Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Fixed point theorems via auxiliary functions with applications to two-term fractional differential equations with nonlocal boundary conditions

  • Received: 28 October 2022 Revised: 08 January 2023 Accepted: 10 January 2023 Published: 16 January 2023
  • MSC : 47H10, 47H09, 54H25

  • In this study, the (h-φ)R and (h-φ)M-contractions with two metrics endowed with a directed graph are examined using auxiliary functions. We propose a set of criteria that guarantees the existence of common fixed points for our contractions. This leads to a generalization of previous results in the literature. Towards our accomplishments, we establish affirmative results that demonstrate solutions to a class of nonlinear two-term fractional differential equations with nonlocal boundary conditions. To further corroborate our major findings, we also provide instances.

    Citation: Teeranush Suebcharoen, Watchareepan Atiponrat, Khuanchanok Chaichana. Fixed point theorems via auxiliary functions with applications to two-term fractional differential equations with nonlocal boundary conditions[J]. AIMS Mathematics, 2023, 8(3): 7394-7418. doi: 10.3934/math.2023372

    Related Papers:

    [1] Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599
    [2] Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen . The existence and stability results of multi-order boundary value problems involving Riemann-Liouville fractional operators. AIMS Mathematics, 2023, 8(5): 11325-11349. doi: 10.3934/math.2023574
    [3] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [4] Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880
    [5] Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155
    [6] Dumitru Baleanu, Muhammad Samraiz, Zahida Perveen, Sajid Iqbal, Kottakkaran Sooppy Nisar, Gauhar Rahman . Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function. AIMS Mathematics, 2021, 6(5): 4280-4295. doi: 10.3934/math.2021253
    [7] Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686
    [8] Snezhana Hristova, Antonia Dobreva . Existence, continuous dependence and finite time stability for Riemann-Liouville fractional differential equations with a constant delay. AIMS Mathematics, 2020, 5(4): 3809-3824. doi: 10.3934/math.2020247
    [9] Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925
    [10] Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704
  • In this study, the (h-φ)R and (h-φ)M-contractions with two metrics endowed with a directed graph are examined using auxiliary functions. We propose a set of criteria that guarantees the existence of common fixed points for our contractions. This leads to a generalization of previous results in the literature. Towards our accomplishments, we establish affirmative results that demonstrate solutions to a class of nonlinear two-term fractional differential equations with nonlocal boundary conditions. To further corroborate our major findings, we also provide instances.



    Fractional differential equations with various types of fractional derivatives arise in modeling some dynamical processes (see, for example, [15] for the globally projective synchronization of Caputo fractional-order quaternion-valued neural networks with discrete and distributed delays, [18] for the quasi-uniform synchronization issue for fractional-order neural networks with leakage and discrete delays and [11] for Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field). In contrast to the classical derivative the fractional derivative is nonlocal and it depends significantly on its lower limit. As it is mentioned in [13], this leads to some obstacles for studying impulsive fractional differential equations.

    Since many phenomena are characterized by abrupt changes at certain moments it is important to consider differential equations with impulses. In the literature there are two main approaches used to introduce impulses to fractional equations:

    (i) With a fixed lower limit of the fractional derivative at the initial time- the fractional derivative of the unknown function has a lower limit equal to the initial time point over the whole interval of study;

    (ii) With a changeable lower limit of the fractional derivative at each time of impulse- the fractional derivative on each interval between two consecutive impulses is changed because the lower limit of the fractional derivative is equal to the time of impulse.

    Both interpretations of impulses are based on corresponding interpretations of impulses in ordinary differential equation, which coincide in the case of integer derivatives. However this is not the case for fractional derivatives. In the literature both types of interpretations are discussed and studied for Caputo fractional differential equations of order α(0,1). We refer the reader to the papers [6,7,12,13,16] as well as the monograph [3].

    We note in the case of the Caputo fractional derivative there is a similarity between both the initial conditions and the impulsive condition between fractional equations and ordinary equations (see, for example, [10] concerning the impulsive control law for the Caputo delay fractional-order neural network model). However for Riemann-Liouville fractional differential equations both the initial condition and impulsive conditions have to be appropriately given (which is different in the case of ordinary derivatives as well as the case of Caputo fractional derivatives). Riemann-Liouville fractional differential equations are considered, for example, in [1,2] for integral presentation of solutions in the case of the fractional order α(0,1), [5,8,17] for the case of the fractional order α(1,2).

    In [14] the authors studied the following coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives of the form

    {{Dαu(t)ϕ1(t,Iαu(t),Iβv(t))=0   for tI, tti,  i=1,2,,p,Δu(tj)Ej(u(tj))=0,      Δu(tj)Ej(u(tj))=0,  j=1,2,,p,ν1Dα2u(t)|t=0=u1,     μ1u(t)|t=T+ν2Iα1u(t)|t=T=u2,{Dβv(t)ϕ2(t,Iαu(t),Iβv(t))=0   for tI, ttk,  k=1,2,,q,Δv(tk)Ek(v(tk))=0,      Δv(tk)Ej(v(tk))=0,  k=1,2,,q,ν3Dβ2v(t)|t=0=v1,     μ2v(t)|t=T+ν4Iβ1v(t)|t=T=v2, (1.1)

    where α,β(1,2], I=[0,T], ϕ1,ϕ2:I×R×RR are continuous functions, Δu(tj)=u(t+j)u(tj),  Δu(tj)=u(t+j)u(tj), Δv(tk)=v(t+k)v(tk),  Δv(tj)=v(t+k)v(tk), where u(t+j),v(t+k) and v(tj),v(tk) are the right limits and left limits respectively, Ej,Ej,Ek,Ek:RR are continuous functions, and Dα,Iα are the α-order Riemann-Liouville fractional derivative and integral operators respectively and Dβ2=I2β.

    Since fractional integrals and derivatives have memories, and their lower limits are very important we will use the notations RLDαa,t and Iβa,t, respectively, instead of Dα and Iβ, i.e. the Riemann-Liouville fractional derivative is defined by (see, for example [9])

    RLDαa,tu(t)=1Γ(2α)(ddt)2tau(s)(ts)α1ds,   t>a,  α(1,2), (1.2)

    and the Riemann-Liouville fractional integral Iβa,t of order α>0 is defined by (see, for example, [9])

    Iβa,tu(t)=1Γ(β)ta(ts)β1u(s)ds,t>a, (1.3)

    where a0, β>0 are given numbers.

    Note there are some unclear parts in the statement of coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives (1.1), such as:

    a). The presence of two different integers p and q in (1.1) leads to different domains of both the unknown functions u and v. For example, in Corollary 1 [14] the solutions u(t) and v(t) are defined on [0,tp+1] and [0,tq+1] respectively, which causes some problems in the definitions of formulas (3.7) or (3.8) ([14]);

    b). The impulsive functions Ej,Ek, j=1,2,,p, k=1,2,,q are assumed different but they are not (it is clear for example, for j=k=1). The same is about the functions Ej,Ek, j=1,2,,p, k=1,2,,q.

    In this paper we sort out the above mentioned points by setting up the cleared statement of the boundary value problem with the Riemann-Liouville (RL) fractional integral for the impulsive Riemann-Liouville fractional differential equation studied in [14], and we prove a new the integral presentations of the solutions. To be more general, we study two different interpretations for the presence of impulses in fractional differential equations. The first one is the case of the fixed lower limit of the RL fractional derivative at the initial time 0 and the second one is the case of the changed lower limit of the fractional RL derivative at any point of impulse. In both cases the integral presentation of the solution is provided.

    Define two different sequences of points of impulses

    0=t0<t1<t2<<tp<tp+1=T  and   0=τ0<τ1<τ2<<τq<τq+1=T,

    where p,q are given natural numbers.

    We will consider the following nonlinear boundary value problem for the coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives with a lower limit at 0

    {{RLDα0,tu(t)ϕ1(t,Iα0,tu(t),Iβ0,tv(t))=0   for tI, tti,  i=1,2,,p,Δu(tj)Ej(u(tj))=0,      Δu(tj)Ej(u(tj))=0,  j=1,2,,p,I2α0,tu(t)|t=0=u1,     μ1u(t)|t=T+ν1Iα10,tu(t)|t=T=u2,{RLDβ0,tv(t)ϕ2(t,Iα0,tu(t),Iβ0,tv(t))=0   for tI, tτk,  k=1,2,,q,Δv(τk)Sk(v(τk))=0,      Δv(τk)Sk(v(τk))=0,  k=1,2,,q,I2β0,tv(t)|t=0=v1,     μ2v(t)|t=T+ν2Iβ10,tv(t)|t=T=v2, (2.1)

    where α,β(1,2], I=[0,T], ϕ1,ϕ2:I×R×RR are continuous functions, Δu(tj)=u(t+j)u(tj),  Δu(tj)=u(t+j)u(tj), Δv(τk)=v(τ+k)v(τk),  Δv(τk)=v(τ+k)v(τk), where u(t+j),v(τ+k),u(t+j),v(τ+k) and u(tj), v(tk), u(tj), v(tk) are the right limits and left limits respectively, Ej,Ej,Sk,Sk:RR are continuous functions, and RLDβ0,t,Iα0,t are the α-order Riemann-Liouville fractional derivative and integral operators, respectively, μi,νi,uk,vk, i=1,2, are given constants.

    In the statement of the problem (2.1) some parts of (1.1) are cleared: there are two different points of impulses; the lower limits of the fractional integrals and fractional integrals are written; different functions at different points of impulses are used.

    In our proofs we will use the following well known properties for fractional integrals (see, for example [9]).

    Iαa,tIβa,tu(t)=Iα+βa,tu(t),   α,β>0,Iαa,t(ta)q=Γ(q+1)Γ(q+α+1)(ta)q+α,  α>0, q>1.  t>a. (2.2)

    We will apply the following auxiliary result which is a generalization of the result in [4] for an arbitrary lower limit of the fractional derivative:

    Lemma 1. ([4]). The general solution of the Riemann-Liouville fractional differential equation

    RLDαa,tw(t)=g(t),   t(a,T],   α(1,2) (2.3)

    is given by

    w(t)=c1(ta)α1+c0(ta)α2+Iαa,t g(t)=c1(ta)α1+c0(ta)α2+1Γ(α)ta(ts)α1g(s)ds, t(a,T], (2.4)

    where c0,c1,a0 are arbitrary real constants.

    We will consider an appropriate boundary value problem for a scalar impulsive linear equation, we will prove a formula for its solution and later we will apply it to obatin the main result.

    Consider the following boundary value problem for the linear impulsive fractional differential equation with Riemann-Liouville derivatives of the form

    RLDα0,tu(t)=f(t),   t(0,T],  ttj, j=1,2,p,  α(1,2),Δu(tj)=Ej(u(tj)),      Δu(tj)=Ej(u(tj))  j=1,2,,p,I2α0,tu(t)|t=0=u1,     μ1u(t)|t=T+ν1Iα10,tu(t)|t=T=u2, (2.5)

    where f: [0,T]R is a continuous function, Ej,Ej:RR are continuous functions, u1,u2R.

    Lemma 2. The solution of (2.5) satisfies the integral equation

    u(t)={c0tα1+u1Γ(α1)tα2+1Γ(α)t0(ts)α1f(s)ds,t(0,t1],c0tα1+(jk=1[t2αkEk(u(tk))](α2)jk=1[t1αkEk(u(tk))])tα1     +(u1Γ(α1)+(α1)jk=1t2αkEk(u(tk))jk=1t3αkEk(u(tk)))tα2     +1Γ(α)t0(ts)α1f(s)ds,t(tj,tj+1],

    where

    c0=(p+1k=1[t2αkEk(u(tk))](α2)p+1k=1[t1αkEk(u(tk))])     (u1Γ(α1)+(α1)p+1k=1t2αkEk(u(tk))p+1k=1t3αkEk(u(tk)))T1     1Tα1Γ(α)T0(Ts)α1f(s)ds      ν1μ1Tα1Γ(α1)T0(Ts)α2u(s)ds+u2μ1. (2.6)

    Proof. We will use induction.

    For t(0,t1] we apply Lemma 1 with a=0 and we get

    u(t)=c0tα1+c1tα2+1Γ(α)t0(ts)α1f(s)ds (2.7)

    and

    u(t)=c0(α1)tα2+c1(α2)tα3+α1Γ(α)t0(ts)α2f(s)ds. (2.8)

    From the initial condition I2α0,tu(t)|t=0=u1 and equalities (2.2), (2.7) we get

    I2α0,tu(t)|t=0=c0Γ(α)Γ(1)t|t=0+c1Γ(α1)Γ(0)|t=0+I20,tf(t)|t=0=c1Γ(α1),

    i.e. c1=u1Γ(α1).

    For t(t1,t2] by Lemma 1 with a=0 we get

    u(t)=b0tα1+b1tα2+1Γ(α)t0(ts)α1f(s)ds (2.9)

    and

    u(t)=b0(α1)tα2+b1(α2)tα3+1Γ(α1)t0(ts)α2f(s)ds. (2.10)

    From the impulsive condition u(t1+0)u(t10)=E1(u(t1)) we obtain

    u(t+1)=b0tα11+b1tα21+1Γ(α)t10(t1s)α1f(s)dsc0tα11u1Γ(α1)tα211Γ(α)t10(t1s)α1f(s)ds=(b0c0)tα11+(b1u1Γ(α1))tα21=E1(u(t1)). (2.11)

    and from the impulsive condition u(t1+0)u(t1)=E1(u(t1)) we get

    u(t+1)=b0(α1)tα21+b1(α2)tα31+1Γ(α1)t10(t1s)α2f(s)dsc0(α1)tα21u1Γ(α1)(α2)tα311Γ(α1)t10(t1s)α2f(s)ds=(b0c0)(α1)tα21+(b1u1Γ(α1))(α2)tα31=E1(u(t1)). (2.12)

    Thus we get the linear system w.r.t. b0 and b1

    (b0c0)(α1)tα21+(b1u1Γ(α1))(α2)tα31=E1(u(t1))(b0c0)tα11+(b1u1Γ(α1))tα21=E1(u(t1))

    or

    b0=c0+t2α1E1(u(t1))(α2)t1α1E1(u(t1))
    b1=(α1)t2α1E1(u(t1))t3α1E1(u(t1))+u1Γ(α1).

    Therefore,

    u(t)=c0tα1+(t2α1E1(u(t1))(α2)t1α1E1(u(t1)))tα1     +((α1)t2α1E1(u(t1))t3α1E1(u(t1))+u1Γ(α1))tα2     +1Γ(α)t0(ts)α1f(s)ds,   t(t1,t2]. (2.13)

    Assume the integral presentation of u(t) is correct on (tj1,tj], i.e

    u(t)=c0tα1+(j1k=1t2αkEk(u(tk))(α2)j1k=1t1αkEk(u(tk)))tα1     +((α1)j1k=1t2αkEk(u(tk))j1k=1t3αkEk(u(tk))+u1Γ(α1))tα2     +1Γ(α)t0(ts)α1f(s)ds,   t(tj1,tj]. (2.14)

    Denote

    m0=c0+j1k=1t2αkEk(u(tk))(α2)j1k=1t1αkEk(u(tk))

    and

    m1=(α1)j1k=1t2αkEk(u(tk))j1k=1t3αkEk(u(tk))+u1Γ(α1).

    Let t(tj,tj+1], j=2,,p,. By Lemma 1 with a=0 we get

    u(t)=k0tα1+k1tα2+1Γ(α)t0(ts)α1f(s)ds, (2.15)

    and

    u(t)=k0(α1)tα2+k1(α2)tα3+1Γ(α1)t0(ts)α2f(s)ds. (2.16)

    From the impulsive conditions and the equality (2.14) we obtain the linear system w.r.t. k0 and k1

    (k0m0)(α1)tα2j+(k1m1)(α2)tα3j=E2(u(t2))(k0m0)tα1j+(k1m1)tα2j=Ej(u(tj))

    or

    k0=c0+jk=1[t2αkEk(u(tk))](α2)jk=1[t1αkEk(u(tk))]
    k1=u1Γ(α1)+(α1)jk=1t2αkEk(u(tk))jk=1t3αkEk(u(tk)).

    Therefore,

    u(t)=c0tα1+(jk=1[t2αkEk(u(tk))](α2)jk=1[t1αkEk(u(tk))])tα1     +(u1Γ(α1)+(α1)jk=1t2αkEk(u(tk))jk=1t3αkEk(u(tk)))tα2     +1Γ(α)t0(ts)α1f(s)ds,   t(tj,tj+1], j=1,2,,p. (2.17)

    From the boundary condition μ1u(t)|t=T+ν1Iα1u(t)|t=T=u2 we get

    Iα1u(t)|t=T=1Γ(α1)T0(Ts)α2u(s)ds

    and

    μ1u(t)|t=T+ν1Iα1u(t)|t=T=μ1c0Tα1+μ1(p+1k=1[t2αkEk(u(tk))](α2)p+1k=1[t1αkEk(u(tk))])Tα1     +μ1(u1Γ(α1)+(α1)p+1k=1t2αkEk(u(tk))p+1k=1t3αkEk(u(tk)))Tα2     +μ11Γ(α)T0(Ts)α1ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds      +ν11Γ(α1)T0(Ts)α2u(s)ds=u2. (2.18)

    From (2.18) we have (2.6).

    We will give an example to illustrate the claim of Lemma 2.

    Example 1. Consider the following boundary value problem for the scalar RL fractional differential equation with an impulse at t=1

    RLD1.50,tu(t)=t,   t(0,1](1,2],Δu(1)=1,      Δu(1)=0,I0.50,tu(t)|t=0=0,     u(t)|t=2+I0.50,tu(t)|t=2=1. (2.19)

    The solution of (2.19) satisfies the integral equation

    u(t)={c0t0.5+t0.5Γ(0.5)+0.266667t2.5Γ(1.5),t(0,1]c0t0.5+0.5t0.5+(1Γ(0.5)+0.5)t0.5+0.266667t2.5Γ(1.5),t(1,2],

    where

    c0=0.251.5084920.5Γ(1.5)120.5Γ(0.5)20(2s)0.5u(s)ds. (2.20)

    Consider the boundary value problem for the nonlinear impulsive fractional integro-differential equations with Riemann-Liouville derivatives of the form

    RLDα0,tu(t)=ϕ1(t,Iα0,tu(t)),   t(0,T],  ttj, j=1,2,p,  α(1,2)Δu(tj)=Ej(u(tj)),      Δu(tj)=Ej(u(tj))  j=1,2,,p,I2α0,tu(t)|t=0=u1,     μ1u(t)|t=T+ν1Iα10,tu(t)|t=T=u2, (2.21)

    where ϕ1: [0,T]×RR is a continuous function, Ej,Ej:RR are continuous functions, u1,u2R.

    Corollary 1. The solution of (2.21) satisfies the integral equation

    u(t)={c0tα1+u1Γ(α1)tα2+1Γ(α)t0(ts)α1ϕ1(s,Iα0,su(s),)ds,  t(0,t1]c0tα1+(jk=1[t2αkEk(u(tk))](α2)jk=1[t1αkEk(u(tk))])tα1     +(u1Γ(α1)+(α1)jk=1t2αkEk(u(tk))jk=1t3αkEk(u(tk)))tα2     +1Γ(α)t0(ts)α1ϕ1(s,Iα0,su(s))ds,      t(tj,tj+1], (2.22)

    where

    c0=(p+1k=1[t2αkEk(u(tk))](α2)p+1k=1[t1αkEk(u(tk))])     (u1Γ(α1)+(α1)p+1k=1t2αkEk(u(tk))p+1k=1t3αkEk(u(tk)))T1     1Tα1Γ(α)T0(Ts)α1ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds      ν1μ1Tα1Γ(α1)T0(Ts)α2u(s)ds+u2μ1. (2.23)

    The proof of Corollary 1 is similar to the one of Lemma 2 with f(t)=ϕ1(t,Iα0,tu(t)) and we omit it.

    Remark 1. Corollary 1 and the integral presentation (2.22) correct Theorem 3.1 and the formula (3.2) [14]. The main mistake in the proof of formula (3.2) [14] is the incorrect application of Lemma 1 with a=0 on (t1,t2] and taking the lower limit of the integral in (3.5) [14] incorrectly at t1(σ1) instead of 0. A similar comment applies to all the other intervals (tj,tj+1].

    Following the proof of Lemma 2 and the integral presentation (2.22) of problem (2.21), we have the following result:

    Theorem 1. The solution of (2.1) satisfies the integral equations

    u(t)={c0tα1+u1Γ(α1)tα2+1Γ(α)t0(ts)α1ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds,  t(0,t1],c0tα1+(jk=1[t2αkEk(u(tk))](α2)jk=1[t1αkEk(u(tk))])tα1     +(u1Γ(α1)+(α1)jk=1t2αkEk(u(tk))jk=1t3αkEk(u(tk)))tα2     +1Γ(α)t0(ts)α1ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds,    t(tj,tj+1], (2.24)

    and

    v(t)={b0tα1+v1Γ(α1)tα2+1Γ(α)t0(ts)α1ϕ2(s,Iα0,su(s),Iβ0,sv(s))ds,  t(0,t1]b0tα1+(jk=1[t2αkSk(v(tk))](α2)jk=1[t1αkSk(v(tk))])tα1     +(u1Γ(α1)+(α1)jk=1t2αkSk(v(tk))jk=1t3αkSk(v(tk)))tα2     +1Γ(α)t0(ts)α1ϕ2(s,Iα0,su(s),Iβ0,sv(s))ds,    t(tj,tj+1], (2.25)

    where

    c0=(p+1k=1[t2αkEk(u(tk))](α2)p+1k=1[t1αkEk(u(tk))])     (u1Γ(α1)+(α1)p+1k=1t2αkEk(u(tk))p+1k=1t3αkEk(u(tk)))T1     1Tα1Γ(α)T0(Ts)α1ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds      ν1μ1Tα1Γ(α1)T0(Ts)α2u(s)ds+u2μ1b0=(p+1k=1[t2αkSk(v(tk))](α2)p+1k=1[t1αkSk(v(tk))])     (v1Γ(α1)+(α1)p+1k=1t2αkSk(v(tk))p+1k=1t3αkSk(v(tk)))T1     1Tα1Γ(α)T0(Ts)α1ϕ2(s,Iα0,su(s),Iβ0,sv(s))ds      ν2μ2Tα1Γ(α1)T0(Ts)α2v(s)ds+v2μ2. (2.26)

    The proof is similar to the one of Lemma 2 applied twice to each of the both components u and v of the coupled system (2.1) for impulsive points ti, i=1,2,,p and τi, i=1,2,,p and the functions f(t)=ϕ1(t,Iα0,tu(t),Iβ0,tv(t)) and f(t)=ϕ2(t,Iα0,tu(t),Iβ0,tv(t)) respectively.

    Remark 2. Note the integral presentation (2.24), (2.25) of the solutions of the coupled system is the correction of Corollary 1 and integral presentation (3.7), (3.8) in [14].

    Consider the following nonlinear boundary value problem for the coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives with lower limits at impulsive points ti, i=0,1,2,,p1 and τk, k=0,1,2,,q1, respectively,

    {{RLDαti,tu(t)ϕ1(t,Iα0,tu(t),Iβ0,tv(t))=0   for t(ti,ti+1]  i=0,1,2,,p,I2αtj,tu(t)|t=tj=Pju(tj)+Qj,  j=1,2,,p,I2α0,tu(t)|t=0=u1,     μ1u(t)|t=T+ν1Iα10,tu(t)|t=T=u2,{RLDβτk,tv(t)ϕ2(t,Iα0,tu(t),Iβ0,tv(t))=0   for t(τk,τk+1]  k=0,1,2,,q,I2ατk,tu(t)|t=τk=Pkv(τk)+Qjk,  k=1,2,,q,I2β0,tv(t)|t=0=v1,     μ2v(t)|t=T+ν2Iβ10,tv(t)|t=T=v2, (3.1)

    where α,β(1,2], ϕ1,ϕ2:I×R×RR are continuous functions, Pj,Qj, j=1,2,,p, and Pj,Qj, j=1,2,,q, are real numbers, RLDαti,t and RLDβτk,t are the α-order Riemann-Liouville fractional derivatives with lower limits at ti and τk, respectively, μk,νk,uk,vk, i=1,2, are given constants.

    Remark 3. Note problem (3.1) differs from problem (2.1):

    The lower limits of the RL fractional derivatives RLDαtj,t and RLDβτk,t in (3.1) are changed at any time of impulse tj and τk, respectively.

    The impulsive conditions are changed in (3.1). This is because the values of the unknown functions after the impulse, u(tj+0) and v(τk+0), respectively, are considered as initial values at that point. But the RL fractional derivative has a singularity at its lower limit. It requires the chang of the impulsive conditions for the unknown functions.

    Consider the following boundary value problem for the scalar linear impulsive fractional equation with Riemann-Liouville derivatives of the form

    RLDαti,tu(t)=f(t),   for t(ti,ti+1],  i=0,1,2,,p,  α(1,2)I2αtj,tu(t)|t=tj=Pju(tj)+Qj,  j=1,2,,p,I2α0,tu(t)|t=0=u1,     μ1u(t)|t=T+ν1Iα10,tu(t)|t=T=u2, (3.2)

    where the function f: [0,T]R is a continuous function, Pj,Qj, j=1,2,,p are real numbers, u1,u2R.

    Now we will provide an integral presentation of the solution of (3.2).

    Lemma 3. The solution of (3.2) satisfies the integral equation

    u(t)={c0tα1+u1Γ(α1)tα2+Iα0,tf(t),   t(0,t1](c0+u1t1Γ(α1))(ttm)α1mk=1Pk(tktk1)α1(α1)Γ(α1)    +Iαtm,tf(t)+(ttm)α1mk=1PkIαtk1,tf(t)|t=tk+Qk(α1)Γ(α1)mj=k+1Pj(tjtj1)α1(α1)Γ(α1),     for    t(tm,tm+1],m=1,2,,p,

    where

    c0=u2μ1(Ttp)1αMu1t1Γ(α1)(Ttp)1αMIαtp,tf(t)|t=TMpk=1PkIαtk1,tf(t)|t=tk+Qk(α1)Γ(α1)mj=k+1Pj(tjtj1)α1(α1)Γ(α1)      ν1μ1(Ttp)1αM1Γ(α1)T0(Ts)α2u(s)ds,M=(α1)pΓp(α1)pk=1Pk(tktk1)1α. (3.3)

    Proof. We will use induction.

    For t(0,t1] similar to Lemma 2 we get

    u(t)=c0tα1+c1tα2+1Γ(α)t0(ts)α1f(s)ds (3.4)

    where c1=u1Γ(α1).

    For t(t1,t2] by Lemma 1 with a=t1 we get

    u(t)=b0(tt1)α1+b1(tt1)α2+1Γ(α)tt1(ts)α1f(s)ds (3.5)

    and

    u(t)=b0(α1)(tt1)α2+b1(α2)(tt1)α3+1Γ(α1)tt1(ts)α2f(s)ds. (3.6)

    From the impulsive condition I2αt1,tu(t)|t=t1=P1u(t1)+Q1, equalities (2.2) and Iαt1,tf(t))|t=t1=0 we obtain

    I2αt1,tu(t)=b0(α1)I2αt1,t(tt1)α2+b1(α2)I2αt1,t(tt1)α3+I2αt1,tIα1t1,tf(t)=b0(α1)Γ(α1)+b1(α2)I2αt1,t(tt1)α3+I1t1,tf(t) (3.7)

    and

    I2αt1,tu(t)|t=t1=b0(α1)Γ(α1)+b1(α2)I2αt1,t(tt1)α3|t=t1=P1u(t1)+Q1<. (3.8)

    Since the integral I2αt1,t(tt1)α3 does not converge, it follows that b1=0 and

    b0=P1(α1)Γ(α1)(c0(t1t0)α1+u1t1Γ(α1)(t1t0)α1+Iαt0,tf(t)|t=t1)+Q1(α1)Γ(α1).

    Thus,

    u(t)=(c0+u1t1Γ(α1))P1(t1t0)α1(α1)Γ(α1)(tt1)α1   +P1(α1)Γ(α1)Iαt0,tf(t)|t=t1(tt1)α1   +Q1(α1)Γ(α1)(tt1)α1+Iαt1,tf(t). (3.9)

    Similarly, for t(tj,tj+1], j=1,2,,p, by Lemma 1 with a=tj we get

    u(t)=k0(ttj)α1+k1(ttj)α2+1Γ(α)ttj(ts)α1ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds (3.10)

    and

    u(t)=k0(α1)(ttj)α2+k1(α2)(ttj)α3+1Γ(α1)ttj(ts)α2ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds. (3.11)

    From the impulsive conditions we obtain k1=0 and

    k0=Pj(α1)Γ(α1)u(tj)+Qj(α1)Γ(α1).

    From the boundary condition μ1u(t)|t=T+ν1Iα1u(t)|t=T=u2 we get

    Iα1u(t)|t=T=1Γ(α1)T0(Ts)α2u(s)ds

    and

    μ1u(t)|t=T+ν1Iα1u(t)|t=T=μ1(c0+u1t1Γ(α1))(Ttp)α1pk=1Pk(tktk1)α1(α1)Γ(α1)    +μ1Iαtp,tf(t)|t=T+μ1(Ttp)α1pk=1PkIαtk1,tf(t)|t=tk+Qk(α1)Γ(α1)mj=k+1Pj(tjtj1)α1(α1)Γ(α1)      +ν11Γ(α1)T0(Ts)α2u(s)ds=u2 (3.12)

    and we obtain (3.3).

    Example 2. Consider the equation

    RLD1.50,tu(t)=t,   t(0,1],       RLD1.51,tu(t)=t, t(1,2],I0.51,tu(t)|t=1=1,I0.50,tu(t)|t=0=0,     u(t)|t=2+I0.50,tu(t)|t=2=1. (3.13)

    Note the Eq (3.13) is similar to (2.19) but the lower limit of the fractional derivative is changed at the point of the impulse. The solution of (3.13) satisfies the integral equation

    u(t)={0.266667t2.5Γ(1.5),t(0,1],1Γ(1.5)(0.4(t1)2.5+2(t1)1.5t3)+(t1)0.5(0.5)Γ(0.5),t(1,2].

    It is clear the change of the lower limits of the fractional derivatives has a huge influence on the solution of the equation.

    Based on the integral presentation of the linear problem (3.2) and Lemma 3, we obtain the following result:

    Theorem 2. The solution of (3.1) satisfies the integral equations

    u(t)={c0tα1+u1Γ(α1)tα2+Iα0,tϕ1(t,Iα0,tu(t),Iβ0,tv(t)),   t(0,t1](c0+u1t1Γ(α1))(ttm)α1mk=1Pk(tktk1)α1(α1)Γ(α1)    +Iαtm,tϕ1(t,Iα0,tu(t),Iβ0,tv(t))    +(ttm)α1mk=1Pk Iαtk1,tϕ1(t,Iα0,tu(t),Iβ0,tv(t))|t=tk+Qk(α1)Γ(α1)mj=k+1Pj(tjtj1)α1(α1)Γ(α1),     for    t(tm,tm+1],m=1,2,,p,

    and

    v(t)={b0tα1+v1Γ(α1)tα2+Iα0,tϕ2(t,Iα0,tu(t),Iβ0,tv(t)),   t(0,τ1](b0+v1τ1Γ(α1))(tτm)α1mk=1Pk(τkτk1)α1(α1)Γ(α1)    +Iατm,tϕ2(t,Iα0,tu(t),Iβ0,tv(t))    +(tτm)α1mk=1Pk Iατk1,tϕ2(t,Iα0,tu(t),Iβ0,tv(t))|t=τk+Qk(α1)Γ(α1)mj=k+1Pj(τjτj1)α1(α1)Γ(α1),     for    t(τm,τm+1],m=1,2,,q,

    where

    c0=u2μ1(Ttp)1αMu1t1Γ(α1)   (Ttp)1αMIαtq,tϕ1(t,Iα0,tu(t),Iβ0,tv(t))|t=T   Mpk=1PkIαtk1,tϕ1(t,Iα0,tu(t),Iβ0,tv(t))|t=tk+Qk(α1)Γ(α1)pj=k+1Pj(tjtj1)α1(α1)Γ(α1)      ν1μ1(Ttp)1αM1Γ(α1)T0(Ts)α2u(s)ds,M=(α1)pΓp(α1)pk=1Pk(tktk1)1α,
    b0=v2μ2(Tτq)1αCv1τ1Γ(α1)   (Tτq)1αC Iατq,tϕ2(t,Iα0,tu(t),Iβ0,tv(t))t=T   Cqk=1Pk Iατk1,tϕ2(t,Iα0,tu(t),Iβ0,tv(t))|t=τk+Qk(α1)Γ(α1)qj=k+1Pj(τjτj1)α1(α1)Γ(α1)      ν2μ2(Ttq)1αC1Γ(α1)T0(Ts)α2u(s)ds,C=(α1)qΓq(α1)qk=1Pk(τkτk1)1α.

    The proof is similar to the one of Lemma 3 applied twice to each of the both components u and v of the coupled system (3.1) for impulsive points ti, i=1,2,,p and τi, i=1,2,,p and the functions f(t)=ϕ1(t,Iα0,tu(t),Iβ0,tv(t)) and f(t)=ϕ2(t,Iα0,tu(t),Iβ0,tv(t)) respectively.

    In this paper we set up and study a scalar nonlinear integro-differential equation with Riemann-Liouville fractional derivative and impulses. We consider a boundary value problem for the studied equation with Riemann-Liouville fractional derivative of order in (1,2). Note for Riemann-Liouville fractional differential equations both the initial condition and impulsive conditions have to be appropriately given (which is different in the case of ordinary derivatives as well as the case of Caputo fractional derivatives). We consider both interpretations in the literature on the presence of impulses in fractional differential equations: With fixed lower limit of the fractional derivative at the initial time point and with lower limits changeable at each impulsive time point. In both cases we set up in an appropriate way impulsive conditions which are dependent on the Riemann-Liouville fractional derivative. We obtain integral presentations of the solutions in both cases. These presentations could be successfully used for furure studies of existence, stability and other qualitative properties of the solutions of the integro-differential equations with Riemann-Liouville fractional derivative of order in (1,2) and impulses.

    S. H. is partially supported by the Bulgarian National Science Fund under Project KP-06-N32/7.

    The authors declare that they have no competing interests.



    [1] C. Tian, T. Jin, X. Yang, Q. Liu, Reliability analysis of the uncertain heat conduction modelImage 1, Comput. Math. Appl., 119 (2022), 131–140. https://doi.org/10.1016/j.camwa.2022.05.033 doi: 10.1016/j.camwa.2022.05.033
    [2] T. Y. Wu, Long waves in ocean and coastal waters, J. Eng. Mech., 107 (1981), 501–522. https://doi.org/10.1061/JMCEA3.0002722 doi: 10.1061/JMCEA3.0002722
    [3] L. Lay, H. Kanamori, C. Ammon, M. Nettles, S. Ward, R. Aster, et al., The great Sumatra-Andaman earthquake of 26 December 2004, Science, 308 (2004), 1127–1133. https://doi.org/10.1126/science.1112250 doi: 10.1126/science.1112250
    [4] R. C. Smith, J. Hill, G. S. Collins, M. D. Piggott, S. C. Kramer, S. D. Parkinson, et al., Comparing approaches for numerical modelling tsunami generation by deformable submarine slides, Ocean Model., 100 (2016), 125–140. https://doi.org/10.1016/j.ocemod.2016.02.007 doi: 10.1016/j.ocemod.2016.02.007
    [5] B. Wongsaijai, K. Poochinapan, Optimal decay rates of the dissipative shallow water waves modeled by coupling the RosenauRLW equation and the Rosenau-Burgers equation with power of nonlinearity, Appl. Math. Comput., 405 (2021), 126202. https://doi.org/10.1016/j.amc.2021.126202 doi: 10.1016/j.amc.2021.126202
    [6] S. Arora, T. Mathur, S. Agarwal, K. Tiwari, P. Gupta, Applications of fractional calculus in computer vision: a survey, Neurocomputing, 489 (2022), 407–428. https://doi.org/10.1016/j.neucom.2021.10.122 doi: 10.1016/j.neucom.2021.10.122
    [7] T. Jin, X. Yang, Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market, Math. Comput. Simul., 190 (2021), 203–221. https://doi.org/10.1016/j.matcom.2021.05.018 doi: 10.1016/j.matcom.2021.05.018
    [8] C. D. Constantinescu, J. M. Ramirez, W. R. Zhu, An application of fractional differential equations to risk theory, Finance Stoch., 23 (2019), 1001–1024. https://doi.org/10.1007/s00780-019-00400-8 doi: 10.1007/s00780-019-00400-8
    [9] Q. Li, Y. Zhou, X. Zhao, X. Ge, Fractional order stochastic differential equation with application in European option pricing, Discrete Dyn. Nature Soc., 2014 (2014), 621895. https://doi.org/10.1155/2014/621895 doi: 10.1155/2014/621895
    [10] X. Jiang, M. Xu, H. Qi, The fractional diffusion model with an absorption term and modified Fick's law for non-local transport processes, Nonlinear Anal.: Real World Appl., 11 (2010), 262–269. https://doi.org/10.1016/j.nonrwa.2008.10.057 doi: 10.1016/j.nonrwa.2008.10.057
    [11] A. Atangana, Fractional operators with constant and variable order with application to Geo-Hydrology, London: Academic Press, 2018. https://doi.org/10.1016/C2015-0-05711-2
    [12] Z. Jiao, Y. Chen, I. Podlubny, Distributed-order dynamic systems-stability, simulation, applications and perspectives, London: Springer, 2012.
    [13] L. L. Ferras, N. J. Ford, M. L. Morgado, M. Rebelo, G. H. McKinley, J. M. Nobrega, Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries, Comput. Fluids, 174 (2018), 14–33. https://doi.org/10.1016/j.compfluid.2018.07.004 doi: 10.1016/j.compfluid.2018.07.004
    [14] J. S. Duan, D. C. Hu, Y. Q. Chen, Simultaneous characterization of relaxation, creep, dissipation, and hysteresis by fractional-order constitutive models, Fractal Fract., 36 (2021), 14–33. https://doi.org/10.3390/fractalfract5020036 doi: 10.3390/fractalfract5020036
    [15] P. B. Dubovski, J. Slepoi, Analysis of solutions of some multi-term fractional Bessel equations, Fract. Calc. Appl. Anal., 24 (2021), 1380–1408. https://doi.org/10.1515/fca-2021-0059 doi: 10.1515/fca-2021-0059
    [16] S. Choudhary, V. Daftardar-Gejji, Nonlinear multi-order fractional differential equations with periodic/anti-periodic boundary conditions, Fract. Calc. Appl. Anal., 17 (2014), 333–347. https://doi.org/10.2478/s13540-014-0172-6 doi: 10.2478/s13540-014-0172-6
    [17] J. Čermák, T. Kisela, Stability properties of two-term fractional differential equations, Nonlinear Dyn., 80 (2015), 1673–1684. https://doi.org/10.1007/s11071-014-1426-x doi: 10.1007/s11071-014-1426-x
    [18] J. Čermák, T. Kisela, Asymptotic stability of dynamic equations with two fractional terms: continuous versus discrete case, Fract. Calc. Appl. Anal., 18 (2015), 437–458. https://doi.org/10.1515/fca-2015-0028 doi: 10.1515/fca-2015-0028
    [19] B. Ahmad, N. Alghamdi, A. Alsaedi, S. K. Ntouyas, Multi-term fractional diferential equations with nonlocal boundary conditions, Open Math., 16 (2018), 1519–1536. https://doi.org/10.1515/math-2018-0127 doi: 10.1515/math-2018-0127
    [20] J. Tariboon, A. Samadi, S. K. Ntouyas, Nonlocal boundary value problems for Hilfer generalized proportional fractional differential equations, Fractal. Fract., 6 (2022), 1519–1536. https://doi.org/10.3390/fractalfract6030154 doi: 10.3390/fractalfract6030154
    [21] M. Stojanovic, Existence-uniqueness result for a nonlinear n-term fractional equation, J. Math. Anal. Appl., 353 (2009), 244–255. https://doi.org/10.1016/j.jmaa.2008.11.056 doi: 10.1016/j.jmaa.2008.11.056
    [22] J. Čermák, T. Kisela, Stability properties of two-term fractional differential equations, Nonlinear Dyn., 80 (2015), 1673–1684. https://doi.org/10.1007/s11071-014-1426-x doi: 10.1007/s11071-014-1426-x
    [23] D. G. Ky, L. V. Thinh, H. T. Tuan, Existence, uniqueness and asymptotic behavior of solutions to two-term fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 115 (2022), 106751. https://doi.org/10.1016/j.cnsns.2022.106751 doi: 10.1016/j.cnsns.2022.106751
    [24] T Jin, X. Yang, H. Xia, H. Ding, R. Hui, Reliability index and option pricing formulas of the first-hitting time model based on the uncertain fractional-order differential equation with Caputo type, Fractals, 29 (2021), 2150012. https://doi.org/10.1142/S0218348X21500122 doi: 10.1142/S0218348X21500122
    [25] P. W. Eloe, B. Ahmad, Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions, Appl. Math. Lett., 18 (2005), 521–527. https://doi.org/10.1016/j.aml.2004.05.009 doi: 10.1016/j.aml.2004.05.009
    [26] Y. Sun, Positive solutions for third-order three-point nonhomogeneous boundary value problems, Appl. Math. Lett., 22 (2009), 45–51. https://doi.org/10.1016/j.aml.2008.02.002 doi: 10.1016/j.aml.2008.02.002
    [27] B. Liu, Positive solutions of a nonlinear three-point boundary value problem, Comput. Math. Appl., 44 (2002), 201–211. https://doi.org/10.1016/S0898-1221(02)00141-4 doi: 10.1016/S0898-1221(02)00141-4
    [28] M. A. Almalahi, O. Bazighifan, S. K. Panchal, S. S. Askar, G. I. Oros, Analytical study of two nonlinear coupled hybrid systems involving generalized hilfer fractional operators, Fractal Fract., 5 (2021), 178. https://doi.org/10.3390/fractalfract5040178 doi: 10.3390/fractalfract5040178
    [29] S. S. Redhwan, S. L. Shaikh, M. S. Abdo, W. Shatanawi, K. Abodayeh, M. A. Almalahi, et al., Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions, AIMS Math., 7 (2022), 1856–1872. https://doi: 10.3934/math.2022107 doi: 10.3934/math.2022107
    [30] I. Suwan, M. S. Abdo, T. Abdeljawad, M. M. Matar, A. Boutiara, M. A. Almalahi, Existence theorems for ψ-fractional hybrid systems with periodic boundary conditions, AIMS Math., 7 (2022), 171–186. https://doi: 10.3934/math.2022010 doi: 10.3934/math.2022010
    [31] B. Wongsaijai, P. Charoensawan, T. Suebcharoen, W. Atiponrat, Common fixed point theorems for auxiliary functions with applications in fractional differential equation, Adv. Differ. Equ., 2021 (2021), 503. https://doi.org/10.1186/s13662-021-03660-x doi: 10.1186/s13662-021-03660-x
    [32] R. Suparatulatorn, P. Charoensawan, K. Poochinapan, S. Dangskul, An algorithm for the split feasible problem and image restoration, RACSAM, 115 (2021), 12. https://doi.org/10.1007/s13398-020-00942-z doi: 10.1007/s13398-020-00942-z
    [33] R. Suparatulatorn, P. Charoensawan, K. Poochinapan, Inertial self-adaptive algorithm for solving split feasible problems with applications to image restoration, Math. Meth. Appl. Sci., 42 (2019), 7268–7284. https://doi.org/10.1002/mma.5836 doi: 10.1002/mma.5836
    [34] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2007), 1359–1373. https://doi.org/10.1090/S0002-9939-07-09110-1 doi: 10.1090/S0002-9939-07-09110-1
    [35] M. R. Alfuraidan, The contraction principle for multivalued mappings on a modular metric space with a graph, Canad. Math. Bull., 59 (2016), 3–12. https://doi.org/10.4153/CMB-2015-029-x doi: 10.4153/CMB-2015-029-x
    [36] M. R. Alfuraidan, Remarks on Caristi's fixed point theorem in metric spaces with a graph, Fixed Point Theory Appl., 2014 (2014), 240. https://doi.org/10.1186/1687-1812-2014-240 doi: 10.1186/1687-1812-2014-240
    [37] M. R. Alfuraidan, Remarks on monotone multivalued mappings on a metric space with a graph, J. Ineq. Appl., 2015 (2015), 202. https://doi.org/10.1186/s13660-015-0712-6 doi: 10.1186/s13660-015-0712-6
    [38] I. Beg, A. R. Butt, S. Radojeviˊc, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl., 60 (2010), 1214–1219. https://doi.org/10.1016/j.camwa.2010.06.003 doi: 10.1016/j.camwa.2010.06.003
    [39] F. Bojor, Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal., 75 (2012), 3895–3901. https://doi.org/10.1016/j.na.2012.02.009 doi: 10.1016/j.na.2012.02.009
    [40] H. Afshari, H. Alsulami, E. Karapınar, On the extended multivalued Geraghty type contractions, J. Nonlinear Sci. Appl., 9 (2016), 4695–4706. https://doi.org/10.22436/jnsa.009.06.108 doi: 10.22436/jnsa.009.06.108
    [41] M. Asadi, E. Karapınar, A. Kumar, A α-ψ-Geraghty contractions on generalized metric spaces, Fixed Point Theory Appl., 2014 (2014), 423. https://doi.org/10.1186/1029-242X-2014-423 doi: 10.1186/1029-242X-2014-423
    [42] S. H. Cho, J. S. Bae, E. Karapınar, Fixed point theorems for α-Geraghty contraction type maps in metric spaces, J. Inequal. Appl., 2013 (2013), 329. https://doi.org/10.1186/1687-1812-2013-329 doi: 10.1186/1687-1812-2013-329
    [43] E. Karapınar, A discussion on ''α-ψ-Geraghty contraction type mappings", Filomat, 28 (2014), 761–766. https://doi.org/10.2298/FIL1404761K doi: 10.2298/FIL1404761K
    [44] E. Karapınar, α-ψ-Geraghty contraction type mappings and some related fixed point results, Filomat, 28 (2014), 37–48. https://doi.org/10.2298/FIL1401037K doi: 10.2298/FIL1401037K
    [45] E. Karapınar, H. Alsulami, M. Noorwali, Some extensions for Geragthy type contractive mappings, J. Inequal. Appl., 2015 (2015), 303. https://doi.org/10.1186/s13660-015-0830-1 doi: 10.1186/s13660-015-0830-1
    [46] E. Karapınar, B. Samet, A note on 'ψ-Geraghty type contractions', Fixed Point Theory Appl., 2014 (2014), 26. https://doi.org/10.1186/1687-1812-2014-26 doi: 10.1186/1687-1812-2014-26
    [47] P. Charoensawan, W. Atiponrat, Common fixed point and coupled coincidence point theorems for Geraghty's type contraction mapping with two metrics endowed with a directed graph, Hindawi J. Math., 2017 (2017), 5746704. https://doi.org/10.1155/2017/5746704 doi: 10.1155/2017/5746704
    [48] J. Martínez-Moreno, W. Sintunavarat, Y. J. Cho, Common fixed point theorems for Geraghty's type contraction mappings using the monotone property with two metrics, Fixed Point Theory Appl., 2015 (2015), 174. https://doi.org/10.1186/s13663-015-0426-y doi: 10.1186/s13663-015-0426-y
    [49] R. S. Adiguzel, U. Aksoy, E. Karapınar, I. M. Erhan, On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math., 20 (2021), 313–333. http://hdl.handle.net/20.500.12416/5881
    [50] H. Afshari, S. Kalantari, D. Baleanu, Solution of fractional differential equations via αϕ-Geraghty type mappings, Adv. Differ. Equ., 2018 (2018), 347. https://doi.org/10.1186/s13662-018-1807-4 doi: 10.1186/s13662-018-1807-4
    [51] X. Fu, Existence results for fractional differential equations with three-point boundary conditions, Adv. Differ. Equ., 2013 (2013), 257. https://doi.org/10.1186/1687-1847-2013-257 doi: 10.1186/1687-1847-2013-257
    [52] E. Karapınar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 2019 (2019), 421. https://doi.org/10.1186/s13662-019-2354-3 doi: 10.1186/s13662-019-2354-3
    [53] R. P. Agarwal, D. O'Regan, Fixed point theory for generalized contractions on spaces with two metrics, J. Math. Anal. Appl., 248 (2000), 402–414. https://doi.org/10.1006/jmaa.2000.6914 doi: 10.1006/jmaa.2000.6914
  • This article has been cited by:

    1. Ateq Alsaadi, Mieczysław Cichoń, Mohamed M. A. Metwali, Integrable Solutions for Gripenberg-Type Equations with m-Product of Fractional Operators and Applications to Initial Value Problems, 2022, 10, 2227-7390, 1172, 10.3390/math10071172
    2. Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Existence Results for a Differential Equation Involving the Right Caputo Fractional Derivative and Mixed Nonlinearities with Nonlocal Closed Boundary Conditions, 2023, 7, 2504-3110, 129, 10.3390/fractalfract7020129
    3. Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi, On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions, 2023, 8, 2473-6988, 11709, 10.3934/math.2023593
    4. Mehran Ghaderi, Shahram Rezapour, On an m-dimensional system of quantum inclusions by a new computational approach and heatmap, 2024, 2024, 1029-242X, 10.1186/s13660-024-03125-1
    5. Ahmed Alsaedi, Manal Alnahdi, Bashir Ahmad, Sotiris K. Ntouyas, On a nonlinear coupled Caputo-type fractional differential system with coupled closed boundary conditions, 2023, 8, 2473-6988, 17981, 10.3934/math.2023914
    6. AHMED ALSAEDI, HANA AL-HUTAMI, BASHIR AHMAD, INVESTIGATION OF A NONLINEAR MULTI-TERM IMPULSIVE ANTI-PERIODIC BOUNDARY VALUE PROBLEM OF FRACTIONAL q-INTEGRO-DIFFERENCE EQUATIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23401916
    7. Ahmed Alsaedi, Bashir Ahmad, Hana Al-Hutami, Nonlinear Multi-term Impulsive Fractional q-Difference Equations with Closed Boundary Conditions, 2024, 23, 1575-5460, 10.1007/s12346-023-00934-5
    8. Ravi P. Agarwal, Bashir Ahmad, Hana Al-Hutami, Ahmed Alsaedi, Existence results for nonlinear multi-term impulsive fractional q-integro-difference equations with nonlocal boundary conditions, 2023, 8, 2473-6988, 19313, 10.3934/math.2023985
    9. Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi, On a Mixed Nonlinear Fractional Boundary Value Problem with a New Class of Closed Integral Boundary Conditions, 2023, 22, 1575-5460, 10.1007/s12346-023-00781-4
    10. Madeaha Alghanmi, Ravi P. Agarwal, Bashir Ahmad, Existence of Solutions for a Coupled System of Nonlinear Implicit Differential Equations Involving ϱ-Fractional Derivative with Anti Periodic Boundary Conditions, 2024, 23, 1575-5460, 10.1007/s12346-023-00861-5
    11. Bashir Ahmad, Muhammed Aldhuain, Ahmed Alsaedi, Existence Results for a Right-Caputo Type Fractional Differential Equation with Mixed Nonlinearities and Nonlocal Multipoint Sub-strips Type Closed Boundary Conditions, 2024, 45, 1995-0802, 6457, 10.1134/S1995080224606969
    12. Ahmed Alsaedi, Hafed A. Saeed, Hamed Alsulami, Existence and stability of solutions for a nonlocal multi-point and multi-strip coupled boundary value problem of nonlinear fractional Langevin equations, 2025, 15, 1664-3607, 10.1142/S1664360724500140
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1902) PDF downloads(72) Cited by(4)

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog