Processing math: 83%
Research article

Bioinformatic analysis of the coding region of the melatonin receptor 1b gene as a reliable DNA marker to resolve interspecific mammal phylogenetic relationships

  • This research looks into the main DNA markers and the limits of their application in molecular phylogenetic analysis. Melatonin 1B (MTNR1B) receptor genes were analyzed from various biological sources. Based on the coding sequences of this gene, using the class Mammalia as example, phylogenetic reconstructions were made to study the potential of mtnr1b as a DNA marker for phylogenetic relationships investigating. The phylogenetic trees were constructed using NJ, ME and ML methods that establish the evolutionary relationships between different groups of mammals. The resulting topologies were generally in good agreement with topologies established on the basis of morphological and archaeological data as well as with other molecular markers. The present divergences provided a unique opportunity for evolutionary analysis. These results suggest that the coding sequence of the MTNR1B gene can be used as a marker to study the relationships of lower evolutionary levels (order, species) as well as to resolve deeper branches of the phylogenetic tree at the infraclass level.

    Citation: Ekaterina Y. Kasap, Оlga K. Parfenova, Roman V. Kurkin, Dmitry V. Grishin. Bioinformatic analysis of the coding region of the melatonin receptor 1b gene as a reliable DNA marker to resolve interspecific mammal phylogenetic relationships[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 5430-5447. doi: 10.3934/mbe.2023251

    Related Papers:

    [1] K. R. Karthikeyan, G. Murugusundaramoorthy, N. E. Cho . Some inequalities on Bazilevič class of functions involving quasi-subordination. AIMS Mathematics, 2021, 6(7): 7111-7124. doi: 10.3934/math.2021417
    [2] Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618
    [3] S. O. Olatunji, Hemen Dutta . Coefficient inequalities for pseudo subclasses of analytical functions related to Petal type domains defined by error function. AIMS Mathematics, 2020, 5(3): 2526-2538. doi: 10.3934/math.2020166
    [4] Halit Orhan, Nanjundan Magesh, Chinnasamy Abirami . Fekete-Szegö problem for Bi-Bazilevič functions related to Shell-like curves. AIMS Mathematics, 2020, 5(5): 4412-4423. doi: 10.3934/math.2020281
    [5] Prathviraj Sharma, Srikandan Sivasubramanian, Nak Eun Cho . Initial coefficient bounds for certain new subclasses of bi-univalent functions with bounded boundary rotation. AIMS Mathematics, 2023, 8(12): 29535-29554. doi: 10.3934/math.20231512
    [6] Erhan Deniz, Muhammet Kamali, Semra Korkmaz . A certain subclass of bi-univalent functions associated with Bell numbers and qSrivastava Attiya operator. AIMS Mathematics, 2020, 5(6): 7259-7271. doi: 10.3934/math.2020464
    [7] Hava Arıkan, Halit Orhan, Murat Çağlar . Fekete-Szegö inequality for a subclass of analytic functions defined by Komatu integral operator. AIMS Mathematics, 2020, 5(3): 1745-1756. doi: 10.3934/math.2020118
    [8] Sadaf Umar, Muhammad Arif, Mohsan Raza, See Keong Lee . On a subclass related to Bazilevič functions. AIMS Mathematics, 2020, 5(3): 2040-2056. doi: 10.3934/math.2020135
    [9] Wenzheng Hu, Jian Deng . Hankel determinants, Fekete-Szegö inequality, and estimates of initial coefficients for certain subclasses of analytic functions. AIMS Mathematics, 2024, 9(3): 6445-6467. doi: 10.3934/math.2024314
    [10] Anandan Murugan, Sheza M. El-Deeb, Mariam Redn Almutiri, Jong-Suk-Ro, Prathviraj Sharma, Srikandan Sivasubramanian . Certain new subclasses of bi-univalent function associated with bounded boundary rotation involving sǎlǎgean derivative. AIMS Mathematics, 2024, 9(10): 27577-27592. doi: 10.3934/math.20241339
  • This research looks into the main DNA markers and the limits of their application in molecular phylogenetic analysis. Melatonin 1B (MTNR1B) receptor genes were analyzed from various biological sources. Based on the coding sequences of this gene, using the class Mammalia as example, phylogenetic reconstructions were made to study the potential of mtnr1b as a DNA marker for phylogenetic relationships investigating. The phylogenetic trees were constructed using NJ, ME and ML methods that establish the evolutionary relationships between different groups of mammals. The resulting topologies were generally in good agreement with topologies established on the basis of morphological and archaeological data as well as with other molecular markers. The present divergences provided a unique opportunity for evolutionary analysis. These results suggest that the coding sequence of the MTNR1B gene can be used as a marker to study the relationships of lower evolutionary levels (order, species) as well as to resolve deeper branches of the phylogenetic tree at the infraclass level.



    Recently, fractional calculus has attained assimilated bounteous flow and significant importance due to its rife utility in the areas of technology and applied analysis. Fractional derivative operators have given a new rise to mathematical models such as thermodynamics, fluid flow, mathematical biology, and virology, see [1,2,3]. Previously, several researchers have explored different concepts related to fractional derivatives, such as Riemann-Liouville, Caputo, Riesz, Antagana-Baleanu, Caputo-Fabrizio, etc. As a result, this investigation has been directed at various assemblies of arbitrary order differential equations framed by numerous analysts, (see [4,5,6,7,8,9,10]). It has been perceived that the supreme proficient technique for deliberating such an assortment of diverse operators that attracted incredible presentation in research-oriented fields, for example, quantum mechanics, chaos, thermal conductivity, and image processing, is to manage widespread configurations of fractional operators that include many other operators, see the monograph and research papers [11,12,13,14,15,16,17,18,19,20,21,22].

    In [23], the author proposed a novel idea of fractional operators, which is called GPF operator, that recaptures the Riemann-Liouville fractional operators into a solitary structure. In [24], the authors analyzed the existence of the FDEs as well as demonstrated the uniqueness of the GPF derivative by utilizing Kransnoselskii's fixed point hypothesis and also dealt with the equivalency of the mixed type Volterra integral equation.

    Fractional calculus can be applied to a wide range of engineering and applied science problems. Physical models of true marvels frequently have some vulnerabilities which can be reflected as originating from various sources. Additionally, fuzzy sets, fuzzy real-valued functions, and fuzzy differential equations seem like a suitable mechanism to display the vulnerabilities marked out by elusiveness and dubiousness in numerous scientific or computer graphics of some deterministic certifiable marvels. Here we broaden it to several research areas where the vulnerability lies in information, for example, ecological, clinical, practical, social, and physical sciences [25,26,27].

    In 1965, Zadeh [28] proposed fuzziness in set theory to examine these issues. The fuzzy structure has been used in different pure and applied mathematical analyses, such as fixed-point theory, control theory, topology, and is also helpful for fuzzy automata and so forth. In [29], authors also broadened the idea of a fuzzy set and presented fuzzy functions. This concept has been additionally evolved and the bulk of the utilization of this hypothesis has been deliberated in [30,31,32,33,34,35] and the references therein. The concept of HD has been correlated with fuzzy Riemann-Liouville differentiability by employing the Hausdorff measure of non-compactness in [36,37].

    Numerous researchers paid attention to illustrating the actual verification of certain fuzzy integral equations by employing the appropriate compactness type assumptions. Different methodologies and strategies, in light of HD or generalized HD (see [38]) have been deliberated in several credentials in the literature (see for instance [39,40,41,42,43,44,45,46,47,48,49]) and we presently sum up quickly a portion of these outcomes. In [50], the authors proved the existence of solutions to fuzzy FDEs considering Hukuhara fractional Riemann-Liouville differentiability as well as the uniqueness of the aforesaid problem. In [51,52], the authors investigated the generalized Hukuhara fractional Riemann-Liouville and Caputo differentiability of fuzzy-valued functions. Bede and Stefanini [39] investigated and discovered novel ideas for fuzzy-valued mappings that correlate with generalized differentiability. In [43], Hoa introduced the subsequent fuzzy FDE with order ϑ(0,1):

    {(cDϑσ+1Φ)(ζ)=F(ζ,Φ(ζ)),Φ(σ1)=Φ0E, (1.1)

    where a fuzzy function is F:[σ1,σ2]×EE with a nontrivial fuzzy constant Φ0E. The article addressed certain consequences on clarification of the fractional fuzzy differential equations and showed that the aforesaid equations in both cases (differential/integral) are not comparable in general. A suitable assumption was provided so that this correspondence would be effective. Hoa et al. [53] proposed the Caputo-Katugampola FDEs fuzzy set having the initial condition:

    {(cDϑ,ρσ+1Φ)(ζ)=F(ζ,Φ(ζ)),Φ(σ1)=Φ0, (1.2)

    where 0<σ1<ζσ2, cDϑ,ρσ+1 denotes the fuzzy Caputo-Katugampola fractional generalized Hukuhara derivative and a fuzzy function is F:[σ1,σ2]×EE. An approach of continual estimates depending on generalized Lipschitz conditions was employed to discuss the actual as well as the uniqueness of the solution. Owing to the aforementioned phenomena, in this article, we consider a novel fractional derivative (merely identified as Hilfer GPF-derivative). Consequently, in the framework of the proposed derivative, we establish the basic mathematical tools for the investigation of GPF-FFHD which associates with a fractional order fuzzy derivative. We investigated the actuality and uniqueness consequences of the clarification to a fuzzy fractional IVP by employing GPF generalized HD by considering an approach of continual estimates via generalized Lipschitz condition. Moreover, we derived the FVFIE using a generalized fuzzy GPF derivative is presented. Finally, we demonstrate the problems of actual and uniqueness of the clarification of this group of equations. The Hilfer-GPF differential equation is presented as follows:

    {Dϑ,q,βσ+1Φ(ζ)=F(ζ,Φ(ζ)),ζ[σ1,T],0σ1<TI1γ,βσ1Φ(σ1)=mj=1RjΦ(νj),ϑγ=ϑ+qϑq,νj(σ1,T], (1.3)

    where Dϑ,q,βσ+1(.) is the Hilfer GPF-derivative of order ϑ(0,1),I1γ,βσ1(.) is the GPF integral of order 1γ>0,RjR, and a continuous function F:[σ1,T]×RR with νj[σ1,T] fulfilling σ<ν1<...<νm<T for j=1,...,m. To the furthest extent that we might actually know, nobody has examined the existence and uniqueness of solution (1.3) regarding FVFIEs under generalized fuzzy Hilfer-GPF-HD with fuzzy initial conditions. An illustrative example of fractional-order in the complex domain is proposed and provides the exact solution in terms of the Fox-Wright function.

    The following is the paper's summary. Notations, hypotheses, auxiliary functions, and lemmas are presented in Section 2. In Section 3, we establish the main findings of our research concerning the existence and uniqueness of solutions to Problem 1.3 by means of the successive approximation approach. We developed the fuzzy GPF Volterra-Fredholm integrodifferential equation in Section 4. Section 5 consists of concluding remarks.

    Throughout this investigation, E represents the space of all fuzzy numbers on R. Assume the space of all Lebsegue measureable functions with complex values F on a finite interval [σ1,σ2] is identified by χrc(σ1,σ2) such that

    Fχrc<,cR,1r.

    Then, the norm

    Fχrc=(σ2σ1|ζcF(ζ)|rdζζ)1/r.

    Definition 2.1. ([53]) A fuzzy number is a fuzzy set Φ:R[0,1] which fulfills the subsequent assumptions:

    (1) Φ is normal, i.e., there exists ζ0R such that Φ(ζ0)=1;

    (2) Φ is fuzzy convex in R, i.e, for δ[0,1],

    Φ(δζ1+(1δ)ζ2)min{Φ(ζ1),Φ(ζ2)}foranyζ1,ζ2R;

    (3) Φ is upper semicontinuous on R;

    (4) [z]0=cl{z1R|Φ(z1)>0} is compact.

    C([σ1,σ2],E) indicates the set of all continuous functions and set of all absolutely continuous fuzzy functions signifys by AC([σ1,σ2],E) on the interval [σ1,σ2] having values in E.

    Let γ(0,1), we represent the space of continuous mappings by

    Cγ[σ1,σ2]={F:(σ1,σ2]E:eβ1β(ζσ1)(ζσ1)1γF(ζ)C[σ1,σ2]}.

    Assume that a fuzzy set Φ:R[0,1] and all fuzzy mappings Φ:[σ1,σ2]E defined on L([σ1,σ2],E) such that the mappings ζˉD0[Φ(ζ),ˆ0] lies in L1[σ1,σ2].

    There is a fuzzy number Φ on R, we write [Φ]ˇq={z1R|Φ(z1)ˇq} the ˇq-level of Φ, having ˇq(0,1].

    From assertions (1) to (4); it is observed that the ˇq-level set of ΦE, [Φ]ˇq is a nonempty compact interval for any ˇq(0,1]. The ˇq-level of a fuzzy number Φ is denoted by [Φ_(ˇq),ˉΦ(ˇq)].

    For any δR and Φ1,Φ2E, then the sum Φ1+Φ2 and the product δΦ1 are demarcated as: [Φ1+Φ2]ˇq=[Φ1]ˇq+[Φ2]ˇq and [δ.Φ1]ˇq=δ[Φ1]ˇq, for all ˇq[0,1], where [Φ1]ˇq+[Φ2]ˇq is the usual sum of two intervals of R and δ[Φ1]ˇq is the scalar multiplication between δ and the real interval.

    For any ΦE, the diameter of the ˇq-level set of Φ is stated as diam[μ]ˇq=ˉμ(ˇq)μ_(ˇq).

    Now we demonstrate the notion of Hukuhara difference of two fuzzy numbers which is mainly due to [54].

    Definition 2.2. ([54]) Suppose Φ1,Φ2E. If there exists Φ3E such that Φ1=Φ2+Φ3, then Φ3 is known to be the Hukuhara difference of Φ1 and Φ2 and it is indicated by Φ1Φ2. Observe that Φ1Φ2Φ1+()Φ2.

    Definition 2.3. ([54]) We say that ¯D0[Φ1,Φ2] is the distance between two fuzzy numbers if

    ¯D0[Φ1,Φ2]=supˇq[0,1]H([Φ1]ˇq,[Φ2]ˇq),Φ1,Φ2E,

    where the Hausdroff distance between [Φ1]ˇq and [Φ2]ˇq is defined as

    H([Φ1]ˇq,[Φ2]ˇq)=max{|Φ_(ˇq)ˉΦ(ˇq)|,|ˉΦ(ˇq)Φ_(ˇq)|}.

    Fuzzy sets in E is also refereed as triangular fuzzy numbers that are identified by an ordered triple Φ=(σ1,σ2,σ3)R3 with σ1σ2σ3 such that [Φ]ˇq=[Φ_(ˇq),ˉΦ(ˇq)] are the endpoints of ˇq-level sets for all ˇq[0,1], where Φ_(ˇq)=σ1+(σ2σ1)ˇq and ˉΦ(ˇq)=σ3(σ3σ2)ˇq.

    Generally, the parametric form of a fuzzy number Φ is a pair [Φ]ˇq=[Φ_(ˇq),ˉΦ(ˇq)] of functions Φ_(ˇq),ˉΦ(ˇq),ˇq[0,1], which hold the following assumptions:

    (1) μ_(ˇq) is a monotonically increasing left-continuous function;

    (2) ˉμ(ˇq) is a monotonically decreasing left-continuous function;

    (3) μ_(ˇq)ˉμ(ˇq),ˇq[0,1].

    Now we mention the generalized Hukuhara difference of two fuzzy numbers which is proposed by [38].

    Definition 2.4. ([38]) The generalized Hukuhara difference of two fuzzy numbers Φ1,Φ2E (gH-difference in short) is stated as follows

    Φ1gHΦ2=Φ3Φ1=Φ2+Φ3orΦ2=Φ1+(1)Φ3.

    A function Φ:[σ1,σ2]E is said to be d-increasing (d-decreasing) on [σ1,σ2] if for every ˇq[0,1]. The function ζdiam[Φ(ζ)]ˇq is nondecreasing (nonincreasing) on [σ1,σ2]. If Φ is d-increasing or d-decreasing on [σ1,σ2], then we say that Φ is d-monotone on [σ1,σ2].

    Definition 2.5. ([39])The generalized Hukuhara derivative of a fuzzy-valued function F:(σ1,σ2)E at ζ0 is defined as

    FgH(ζ0)=limh0F(ζ0+h)gHF(ζ0)h,

    if (F)gH(ζ0)E, we say that F is generalized Hukuhara differentiable (gH-differentiable) at ζ0.

    Moreover, we say that F is [(i)gH]-differentiable at ζ0 if

    [FgH(ζ0)]ˇq=[[limh0F_(ζ0+h)gHF_(ζ0)h]ˇq,[limh0ˉF(ζ0+h)gHˉF(ζ0)h]ˇq]=[(F_)(ˇq,ζ0),(ˉF)(ˇq,ζ0)], (2.1)

    and that F is [(ii)gH]-differentiable at ζ0 if

    [FgH(ζ0)]ˇq=[(ˉF)(ˇq,ζ0),(F_)(ˇq,ζ0)]. (2.2)

    Definition 2.6. ([49]) We state that a point ζ0(σ1,σ2), is a switching point for the differentiability of F, if in any neighborhood U of ζ0 there exist points ζ1<ζ0<ζ2 such that

    Type Ⅰ. at ζ1 (2.1) holds while (2.2) does not hold and at ζ2 (2.2) holds and (2.1) does not hold, or

    Type Ⅱ. at ζ1 (2.2) holds while (2.1) does not hold and at ζ2 (2.1) holds and (2.2) does not hold.

    Definition 2.7. ([23]) For β(0,1] and let the left-sided GPF-integral operator of order ϑ of F is defined as follows

    Iϑ,βσ+1F(ζ)=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1F(ν)dν,ζ>σ1, (2.3)

    where β(0,1], ϑC, Re(ϑ)>0 and Γ(.) is the Gamma function.

    Definition 2.8. ([23]) For β(0,1] and let the left-sided GPF-derivative operator of order ϑ of F is defined as follows

    Dϑ,βσ+1F(ζ)=Dn,ββnϑΓ(nϑ)ζσ1eβ1β(ζν)(ζν)nϑ1F(ν)dν, (2.4)

    where β(0,1], ϑC,Re(ϑ)>0,n=[ϑ]+1 and Dn,β represents the nth-derivative with respect to proportionality index β.

    Definition 2.9. ([23]) For β(0,1] and let the left-sided GPF-derivative in the sense of Caputo of order ϑ of F is defined as follows

    cDϑ,βσ+1F(ζ)=1βnϑΓ(nϑ)ζσ1eβ1β(ζν)(ζν)nϑ1(Dn,βF)(ν)dν, (2.5)

    where β(0,1], ϑC,Re(ϑ)>0 and n=[ϑ]+1.

    Let ΦL([σ1,σ2],E), then the GPF integral of order ϑ of the fuzzy function Φ is stated as:

    Φβϑ(ζ)=(Iϑ,βσ+1Φ)(ζ)=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1Φ(ν)dν,ζ>σ1. (2.6)

    Since [Φ(ζ)]ˇq=[Φ_(ˇq,ζ),ˉΦ(ˇq,ζ)] and 0<ϑ<1, we can write the fuzzy GPF-integral of the fuzzy mapping Φ depend on lower and upper mappingss, that is,

    [(Iϑ,βσ+1Φ)(ζ)]ˇq=[(Iϑ,βσ+1Φ_)(ˇq,ζ),(Iϑ,βσ+1ˉΦ)(ˇq,ζ)],ζσ1, (2.7)

    where

    (Iϑ,βσ+1Φ_)(ˇq,ζ)=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1Φ_(ˇq,ν)dν, (2.8)

    and

    (Iϑ,βσ+1ˉΦ)(ˇq,ζ)=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1ˉΦ(ˇq,ν)dν. (2.9)

    Definition 2.10. For nN, order ϑ and type q hold n1<ϑn with 0q1. The left-sided fuzzy Hilfer-proportional gH-fractional derivative, with respect to ζ having β(0,1] of a function ζCβ1γ[σ1,σ2], is stated as

    (Dϑ,q,βσ+1Φ)(ζ)=(Iq(1ϑ),βσ+1Dβ(I(1q)(1ϑ),βσ+1Φ))(ζ),

    where DβΦ(ν)=(1β)Φ(ν)+βΦ(ν) and if the gH-derivative Φ(1ϑ),β(ζ) exists for ζ[σ1,σ2], where

    Φβ(1ϑ)(ζ):=(I(1ϑ),βσ+1Φ)(ζ)=1β1ϑΓ(1ϑ)ζσ1eβ1β(ζν)(ζν)ϑΦ(ν)dν,ζσ1.

    Definition 2.11. Let ΦL([σ1,σ2],E) and the fractional generalized Hukuhara GPF-derivative of fuzzy-valued function Φ is stated as:

    (gHDϑ,βσ+1Φ)(ζ)=I1ϑ,βσ+1(ΦgH)(ζ)=1β1ϑΓ(1ϑ)ϑσ1eβ1β(ζν)(ζν)ϑΦgH(ν)dν,ν(σ1,ζ). (2.10)

    Furthermore, we say that Φ is GPF[(i)gH]-differentiable at ζ0 if

    [(gHDϑ,βσ+1)]ˇq=[[1β1ϑΓ(1ϑ)ϑσ1eβ1β(ζν)(ζν)ϑΦ_gH(ν)dν]ˇq,[1β1ϑΓ(1ϑ)ϑσ1eβ1β(ζν)(ζν)ϑˉΦgH(ν)dν]ˇq]=[(gHD_ϑ,βσ+1)(ˇq,ζ),(gHˉDϑ,βσ+1)(ˇq,ζ)] (2.11)

    and that Φ is GPF[(i)gH]-differentiable at ζ0 if

    [(gHDϑ,βσ+1)]ˇq=[(gHˉDϑ,βσ+1)(ˇq,ζ),(gHD_ϑ,βσ+1)(ˇq,ζ)]. (2.12)

    Definition 2.12. We say that a point ζ0(σ1,σ2), is a switching point for the differentiability of F, if in any neighborhood U of ζ0 there exist points ζ1<ζ0<ζ2 such that

    Type Ⅰ. at ζ1 (2.11) holds while (2.12) does not hold and at ζ2 (2.12) holds and (2.11) does not hold, or

    Type Ⅱ. at ζ1 (2.12) holds while (2.11) does not hold and at ζ2 (2.11) holds and (2.12) does not hold.

    Proposition 1. ([23]) Let ϑ,ϱC such that Re(ϑ)>0 and Re(ϱ)>0. Then for any β(0,1], we have

    (Iϑ,βσ+1eβ1β(sσ1)ϱ1)(ζ)=Γ(ϱ)βϑΓ(ϱ+ϑ)eβ1β(ζσ1)(ζσ1)ϱ+ϑ1,(Dϑ,βσ+1eβ1β(sσ1)ϱ1)(ζ)=Γ(ϱ)βϑΓ(ϱϑ)eβ1β(ζσ1)(ζσ1)ϱϑ1,(Iϑ,βσ+1eβ1β(σ2s)ϱ1)(ζ)=Γ(ϱ)βϑΓ(ϱ+ϑ)eβ1β(σ2s)(σ2ζ)ϱ+ϑ1,(Dϑ,βσ+1eβ1β(σ2s)ϱ1)(ζ)=Γ(ϱ)βϑΓ(ϱϑ)eβ1β(σ2s)(σ2s)ϱϑ1.

    Lemma 2.13. ([24])For β(0,1], ϑ>0, 0γ<1. If ΦCγ[σ1,σ2] and I1ϑσ+1ΦC1γ[σ1,σ2], then

    (Iϑ,βσ+1Dϑ,βσ+1Φ)(ζ)=Φ(ζ)eβ1β(ζσ1)(ζσ1)ϑ1βϑ1Γ(ϑ)(I1ϑ,βσ+1Φ)(σ1).

    Lemma 2.14. ([24]) Let ΦL1(σ1,σ2). If Dq(1ϑ),βσ+1Φ exists on L1(σ1,σ2), then

    Dϑ,q,βσ+1Iϑ,βσ+1Φ=Iq(1ϑ),βσ+1Dq(1ϑ),βσ+1Φ.

    Lemma 2.15. Suppose there is a d-monotone fuzzy mapping ΦAC([σ1,σ2],E), where [Φ(ζ)]ˇq=[Φ_(ˇq,ζ),ˉΦ(ˇq,ζ)] for 0ˇq1,σ1ζσ2, then for 0<ϑ<1 and β(0,1], we have

    (i)[(Dϑ,q,βσ+1Φ)(ζ)]ˇq=[Dϑ,q,βσ+1Φ_(ˇq,ζ),Dϑ,q,βσ+1ˉΦ(ˇq,ζ)] for ζ[σ1,σ2], if Φ is d-increasing;

    (ii)[(Dϑ,q,βσ+1Φ)(ζ)]ˇq=[Dϑ,q,βσ+1ˉΦ(ˇq,ζ),Dϑ,q,βσ+1Φ_(ˇq,ζ)] for ζ[σ1,σ2], if Φ is d-decreasing.

    Proof. It is to be noted that if Φ is d-increasing, then [Φ(ζ)]ˇq=[ddζΦ_(ˇq,ζ),ddζˉΦ(ˇq,ζ)]. Taking into account Definition 2.10, we have

    [(Dϑ,q,βσ+1Φ)(ζ)]ˇq=[Iq(1ϑ),βσ+1Dβ(I(1q)(1ϑ),βσ+1Φ_)(ˇq,ζ),Iq(1ϑ),βσ+1Dβ(I(1q)(1ϑ),βσ+1ˉΦ)(ˇq,ζ)]=[Dϑ,q,βσ+1Φ_(ˇq,ζ),Dϑ,q,βσ+1ˉΦ(ˇq,ζ)].

    If Φ is d-decreasing, then [Φ(ζ)]ˇq=[ddζˉΦ(ˇq,ζ),ddζΦ_(ˇq,ζ)], we have

    [(Dϑ,q,βσ+1Φ)(ζ)]ˇq=[Iq(1ϑ),βσ+1Dβ(I(1q)(1ϑ),βσ+1ˉΦ)(ˇq,ζ),Iq(1ϑ),βσ+1Dβ(I(1q)(1ϑ),βσ+1Φ_)(ˇq,ζ)]=[Dϑ,q,βσ+1ˉΦ(ˇq,ζ),Dϑ,q,βσ+1Φ_(ˇq,ζ)].

    This completes the proof.

    Lemma 2.16. For β(0,1],ϑ(0,1). If ΦAC([σ1,σ2],E) is a d-monotone fuzzy function. We take

    z1(ζ):=(Iϑ,βσ+1Φ)(ζ)=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1Φ(ν)dν,

    and

    z(1ϑ),β1:=(I(1ϑ),βσ+1Φ)(ζ)=1β1ϑΓ(1ϑ)ϑσ1eβ1β(ζν)(ζν)ϑΦgH(ν)dν,

    is d-increasing on (σ1,σ2], then

    (Iϑ,βσ+1Dϑ,q,βσ+1Φ)(ζ)=Φ(ζ)mj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1,

    and

    (Dϑ,q,βσ+1Iϑ,βσ+1Φ)(ζ)=Φ(ζ).

    Proof. If z1(ζ) is d-increasing on [σ1,σ2] or z1(ζ) is d-decreasing on [σ1,σ2] and z(1ϑ),β1(ζ) is d-increasing on (σ1,σ2].

    Utilizing the Definitions 2.6, 2.10 and Lemma 2.13 with the initial condition (I1γ,βσ+1Φ)(σ1)=0, we have

    (Iϑ,βσ+1Dϑ,q,βσ+1Φ)(ζ)=(Iϑ,βσ+1Iq(1ϑ),βσ+1DβI(1q)(1ϑ),βσ+1Φ)(ζ)=(Iγ,βσ+1DβI1γ,βσ+1Φ)(ζ)=(Iγ,βσ+1Dγ,βσ+1Φ)(ζ)=Φ(ζ)I1γ,βσ+1Φβγ1Γ(γ)eβ1β(ζσ1)(ζσ1)γ1. (2.13)

    Now considering Proposition 1, Lemma 2.13 and Lemma 2.14, we obtain

    (Dϑ,q,βσ+1Iϑ,βσ+1Φ)(ζ)=(Iq(1ϑ),βσ+1Dq(1ϑ),βσ+1Φ)(ζ)=Φ(ζ)(I1q(1ϑ),βσ+1Φ)(σ1)eβ1β(ζσ1)βq(1ϑ)Γ(q(1ϑ))(ζσ1)q(1ϑ)1=Φ(ζ).

    On contrast, since ΦAC([σ1,σ2],E), there exists a constant K such that K=supζ[σ1,σ2]¯D0[Φ(ζ),ˆ0].

    Then

    ¯D0[Iϑ,βσ+1Φ(ζ),ˆ0]K1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1dνK1βϑΓ(ϑ)ζσ1|eβ1β(ζν)|(ζν)ϑ1dν=KβϑΓ(ϑ+1)(ζσ1)ϑ,

    where we have used the fact |eβ1βζ|<1 and Iϑ,βσ+1Φ(ζ)=0 and ζ=σ1.

    This completes the proof.

    Lemma 2.17. Let there be a continuous mapping Φ:[σ1,σ2]R+ on [σ1,σ2] and hold Dϑ,q,βσ+1Φ(ζ)F(ξ,Φ(ξ)),ξσ1, where FC([σ1,σ1]×R+,R+). Assume that m(ζ)=m(ζ,σ1,ξ0) is the maximal solution of the IVP

    Dϑ,q,βσ+1ξ(ζ)=F(ζ,ξ),(I1γ,βσ+1ξ)(σ1)=ξ00, (2.14)

    on [σ1,σ2]. Then, if Φ(σ1)ξ0, we have Φ(ζ)m(ζ),ζ[σ1,σ2].

    Proof. The proof is simple and can be derived as parallel to Theorem 2.2 in [53].

    Lemma 2.18. Assume the IVP described as:

    Dϑ,q,βσ+1Φ(ζ)=F(ζ,Φ(ζ)),(I1γ,βσ+1Φ)(σ1)=Φ0=0,ζ[σ1,σ2]. (2.15)

    Let α>0 be a given constant and B(Φ0,α)={ΦR:|ΦΦ0|α}. Assume that the real-valued functions F:[σ1,σ2]×[0,α]R+ satisfies the following assumptions:

    (i) FC([σ1,σ2]×[0,α],R+),F(ζ,0)0,0F(ζ,Φ)MF for all (ζ,Φ)[σ1,σ2]×[0,α];

    (ii) F(ζ,Φ) is nondecreasing in Φ for every ζ[σ1,σ2]. Then the problem (2.15) has at least one solution defined on [σ1,σ2] and Φ(ζ)B(Φ0,α).

    Proof. The proof is simple and can be derived as parallel to Theorem 2.3 in [53].

    In this investigation, we find the existence and uniqueness of solution to problem 1.3 by utilizing the successive approximation technique by considering the generalized Lipschitz condition of the right-hand side.

    Lemma 3.1. For γ=ϑ+q(1ϑ),ϑ(0,1),q[0,1] with β(0,1], and let there is a fuzzy function F:(σ1,σ2]×EE such that ζF(ζ,Φ) belongs to Cβγ([σ1,σ2],E) for any ΦE. Then a d-monotone fuzzy function ΦC([σ1,σ2],E) is a solution of IVP (1.3) if and only if Φ satisfies the integral equation

    Φ(ζ)gHmj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1F(ν,Φ(ν))dν,ζ[σ1,σ2],j=1,2,...,m. (3.1)

    and the fuzzy function ζI1γσ+1F(ζ,Φ) is d-increasing on (σ1,σ2].

    Proof. Let ΦC([σ1,σ2],E) be a d-monotone solution of (1.3), and considering z1(ζ):=Φ(ζ)gH(I1γ,βσ+1Φ)(σ1),ζ(σ1,σ2]. Since Φ is d-monotone on [σ1,σ2], it follows that ζz1(ζ) is d-increasing on [σ1,σ2] (see [43]).

    From (1.3) and Lemma 2.16, we have

    (Iϑ,βσ+1Dϑ,q,βσ+1Φ)(ζ)=Φ(ζ)mj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1,ζ[σ1,σ2]. (3.2)

    Since F(ζ,Φ)Cγ([σ1,σ2],E) for any ΦE, and from (1.3), observes that

    (Iϑ,βσ+1Dϑ,q,βσ+1Φ)(ζ)=Iϑ,βσ+1F(ζ,Φ(ζ))=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1F(ν,Φ(ν))dν,ζ[σ1,σ2]. (3.3)

    Additionally, since z1(ζ) is d-increasing on (σ1,σ2]. Also, we observe that ζFϑ,β(ζ,Φ) is also d-increasing on (σ1,σ2].

    Reluctantly, merging (3.2) and (3.3), we get the immediate consequence.

    Further, suppose ΦC([σ1,σ2],E) be a d-monotone fuzzy function fulfills (3.1) and such that ζFϑ,β(ζ,Φ) is d-increasing on (σ1,σ2]. By the continuity of the fuzzy mapping F, the fuzzy mapping ζFϑ,β(ζ,Φ) is continuous on (σ1,σ2] with Fϑ,β(σ1,Φ(σ1))=limζσ+1Fϑ,β(ζ,Φ)=0. Then

    Φ(ζ)=mj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1+(Iϑ,βσ+1F(ζ,ζ))(ζ),I1γ,βσ+1Φ(ζ)=mj=1RjΦ(ζj)+(I1q(1ϑ)σ+1F(ζ,Φ(ζ)))(ζ),

    and

    I1γ,βσ+1Φ(0)=mj=1RjΦ(ζj).

    Moreover, since ζFϑ,β(ζ,Φ) is d-increasing on (σ1,σ2]. Applying, the operator Dϑ,q,βσ+1 on (3.1), yields

    Dϑ,q,βσ+1(Φ(ζ)gHmj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1)=Dϑ,q,βσ+1(1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1F(ν,Φ(ν))dν)=F(ζ,Φ(ζ)).

    This completes the proof.

    In our next result, we use the following assumption. For a given constant >0, and let B(Φ0,)={ΦE:¯D0[Φ,Φ0]}.

    Theorem 3.2. Let FC([σ1,σ2]×B(Φ0,),E) and suppose that the subsequent assumptions hold:

    (i) there exists a positive constant MF such that ¯D0[F(ζ,z1),ˆ0]MF, for all (ζ,z1)[σ1,σ2]×B(Φ0,);

    (ii) for every ζ[σ1,σ2] and every z1,ωB(Φ0,),

    ¯D0[F(ζ,z1),F(ζ,ω)]g(ζ,¯D0[z1,ω]), (3.4)

    where g(ζ,.)C([σ1,σ2]×[0,β],R+) satisfies the assumption in Lemma 2.18 given that problem (2.15) has only the solution ϕ(ζ)0 on [σ1,σ2]. Then the subsequent successive approximations given by Φ0(ζ)=Φ0 and for n=1,2,...,

    Φn(ζ)gHmj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1F(ν,Φn1(ν))dν,

    converges consistently to a fixed point of problem (1.3) on certain interval [σ1,T] for some T(σ1,σ2] given that the mapping ζIϑ,βσ+1F(ζ,Φn(ζ)) is d-increasing on [σ1,T].

    Proof. Take σ1<ζ such that ζ[βϑ.Γ(1+ϑ)M+σ1]1ϑ, where M=max{Mg,MF} and put T:=min{ζ,σ2}. Let S be a set of continuous fuzzy functions Φ such that ω(σ1)=Φ0 and ω(ζ)B(Φ0,) for all ζ[σ1,T]. Further, we suppose the sequence of continuous fuzzy function {Φn}n=0 given by Φ0(ζ)=Φ0,ζ[σ1,T] and for n=1,2,..,

    Φn(ζ)gHmj=1RjΦn1(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1F(ν,Φn1(ν))dν. (3.5)

    Firstly, we show that Φn(ζ)C([σ1,T],B(Φ0,)). For n1 and for any ζ1,ζ2[σ1,T] with ζ1<ζ2, we have

    ¯D0(Φn(ζ1)gHmj=1RjΦn1(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1,Φn(ζ2)gHmj=1RjΦn1(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1)1βϑΓ(ϑ)ζ1σ1[eβ1β(ζ1ν)(ζ1ν)ϑ1eβ1β(ζ2ν)(ζ2ν)ϑ1]¯D0[F(ν,Φn1(ν)),ˆ0]dν+1βϑΓ(ϑ)ζ2ζ1eβ1β(ζ2ν)(ζ2ν)ϑ1¯D0[F(ν,Φn1(ν)),ˆ0]dν.

    Using the fact that |eβ1βζ|<1, then, on the right-hand side from the last inequality, the subsequent integral becomes 1βϑΓ(1+ϑ)(ζ2ζ1)ϑ. Therefore, with the similar assumption as we did above, the first integral reduces to 1βϑΓ(1+ϑ)[(ζ1σ1)ϑ(ζ2σ1)ϑ+(ζ2ζ1)ϑ]. Thus, we conclude

    ¯D0[Φn((ζ1),Φn(ζ2))]MFβϑΓ(1+ϑ)[(ζ1σ1)ϑ(ζ2σ1)ϑ+2(ζ2ζ1)ϑ]2MFβϑΓ(1+ϑ)(ζ2ζ1)ϑ.

    In the limiting case as ζ1ζ2, then the last expression of the above inequality tends to 0, which shows Φn is a continuous function on [σ1,T] for all n1.

    Moreover, it follows that ΦnB(Φ0,) for all n0,ζ[σ1,T] if and only if Φn(ζ)gHmj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1B(0,) for all ζ[σ1,T] and for all n0.

    Also, if we assume that Φn1(ζ)S for all ζ[σ1,T],n2, then

    ¯D0[Φn(ζ)gHmj=1RjΦn1(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1,ˆ0]1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1¯D0[F(ν,Φn1(ν)),ˆ0]dν=MF(ζσ1)ϑβϑΓ(1+ϑ).

    It follows that Φn(ζ)S,[σ1,T].

    Henceforth, by mathematical induction, we have Φn(ζ)S,ζ[σ1,T] and n1.

    Further, we show that the sequence Φn(ζ) converges uniformly to a continuous function ΦC([σ1,T],B(Φ0,)). By assertion (ii) and mathematical induction, we have for ζ[σ1,T]

    ¯D0[Φn+1(ζ)gHmj=1RjΦn(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1,Φn(ζ)gHmj=1RjΦn1(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1]ϕn(ζ),n=0,1,2,..., (3.6)

    where ϕn(ζ) is defined as follows:

    ϕn(ζ)=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1g(ν,ϕn1(ν))dν, (3.7)

    where we have used the fact that |eβ1βζ|<1 and ϕ0(ζ)=M(ζσ1)ϑβϑΓ(ϑ+1). Thus, we have, for ζ[σ1,T] and for n=0,1,2,...,

    ¯D0[Dϑ,qσ+1Φn+1(ζ),Dϑ,qσ+1Φn(ζ)]¯D0[F(ζ,Φn(ζ)),F(ζ,Φn1(ζ))]g(ζ,¯D0[Φn(ζ),Φn1(ζ)])g(ζ,ϕn1(ζ)).

    Let nm and ζ[σ1,T], then one obtains

    Dϑ,qσ+1¯D0[Φn(ζ),Φm(ζ)]¯D0[Dϑ,qσ+1Φn(ζ),Dϑ,qσ+1Φm(ζ)]¯D0[Dϑ,qσ+1Φn(ζ),Dϑ,qσ+1Φn+1(ζ)]+¯D0[Dϑ,qσ+1Φn+1(ζ),Dϑ,qσ+1Φm+1(ζ)]+¯D0[Dϑ,qσ+1Φm+1(ζ),Dϑ,qσ+1Φm(ζ)]2g(ζ,ϕn1(ζ))+g(ζ,¯D0[Φn(ζ),Φm(ζ)]).

    From (ii), we observe that the solution ϕ(ζ)=0 is a unique solution of problem (2.15) and g(.,ϕn1):[σ1,T][0,Mg] uniformly converges to 0, for every ϵ>0, there exists a natural number n0 such that

    Dϑ,qσ+1¯D0[Φn(ζ),Φm(ζ)]g(ζ,¯D0[Φn(ζ),Φm(ζ)])+ϵ,forn0nm.

    Using the fact that ¯D0[Φn(σ1),Φm(σ1)]=0<ϵ and by using Lemma 2.17, we have for ζ[σ1,T]

    ¯D0[Φn(ζ),Φm(ζ)]δϵ(ζ),n0nm, (3.8)

    where δϵ(ζ) is the maximal solution to the following IVP:

    (Dϑ,qσ+1δϵ)(ζ)=g(ζ,δϵ(ζ))+ϵ,(I1γσ+1δϵ)=ϵ.

    Taking into account Lemma 2.17, we deduce that [ϕϵ(.,ω)] converges uniformly to the maximal solution ϕ(ζ)0 of (2.15) on [σ1,T] as ϵ0.

    Therefore, in view of (3.8), we can obtain n0N is large enough such that, for n0<n,m,

    supζ[σ1,T]¯D0[Φn(ζ)gHmj=1RjΦn1(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1,Φm(ζ)gHmj=1RjΦn1(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1]ϵ. (3.9)

    Since (E,¯D0) is a complete metric space and (3.9) holds, thus {Φn(ζ)} converges uniformly to ΦC([σ1,σ2],B(Φ0,)). Hence

    Φ(ζ)gHmj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1=limn(Φn(ζ)gHmj=1RjΦn1(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1)=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1F(ν,Φn1(ν))dν. (3.10)

    Because of Lemma 3.1, the function Φ(ζ) is the solution to (1.3) on [σ1,T].

    In order to find the unique solution, assume that Ψ:[σ1,T]E is another solution of problem (1.3) on [σ1,T]. We denote κ(ζ)=¯D0[Φ(ζ),Ψ(ζ)]. Then κ(σ1)=0 and for every ζ[σ1,T], we have

    Dϑ,q,βσ+1κ(ζ)¯D0[F(ζ,Φ(ζ)),F(ζ,Ψ(ζ))]g(ζ,κ(ζ)). (3.11)

    Further, using the comaprison Lemma 2.17, we get κ(ζ)m(ζ), where m is a maximal solution of the IVP Dϑ,q,βσ+1m(ζ)g(ζ,m(ζ)),(I1γσ+1m)(σ1)=0. By asseration (ii), we have m(ζ)=0 and hence Φ(ζ)=Ψ(ζ),[σ1,T].

    This completes the proof.

    Corollary 1. For β(0,1] and let C([σ1,σ2],E). Assume that there exist positive constants L,MF such that, for every z1,ωE,

    ¯D0[F(ζ,z1),F(ζ,ω)]L¯D0[z1,ω],¯D0[F(ζ,z1),ˆ0]MF.

    Then the subsequent successive approximations given by Φ0(ζ)=Φ0 and for n=1,2,..

    Φn(ζ)gHΦ0=1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1F(ν,Φn1(ν))dν,

    converges consistently to a fixed point of problem (1.3) on [σ1,T] for certain T(σ1,σ2] given that the mapping ζIϑ,βσ+1F(ζ,Φn(ζ)) is d-increasing on [σ1,T].

    Example 3.3. For β(0,1],γ=ϑ+q(1ϑ),ϑ(0,1),q[0,1] and δR. Assume that the linear fuzzy GPF-FDE under Hilfer-GPF-derivative and moreover, the subsequent assumptions hold:

    {(Dϑ,qσ+1Φ)(ζ)=δΦ(ζ)+η(ζ),ζ(σ1,σ2],(I1γ,βσ+1Φ)(σ1)=Φ0=mj=1RjΦ(ζj),γ=ϑ+q(1ϑ). (3.12)

    Applying Lemma 3.1, we have

    Φ(ζ)gHmj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1=δ1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1Φ(ν)dν+1βϑΓ(ϑ)ζσ1eβ1β(ζν)(ζν)ϑ1η(ν)dν,ζ[σ1,σ2]=δ(Iϑ,βσ+1Φ)(ζ)+(Iϑ,βσ+1η)(ζ),

    where ηC((σ1,σ2],E) and furthermore, assuming the diameter on the right part of the aforementioned equation is increasing. Observing F(ζ,Φ):=δΦ+η fulfill the suppositions of Corollary 1.

    In order to find the analytical view of (3.12), we utilized the technique of successive approximation. Putting Φ0(ζ)=Φ0 and

    Φn(ζ)gHmj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1=δ(Iϑ,βσ+1Φn1)(ζ)+(Iϑ,βσ+1η)(ζ),n=1,2,...

    Letting n=1,δ>0, assuming there is a d-increasing mapping Φ, then we have

    Φ1(ζ)gHmj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1=δmj=1RjΦ(ζj)(ζσ1)ϑβϑΓ(ϑ+1)+(Iϑ,βσ+1η)(ζ).

    In contrast, if we consider δ<0 and Φ is d-decreasing, then we have

    (1)(mj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1gHΦ1(ζ))=δmj=1RjΦ(ζj)(ζσ1)ϑβϑΓ(ϑ+1)+(Iϑ,βσ+1η)(ζ).

    For n=2, we have

    Φ2(ζ)gHmj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1=mj=1RjΦ(ζj)[δ(ζσ1)ϑβϑΓ(ϑ+1)+δ2(ζσ1)2ϑβ2ϑΓ(2ϑ+1)]+(Iϑ,βσ+1η)(ζ)+(I2ϑ,βσ+1η)(ζ),

    if δ>0 and there is d-increasing mapping Φ, we have

    (1)(mj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1gHΦ2(ζ))=mj=1RjΦ(ζj)[δ(ζσ1)ϑβϑΓ(ϑ+1)+δ2(ζσ1)2ϑβ2ϑΓ(2ϑ+1)]+(Iϑ,βσ+1η)(ζ)+(I2ϑ,βσ+1η)(ζ),

    and there is δ<0,andd-increasing mapping Φ. So, continuing inductively and in the limiting case, when n, we attain the solution

    Φ(ζ)gHmj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1=mj=1RjΦ(ζj)l=1δl(ζσ1)lϑβlϑΓ(lϑ+1)+ζσ1l=1δl1(ζσ1)lϑ1βlϑ1Γ(lϑ)η(ν)dν=mj=1RjΦ(ζj)l=1δl(ζσ1)lϑβlϑΓ(lϑ+1)+ζσ1l=0δl(ζσ1)lϑ+(ϑ1)βlϑ+(ϑ1)Γ(lϑ+ϑ)η(ν)dν=mj=1RjΦ(ζj)l=1δl(ζσ1)lϑβlϑΓ(lϑ+1)+1βϑ1ζσ1(ζσ1)ϑ1l=0δl(ζσ1)lϑβlϑΓ(lϑ+ϑ)η(ν)dν,

    for every δ>0 and Φ is d-increasing, or δ<0 and Φ is d-decreasing, accordingly. Therefore, by means of Mittag-Leffler function Eϑ,q(Φ)=l=1ΦκΓ(lϑ+q),ϑ,q>0, the solution of problem (3.12) is expressed by

    Φ(ζ)gHmj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1=mj=1RjΦ(ζj)Eϑ,1(δ(ζσ1)ϑ)+1βϑ1ζσ1(ζσ1)ϑ1Eϑ,ϑ(δ(ζσ1)ϑ)η(ν)dν,

    for every of δ>0 and Φ is d-increasing. Alternately, if δ<0 and Φ is d-decreasing, then we get the solution of problem (3.12)

    Φ(ζ)gHmj=1RjΦ(ζj)βγΓ(γ)eβ1β(ζσ1)(ζσ1)γ1=mj=1RjΦ(ζj)Eϑ,1(δ(ζσ1)ϑ)(1)1βϑ1ζσ1(ζσ1)ϑ1Eϑ,ϑ(δ(ζσ1)ϑ)η(ν)dν.

    Consider IVP

    {(gHDϑ,βσ+1Φ)(ζ)=F(ζ,Φ(ζ),H1Φ(ζ),H2Φ(ζ)),ζ[ζ0,T]Φ(ζ0)=Φ0E, (4.1)

    where β(0,1] and ϑ(0,1) is a real number and the operation gHDϑσ+1 denote the GPF derivative of order ϑ, F:[ζ0,T]×E×E×EE is continuous in ζ which fulfills certain supposition that will be determined later, and

    H1Φ(ζ)=ζζ0H1(ζ,s)Φ(s)ds,H2Φ(ζ)=Tζ0H2(ζ,s)Φ(s)ds, (4.2)

    with H1,H2:[ζ0,T]×[ζ0,T]R such that

    H1=supζ[ζ0,T]ζζ0|H1(ζ,s)|ds,H2=supζ[ζ0,T]Tζ0|H2(ζ,s)|ds.

    Now, we investigate the existence and uniqueness of the solution of problem (4.1). To establish the main consequences, we require the following necessary results.

    Theorem 4.1. Let F:[σ1,σ2]E be a fuzzy-valued function on [σ1,σ2]. Then

    (i) F is [(i)gH]-differentiable at c[σ1,σ2] iff F is GPF[(i)gH]-differentiable at c.

    (ii) F is [(ii)gH]-differentiable at c[σ1,σ2] iff F is GPF[(ii)gH]-differentiable at c.

    Proof. In view of Definition 2.18 and Definition 2.11, the proof is straightforward.

    Lemma 4.2. ([44]) Let there be a fuzzy valued mapping F:[ζ0,T]E such that FgHEχrc(σ1,σ2), then

    Iϑ,βζ0(gHDϑ,βσ+1F)(ζ)=F(ζ)gHF(ζ0). (4.3)

    Lemma 4.3. The IVP (4.1) is analogous to subsequent equation

    Φ(ζ)=Φ0+1βϑΓ(q)ζζ0eβ1β(ζν)(ζν)ϑ1F(ν,Φ(ν),H1Φ(ν),H2Φ(ν))dν, (4.4)

    if Φ(ζ) be GPF[(i)gH]-differentiable,

    Φ(ζ)=Φ01βϑΓ(q)ζζ0eβ1β(ζν)(ζν)ϑ1F(ν,Φ(ν),H1Φ(ν),H2Φ(ν))dν, (4.5)

    if Φ(ζ) be GPF[(ii)gH]-differentiable, and

    Φ(ζ)={Φ0+1βϑΓ(q)ζζ0eβ1β(ζν)(ζν)ϑ1F(ν,Φ(ν),H1Φ(ν),H2Φ(ν))dν,ζ[σ1,σ3],Φ01βϑΓ(q)ζζ0eβ1β(ζν)(ζν)ϑ1F(ν,Φ(ν),H1Φ(ν),H2Φ(ν))dν,ζ[σ3,σ2], (4.6)

    if there exists a point σ3(σ1,σ2) such that Φ(ζ) is GPF[(i)gH]-differentiable on [σ1,σ3] and GPF[(ii)gH]-differentiable on [σ3,σ2] and F(σ3,Φ(σ3,Φ(σ3),H1Φ(σ3))R.

    Proof. By means of the integral operator (2.6) on both sides of (4.1), yields

    \begin{eqnarray} \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\big(\,_{\mathfrak{g}H}\mathcal{D}_{\sigma_{1}^{+}}^{\vartheta,\beta}\Phi(\zeta)\big) = \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\big(\mathcal{F}(\zeta,\Phi(\zeta),\mathcal{H}_{1}\Phi(\zeta),\mathcal{H}_{2}\Phi(\zeta)\big). \end{eqnarray} (4.7)

    Utilizing Lemma 4.2 and Definition 2.6, we gat

    \begin{eqnarray} \Phi(\zeta)\ominus_{\mathfrak{g}H}\Phi_{0} = \frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu. \end{eqnarray} (4.8)

    In view of Defnition 2.17 and Theorem 4.1, if \Phi(\zeta) be \, ^{GPF}[(i)-\mathfrak{g}H] -differentiable,

    \begin{eqnarray} \Phi(\zeta) = \Phi_{0}+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu \end{eqnarray} (4.9)

    and if \Phi(\zeta) be \, ^{GPF}[(ii)-\mathfrak{g}H] -differentiable

    \begin{eqnarray} \Phi(\zeta) = \Phi_{0}\ominus\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu. \end{eqnarray} (4.10)

    In addition, when we have a switchpoint \sigma_{3}\in(\sigma_{1}, \sigma_{2}) of type (I) the \, ^{GPF}[\mathfrak{g}H] -differentiability changes from type (I) to type (II) at \zeta = \sigma_{3}. Then by (4.9) and (4.10) and Definition 2.12, The proof is easy to comprehend.

    Also, we proceed with the following assumptions:

    ({\mathbb{A}_{1}}). \mathcal{F}:[\zeta_{0}, \mathcal{T}]\times\mathfrak{E}\times\mathfrak{E}\times\mathfrak{E}\rightarrow \mathfrak{E} is continuous and there exist positive real functions \mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3} such that

    \begin{eqnarray*} &&\bar{\mathcal{D}_{0}}\Big(\mathcal{F}(\zeta,\Phi(\zeta),\mathcal{H}_{1}\Phi(\zeta),\mathcal{H}_{2}\Phi(\zeta)),\mathcal{F}(\zeta,\Psi(\zeta),\mathcal{H}_{1}\Psi(\zeta),\mathcal{H}_{2}\Psi(\zeta))\Big)\nonumber\\&&\leq\mathcal{L}_{1}(\zeta)\bar{\mathcal{D}_{0}}(\Phi,\Psi)+\mathcal{L}_{2}(\zeta)\bar{\mathcal{D}_{0}}(\mathcal{H}_{1}\Phi,\mathcal{H}_{1}\Psi)+\mathcal{L}_{3}(\zeta)\bar{\mathcal{D}_{0}}(\mathcal{H}_{2}\Phi,\mathcal{H}_{2}\Psi). \end{eqnarray*}

    ({\mathbb{A}_{2}}). There exist a number \epsilon such that \delta\leq\epsilon < 1, \, \zeta\in[\zeta_{0}, \mathcal{T}]

    \delta = \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P}(1+\mathcal{H}_{1}^{*}+\mathcal{H}_{2}^{*})

    and

    \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P} = \sup\limits_{\zeta\in[0,\mathcal{T}]}\big\{\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{1},\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{2},\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{3}\big\}.

    Theorem 4.4. Let \mathcal{F}:[\zeta_{0}, \mathcal{T}]\times\mathfrak{E}\times\mathfrak{E}\times\mathfrak{E}\rightarrow \mathfrak{E} be a bounded continuous functions and holds (\mathbb{A}_{1}). Then the IVP (4.1) has a unique solution which is \, ^{GPF}[(i)-\mathfrak{g}H] -differentiable on [\zeta_{0}, \mathcal{T}], given that \delta < 1, where \delta is given in (\mathbb{A}_{2}).

    Proof. Assuming \Phi(\zeta) is \, ^{GPF}[(i)-\mathfrak{g}H] -differentiability and \Phi_{0}\in\mathfrak{E} be fixed. Propose a mapping \mathfrak{F}:\mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E})\rightarrow \mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}) by

    \begin{eqnarray} \big(\mathfrak{F}\Phi\big)(\zeta) = \Phi_{0}+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu,\quad for\,all\,\zeta\in[\zeta_{0},\mathcal{T}]. \end{eqnarray} (4.11)

    Next we prove that \mathfrak{F} is contraction. For \Phi, \Psi\in\mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}) by considering of (\mathbb{A}_{1}) and by distance properties (2.3), one has

    \begin{eqnarray} &&\bar{\mathcal{D}_{0}}\big(\mathfrak{F}\Phi(\zeta),\mathfrak{F}\Psi(\zeta)\big)\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert \bar{\mathcal{D}_{0}}\big(\mathcal{F}(\zeta,\Phi(\zeta),\mathcal{H}_{1}\Phi(\zeta),\mathcal{H}_{2}\Phi(\zeta)),\mathcal{F}(\zeta,\Psi(\zeta),\mathcal{H}_{1}\Psi(\zeta),\mathcal{H}_{2}\Psi(\zeta))\Big)d\nu\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\big[\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi)+\mathcal{L}_{2}\bar{\mathcal{D}_{0}}(\mathcal{H}_{1}\Phi,\mathcal{H}_{1}\Psi)+\mathcal{L}_{3}\bar{\mathcal{D}_{0}}(\mathcal{H}_{2}\Phi,\mathcal{H}_{2}\Psi) \big]d\nu\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi)d\nu+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}\bar{\mathcal{D}_{0}}(\mathcal{H}_{1}\Phi,\mathcal{H}_{1}\Psi)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{3}\bar{\mathcal{D}_{0}}(\mathcal{H}_{2}\Phi,\mathcal{H}_{2}\Psi)d\nu. \end{eqnarray} (4.12)

    Now, we find that

    \begin{eqnarray} &&\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}\bar{\mathcal{D}_{0}}(\mathcal{H}_{1}\Phi,\mathcal{H}_{1}\Psi)d\nu\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\Big(\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}\bar{\mathcal{D}_{0}}(\Phi,\Psi)\int\limits_{\zeta_{0}}^{\nu}\vert\mathcal{H}_{1}(\nu,x)\vert dx \Big)d\nu\\&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{2}\mathcal{H}_{1}^{*}.\bar{\mathcal{D}_{0}}(\Phi,\Psi). \end{eqnarray} (4.13)

    Analogously,

    \begin{eqnarray} &&\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{3}\bar{\mathcal{D}_{0}}(\mathcal{H}_{2}\Phi,\mathcal{H}_{2}\Psi)d\nu\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{3}\mathcal{H}_{1}^{*}.\bar{\mathcal{D}_{0}}(\Phi,\Psi),\\ &&\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi)d\nu = \mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi). \end{eqnarray} (4.14)

    Then we have

    \begin{eqnarray} \bar{\mathcal{D}_{0}}\big(\mathfrak{F}\Phi,\mathfrak{F}\Psi\big)&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{1}\bar{\mathcal{D}_{0}}(\Phi,\Psi)+\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{2}\mathcal{H}_{1}^{*}.\bar{\mathcal{D}_{0}}(\Phi,\Psi)+\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{L}_{3}\mathcal{H}_{2}^{*}.\bar{\mathcal{D}_{0}}(\Phi,\Psi)\\&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P}(1+\mathcal{H}_{1}^{*}+\mathcal{H}_{2}^{*})\bar{\mathcal{D}_{0}}(\Phi,\Psi)\\&& < \bar{\mathcal{D}_{0}}(\Phi,\Psi). \end{eqnarray} (4.15)

    Consequently, \mathfrak{F} is a contraction mapping on \mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}) having a fixed point \mathfrak{F}\Phi(\zeta) = \Phi(\zeta). Henceforth, the IVP (4.1) has unique solution.

    Theorem 4.5. For \beta\in(0, 1] and let \mathcal{F}:[\zeta_{0}, \mathcal{T}]\times\mathfrak{E}\times\mathfrak{E}\times\mathfrak{E}\rightarrow \mathfrak{E} be a bounded continuous functions and satisfies (\mathbb{A}_{1}). Let the sequence \Phi_{n}:[\zeta_{0}, \mathcal{T}]\rightarrow \mathfrak{E} is given by

    \begin{eqnarray} \Phi_{n+1}(\zeta)&& = \Phi_{0}\ominus\frac{-1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi_{n}(\nu),\mathcal{H}_{1}\Phi_{n}(\nu),\mathcal{H}_{2}\Phi_{n}(\nu)\big)d\nu,\quad\\ \Phi_{0}(\zeta)&& = \Phi_{0}, \end{eqnarray} (4.16)

    is described for any n\in\mathbb{N}. Then the sequence \{\Phi_{n}\} converges to fixed point of problem (4.1) which is \, ^{GPF}[(ii)-\mathfrak{g}H] -differentiable on [\zeta_{0}, \mathcal{T}], given that \delta < 1, where \delta is defined in (\mathbb{A}_{2}).

    Proof. We now prove that the sequence \{\Phi_{n}\} , given in (4.16), is a Cauchy sequence in \mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}). To do just that, we'll require

    \begin{eqnarray} \bar{\mathcal{D}_{0}}(\Phi_{1},\Phi_{0})&& = \bar{\mathcal{D}_{0}}\bigg(\Phi_{0}\ominus\frac{-1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi_{0}(\nu),\mathcal{H}_{1}\Phi_{0}(\nu),\mathcal{H}_{2}\Phi_{0}(\nu)\big)d\nu,\Phi_{0}\bigg)\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\bar{\mathcal{D}_{0}}\Big(\mathcal{F}\big(\nu,\Phi_{0}(\nu),\mathcal{H}_{1}\Phi_{0}(\nu),\mathcal{H}_{2}\Phi_{0}(\nu)\big), \hat{0}\Big)d\nu\\&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{M}, \end{eqnarray} (4.17)

    where \mathcal{M} = \sup_{\zeta\in[\zeta_{0}, \mathcal{T}]}\bar{\mathcal{D}_{0}}\big(\mathcal{F}(\zeta, \Phi, \mathcal{H}_{1}\Phi, \mathcal{H}_{2}\Phi), \hat{0}\big).

    Since \mathcal{F} is Lipschitz continuous, In view of Definition (2.3), we show that

    \begin{eqnarray} &&\bar{\mathcal{D}_{0}}(\Phi_{n+1},\Phi_{n})\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert \bar{\mathcal{D}_{0}}\big(\mathcal{F}\big(\nu,\Phi_{n}(\nu),\mathcal{H}_{1}\Phi_{n}(\nu),\mathcal{H}_{2}\Phi_{n}(\nu)\big),\mathcal{F}\big(\nu,\Phi_{n-1}(\nu),\mathcal{H}_{1}\Phi_{n-1}(\nu),\mathcal{H}_{2}\Phi_{n-1}(\nu)\big)\Big)d\nu\\&&\leq\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{1}.\bar{\mathcal{D}_{0}}\big(\Phi_{n},\Phi_{n-1}\big)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}.\bar{\mathcal{D}_{0}}\big(\mathcal{H}_{1}\Phi_{n},\mathcal{H}_{1}\Phi_{n-1}\big)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{3}.\bar{\mathcal{D}_{0}}\big(\mathcal{H}_{2}\Phi_{n},\mathcal{H}_{2}\Phi_{n-1}\big)d\nu\\&&\leq\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P}(1+\mathcal{H}_{1}^{*}+\mathcal{H}_{2}^{*})\bar{\mathcal{D}_{0}}(\Phi_{n},\Phi_{n-1})\leq\delta \bar{\mathcal{D}_{0}}(\Phi_{n},\Phi_{n-1})\leq\delta^{n}\bar{\mathcal{D}_{0}}(\Phi_{1},\Phi_{0})\leq\delta^{n}\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{M}. \end{eqnarray} (4.18)

    Since \delta < 1 promises that the sequence \{\Phi_{n}\} is a Cauchy sequence in \mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}). Consequently, there exist \Phi\in\mathcal{C}([\zeta_{0}, \mathcal{T}], \mathfrak{E}) such that \{\Phi_{n}\} converges to \Phi. Thus, we need to illustrate that \Phi is a solution of the problem (4.1).

    \begin{eqnarray} &&\bar{\mathcal{D}}_{0}\bigg(\Phi(\zeta)+\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu, \Phi_{0}\bigg)\\&& = \bar{\mathcal{D}}_{0}\bigg(\Phi(\zeta)+\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu, \Phi_{n+1}\\&&\quad+\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi_{n}(\nu),\mathcal{H}_{1}\Phi_{n}(\nu),\mathcal{H}_{2}\Phi_{n}(\nu)\big)d\nu\bigg)\\&&\leq \bar{\mathcal{D}_{0}}\big(\Phi(\zeta),\Phi_{n+1}\big)+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{1}.\bar{\mathcal{D}_{0}}\big(\Phi(\nu),\Phi_{n}\big)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{2}.\bar{\mathcal{D}_{0}}\big(\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{1}\Phi_{n}\big)d\nu\\&&\quad+\frac{1}{\beta^{\vartheta}\Gamma(\vartheta)}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert\mathcal{L}_{3}.\bar{\mathcal{D}_{0}}\big(\mathcal{H}_{2}\Phi(\nu),\mathcal{H}_{2}\Phi_{n}\big)d\nu\\&&\leq \bar{\mathcal{D}_{0}}\big(\Phi(\zeta),\Phi_{n+1}\big)+\mathcal{I}_{\zeta_{0}}^{\vartheta,\beta}\mathcal{P}(1+\mathcal{H}_{1}^{*}+\mathcal{H}_{2}^{*})\bar{\mathcal{D}_{0}}(\Phi(\zeta),\Phi_{n}). \end{eqnarray} (4.19)

    In the limiting case, when n\rightarrow \infty. Thus we have

    \begin{eqnarray} \Phi(\zeta)+\frac{-1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}e^{\frac{\beta-1}{\beta}(\zeta-\nu)}(\zeta-\nu)^{\vartheta-1}\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu)\big)d\nu = \Phi_{0}. \end{eqnarray} (4.20)

    By Lemma 4.3, we prove that \Phi is a solution of the problem (4.1). In order to prove the uniqness of \Phi(\zeta), let \Psi(\zeta) be another solution of problem (4.1) on [\zeta_{0}, \mathcal{T}]. Utilizing Lemma 4.3, gets

    \begin{eqnarray*} \bar{\mathcal{D}_{0}}(\Phi,\Psi)\leq\frac{1}{\beta^{\vartheta}\Gamma(\mathfrak{q})}\int\limits_{\zeta_{0}}^{\zeta}\big\vert e^{\frac{\beta-1}{\beta}(\zeta-\nu)}\big\vert\big\vert(\zeta-\nu)^{\vartheta-1}\big\vert \bar{\mathcal{D}}_{0}\bigg(\mathcal{F}\big(\nu,\Phi(\nu),\mathcal{H}_{1}\Phi(\nu),\mathcal{H}_{2}\Phi(\nu),\mathcal{F}\big(\nu,\Psi(\nu),\mathcal{H}_{1}\Psi(\nu),\mathcal{H}_{2}\Psi(\nu)\big)\bigg)d\nu. \end{eqnarray*}

    Analogously, by employing the distance properties \bar{\mathcal{D}}_{0} and Lipschitiz continuity of \mathcal{F}, consequently, we deduce that (1-\delta)\bar{\mathcal{D}_{0}}(\Phi, \Psi)\leq0, since \delta < 1, we have \Phi(\zeta) = \Psi(\zeta) for all \zeta\in[\zeta_{0}, \mathcal{T}]. Hence, the proof is completed.

    Example 4.6. Suppose the Cauchy problem by means of differential operator (2.4)

    \begin{eqnarray} \mathcal{D}_{z}^{\vartheta,\beta}\Phi(z) = \mathcal{F}(z,\Phi(z)), \end{eqnarray} (4.21)

    where \mathcal{F}(z, \Phi(z)) is analytic in \Phi and \Phi(z) is analytic in the unit disk. Therefore, \mathcal{F} can be written as

    \begin{eqnarray*} \mathcal{F}(z,\Phi) = \varphi \Phi(z). \end{eqnarray*}

    Consider \mathcal{Z} = z^{\vartheta}. Then the solution can be formulated as follows:

    \begin{eqnarray} \Phi(\mathcal{Z}) = \sum\limits_{j = 0}^{\infty}\Phi_{j}\mathcal{Z}^{j}, \end{eqnarray} (4.22)

    where \Phi_{j} are constants. Putting (4.22) in (4.21), yields

    \begin{eqnarray*} \frac{\partial}{\partial z}\sum\limits_{j = 0}^{\infty}\Upsilon_{\vartheta,\beta,j}\Phi_{j}\mathcal{Z}^{j}-\varphi\sum\limits_{j = 0}^{\infty}\Phi_{j}\mathcal{Z}^{j} = 0. \end{eqnarray*}

    Since

    \begin{eqnarray*} \Upsilon_{\vartheta,\beta,j} = \frac{\beta^{\vartheta}\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}{j\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}, \end{eqnarray*}

    then the simple computations gives the expression

    \begin{eqnarray*} \frac{\beta^{\vartheta}\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}{\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}\Phi_{j}-\varphi\Phi_{j-1} = 0. \end{eqnarray*}

    Consequently, we get

    \begin{eqnarray*} \Phi_{j} = \Big(\frac{\varphi}{\beta^{\vartheta}}\Big)^{j}\frac{\Gamma\big(\frac{(j-1) {\vartheta}}{\beta}+1-\vartheta\big)\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}{\Gamma\big(\frac{(j-1)\vartheta}{\beta}+1\big)\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}. \end{eqnarray*}

    Therefore, we have the subsequent solution

    \begin{eqnarray*} \Phi(\mathcal{Z}) = \sum\limits_{j = 0}^{\infty}\Big(\frac{\varphi}{\beta^{\vartheta}}\Big)^{j}\frac{\Gamma\big(\frac{(j-1) {\vartheta}}{\beta}+1-\vartheta\big)\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}{\Gamma\big(\frac{(j-1)\vartheta}{\beta}+1\big)\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}\mathcal{Z}^{j}, \end{eqnarray*}

    or equivalently

    \begin{eqnarray*} \Phi(\mathcal{Z}) = \sum\limits_{j = 0}^{\infty}\Big(\frac{\varphi}{\beta^{\vartheta}}\Big)^{j}\frac{\Gamma(j+1)\Gamma\big(\frac{(j-1) {\vartheta}}{\beta}+1-\vartheta\big)\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}{\Gamma\big(\frac{(j-1)\vartheta}{\beta}+1\big)\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}\frac{\mathcal{Z}^{j}}{j!}, \end{eqnarray*}

    where \varphi is assumed to be arbitrary constant, we take

    \varphi: = \beta^{\vartheta}.

    Therefore, for appropriate \vartheta, we have

    \begin{eqnarray*} \Phi(\mathcal{Z})&& = \sum\limits_{j = 0}^{\infty}\Big(\frac{\varphi}{\beta^{\vartheta}}\Big)^{j}\frac{\Gamma(j+1)\Gamma\big(\frac{(j-1) {\vartheta}}{\beta}+1-\vartheta\big)\Gamma\big(\frac{j\vartheta}{\beta}+1-\vartheta\big)}{\Gamma\big(\frac{(j-1)\vartheta}{\beta}+1\big)\Gamma\big(\frac{j\vartheta}{\beta}+1\big)}\frac{\mathcal{Z}^{j}}{j!}\nonumber\\&& = \,_{3}\Psi_{2}\begin{bmatrix} (1,1),\Big(1-\vartheta-\frac{\vartheta}{\beta},\frac{\vartheta}{\beta}\Big),\Big(1-\vartheta,\frac{\vartheta}{\beta}\Big);\\\qquad\qquad\qquad\quad\quad\quad\quad\quad\qquad\qquad\qquad\qquad\mathcal{Z}\\\Big(1-\frac{\vartheta}{\beta},\frac{\vartheta}{\beta},\Big),\Big(1,\frac{\vartheta}{\beta}\Big); \end{bmatrix}\nonumber\\&& = \,_{3}\Psi_{2}\begin{bmatrix} (1,1),\Big(1-\vartheta-\frac{\vartheta}{\beta},\frac{\vartheta}{\beta}\Big),\Big(1-\vartheta,\frac{\vartheta}{\beta}\Big);\\\qquad\qquad\qquad\quad\quad\quad\quad\quad\qquad\qquad\qquad\qquad z^{\vartheta\beta}\\\Big(1-\frac{\vartheta}{\beta},\frac{\vartheta}{\beta},\Big),\Big(1,\frac{\vartheta}{\beta}\Big); \end{bmatrix}, \end{eqnarray*}

    where \vert z\vert < 1.

    The present investigation deal with an IVP for \mathcal{GPF} fuzzy FDEs and we employ a new scheme of successive approximations under generalized Lipschitz condition to obtain the existence and uniqueness consequences of the solution to the specified problem. Furthermore, another method to discover exact solutions of \mathcal{GPF} fuzzy FDEs by utilizing the solutions of integer order differential equations is considered. Additionally, the existence consequences for \mathcal{FVFIDE}s under \mathcal{GPF} - \mathcal{HD} with fuzzy initial conditions are proposed. Also, the uniqueness of the so-called integrodifferential equations is verified. Meanwhile, we derived the equivalent integral forms of the original fuzzy \mathcal{FVFIDE}s whichis utilized to examine the convergence of these arrangements of conditions. Two examples enlightened the efficacy and preciseness of the fractional-order \mathcal{HD} and the other one presents the exact solution by means of the Fox-Wright function. For forthcoming mechanisms, we will relate the numerical strategies for the estimated solution of nonlinear fuzzy FDEs.

    The authors would like to express their sincere thanks to the support of Taif University Researchers Supporting Project Number (TURSP-2020/217), Taif University, Taif, Saudi Arabia.

    The authors declare that they have no competing interests.



    [1] V. V. Grechko, Molecular DNA markers in phylogeny and systematics, Russ. J. Genet., 38 (2002), 851–868. https://doi.org/10.1023/A:1016890509443 doi: 10.1023/A:1016890509443
    [2] A. Patwardhan, S. Ray, A. Roy, Molecular markers in phylogenetic studies—A review, J. Phylogen. Evolution Biol., 2 (2014), 1–9. https://doi.org/10.4172/2329-9002.1000131 doi: 10.4172/2329-9002.1000131
    [3] L. Wei, Selection On synonymous Mutations Revealed by 1135 Genomes of Arabidopsis thaliana, Evol. Bioinform. Online, 16 (2020) 1176934320916794. https://doi.org/10.1177/1176934320916794 doi: 10.1177/1176934320916794
    [4] W. M. Brown, M. George, A. C. Wilson, Rapid evolution of animal mitochondrial DNA, PNAS, 76 (1979), 1967–1971. https://doi.org/10.1073/pnas.76.4.1967 doi: 10.1073/pnas.76.4.1967
    [5] A. A. Bannikova, Molecular markers and modern phylogenetics of mammals, Zh. Obshch. Biol., 65 (2004), 278–305. (in Russian)
    [6] A. C. Wilson, R. L. Cann, S. M. Carr, M. George, U. B. Gyllensten, K. M. Helm-Bychowski, et al., Mitochondrial DNA and two perspectives on evolutionary genetics, Biol. J. Linnean Soc., 26 (1985), 375–400. doi.org/10.1111/j.1095-8312.1985.tb02048.x
    [7] G. Pesole, E. Sbisa, G. Preparata, C. Saccone, The evolution of the mitochondrial D-loop region and the origin of modern man, Mol. Biol. Evol., 9 (1992), 587–598. https://doi.org/10.1093/oxfordjournals.molbev.a040747 doi: 10.1093/oxfordjournals.molbev.a040747
    [8] W. M. Brown, E. H. Prager, A. Wang, A. C. Wilson, Mitochondrial DNA sequences of primates: Tempo and mode of evolution, J. Mol. Evol., 18 (1982), 225–239.
    [9] H. Cernohorska, S. Kubickova, O. Kopecna, A. I. Kulemzina, P. L. Perelman, F. F. Elder, et al., Molecular cytogenetic insights to the phylogenetic affinities of the giraffe (Giraffa camelopardalis) and pronghorn (Antilocapra americana), Chromosome Res., 2 (2013), 447–460. https://doi.org/10.1007/s10577-013-9361-0 doi: 10.1007/s10577-013-9361-0
    [10] D. Huchon, O. Madsen, M. Sibbald, K. Ament, M. J. Stanhope, F. Catzeflis, et al., Rodent phylogeny and a timescale for the evolution of glires: Evidence from an extensive taxon sampling using three nuclear genes, Mol. Biol. Evol., 19 (2002), 1053–1065. https://doi.org/10.1093/oxfordjournals.molbev.a004164 doi: 10.1093/oxfordjournals.molbev.a004164
    [11] M. Weksler, Phylogeny of Neotropical oryzomyine rodents (Muridae: Sigmodontinae) based on the nuclear IRBP exon, Mol. Phylogenet. Evol., 29 (2003), 331–349. doi.org/10.1016/S1055-7903(03)00132-5
    [12] E. Zietkiewicz, A. Rafalski, D. Labuda, Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification, Genomics, 20 (1994), 176–183. https://doi.org/10.1006/geno.1994.1151 doi: 10.1006/geno.1994.1151
    [13] H. Nybom, Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants, Mol Ecol., 13 (2004), 1143–1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x doi: 10.1111/j.1365-294X.2004.02141.x
    [14] S. R. Pandi-Perumal, V. Srinivasan, G. J. Maestroni, D. P. Cardinali, B. Poeggeler, R. Hardeland, Melatonin: Nature's most versatile biological signal? FEBS, 273 (2006), 2813–2838. https://doi.org/10.1111/j.1742-4658.2006.05322.x doi: 10.1111/j.1742-4658.2006.05322.x
    [15] A. F. Alamdari, S. Rahnemayan, H. Rajabi, N. Vahed, H. R. K. Kashani, A. Rezabakhsh, et al., Melatonin as a promising modulator of aging related neurodegenerative disorders: Role of microRNAs, Pharmacol. Res., 173 (2021), 105839. https://doi.org/10.1016/j.phrs.2021.105839 doi: 10.1016/j.phrs.2021.105839
    [16] S. Arias-Santiago, J. Aneiros-Fernández, B. Arias-Santiago, M. S. Girón-Prieto, M. Caba-Molina, A. López-Valverde, et al., MTNR1A receptor expression in normal and pathological human salivary glands, Anticancer Res., 32 (2012), 4765–4771.
    [17] Y. Y. Li, H. Wang, Y. Y. Zhang, Melatonin receptor 1B gene rs10830963 C/G polymorphism associated with type 2 diabetes mellitus: An updated meta-analysis of 13,752 participants, Heliyon, 8 (2022), e11786. https://doi.org/10.1016/j.heliyon.2022.e11786 doi: 10.1016/j.heliyon.2022.e11786
    [18] N. R. Sundaresan, M. D. Marcus Leo, J. Subramani, D. Anish, M. Sudhagar, K. A. Ahmed, et al., Expression analysis of melatonin receptor subtypes in the ovary of domestic chicken, Vet. Res. Commun., 33 (2009), 49–56. https://doi.org/10.1007/s11259-008-9071-9 doi: 10.1007/s11259-008-9071-9
    [19] C. Jones, G. Helfer, R. Brandstätter, Melatonin receptor expression in the zebra finch brain and peripheral tissues, Chronobiol. Int., 29 (2012), 189–202. https://doi.org/10.3109/07420528.2011.642912 doi: 10.3109/07420528.2011.642912
    [20] D. Y. Li, D. G. Smith, R. Hardeland, M. Y. Yang, H. L. Xu, L. Zhang, et al., Melatonin receptor genes in vertebrates, Int. J. Mol. Sci., 14 (2013), 11208–11223. https://doi.org/10.3390/ijms140611208 doi: 10.3390/ijms140611208
    [21] C. von Gall, J. H. Stehle, D. R. Weaver, Mammalian melatonin receptors: molecular biology and signal transduction, Cell Tissue Res., 309 (2002), 151–162. https://doi.org/10.1007/s00441-002-0581-4 doi: 10.1007/s00441-002-0581-4
    [22] M. Migaud, A. Daveau, B. Malpaux, MTNR1A melatonin receptors in the ovine premammillary hypothalamus: day-night variation in the expression of the transcripts, Biol. Reprod., 72 (2005), 393–398. https://doi.org/10.1095/biolreprod.104.030064 doi: 10.1095/biolreprod.104.030064
    [23] J. Drew, P. Barrett, J. Mercer, K. Moar, E. Canet, P. Delagrange, et al., Localization of the melatonin-related receptor in the rodent brain and peripheral tissues, J. Neuroendocrinol., 13 (2001), 453–458. https://doi.org/10.1046/j.1365-2826.2001.00651.x doi: 10.1046/j.1365-2826.2001.00651.x
    [24] L. Pinato, D. Ramos, A. Hataka, P. S. Rossignoli, M. D. J. Granado, M. C. Mazzetto, et al., Day/night expression of MT1 and MT2 receptors in hypothalamic nuclei of the primate Sapajus paella, J. Chem. Neuroanat., 81 (2017), 10–17. https://doi.org/10.1016/j.jchemneu.2017.01.005 doi: 10.1016/j.jchemneu.2017.01.005
    [25] H. Ma, J. Kang, W. Fan, H. He, F. Huang, ROR: Nuclear receptor for melatonin or not? Molecules, 26 (2021), 2693. https://doi.org/10.3390/molecules26092693 doi: 10.3390/molecules26092693
    [26] S. D. Huo, R. J. Long, Melatonin receptor (MTNR1A and MTNR2B) expression during the breeding season in the yak (Bos grunniens), Czech J. Anim. Sci., 59 (2014), 140–145. https://doi.org/10.17221/7294-CJAS doi: 10.17221/7294-CJAS
    [27] J. Baker, K. Kimpinski, Role of melatonin in blood pressure regulation: An adjunct anti-hypertensive agent, CEPP, 45 (2018), 755–766. https://doi.org/10.1111/1440-1681.12942 doi: 10.1111/1440-1681.12942
    [28] M. A. Quera-Salva, U. Kilic-Huck, M. F. Vecchierini, Members of the MEL consensus group of the SFRMS. Melatonin (MEL) and its use in circadian rhythm sleep-wake disorders: Recommendations of the French Medical and Research Sleep Society (SFRMS), Rev. Neurol. (Paris)., 177 (2021), 235–244. https://doi.org/10.1016/j.neurol.2020.07.021 doi: 10.1016/j.neurol.2020.07.021
    [29] L. A. Ostrin, Ocular and systemic melatonin and the influence of light exposure, Clin. Exp. Optom., 102 (2019), 99–108. https://doi.org/10.1111/cxo.12824 doi: 10.1111/cxo.12824
    [30] Y. Tao, B. Hu, Z. Ma, H. Li, E. Du, G. Wang, et al., Intravitreous delivery of melatonin affects the retinal neuron survival and visual signal transmission: in vivo and ex vivo study, Drug Deliv., 27 (2020), 1386–1396. https://doi.org/10.1080/10717544.2020.1818882 doi: 10.1080/10717544.2020.1818882
    [31] S. Gurunathan, M. Qasim, M. H. Kang, J. H. Kim, Role and therapeutic potential of melatonin in various type of cancers, Onco. Targets Ther., 14 (2021), 2019–2052. https://doi.org/10.2147/OTT.S298512 doi: 10.2147/OTT.S298512
    [32] Y. J. Guh, T. K. Tamai, T. Yoshimura, The underlying mechanisms of vertebrate seasonal reproduction, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 95 (2019), 343–357. https://doi.org/10.2183/pjab.95.025 doi: 10.2183/pjab.95.025
    [33] M. V. Danilova, E. N. Usoltseva, Significance of the pineal gland hormone melatonin in maintaining the health of women of reproductive age (a review), Obstetr. Gynecol. Reproduct., 13 (2019), 337–344. https://doi.org/10.17749/2313-7347.2019.13.4.337-344 doi: 10.17749/2313-7347.2019.13.4.337-344
    [34] C. C. Maganhin, L. F. Fuchs, R. S. Simões, R. M. Oliveira-Filho, M. de Jesus Simões, E. C. Baracat, et al., Effects of melatonin on ovarian follicles, Eur. J. Obstet.Gynecol. Reprod. Biol., 166 (2013), 178–184. https://doi.org/10.1016/j.ejogrb.2012.10.006 doi: 10.1016/j.ejogrb.2012.10.006
    [35] J. S. Heo, S. Pyo, J. Y. Lim, D. W. Yoon, B. Y. Kim, J. H. Kim, et al., Biological effects of melatonin on human adipose‑derived mesenchymal stem cells, Int. J. Mol. Med., 44 (2019), 2234–2244. https://doi.org/10.3892/ijmm.2019.4356 doi: 10.3892/ijmm.2019.4356
    [36] A. Sotthibundhu, P. Phansuwan-Pujito, P. Govitrapong, Melatonin increases proliferation of cultured neural stem cells obtained from adult mouse subventricular zone, J. Pineal. Res., 49 (2010), 291–300. https://doi.org/10.1111/j.1600-079X.2010.00794.x doi: 10.1111/j.1600-079X.2010.00794.x
    [37] G. N. Georgiev, E. Marinova, R. Konakchieva, P. Todorov, Melatonin selectively influences the transcription of pluripotency and differentiation markers in human non-cancer cells, Biotechnol. Biotechnol. Equipment, 33 (2019), 286–293. https://doi.org/10.1080/13102818.2019.1571440 doi: 10.1080/13102818.2019.1571440
    [38] J. Fu, S. D. Zhao, H. J. Liu, Q. H. Yuan, S. M. Liu, Y. M. Zhang, et al., Melatonin promotes proliferation and differentiation of neural stem cells subjected to hypoxia in vitro, J. Pineal. Res., 51 (2011), 104–112. https://doi.org/10.1111/j.1600-079X.2011.00867.x doi: 10.1111/j.1600-079X.2011.00867.x
    [39] C. Tchio, S. K. Musani, A. Quarshie, G. Tosini, Association between MTNR1B polymorphisms and obesity in African American: Findings from the Jackson Heart Study, BMC Med. Genom., 14 (2021), 136. https://doi.org/10.1186/s12920-021-00983-2 doi: 10.1186/s12920-021-00983-2
    [40] R. M. Slominski, R. J. Reiter, N. Schlabritz–Loutsevitch, R. S. Ostrom, A. T. Slominski, Melatonin membrane receptors in peripheral tissues: Distribution and functions, Mol. Cell Endocrinol., 351 (2012), 152–166.
    [41] Q. Xia, Z. X. Chen, Y. C. Wang, Y. S. Ma, F. Zhang, W. Che, et al., Association between the melatonin receptor 1B gene polymorphism on the risk of type 2 diabetes, impaired glucose regulation: A meta-analysis, PLoS One, 7 (2012), e50107. https://doi.org/10.1371/journal.pone.0050107 doi: 10.1371/journal.pone.0050107
    [42] D. Buonfiglio, C. Tchio, I. Furigo, J. Jr. Donato, K. Baba, J. Cipolla-Neto, et al., Removing melatonin receptor type 1 signaling leads to selective leptin resistance in the arcuate nucleus, J. Pineal. Res., 67 (2019), e12580. https://doi.org/10.1111/jpi.12580 doi: 10.1111/jpi.12580
    [43] A. Karamitri, R. Jockers, Melatonin in type 2 diabetes mellitus and obesity, Nat. Rev.Endocrinol., 1 (2019), 105–125. https://doi.org/10.1038/s41574-018-0130-1 doi: 10.1038/s41574-018-0130-1
    [44] H. S. Dashti, C. Vetter, J. M. Lane, M. C. Smith, A. R. Wood, M. N. Weedon, et al., Assessment of MTNR1B Type 2 diabetes genetic risk modification by shift work and morningness-eveningness preference in the UK Biobank, Diabetes, 69 (2020), 259–266. https://doi.org/10.2337/db19-0606 doi: 10.2337/db19-0606
    [45] P. Chaste, N. Clement, O. Mercati, J. L. Guillaume, R. Delorme, H. G. Botros, et al., Identification of pathway-biased and deleterious melatonin receptor mutants in autism spectrum disorders and in the general population, PLoS One, 5 (2010), e11495. https://doi.org/10.1371/journal.pone.0011495 doi: 10.1371/journal.pone.0011495
    [46] D. M. Irwin, T. D. Kocher, A. C. Wilson, Evolution of the cytochrome b gene of mammals, J. Mol. Evol., 32 (1991), 128–144. https://doi.org/10.1007/BF02515385 doi: 10.1007/BF02515385
    [47] S. S. Tobe, A. C. Kitchener, A. M. Linacre, Reconstructing mammalian phylogenies: A detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes, PLoS One, 5 (2010), e14156. https://doi.org/10.1371/journal.pone.0014156 doi: 10.1371/journal.pone.0014156
    [48] J. D. Thompson, D. G. Higgins, T. J. Gibson, CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22 (1994), 4673–4680. https://doi.org/10.1093/nar/22.22.4673 doi: 10.1093/nar/22.22.4673
    [49] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, et al., Clustal W and Clustal X version 2.0., Bioinformatics, 23 (2007), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404 doi: 10.1093/bioinformatics/btm404
    [50] K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0., Mol. Biol. Evol., 30 (2013), 2725–2729. https://doi.org/10.1093/molbev/mst197 doi: 10.1093/molbev/mst197
    [51] F. Tajima, N. Takezaki, Estimation of evolutionary distance for reconstructing molecular phylogenetic trees, Mol. Biol. Evol., 11 (1994), 278–286. https://doi.org/10.1093/oxfordjournals.molbev.a040109 doi: 10.1093/oxfordjournals.molbev.a040109
    [52] M. Hasegawa, H. Kishino, T. Yano, Dating of the human-ape splitting by a molecular clock of mitochondrial DNA, J. Mol. Evol., 22 (1985), 160–174. https://doi.org/10.1007/BF02101694 doi: 10.1007/BF02101694
    [53] D. Posada, K. A. Crandall, Selecting the best-fit model of nucleotide substitution, Syst. Biol., 50 (2001), 580–601.
    [54] J. Felsenstein, Confidence limits on phylogenies: An approach using the bootstrap, Evolution, 39 (1985), 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x doi: 10.1111/j.1558-5646.1985.tb00420.x
    [55] W. J. Murphy, P. A. Pevzner, S. J. O'Brien, Mammalian phylogenomics comes of age, Trends Genet., 20 (2004), 631–639. https://doi.org/10.1016/j.tig.2004.09.005 doi: 10.1016/j.tig.2004.09.005
    [56] M. Buckley, Ancient collagen reveals evolutionary history of the endemic South American «ungulates», Proc. R. Soc. B Biol. Sci., 282 (2015), 20142671. https://doi.org/10.1098/rspb.2014.2671 doi: 10.1098/rspb.2014.2671
    [57] A. Sánchez-Gracia, J. Rozas, Divergent evolution and molecular adaptation in the Drosophila odorant-binding protein family: inferences from sequence variation at the OS-E and OS-F genes, BMC Evol. Biol., 8 (2008), 323. https://doi.org/10.1186/1471-2148-8-323 doi: 10.1186/1471-2148-8-323
    [58] C. A. Driscoll, D. W. Macdonald, S. J. O'Brien, From wild animals to domestic pets, an evolutionary view of domestication, PNAS, 106 (2009), 9971–9978. https://doi.org/10.1073/pnas.0901586106 doi: 10.1073/pnas.0901586106
    [59] C. J. Hoskin, M. Higgie, K. R. McDonald, C. Moritz, Reinforcement drives rapid allopatric speciation, Nature, 437 (2005), 1353–1356. https://doi.org/10.1038/nature04004 doi: 10.1038/nature04004
    [60] B. M. Fitzpatrick, J. A. Fordyce, S. Gavrilets, What, if anything, is sympatric speciation? J. Evol. Biol., 21 (2008), 1452–1459. https://doi.org/10.1111/j.1420-9101.2008.01611.x doi: 10.1111/j.1420-9101.2008.01611.x
    [61] W. F. Bottke, D. Vokrouhlický, D. Nesvorný, An asteroid breakup 160 Myr ago as the probable source of the K/T impactor, Nature, 449 (2007), 48—53. https://doi.org/10.1038/nature06070 doi: 10.1038/nature06070
    [62] G. Keller, T. Adatte, S. Gardin, A. Bartolini, S. Bajpai, Main Deccan volcanism phase ends near the K–T boundary: Evidence from the Krishna–Godavari Basin, SE India, Earth Planet. Sci. Lett., 268 (2008), 293–311. doi.org/10.1016/j.epsl.2008.01.015
    [63] R. Nielsen, Statistical tests of selective neutrality in the age of genomics, Heredity, 86 (2001), 641–647. doi.org/10.1046/j.1365-2540.2001.00895.x
    [64] F. Tajima, Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 123 (1989), 585–595.
    [65] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 28 (2011), 2731–2739. doi.org/10.1093/molbev/msr121
    [66] M. Nei, S. Kumar, Molecular Evolution and Phylogenetics, NY.: Oxford University Press, (2000), 333.
    [67] R. S. Holmes, L. A. Cox, Comparative structures and evolution of vertebrate lipase H (LIPH) genes and proteins: A relative of the phospholipase A1 gene families, 3 Biotech, 2 (2012), 263–275. doi.org/10.1007/s13205-012-0087-z
    [68] C. Lavialle, G. Cornelis, A. Dupressoir, C. Esnault, O. Heidmann, C. Vernochet, et al., Paleovirology of 'syncytins', retroviral env genes exapted for a role in placentation, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 368 (2013), 20120507. https://doi.org/10.1098/rstb.2012.0507 doi: 10.1098/rstb.2012.0507
    [69] A. Cooper, R. Fortey, Evolutionary explosions and the phylogenetic fuse, Trends Ecol. Evol., 13 (1998), 151–156. https://doi.org/10.1016/s0169-5347(97)01277-9 doi: 10.1016/s0169-5347(97)01277-9
    [70] M. Spaulding, M. A. O'Leary, J. Gatesy, Relationships of Cetacea (Artiodactyla) among mammals: Increased taxon sampling alters interpretations of key fossils and character evolution, PLoS One, 4 (2009), e7062. https://doi.org/10.1371/journal.pone.0007062 doi: 10.1371/journal.pone.0007062
    [71] Z. Luo, In search of the whales' sisters, Nature, 404 (2000), 235–237. https://doi.org/10.1038/35005194 doi: 10.1038/35005194
    [72] R. M. D. Beck, C. Baillie, Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny, Proc. R. Soc. B: Biol. Sci., 285 (2018), 20181632. https://doi.org/10.1098/rspb.2018.1632 doi: 10.1098/rspb.2018.1632
  • This article has been cited by:

    1. Maysaa Al-Qurashi, Saima Rashid, Fahd Jarad, Madeeha Tahir, Abdullah M. Alsharif, New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method, 2022, 7, 2473-6988, 2044, 10.3934/math.2022117
    2. Saima Rashid, Rehana Ashraf, Zakia Hammouch, New generalized fuzzy transform computations for solving fractional partial differential equations arising in oceanography, 2023, 8, 24680133, 55, 10.1016/j.joes.2021.11.004
    3. Saima Rashid, Rehana Ashraf, Ahmet Ocak Akdemir, Manar A. Alqudah, Thabet Abdeljawad, Mohamed S. Mohamed, Analytic Fuzzy Formulation of a Time-Fractional Fornberg–Whitham Model with Power and Mittag–Leffler Kernels, 2021, 5, 2504-3110, 113, 10.3390/fractalfract5030113
    4. Saima Rashid, Rehana Ashraf, Fatimah S. Bayones, A Novel Treatment of Fuzzy Fractional Swift–Hohenberg Equation for a Hybrid Transform within the Fractional Derivative Operator, 2021, 5, 2504-3110, 209, 10.3390/fractalfract5040209
    5. Saima Rashid, Sobia Sultana, Bushra Kanwal, Fahd Jarad, Aasma Khalid, Fuzzy fractional estimates of Swift-Hohenberg model obtained using the Atangana-Baleanu fractional derivative operator, 2022, 7, 2473-6988, 16067, 10.3934/math.2022880
    6. Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Khadija Tul Kubra, Abdullah M. Alsharif, Initial boundary value problems for a multi-term time fractional diffusion equation with generalized fractional derivatives in time, 2021, 6, 2473-6988, 12114, 10.3934/math.2021703
    7. Manar A. Alqudah, Rehana Ashraf, Saima Rashid, Jagdev Singh, Zakia Hammouch, Thabet Abdeljawad, Novel Numerical Investigations of Fuzzy Cauchy Reaction–Diffusion Models via Generalized Fuzzy Fractional Derivative Operators, 2021, 5, 2504-3110, 151, 10.3390/fractalfract5040151
    8. Ravichandran VIVEK, Kangarajan K., Dvivek VİVEK, Elsayed ELSAYED, Dynamics and Stability of \Xi-Hilfer Fractional Fuzzy Differential Equations with Impulses, 2023, 6, 2651-4001, 115, 10.33434/cams.1257750
    9. Saima Rashid, Fahd Jarad, Hind Alamri, New insights for the fuzzy fractional partial differential equations pertaining to Katugampola generalized Hukuhara differentiability in the frame of Caputo operator and fixed point technique, 2024, 15, 20904479, 102782, 10.1016/j.asej.2024.102782
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2686) PDF downloads(87) Cited by(0)

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog