 doi: 10.1007/BF02352494
![]() |
[30] |
A. Natale, C. Cotter, A variational H(div) finite-element discretization approach for perfect incompressible fluids, IMA J. Numer. Anal., 38 (2017), 1388–1419. https://doi.org/10.1093/imanum/drx075 doi: 10.1093/imanum/drx075
![]() |
[31] |
H. Parks, M. Leok, Variational integrators for interconnected Lagrange–Dirac systems, J. Nonlinear Sci., 27 (2017), 1399–1434. https://doi.org/10.1007/s00332-017-9364-7 doi: 10.1007/s00332-017-9364-7
![]() |
[32] |
D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. Marsden, M. Desbrun, Structure-preserving discretization of incompressible fluids, Phys. D, 240 (2011), 443–458, https://doi.org/10.1016/j.physd.2010.10.012 doi: 10.1016/j.physd.2010.10.012
![]() |
[33] |
S. Smale, Topology and mechanics. Ⅰ, Inventiones Math., 10 (1970), 305–331. https://doi.org/10.1007/BF01418778 doi: 10.1007/BF01418778
![]() |
[34] | W. M. Tulczyjew, Geometric Formulations of Physical Theories: Statics and Dynamics of Mechanical Systems, vol. 11 of Monographs and Textbooks in Physical Science Lecture Notes, Bibliopolis, 1989. |
[35] | A. J. van der Schaft, Port-Hamiltonian systems: an introductory survey, in International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, 1339–1365. |
[36] |
J. Vankerschaver, Euler–Poincaré reduction for discrete field theories, J. Math. Phys., 48 (2007), 032902. https://doi.org/10.1063/1.2712419 doi: 10.1063/1.2712419
![]() |
[37] |
J. Vankerschaver, F. Cantrijn, Discrete Lagrangian field theories on Lie groupoids, J. Geom. Phys., 57 (2007), 665–689. https://doi.org/10.1016/j.geomphys.2006.05.006 doi: 10.1016/j.geomphys.2006.05.006
![]() |
[38] | V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Graduate Texts in Mathematics, Springer New York, 2013. |
[39] | A. Weinstein, Lagrangian mechanics and groupoids, Fields Inst. Proc. AMS, 7 (1996), 207–231. |
[40] |
H. Yoshimura, J. Marsden, Dirac structures in Lagrangian mechanics Part Ⅰ: Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133–156. https://doi.org/10.1016/j.geomphys.2006.02.009 doi: 10.1016/j.geomphys.2006.02.009
![]() |
[41] |
H. Yoshimura, J. Marsden, Dirac structures in Lagrangian mechanics Part Ⅱ: Variational structures, J. Geom. Phys., 57 (2006), 209–250. https://doi.org/10.1016/j.geomphys.2006.02.012 doi: 10.1016/j.geomphys.2006.02.012
![]() |
[42] |
H. Yoshimura, J. Marsden, Dirac cotangent bundle reduction, J. Geom. Mech., 1 (2009), 87–158. https://doi.org/10.3934/jgm.2009.1.87 doi: 10.3934/jgm.2009.1.87
![]() |