Intelligent manufacturing (IM), sometimes referred to as smart manufacturing (SM), is the use of real-time data analysis, machine learning, and artificial intelligence (AI) in the production process to achieve the aforementioned efficiencies. Human-machine interaction technology has recently been a hot issue in smart manufacturing. The unique interactivity of virtual reality (VR) innovations makes it possible to create a virtual world and allow users to communicate with that environment, providing users with an interface to be immersed in the digital world of the smart factory. And virtual reality technology aims to stimulate the imagination and creativity of creators to the maximum extent possible for reconstructing the natural world in a virtual environment, generating new emotions, and transcending time and space in the familiar and unfamiliar virtual world. Recent years have seen a great leap in the development of intelligent manufacturing and virtual reality technologies, yet little research has been done to combine the two popular trends. To fill this gap, this paper specifically employs Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines to conduct a systematic review of the applications of virtual reality in smart manufacturing. Moreover, the practical challenges and the possible future direction will also be covered.
Citation: Yu Lei, Zhi Su, Xiaotong He, Chao Cheng. Immersive virtual reality application for intelligent manufacturing: Applications and art design[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 4353-4387. doi: 10.3934/mbe.2023202
[1] | Ting Liu, Guo-Bao Zhang . Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, 2021, 29(4): 2599-2618. doi: 10.3934/era.2021003 |
[2] | Cui-Ping Cheng, Ruo-Fan An . Global stability of traveling wave fronts in a two-dimensional lattice dynamical system with global interaction. Electronic Research Archive, 2021, 29(5): 3535-3550. doi: 10.3934/era.2021051 |
[3] | Bin Wang . Random periodic sequence of globally mean-square exponentially stable discrete-time stochastic genetic regulatory networks with discrete spatial diffusions. Electronic Research Archive, 2023, 31(6): 3097-3122. doi: 10.3934/era.2023157 |
[4] | Yijun Chen, Yaning Xie . A kernel-free boundary integral method for reaction-diffusion equations. Electronic Research Archive, 2025, 33(2): 556-581. doi: 10.3934/era.2025026 |
[5] | Yongwei Yang, Yang Yu, Chunyun Xu, Chengye Zou . Passivity analysis of discrete-time genetic regulatory networks with reaction-diffusion coupling and delay-dependent stability criteria. Electronic Research Archive, 2025, 33(5): 3111-3134. doi: 10.3934/era.2025136 |
[6] | Meng Wang, Naiwei Liu . Qualitative analysis and traveling wave solutions of a predator-prey model with time delay and stage structure. Electronic Research Archive, 2024, 32(4): 2665-2698. doi: 10.3934/era.2024121 |
[7] | Minzhi Wei . Existence of traveling waves in a delayed convecting shallow water fluid model. Electronic Research Archive, 2023, 31(11): 6803-6819. doi: 10.3934/era.2023343 |
[8] | Hongquan Wang, Yancai Liu, Xiujun Cheng . An energy-preserving exponential scheme with scalar auxiliary variable approach for the nonlinear Dirac equations. Electronic Research Archive, 2025, 33(1): 263-276. doi: 10.3934/era.2025014 |
[9] | Cheng Wang . Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, 2021, 29(5): 2915-2944. doi: 10.3934/era.2021019 |
[10] | Shao-Xia Qiao, Li-Jun Du . Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, 2021, 29(3): 2269-2291. doi: 10.3934/era.2020116 |
Intelligent manufacturing (IM), sometimes referred to as smart manufacturing (SM), is the use of real-time data analysis, machine learning, and artificial intelligence (AI) in the production process to achieve the aforementioned efficiencies. Human-machine interaction technology has recently been a hot issue in smart manufacturing. The unique interactivity of virtual reality (VR) innovations makes it possible to create a virtual world and allow users to communicate with that environment, providing users with an interface to be immersed in the digital world of the smart factory. And virtual reality technology aims to stimulate the imagination and creativity of creators to the maximum extent possible for reconstructing the natural world in a virtual environment, generating new emotions, and transcending time and space in the familiar and unfamiliar virtual world. Recent years have seen a great leap in the development of intelligent manufacturing and virtual reality technologies, yet little research has been done to combine the two popular trends. To fill this gap, this paper specifically employs Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines to conduct a systematic review of the applications of virtual reality in smart manufacturing. Moreover, the practical challenges and the possible future direction will also be covered.
In this article, we consider the following spatially discrete diffusion system with time delay
{∂tv1(x,t)=d1D[v1](x,t)−αv1(x,t)+h(v2(x,t−τ1)),∂tv2(x,t)=d2D[v2](x,t)−βv2(x,t)+g(v1(x,t−τ2)) | (1) |
with the initial data
vi(x,s)=vi0(x,s), x∈R, s∈[−τi,0], i=1,2, | (2) |
where
D[vi](x,t)=vi(x+1,t)−2vi(x,t)+vi(x−1,t), i=1,2. |
Here
According to (H1), the spatially homogeneous system of (1) admits two constant equilibria
(v1−,v2−)=0:=(0,0)and(v1+,v2+)=K:=(K1,K2). |
It is clear that (H1) is a basic assumption to ensure that system (1) is monostable on
{cϕ′1(ξ)=d1D[ϕ1](ξ)−αϕ1(ξ)+h(ϕ2(ξ−cτ1)),cϕ′2(ξ)=d2D[ϕ2](ξ)−βϕ2(ξ)+g(ϕ1(ξ−cτ2)),(ϕ1,ϕ2)(−∞)=(v1−,v2−),(ϕ1,ϕ2)(+∞)=(v1+,v2+), | (3) |
where
System (1) is a discrete version of classical epidemic model
{∂tv1(x,t)=d1∂xxv1(x,t)−a1v1(x,t)+h(v2(x,t−τ1)),∂tv2(x,t)=d2∂xxv2(x,t)−a2v2(x,t)+g(v1(x,t−τ2)). | (4) |
The existence and stability of traveling waves of (4) have been extensively studied, see [7,19,21,24] and references therein. Note that system (1) is also a delay version of the following system
{∂tv1(x,t)=d1D[v1](x,t)−a1v1(x,t)+h(v2(x,t)),∂tv2(x,t)=d2D[v2](x,t)−a2v2(x,t)+g(v1(x,t)). | (5) |
When system (5) is a quasi-monotone system, Yu, Wan and Hsu [27] established the existence and stability of traveling waves of (5). To the best of our knowledge, when systems (1) and (5) are non-quasi-monotone systems, no result on the existence and stability of traveling waves has been reported. We should point out that the existence of traveling waves of (1) can be easily obtained. Hence, the main purpose of the current paper is to establish the stability of traveling waves of (1).
The stability of traveling waves for the classical reaction-diffusion equations with and without time delay has been extensively investigated, see e.g., [4,9,10,12,13,14,16,22,24]. Compared to the rich results for the classical reaction-diffusion equations, limited results exist for the spatial discrete diffusion equations. Chen and Guo [1] took the squeezing technique to prove the asymptotic stability of traveling waves for discrete quasilinear monostable equations without time delay. Guo and Zimmer [5] proved the global stability of traveling wavefronts for spatially discrete equations with nonlocal delay effects by using a combination of the weighted energy method and the Green function technique. Tian and Zhang [19] investigated the global stability of traveling wavefronts for a discrete diffusive Lotka-Volterra competition system with two species by the weighted energy method together with the comparison principle. Later on, Chen, Wu and Hsu [2] employed the similar method to show the global stability of traveling wavefronts for a discrete diffusive Lotka-Volterra competition system with three species. We should point out that the methods for the above stability results heavily depend on the monotonicity of equations and the comparison principle. However, the most interesting cases are the equations without monotonicity. It is known that when the evolution equations are non-monotone, the comparison principle is not applicable. Thus, the methods, such as the squeezing technique, the weighted energy method combining with the comparison principle are not valid for the stability of traveling waves of the spatial discrete diffusion equations without monotonicity.
Recently, the technical weighted energy method without the comparison principle has been used to prove the stability of traveling waves of nonmonotone equations, see Chern et al. [3], Lin et al. [10], Wu et al. [22], Yang et al. [24]. In particular, Tian et al. [20] and Yang et al. [26], respectively, applied this method to prove the local stability of traveling waves for nonmonotone traveling waves for spatially discrete reaction-diffusion equations with time delay. Later, Yang and Zhang [25] established the stability of non-monotone traveling waves for a discrete diffusion equation with monostable convolution type nonlinearity. Unfortunately, the local stability (the initial perturbation around the traveling wave is properly small in a weighted norm) of traveling waves can only be obtained. Very recently, Mei et al. [15] developed a new method to prove the global stability of the oscillatory traveling waves of local Nicholson's blowflies equations. This method is based on some key observations for the structure of the govern equations and the anti-weighted energy method together with the Fourier transform. Later on, Zhang [28] and Xu et al. [23], respectively, applied this method successfully to a nonlocal dispersal equation with time delay and obtained the global stability of traveling waves. More recently, Su and Zhang [17] further studied a discrete diffusion equation with a monostable convolution type nonlinearity and established the global stability of traveling waves with large speed. Motivated by the works [15,28,23,17,18], in this paper, we shall extend this method to study the global stability of traveling waves of spatial discrete diffusion system (1) without quasi-monotonicity.
The rest of this paper is organized as follows. In Section
In this section, we first give the equivalent integral form of the initial value problem of (1) with (2), then recall the existence of traveling waves of (1), and finally state the main result on the global stability of traveling waves of (1). Throughout this paper, we assume
First of all, we consider the initial value problem (1) with (2), i.e.,
{∂tv1(x,t)=d1D[v1](x,t)−αv1(x,t)+h(v2(x,t−τ)),∂tv2(x,t)=d2D[v2](x,t)−βv2(x,t)+g(v1(x,t−τ)),vi(x,s)=vi0(x,s), x∈R, s∈[−τ,0], i=1,2. | (6) |
According to [8], with aid of modified Bessel functions, the solution to the initial value problem
{∂tu(x,t)=d[u(x+1,t)−2u(x,t)+u(x−1,t)], x∈R, t>0,u(x,0)=u0(x), x∈R, |
can be expressed by
u(x,t)=(S(t)u0)(x)=e−2dt∞∑m=−∞Im(2dt)u0(x−m), |
where
Im(t)=∞∑k=0(t/2)m+2kk!(m+k)!, |
and
I′m(t)=12[Im+1(t)+Im−1(t)], ∀t>0,m∈Z, | (7) |
and
e−t∞∑m=−∞Im(t)=e−t[I0(t)+2I1(t)+2I2(t)+I3(t)+⋯]=1. | (8) |
Thus, the solution
{v1(x,t)=e−(2d1+α)t∑∞m=−∞Im(2d1t)v10(x−m,0)+∑∞m=−∞∫t0e−(2d1+α)(t−s)Im(2d1(t−s))(h(v2(x−m,s−τ)))ds,v2(x,t)=e−(2d2+β)t∑∞m=−∞Im(2d2t)v20(x−m,0)+∑∞m=−∞∫t0e−(2d2+β)(t−s)Im(2d2(t−s))(g(v1(x−m,s−τ)))ds. | (9) |
In fact, by [8,Lemma 2.1], we can differentiate the series on
∂tv1(x,t)=−(2d1+α)e−(2d1+α)t∞∑m=−∞Im(2d1t)v10(x−m,0) +e−(2d1+α)t∞∑m=−∞2d1I′m(2d1t)v10(x−m,0) +∞∑m=−∞Im(0)(h(v2(x−m,t−τ))) −(2d1+α)∞∑m=−∞∫t0e−(2d1+α)(t−s)Im(2d1(t−s))(h(v2(x−m,s−τ)))ds +∞∑m=−∞∫t0e−(2d1+α)(t−s)2d1I′m(2d1(t−s))(h(v2(x−m,s−τ)))ds=d1[v1(x+1,t)−2v1(x,t)+v1(x−1,t)]−αv1(x,t)+h(v2(x,t−τ)) |
and
∂tv2(x,t)=−(2d2+β)e−(2d2+β)t∞∑m=−∞Im(2d2t)v20(x−m,0) +e−(2d2+β)t∞∑m=−∞2d2I′m(2d2t)v20(x−m,0) +∞∑m=−∞Im(0)(g(v1(x−m,t−τ))) −(2d2+β)∞∑m=−∞∫t0e−(2d2+β)(t−s)Im(2d2(t−s))(g(v1(x−m,s−τ)))ds +∞∑m=−∞∫t0e−(2d2+β)(t−s)2d2I′m(2d2(t−s))(g(v1(x−m,s−τ)))ds=d2[v2(x+1,t)−2v2(x,t)+v2(x−1,t)]−βv2(x,t)+g(v1(x,t−τ)). |
Next we investigate the characteristic roots of the linearized system for the wave profile system (3) at the trivial equilibrium
P1(c,λ):=f1(c,λ)−f2(c,λ) |
for
f1(c,λ):=Δ1(c,λ)Δ2(c,λ),f2(c,λ):=h′(0)g′(0)e−2cλτ, |
with
Δ1(c,λ)=d1(eλ+e−λ−2)−cλ−α,Δ2(c,λ)=d2(eλ+e−λ−2)−cλ−β. |
It is easy to see that
Similar to [27,Lemma 3.1], we can obtain the following result.
Lemma 2.1. There exists a positive constant
Furthermore, we show the existence of traveling wave of (1). When system (1) is a quasi-monotone system, the existence of traveling wavefronts follows from [6,Theorem 1.1]. When system (1) is a non-quasi-monotone system, the existence of traveling waves can also be obtained by using auxiliary equations and Schauder's fixed point theorem [21,24], if we assume the following assumptions:
(i)
(ii)
(iii)
0<g−(u)≤g(u)≤g+(u)≤g′(0)u for u∈[0,K+1],0<h−(v)≤h(v)≤h+(v)≤h′(0)v for v∈[0,K+2]. |
Proposition 1. Assume that
K−1≤lim infξ→+∞ϕ1(ξ)≤lim supξ→+∞ϕ1(ξ)≤K+1,0≤lim infξ→+∞ϕ2(ξ)≤lim supξ→+∞ϕ2(ξ)≤K+2. |
Finally, we shall state the stability result of traveling waves derived in Proposition 1. Before that, let us introduce the following notations.
Notations.
||f||L1w(I)=∫Iw(x)|f(x)|dx, |
||f||Wk,1w(I)=k∑i=0∫Iw(x)|dif(x)dxi|dx. |
Let
F[f](η)=ˆf(η)=∫Re−ixηf(x)dx |
and the inverse Fourier transform is given by
F−1[ˆf](x)=12π∫Reixηˆf(η)dη, |
where
To guarantee the global stability of traveling waves of (1), we need the following additional assumptions.
limx→±∞(v10(x,s),v20(x,s))=(v1±,v2±) uniformly in s∈[−τ,0]. |
Consider the following function
P2(λ,c)=d2(eλ+e−λ−2)−cλ−β+max{h′(0),g′(0)}e−λcτ. |
Since
We select the weight function
w(ξ)=e−2λξ, |
where
Theorem 2.2. (Global stability of traveling waves). Assume that
vi0(x,s)−ϕi(x+cs)∈Cunif[−τ,0]∩C([−τ,0];W1,1w(R)), i=1,2,∂s(vi0−ϕi)∈L1([−τ,0];L1w(R)), i=1,2, |
then there exists
supx∈R|vi(x,t)−ϕi(x+ct)|≤Ce−μt,t>0, |
where
Cunif[r,T]={u∈C([r,T]×R)such thatlimx→+∞v(x,t)exists uniformly int∈[r,T]}. |
This section is devoted to proving the stability theorem, i.e., Theorem 2.2. Let
{Vi(ξ,t):=vi(x,t)−ϕi(x+ct)=vi(ξ−ct,t)−ϕi(ξ), i=1,2,Vi0(ξ,s):=vi0(x,s)−ϕi(x+cs)=vi0(ξ−cs,s)−ϕ(ξ), i=1,2. |
Then it follows from (1) and (3) that
{V1t+cV1ξ−d1D[V1]+αV1=Q1(V2(ξ−cτ,t−τ)),V2t+cV2ξ−d2D[V2]+βV2=Q2(V1(ξ−cτ,t−τ)),Vi(ξ,s)=Vi0(ξ,s), (ξ,s)∈R×[−τ,0], i=1,2. | (10) |
The nonlinear terms
{Q1(V2):=h(ϕ2+V2)−h(ϕ2)=h′(˜ϕ2)V2,Q2(V1):=g(ϕ1+V1)−g(ϕ1)=g′(˜ϕ1)V1, | (11) |
for some
We first prove the existence and uniqueness of solution
Lemma 3.1. Assume that
Proof. Let
{U1t−d1D[U1]+αU1=Q1(U2(x,t−τ)),U2t−d2D[U2]+βU2=Q2(U1(x,t−τ)),Ui(x,s)=vi0(x,s)−ϕi(x+cs):=Ui0(x,s), (x,s)∈R×[−τ,0], i=1,2. | (12) |
Thus, the global existence and uniqueness of solution of (10) are transformed into that of (12).
When
{U1(x,t)=e−(2d1+α)t∑∞m=−∞Im(2d1t)U10(x−m,0) +∑∞m=−∞∫t0e−(2d1+α)(t−s)Im(2d1(t−s))Q1(U20(x−m,s−τ))ds,U2(x,t)=e−(2d2+β)t∑∞m=−∞Im(2d2t)U20(x−m,0) +∑∞m=−∞∫t0e−(2d2+β)(t−s)Im(2d2(t−s))Q2(U10(x−m,s−τ))ds | (13) |
for
Since
limx→+∞U1(x,t)=e−(2d1+α)t∞∑m=−∞Im(2d1t)limx→+∞U10(x−m,0)+∞∑m=−∞∫t0e−(2d1+α)(t−s)Im(2d1(t−s))limx→+∞Q1(U20(x−m,s−τ))ds=e−αtU10(∞,0)+∫t0e−α(t−s)Q1(U20(∞,s−τ))∞∑m=−∞e−2d1(t−s)Im(2d1(t−s))ds=:U1(t) uniformly in t∈[0,τ] | (14) |
and
limx→+∞U2(x,t)=e−(2d2+β)t∞∑m=−∞Im(2d2t)limx→+∞U20(x−m,0) |
+∞∑m=−∞∫t0e−(2d2+β)(t−s)Im(2d2(t−s))limx→+∞Q2(U10(x−m,s−τ))ds=e−βtU20(∞,0)+∫t0e−β(t−s)Q2(U10(∞,s−τ))∞∑m=−∞e−2d2(t−s)Im(2d2(t−s))ds=:U2(t) uniformly in t∈[0,τ], | (15) |
where we have used (8). Thus, we obtain that
When
U1(x,t)=e−(2d1+α)(t−τ)∞∑m=−∞Im(2d1(t−τ))U1(x−m,τ)+∞∑m=−∞∫tτe−(2d1+α)(t−s)Im(2d1(t−s))Q1(U2(x−m,s−τ))ds,U2(x,t)=e−(2d2+β)(t−τ)∞∑m=−∞Im(2d2(t−τ))U2(x−m,τ)+∞∑m=−∞∫tτe−(2d2+β)(t−s)Im(2d2(t−s))Q2(U1(x−m,s−τ))ds. |
Similarly, by (14) and (15), we have
limx→+∞U1(x,t)=e−(2d1+α)(t−τ)∞∑m=−∞Im(2d1(t−τ))limx→+∞U1(x−m,τ)+∞∑m=−∞∫tτe−(2d1+α)(t−s)Im(2d1(t−s))limx→+∞Q1(U2(x−m,s−τ))ds=e−α(t−τ)U1(τ)+∫tτe−α(t−s)Q1(U1(s−τ))∞∑m=−∞e−2d1(t−s)Im(2d1(t−s))ds=:ˉU1(t) uniformly in t∈[τ,2τ], |
and
limx→+∞U2(x,t)=e−(2d2+β)(t−τ)∞∑m=−∞Im(2d2(t−τ))limx→+∞U2(x−m,τ)+∞∑m=−∞∫tτe−(2d2+β)(t−s)Im(2d2(t−s))limx→+∞Q2(U1(x−m,s−τ))ds=e−β(t−τ)U2(τ)+∫tτe−β(t−s)Q2(U2(s−τ))∞∑m=−∞e−2d2(t−s)Im(2d2(t−s))ds |
=:ˉU2(t) uniformly in t∈[τ,2τ]. |
By repeating this procedure for
Now we state the stability result for the perturbed system (10), which automatically implies Theorem 2.2.
Proposition 2. Assume that
Vi0∈Cunif[−τ,0]∩C([−τ,0];W1,1w(R)), i=1,2, |
and
∂sVi0∈L1([−τ,0];L1w(R)), i=1,2, |
then there exists
supξ∈R|Vi(ξ,t)|≤Ce−μt,t>0, i=1,2, | (16) |
for some
In order to prove Proposition 2, we first investigate the decay estimate of
Lemma 3.2. Assume that
supξ∈[x0,+∞)|Vi(ξ,t)|≤Ce−μ1t, t>0, i=1,2, |
for some
Proof. Denote
z+i(t):=Vi(∞,t), z+i0(s):=Vi0(∞,s), s∈[−τ,0], i=1,2. |
Since
limξ→+∞Vi(ξ,t)=z+i(t) |
exists uniformly for
{dz+1dt+αz+1−h′(v2+)z+2(t−τ)=P1(z+2(t−τ)),dz+2dt+βz+2−g′(v1+)z+1(t−τ)=P2(z+1(t−τ)),z+i(s)=z+i0(s), s∈[−τ,0], i=1,2, |
where
{P1(z+2)=h(v2++z+2)−h(v2+)−h′(v2+)z+2,P2(z+1)=g(v1++z+1)−g(v1+)−g′(v1+)z+1. |
Then by [9,Lemma 3.8], there exist positive constants
|Vi(∞,t)|=|z+i(t)|≤Ce−μ1t, t>0, i=1,2, | (17) |
provided that
By the continuity and the uniform convergence of
supξ∈[x0,+∞)|Vi(ξ,t)|≤Ce−μ1t, t>0, i=1,2, |
provided that
limx→+∞(v10(x,s),v20(x,s))=(K1,K2) uniformly in s∈[−τ,0], |
which implies
limξ→+∞Vi0(ξ,s)=limξ→+∞[vi0(ξ,s)−ϕi(ξ)]=Ki−Ki=0 |
uniformly for
Next we are going to establish the a priori decay estimate of
˜Vi(ξ,t)=√w(ξ)Vi(ξ+x0,t)=e−λξVi(ξ+x0,t),i=1,2. |
Substituting
{˜V1t+c˜V1ξ+c1˜V1(ξ,t)−d1eλ˜V1(ξ+1,t)−d1e−λ˜V1(ξ−1,t)=˜Q1(˜V2(ξ−cτ,t−τ)),˜V2t+c˜V2ξ+c2˜V2(ξ,t)−d2eλ˜V2(ξ+1,t)−d2e−λ˜V2(ξ−1,t)=˜Q2(˜V1(ξ−cτ,t−τ)),˜Vi(ξ,s)=√w(ξ)Vi0(ξ+x0,s)=:˜Vi0(ξ,s), ξ∈R,s∈[−τ,0], i=1,2, | (18) |
where
c1=cλ+2d1+α,c2=cλ+2d2+β |
and
˜Q1(˜V2)=e−λξQ1(V2),˜Q2(˜V1)=e−λξQ2(V1). |
By (11),
˜Q1(˜V2(ξ−cτ,t−τ))=e−λξQ1(V2(ξ−cτ+x0,t−τ))=e−λξh′(˜ϕ2)V2(ξ−cτ+x0,t−τ)=e−λcτh′(˜ϕ2)˜V2(ξ−cτ,t−τ) | (19) |
and
˜Q2(˜V1(ξ−cτ,t−τ))=e−λcτg′(˜ϕ1)˜V1(ξ−cτ,t−τ). | (20) |
By (H3), we further obtain
|˜Q1(˜V2(ξ−cτ,t−τ))|≤h′(0)e−λcτ|˜V2(ξ−cτ,t−τ)|,|˜Q2(˜V1(ξ−cτ,t−τ))|≤g′(0)e−λcτ|˜V1(ξ−cτ,t−τ)|. |
Taking (19) and (20) into (18), one can see that the coefficients
{V+1t+cV+1ξ+c1V+1(ξ,t)−d1eλV+1(ξ+1,t)−d1e−λV+1(ξ−1,t) =h′(0)e−λcτV+2(ξ−cτ,t−τ),V+2t+cV+2ξ+c2V+2(ξ,t)−d2eλV+2(ξ+1,t)−d2e−λV+2(ξ−1,t) =g′(0)e−λcτV+1(ξ−cτ,t−τ), | (21) |
with
V+i(ξ,s)=√w(ξ)Vi0(ξ+x0,s)=:V+i0(ξ,s), i=1,2, |
where
Now we are in a position to derive the decay estimate of
Lemma 3.3. ([11,Lemma 3.1]) Let
{ddtz(t)=Az(t)+Bz(t−τ),t≥0,τ>0,z(s)=z0(s),s∈[−τ,0]. | (22) |
where
z(t)=eA(t+τ)eB1tτz0(−τ)+∫0−τeA(t−s)eB1(t−τ−s)τ[z′0(s)−Az0(s)]ds, |
where
eB1tτ={0,−∞<t<−τ,I,−τ≤t<0,I+B1t1!,0≤t<τ,I+B1t1!+B21(t−τ)22!,τ≤t<2τ,⋮⋮I+B1t1!+B21(t−τ)22!+⋯+Bm1[t−(m−1)τ]mm!,(m−1)τ≤t<mτ,⋮⋮ |
where
Lemma 3.4. ([11,Theorem 3.1]) Suppose
‖z(t)‖≤C0e−ετσt,t>0, |
where
‖eAteB1tτ‖≤C0e−ετσt,t>0, |
where
From the proof of [11,Theome 3.1], one can see that
μ1(A)=limθ→0+‖I+θA‖−1θ=max1≤j≤N[Re(ajj)+N∑j≠i|aij|] |
and
μ∞(A)=limθ→0+‖I+θA‖∞−1θ=max1≤i≤N[Re(aii)+N∑i≠j|aij|]. |
Taking the Fourier transform to (21) and denoting the Fourier transform of
{∂∂tˆV+1(η,t)=(−c1+d1(eλ+iη+e−(λ+iη))−icη)ˆV+1(η,t) +h′(0)e−cτ(λ+iη)ˆV+2(η,t−τ),∂∂tˆV+2(η,t)=(−c2+d2(eλ+iη+e−(λ+iη))−icη)ˆV+2(η,t) +g′(0)e−cτ(λ+iη)ˆV+1(η,t−τ),ˆV+i(η,s)=ˆV+i0(η,s), η∈R, s∈[−τ,0], i=1,2. | (23) |
Let
A(η)=(−c1+d1(eλ+iη+e−(λ+iη))−icη00−c2+d2(eλ+iη+e−(λ+iη))−icη) |
and
B(η)=(0h′(0)e−cτ(λ+iη)g′(0)e−cτ(λ+iη)0). |
Then system (23) can be rewritten as
ˆV+t(η,t)=A(η)ˆV+(η,t)+B(η)ˆV+(η,t−τ). | (24) |
By Lemma 3.3, the linear delayed system (24) can be solved by
ˆV+(η,t)=eA(η)(t+τ)eB1(η)tτˆV+0(η,−τ)+∫0−τeA(η)(t−s)eB1(η)(t−s−τ)τ[∂sˆV+0(η,s)−A(η)ˆV+0(η,s)]ds:=I1(η,t)+∫0−τI2(η,t−s)ds, | (25) |
where
V+(ξ,t) | (26) |
=F−1[I1](ξ,t)+∫0−τF−1[I2](ξ,t−s)ds=12π∫∞−∞eiξηeA(η)(t+τ)eB1(η)tτˆV+0(η,−τ)dη +12π∫0−τ∫∞−∞eiξηeA(η)(t−s)eB1(η)(t−s−τ)τ[∂sˆV+0(η,s)−A(η)ˆV+0(η,s)]dηds. | (27) |
Lemma 3.5. Let the initial data
V+i0∈C([−τ,0];W1,1(R)), ∂sV+i0∈L1([−τ,0];L1(R)), i=1,2. |
Then
‖V+i(t)‖L∞(R)≤Ce−μ2t for c≥max{c∗,c∗}, i=1,2, |
where
Proof. According to (26), we shall estimate
μ(A(η))=μ1(A(η))+μ∞(A(η))2=max{−c1+d1(eλcosη+e−λcosη),−c2+d2(eλcosη+e−λcosη)}=−c2+d2(eλcosη+e−λcosη)=−c2+d2(eλ+e−λ)cosη=−cλ+d2(eλ+e−λ−2)−β−m(η), |
where
m(η)=d2(1−cosη)(eλ+e−λ)≥0, |
since
ν(B(η))=max{h′(0),g′(0)}e−λcτ. |
By considering
μ(A(η))+ν(B(η))=−cλ+d2(eλ+e−λ−2)−β−m(η)+max{h′(0),g′(0)}e−λcτ<0. |
Furthermore, we obtain
|μ(A(η))|−ν(B(η))=cλ−d2(eλ+e−λ−2)+β+m(η)−max{h′(0),g′(0)}e−λcτ=−P2(λ,c)+m(η), |
where
‖eA(η)(t+τ)eB1(η)t‖≤C1e−ετ(|μ(A(η))|−ν(B(η)))t≤C1e−ετμ0te−ετm(η)t, | (28) |
where
supη∈R‖ˆV+0(η,−τ)‖≤∫R‖V+0(ξ,−τ)‖dξ=2∑i=1‖V+i0(⋅,−τ)‖L1(R). |
Applying (28), we derive
supξ∈R‖F−1[I1](ξ,t)‖=supξ∈R‖12π∫∞−∞eiξηeA(η)(t+τ)eB1(η)tˆV+0(η,−τ)dη‖≤C∫∞−∞e−ετm(η)te−ετμ0t‖ˆV+0(η,−τ)‖dη≤Ce−ετμ0tsupη∈R‖ˆV+0(η,−τ)‖∫∞−∞e−ετm(η)tdη≤Ce−μ2t2∑i=1‖V+i0(⋅,−τ)‖L1(R), | (29) |
with
Note that
supη∈R‖A(η)ˆV+0(η,s)‖≤C2∑i=1‖V+i0(⋅,s)‖W1,1(R). |
Similarly, we can obtain
supξ∈R‖F−1[I2](ξ,t−s)‖=supξ∈R‖12π∫∞−∞eiξηeA(η)(t−s)eB1(η)(t−s−τ)[∂sˆV+0(η,s)−A(η)ˆV+0(η,s)]dη‖≤C∫∞−∞e−ετm(η)(t−s)e−ετμ0(t−s)‖∂sˆV+0(η,s)−A(η)ˆV+0(η,s)‖dη≤Ce−ετμ0teετμ0ssupη∈R‖∂sˆV+0(η,s)−A(η)ˆV+0(η,s)‖∫∞−∞e−ετm(η)(t−s)dη. |
It then follows that
∫0−τsupξ∈R‖F−1[I2](ξ,t−s)‖ds≤Ce−ετμ0t∫0−τeετμ0ssupη∈R‖∂sˆV+0(η,s)−A(η)ˆV+0(η,s)‖∫∞−∞e−ετm(η)(t−s)dηds≤Ce−ετμ0t∫0−τ‖∂sV+0(⋅,s)‖L1(R)+‖V+0(⋅,s)‖W1,1(R)ds≤Ce−ετμ0t(‖∂sV+0(s)‖L1([−τ,0];L1(R))+‖V+0(s)‖L1([−τ,0];W1,1(R))). | (30) |
Substituting (29) and (30) to (26), we obtain the following the decay rate
2∑i=1‖V+i(t)‖L∞(R)≤Ce−μ2t. |
This proof is complete.
The following maximum principle is needed to obtain the crucial boundedness estimate of
Lemma 3.6. Let
{∂v∂t+a1∂v∂ξ+a2v−deνv(t,ξ+1)−de−νv(t,ξ−1)≥0, (t,ξ)∈(0,T]×R,v(0,ξ)≥0,ξ∈R, | (31) |
then
Lemma 3.7. When
Proof. When
h′(0)e−λcτV+2(ξ−cτ,t−τ)=h′(0)e−λcτV+20(ξ−cτ,t−τ)≥0. | (32) |
Applying (32) to the first equation of (21), we get
{V+1t+cV+1ξ+c1V+1(ξ,t)−d1eλV+1(ξ+1,t)−d1e−λV+1(ξ−1,t)≥0, (ξ,t)∈R×[0,τ],V+10(ξ,s)≥0, ξ∈R, s∈[−τ,0]. |
By Lemma 3.6, we derive
V+1(ξ,t)≥0,(ξ,t)∈R×[0,τ]. | (33) |
Similarly, we obtain
{V+2t+cV+2ξ+c2V+2(ξ,t)−d2eλV+2(ξ+1,t)−d2e−λV+2(ξ−1,t)≥0, (ξ,t)∈R×[0,τ],V+20(ξ,s)≥0, ξ∈R s∈[−τ,0]. |
Using Lemma 3.6 again, we obtain
V+2(ξ,t)≥0,(ξ,t)∈R×[0,τ]. | (34) |
When
(V+1(ξ,t),V+2(ξ,t))≥(0,0),(ξ,t)∈R×[nτ,(n+1)τ]. | (35) |
Combining (33), (34) and (31), we obtain
Now we establish the following crucial boundedness estimate for
Lemma 3.8. Let
|˜Vi0(ξ,s)|≤V+i0(ξ,s)for(ξ,s)∈R×[−τ,0], i=1,2, | (36) |
then
|˜Vi(ξ,t)|≤V+i(ξ,t)for(ξ,t)∈R×[0,+∞), i=1,2. |
Proof. First of all, we prove
|˜Vi(ξ−cτ,t−τ)|=|˜Vi0(ξ−cτ,t−τ)|≤V+i0(ξ−cτ,t−τ)=V+i(ξ−cτ,t−τ)for (ξ,t)∈R×[0,τ]. | (37) |
Then by
h′(0)e−λcτV+2(ξ−cτ,t−τ)±h′(˜ϕ2)e−λcτ˜V2(ξ−cτ,t−τ)≥h′(0)e−λcτV+2(ξ−cτ,t−τ)−|h′(˜ϕ2)|e−λcτ|˜V2(ξ−cτ,t−τ)|≥0for (ξ,t)∈R×[0,τ] | (38) |
and
g′(0)e−λcτV+1(ξ−cτ,t−τ)±g′(˜ϕ1)e−λcτ˜V1(ξ−cτ,t−τ)≥0for (ξ,t)∈R×[0,τ]. | (39) |
Let
U−i(ξ,t):=V+i(ξ,t)−˜Vi(ξ,t)andU+i(ξ,t):=V+i(ξ,t)+˜Vi(ξ,t),i=1,2. |
We are going to estimate
From (18), (19), (21) and (38), we see that
{U−1t+cU−1ξ+c1U−1(ξ,t)−d1eλU−1(ξ+1,t)−d1e−λU−1(ξ−1,t)≥0,(ξ,t)∈R×[0,τ],U−10(ξ,s)=V+10(ξ,s)−˜V10(ξ,s)≥0,ξ∈R, s∈[−τ,0]. |
By Lemma 3.6, we obtain
U−1(ξ,t)≥0,(ξ,t)∈R×[0,τ], |
namely,
˜V1(ξ,t)≤V+1(ξ,t),(ξ,t)∈R×[0,τ]. | (40) |
Similarly, one has
{U−2t+cU−2ξ+c2U−2(ξ,t)−d2eλU−2(ξ+1,t)−d2e−λU−2(ξ−1,t)≥0,(ξ,t)∈R×[0,τ],U−20(ξ,s)=V+20(ξ,s)−˜V20(ξ,s)≥0,ξ∈R, s∈[−τ,0]. |
Applying Lemma 3.6 again, we have
U−2(ξ,t)≥0,(ξ,t)∈R×[0,τ], |
i.e.,
˜V2(ξ,t)≤V+2(ξ,t),(ξ,t)∈R×[0,τ]. | (41) |
On the other hand,
{U+1t+cU+1ξ+c1U+1(ξ,t)−d1eλU+1(ξ+1,t)−d1e−λU+1(ξ−1,t)≥0,(ξ,t)∈R×[0,τ],U−10(ξ,s)=V+10(ξ,s)−˜V10(ξ,s)≥0,ξ∈R, s∈[−τ,0]. |
Then Lemma 3.6 implies that
U+1(ξ,t)=V+1(ξ,t)+˜V1(ξ,t)≥0,(ξ,t)∈R×[0,τ], |
that is,
−V+1(ξ,t)≤˜V1(ξ,t),(ξ,t)∈R×[0,τ]. | (42) |
Similarly,
{U+2t+cU+2ξ+c2U+2(ξ,t)−d2eλU+2(ξ+1,t)−d2e−λU+2(ξ−1,t)≥0,(ξ,t)∈R×[0,τ],U−20(ξ,s)=V+20(ξ,s)−˜V10(ξ,s)≥0,ξ∈R, s∈[−τ,0]. |
Therefore, we can prove that
U+2(ξ,t)=V+2(ξ,t)+˜V2(ξ,t)≥0,(ξ,t)∈R×[0,τ], |
namely
−V+2(ξ,t)≤˜V2(ξ,t),(ξ,t)∈R×[0,τ]. | (43) |
Combining (40) and (42), we obtain
|˜V1(ξ,t)|≤V+1(ξ,t)for(ξ,t)∈R×[0,τ], | (44) |
and combining (41) and (43), we prove
|˜V2(ξ,t)|≤V+2(ξ,t)for(ξ,t)∈R×[0,τ]. | (45) |
Next, when
|˜Vi(ξ,t)|≤V+i(ξ,t)for(ξ,t)∈R×[τ,2τ],i=1,2. |
Repeating this procedure, we then further prove
|˜Vi(ξ,t)|≤V+i(ξ,t),(ξ,t)∈R×[nτ,(n+1)τ],n=1,2,⋯, |
which implies
|˜Vi(ξ,t)|≤V+i(ξ,t)for(ξ,t)∈R×[0,∞),i=1,2. |
The proof is complete.
Let us choose
V+i0∈C([−τ,0];W1,1(R)),∂sV+i0∈L1([−τ,0];L1(R)), |
and
V+i0(ξ,s)≥|Vi0(ξ,s)|,(ξ,s)∈R×[−τ,0], i=1,2. |
Combining Lemmas 3.5 and 3.8, we can get the convergence rates for
Lemma 3.9. When
‖˜Vi(t)‖L∞(R)≤Ce−μ2t, |
for some
Lemma 3.10. It holds that
supξ∈(−∞,x0]|Vi(ξ,t)|≤Ce−μ2t, i=1,2, |
for some
Proof. Since
supξ∈(−∞,0]|Vi(ξ+x0,t)|≤‖˜Vi(t)‖L∞(R)≤Ce−μ2t, |
which implies
supξ∈(−∞,x0]|Vi(ξ,t)|≤Ce−μ2t. |
Thus, the estimate for the unshifted
Proof of Proposition 3.2. By Lemmas 3.2 and 3.10, we immediately obtain (16) for
We are grateful to the anonymous referee for careful reading and valuable comments which led to improvements of our original manuscript.
[1] | L. K. Johnson, Smart intelligence, Foreign Policy, (1992), 53–69. |
[2] | J. Wang, C. Xu, J. Zhang, R. Zhong, Big data analytics for intelligent manufacturing systems: A review, J. Manuf Syst., (2021). https://doi.org/10.1016/j.jmsy.2021.03.005 |
[3] |
W. H. Zijm, Towards intelligent manufacturing planning and control systems, OR-Spektrum, 22 (2000), 313–345. https://doi.org/10.1007/s002919900032 doi: 10.1007/s002919900032
![]() |
[4] | W. Qi H. Su, A cybertwin based multimodal network for ecg patterns monitoring using deep learning, IEEE Trans. Industr. Inform., (2022). https://doi.org/10.1109/TII.2022.3159583 |
[5] |
L. Monostori, J. Prohaszka, A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks, CIRP Ann., 42 (1993), 485–488. https://doi.org/10.1016/S0007-8506(07)62491-3 doi: 10.1016/S0007-8506(07)62491-3
![]() |
[6] | X. Yao, J. Zhou, J. Zhang, C. R. Boër, From intelligent manufacturing to smart manufacturing for industry 4.0 driven by next generation artificial intelligence and further on, in 2017 5th international conference on enterprise systems (ES). IEEE, (2017), 311–318. https://doi.org/10.1109/ES.2017.58 |
[7] |
J. Yi, C. Lu, G. Li, A literature review on latest developments of harmony search and its applications to intelligent manufacturing, Math. Biosci. Eng., 16 (2019), 2086–2117. https://doi.org/10.3934/mbe.2019102 doi: 10.3934/mbe.2019102
![]() |
[8] |
S. Shan, X. Wen, Y. Wei, Z. Wang, Y. Chen, Intelligent manufacturing in industry 4.0: A case study of sany heavy industry, Syst. Res. Behav. Sci., 37 (2020), 679–690. https://doi.org/10.1002/sres.2709 doi: 10.1002/sres.2709
![]() |
[9] |
H. Yoshikawa, Manufacturing and the 21st century intelligent manufacturing systems and the renaissance of the manufacturing industry, Technol. Forecast Soc. Change, 49 (1995), 195–213. https://doi.org/10.1016/0040-1625(95)00008-X doi: 10.1016/0040-1625(95)00008-X
![]() |
[10] | J. Zheng, K. Chan, I. Gibson, Virtual reality, IEEE Potent., 17 (1998), 20–23. |
[11] |
M. J. Schuemie, P. Van Der Straaten, M. Krijn, C. A. Van Der Mast, Research on presence in virtual reality: A survey, Cyberpsychol. & Behav., 4 (2001), 183–201. https://doi.org/10.1089/109493101300117884 doi: 10.1089/109493101300117884
![]() |
[12] | C. Anthes, R. J. García-Hernández, M. Wiedemann, D. Kranzlmüller, State of the art of virtual reality technology, in IEEE Aerosp. Conf.. (2016), 1–19. 10.1109/AERO.2016.7500674 |
[13] | F. Biocca, B. Delaney, Immersive virtual reality technology, Communication in the age of virtual reality, 15 (1995). https://doi.org/10.4324/9781410603128 |
[14] | T. Mazuryk, M. Gervautz, Virtual reality-history, applications, technology and future, 1996. |
[15] |
N.-N. Zhou, Y.-L. Deng, Virtual reality: A state-of-the-art survey, Int. J. Autom. Comput., 6 (2009), 319–325. https://doi.org/10.1007/s11633-009-0319-9 doi: 10.1007/s11633-009-0319-9
![]() |
[16] |
J. Egger, T. Masood, Augmented reality in support of intelligent manufacturing–a systematic literature review, Comput. Ind. Eng., 140 (2020), 106195. https://doi.org/10.1016/j.cie.2019.106195 doi: 10.1016/j.cie.2019.106195
![]() |
[17] |
B.-H. Li, B.-C. Hou, W.-T. Yu, X.-B. Lu, C.-W. Yang, Applications of artificial intelligence in intelligent manufacturing: a review, Front. Inform. Tech. El., 18 (2017), 86–96. https://doi.org/10.1631/FITEE.1601885 doi: 10.1631/FITEE.1601885
![]() |
[18] |
B. He, K.-J. Bai, Digital twin-based sustainable intelligent manufacturing: A review, Adv. Manuf., 9 (2021), 1–21. https://doi.org/10.1007/s40436-020-00302-5 doi: 10.1007/s40436-020-00302-5
![]() |
[19] | G.-J. Cheng, L.-T. Liu, X.-J. Qiang, Y. Liu, Industry 4.0 development and application of intelligent manufacturing, in 2016 international conference on information system and artificial intelligence (ISAI). IEEE, (2016), 407–410. https://doi.org/10.1109/ISAI.2016.0092 |
[20] |
G. Y. Tian, G. Yin, D. Taylor, Internet-based manufacturing: A review and a new infrastructure for distributed intelligent manufacturing, J. Intell. Manuf., 13 (2002), 323–338. https://doi.org/10.1023/A:1019907906158 doi: 10.1023/A:1019907906158
![]() |
[21] |
H. Su, W. Qi, J. Chen, D. Zhang, Fuzzy approximation-based task-space control of robot manipulators with remote center of motion constraint, IEEE Trans. Fuzzy Syst., 30 (2022), 1564–1573. https://doi.org/10.1109/TFUZZ.2022.3157075 doi: 10.1109/TFUZZ.2022.3157075
![]() |
[22] | M.-S. Yoh, The reality of virtual reality, in Proceedings seventh international conference on virtual systems and multimedia. IEEE, (2001), 666–674. https://doi.org/10.1109/VSMM.2001.969726 |
[23] |
V. Antoniou, F. L. Bonali, P. Nomikou, A. Tibaldi, P. Melissinos, F. P. Mariotto, et al., Integrating virtual reality and gis tools for geological mapping, data collection and analysis: An example from the metaxa mine, santorini (greece), Appl. Sci., 10 (2020), 8317. https://doi.org/10.3390/app10238317 doi: 10.3390/app10238317
![]() |
[24] |
A. Kunz, M. Zank, T. Nescher, K. Wegener, Virtual reality based time and motion study with support for real walking, Proced. CIRP, 57 (2016), 303–308. https://doi.org/10.1016/j.procir.2016.11.053 doi: 10.1016/j.procir.2016.11.053
![]() |
[25] | M. Serras, L. G.-Sardia, B. Simes, H. lvarez, J. Arambarri, Dialogue enhanced extended reality: Interactive system for the operator 4.0, Appl. Sci., 10 (2020). https://doi.org/10.3390/app10113960 |
[26] |
A. G. da Silva, M. V. M. Gomes, I. Winkler, Virtual reality and digital human modeling for ergonomic assessment in industrial product development: A patent and literature review, Appl. Sci., 12 (2022), 1084. https://doi.org/10.3390/app12031084 doi: 10.3390/app12031084
![]() |
[27] |
J. Kim, J. Jeong, Design and implementation of opc ua-based vr/ar collaboration model using cps server for vr engineering process, Appl. Sci., 12 (2022), 7534. https://doi.org/10.3390/app12157534 doi: 10.3390/app12157534
![]() |
[28] |
J.-d.-J. Cordero-Guridi, L. Cuautle-Gutiérrez, R.-I. Alvarez-Tamayo, S.-O. Caballero-Morales, Design and development of a i4. 0 engineering education laboratory with virtual and digital technologies based on iso/iec tr 23842-1 standard guidelines, Appl. Sci., 12 (2022), 5993. https://doi.org/10.3390/app12125993 doi: 10.3390/app12125993
![]() |
[29] |
H. Heinonen, A. Burova, S. Siltanen, J. Lähteenmäki, J. Hakulinen, M. Turunen, Evaluating the benefits of collaborative vr review for maintenance documentation and risk assessment, Appl. Sci., 12 (2022), 7155. https://doi.org/10.3390/app12147155 doi: 10.3390/app12147155
![]() |
[30] |
V. Settgast, K. Kostarakos, E. Eggeling, M. Hartbauer, T. Ullrich, Product tests in virtual reality: Lessons learned during collision avoidance development for drones, Designs, 6 (2022), 33. https://doi.org/10.3390/designs6020033 doi: 10.3390/designs6020033
![]() |
[31] |
D. Mourtzis, J. Angelopoulos, N. Panopoulos, Smart manufacturing and tactile internet based on 5g in industry 4.0: Challenges, applications and new trends, Electronics-Switz, 10 (2021), 3175. https://doi.org/10.3390/electronics10243175 doi: 10.3390/electronics10243175
![]() |
[32] |
Y. Saito, K. Kawashima, M. Hirakawa, Effectiveness of a head movement interface for steering a vehicle in a virtual reality driving simulation, Symmetry, 12 (2020), 1645. https://doi.org/10.3390/sym12101645 doi: 10.3390/sym12101645
![]() |
[33] |
Y.-P. Su, X.-Q. Chen, T. Zhou, C. Pretty, G. Chase, Mixed-reality-enhanced human–robot interaction with an imitation-based mapping approach for intuitive teleoperation of a robotic arm-hand system, Appl. Sci., 12 (2022), 4740. https://doi.org/10.3390/app12094740 doi: 10.3390/app12094740
![]() |
[34] |
F. Arena, M. Collotta, G. Pau, F. Termine, An overview of augmented reality, Computers, 11 (2022), 28. https://doi.org/10.3390/computers11020028 doi: 10.3390/computers11020028
![]() |
[35] | P. C. Thomas, W. David, Augmented reality: An application of heads-up display technology to manual manufacturing processes, in Hawaii international conference on system sciences, 2. ACM SIGCHI Bulletin New York, NY, USA, 1992. |
[36] |
J. Safari Bazargani, A. Sadeghi-Niaraki, S.-M. Choi, Design, implementation, and evaluation of an immersive virtual reality-based educational game for learning topology relations at schools: A case study, Sustainability-Basel, 13 (2021), 13066. https://doi.org/10.3390/su132313066 doi: 10.3390/su132313066
![]() |
[37] |
K. Židek, J. Pitel', M. Balog, A. Hošovskỳ, V. Hladkỳ, P. Lazorík, et al., CNN training using 3d virtual models for assisted assembly with mixed reality and collaborative robots, Appl. Sci., 11 (2021), 4269. https://doi.org/10.3390/app11094269 doi: 10.3390/app11094269
![]() |
[38] | S. Mandal, Brief introduction of virtual reality & its challenges, Int. J. Sci. Eng. Res., 4 (2013), 304–309. |
[39] | D. Rose, N. Foreman, Virtual reality. The Psycho., (1999). |
[40] | G. Riva, C. Malighetti, A. Chirico, D. Di Lernia, F. Mantovani, A. Dakanalis, Virtual reality, in Rehabilitation interventions in the patient with obesity. Springer, (2020), 189–204. |
[41] |
J. N. Latta, D. J. Oberg, A conceptual virtual reality model, IEEE Comput. Graph. Appl., 14 (1994), 23–29. https://doi.org/10.1109/38.250915 doi: 10.1109/38.250915
![]() |
[42] | J. Lanier, Virtual reality: The promise of the future. Interactive Learning International, 8 (1992), 275–79. |
[43] | S. Serafin, C. Erkut, J. Kojs, N. C. Nilsson, R. Nordahl, Virtual reality musical instruments: State of the art, design principles, and future directions, Comput. Music. J., 40 (2016). https://doi.org/10.1162/COMJ_a_00372 |
[44] |
W. Qi, H. Su, A. Aliverti, A smartphone-based adaptive recognition and real-time monitoring system for human activities, IEEE Trans. Hum. Mach. Syst., 50 (2020), 414 - 423. https://doi.org/10.1109/THMS.2020.2984181 doi: 10.1109/THMS.2020.2984181
![]() |
[45] |
P. Kopacek, Intelligent manufacturing: present state and future trends, J. Intell. Robot. Syst., 26 (1999), 217–229. https://doi.org/10.1023/A:1008168605803 doi: 10.1023/A:1008168605803
![]() |
[46] |
Y. Feng, Y. Zhao, H. Zheng, Z. Li, J. Tan, Data-driven product design toward intelligent manufacturing: A review, Int. J. Adv. Robot. Syst., 17 (2020), 1729881420911257. https://doi.org/10.1177/1729881420911257 doi: 10.1177/1729881420911257
![]() |
[47] |
H. Su, W. Qi, Y. Hu, H. R. Karimi, G. Ferrigno, E. De Momi, An incremental learning framework for human-like redundancy optimization of anthropomorphic manipulators, IEEE Trans. Industr. Inform., 18 (2020), 1864–1872. https://doi.org/10.1109/TII.2020.3036693 doi: 10.1109/TII.2020.3036693
![]() |
[48] | E. Hozdić, Smart factory for industry 4.0: A review, Int. J. Adv. Manuf. Technol., 7 (2015), 28–35. |
[49] | R. Burke, A. Mussomeli, S. Laaper, M. Hartigan, B. Sniderman, The smart factory: Responsive, adaptive, connected manufacturing, Deloitte Insights, 31 (2017), 1–10. |
[50] |
R. Y. Zhong, X. Xu, E. Klotz, S. T. Newman, Intelligent manufacturing in the context of industry 4.0: a review, Engineering-Prc, 3 (2017), 616–630. https://doi.org/10.1016/J.ENG.2017.05.015 doi: 10.1016/J.ENG.2017.05.015
![]() |
[51] | A. Kusiak, Intelligent manufacturing, System, Prentice-Hall, Englewood Cliffs, NJ, (1990). |
[52] |
G. Rzevski, A framework for designing intelligent manufacturing systems, Comput. Ind., 34 (1997), 211–219. https://doi.org/10.1016/S0166-3615(97)00056-0 doi: 10.1016/S0166-3615(97)00056-0
![]() |
[53] | E. Oztemel, Intelligent manufacturing systems, in Artificial intelligence techniques for networked manufacturing enterprises management. Springer, (2010), pp. 1–41. https://doi.org/10.1007/978-1-84996-119-6_1 |
[54] |
J. Zhou, P. Li, Y. Zhou, B. Wang, J. Zang, L. Meng, Toward new-generation intelligent manufacturing, Engineering-Prc, 4 (2018), 11–20. https://doi.org/10.1016/j.eng.2018.01.002 doi: 10.1016/j.eng.2018.01.002
![]() |
[55] |
R. Y. Zhong, X. Xu, E. Klotz, S. T. Newman, Intelligent manufacturing in the context of industry 4.0: a review, Engineering-Prc, 3 (2017), 616–630. https://doi.org/10.1016/J.ENG.2017.05.015 doi: 10.1016/J.ENG.2017.05.015
![]() |
[56] |
H. S. Kang, J. Y. Lee, S. Choi, H. Kim, J. H. Park, J. Y. Son, B. H. Kim, S. D. Noh, Smart manufacturing: Past research, present findings, and future directions, Int. J. Pr. Eng. Man-Gt., 3 (2016), 111–128. https://doi.org/10.1007/s40684-016-0015-5 doi: 10.1007/s40684-016-0015-5
![]() |
[57] | R. Jardim-Goncalves, D. Romero, A. Grilo, Factories of the future: challenges and leading innovations in intelligent manufacturing, Int. J. Comput. Integr. Manuf., 30 (2017), 4–14. |
[58] | A. Kusiak, Smart manufacturing, Int. J. Prod. Res., 56 (2018), 508–517. https://doi.org/10.1080/00207543.2017.1351644 |
[59] |
B. Wang, F. Tao, X. Fang, C. Liu, Y. Liu, T. Freiheit, Smart manufacturing and intelligent manufacturing: A comparative review, Engineering-Prc, 7 (2021), 738–757. https://doi.org/10.1016/j.eng.2020.07.017 doi: 10.1016/j.eng.2020.07.017
![]() |
[60] |
P. Zheng, Z. Sang, R. Y. Zhong, Y. Liu, C. Liu, K. Mubarok, et al., Smart manufacturing systems for industry 4.0: Conceptual framework, scenarios, and future perspectives, Front. Mech. Eng., 13 (2018), 137–150. https://doi.org/10.1007/s11465-018-0499-5 doi: 10.1007/s11465-018-0499-5
![]() |
[61] | P. Osterrieder, L. Budde, T. Friedli, The smart factory as a key construct of industry 4.0: A systematic literature review, Int. J. Prod. Econ., 221 107476. https://doi.org/10.1016/j.ijpe.2019.08.011 |
[62] | D. Guo, M. Li, R. Zhong, G. Q. Huang, Graduation intelligent manufacturing system (gims): an industry 4.0 paradigm for production and operations management, Ind. Manage. Data Syst., (2020). https://doi.org/10.1108/IMDS-08-2020-0489 |
[63] |
A. Barari, M. de Sales Guerra Tsuzuki, Y. Cohen, M. Macchi, Intelligent manufacturing systems towards industry 4.0 era, J. Intell. Manuf., 32 (2021), 1793–1796. https://doi.org/10.1007/s10845-021-01769-0 doi: 10.1007/s10845-021-01769-0
![]() |
[64] | C. Christo, C. Cardeira, Trends in intelligent manufacturing systems, in 2007 IEEE International Symposium on Industrial Electronics-Switz.. IEEE, (2007), 3209–3214. https://doi.org/10.1109/ISIE.2007.4375129 |
[65] |
M.-P. Pacaux-Lemoine, D. Trentesaux, G. Z. Rey, P. Millot, Designing intelligent manufacturing systems through human-machine cooperation principles: A human-centered approach, Comput. Ind. Eng., 111 (2017), 581–595. https://doi.org/10.1016/j.cie.2017.05.014 doi: 10.1016/j.cie.2017.05.014
![]() |
[66] |
W. F. Gaughran, S. Burke, P. Phelan, Intelligent manufacturing and environmental sustainability, Robot. Comput. Integr. Manuf., 23 (2007), 704–711. https://doi.org/10.1016/j.rcim.2007.02.016 doi: 10.1016/j.rcim.2007.02.016
![]() |
[67] | Y. Boas, Overview of virtual reality technologies, in Inter. Mult. Confer., 2013 (2013). |
[68] |
lvaro Segura, H. V. Diez, I. Barandiaran, A. Arbelaiz, H. lvarez, B. Simes, J. Posada, A. Garca-Alonso, R. Ugarte, Visual computing technologies to support the operator 4.0, Comput. Ind. Eng., 139 (2020), 105550. https://doi.org/10.1016/j.cie.2018.11.060 doi: 10.1016/j.cie.2018.11.060
![]() |
[69] | D. Romero, J. Stahre, T. Wuest, O. Noran, P. Bernus, Fasth, Fast-Berglund, D. Gorecky, Towards an operator 4.0 typology: A human-centric perspective on the fourth industrial revolution technologies, 10 (2016). |
[70] | H. Qiao, J. Chen, X. Huang, A survey of brain-inspired intelligent robots: Integration of vision, decision, motion control, and musculoskeletal systems, " IEEE T. Cybernetics, 52 (2022), 11267 - 11280. https://doi.org/10.1109/TCYB.2021.3071312 |
[71] | F. Firyaguna, J. John, M. O. Khyam, D. Pesch, E. Armstrong, H. Claussen, H. V. Poor et al., Towards industry 5.0: Intelligent reflecting surface (irs) in smart manufacturing, arXiv preprint arXiv: 2201.02214, (2022). https://doi.org/10.1109/MCOM.001.2200016 |
[72] | A. M. Almassri, W. Wan Hasan, S. A. Ahmad, A. J. Ishak, A. Ghazali, D. Talib, C. Wada, Pressure sensor: state of the art, design, and application for robotic hand, J. Sensors, 2015 (2015). https://doi.org/10.1155/2015/846487 |
[73] | B. Munari, Design as art. Penguin UK, (2008). |
[74] | B. De La Harpe, J. F. Peterson, N. Frankham, R. Zehner, D. Neale, E. Musgrave, R. McDermott, Assessment focus in studio: What is most prominent in architecture, art and design? IJADE., 28 (2009), 37–51. https://doi.org/10.1111/j.1476-8070.2009.01591.x |
[75] | C. Gray, J. Malins, Visualizing research: A guide to the research process in art and design. Routledge, (2016). |
[76] | M. Barnard, Art, design and visual culture: An introduction. Bloomsbury Publishing, (1998). |
[77] | C. Crouch, Modernism in art, design and architecture. Bloomsbury Publishing, (1998). |
[78] | M. Biggs, The role of the artefact in art and design research, Int. J. Des. Sci. Technol., 2002. |
[79] | H. Su, W. Qi, Y. Schmirander, S. E. Ovur, S. Cai, X. Xiong, A human activity-aware shared control solution for medical human–robot interaction, Assembly Autom., (2022) ahead-of-print. https://doi.org/10.1108/AA-12-2021-0174 |
[80] | R. D. Gandhi, D. S. Patel, Virtual reality–opportunities and challenges, Virtual Real., 5 (2018). |
[81] |
A. J. Trappey, C. V. Trappey, M.-H. Chao, C.-T. Wu, Vr-enabled engineering consultation chatbot for integrated and intelligent manufacturing services, J. Ind. Inf. Integrat., 26 (2022), 100331. https://doi.org/10.1016/j.jii.2022.100331 doi: 10.1016/j.jii.2022.100331
![]() |
[82] |
K. Valaskova, M. Nagy, S. Zabojnik, G. Lăzăroiu, Industry 4.0 wireless networks and cyber-physical smart manufacturing systems as accelerators of value-added growth in slovak exports, Mathematics-Basel, 10 (2022), 2452. https://doi.org/10.3390/math10142452 doi: 10.3390/math10142452
![]() |
[83] |
J. de Assis Dornelles, N. F. Ayala, A. G. Frank, Smart working in industry 4.0: How digital technologies enhance manufacturing workers' activities, Comput. Ind. Eng., 163 (2022), 107804. https://doi.org/10.1016/j.cie.2021.107804 doi: 10.1016/j.cie.2021.107804
![]() |
[84] |
V. Tripathi, S. Chattopadhyaya, A. K. Mukhopadhyay, S. Sharma, C. Li, S. Singh, W. U. Hussan, B. Salah, W. Saleem, A. Mohamed, A sustainable productive method for enhancing operational excellence in shop floor management for industry 4.0 using hybrid integration of lean and smart manufacturing: An ingenious case study, Sustainability-Basel, 14 (2022), 7452. https://doi.org/10.3390/su14127452 doi: 10.3390/su14127452
![]() |
[85] |
S. M. M. Sajadieh, Y. H. Son, S. D. Noh, A conceptual definition and future directions of urban smart factory for sustainable manufacturing, Sustainability-Basel, 14 (2022), 1221. https://doi.org/10.3390/su14031221 doi: 10.3390/su14031221
![]() |
[86] |
Y. H. Son, G.-Y. Kim, H. C. Kim, C. Jun, S. D. Noh, Past, present, and future research of digital twin for smart manufacturing, J. Comput. Des. Eng., 9 (2022), 1–23. https://doi.org/10.1093/jcde/qwab067 doi: 10.1093/jcde/qwab067
![]() |
[87] |
G. Moiceanu, G. Paraschiv, Digital twin and smart manufacturing in industries: A bibliometric analysis with a focus on industry 4.0, Sensors-Basel, 22 (2022), 1388. https://doi.org/10.3390/s22041388 doi: 10.3390/s22041388
![]() |
[88] |
K. Cheng, Q. Wang, D. Yang, Q. Dai, M. Wang, Digital-twins-driven semi-physical simulation for testing and evaluation of industrial software in a smart manufacturing system, Machines, 10 (2022), 388. https://doi.org/10.3390/machines10050388 doi: 10.3390/machines10050388
![]() |
[89] |
S. Arjun, L. Murthy, P. Biswas, Interactive sensor dashboard for smart manufacturing, Procedia Comput. Sci., 200 (2022), 49–61. https://doi.org/10.1016/j.procs.2022.01.204 doi: 10.1016/j.procs.2022.01.204
![]() |
[90] |
J. Yang, Y. H. Son, D. Lee, S. D. Noh, Digital twin-based integrated assessment of flexible and reconfigurable automotive part production lines, Machines, 10 (2022), 75. https://doi.org/10.3390/machines10020075 doi: 10.3390/machines10020075
![]() |
[91] |
J. Friederich, D. P. Francis, S. Lazarova-Molnar, N. Mohamed, A framework for data-driven digital twins for smart manufacturing, Comput. Ind., 136 (2022), 103586. https://doi.org/10.1016/j.compind.2021.103586 doi: 10.1016/j.compind.2021.103586
![]() |
[92] |
L. Li, B. Lei, C. Mao, Digital twin in smart manufacturing, J. Ind. Inf. Integr., 26 (2022), 100289. https://doi.org/10.1016/j.jii.2021.100289 doi: 10.1016/j.jii.2021.100289
![]() |
[93] |
D. Nåfors, B. Johansson, Virtual engineering using realistic virtual models in brownfield factory layout planning, Sustainability-Basel, 13 (2021), 11102. https://doi.org/10.3390/su131911102 doi: 10.3390/su131911102
![]() |
[94] |
A. Geiger, E. Brandenburg, R. Stark, Natural virtual reality user interface to define assembly sequences for digital human models, Appl. System Innov., 3 (2020), 15. https://doi.org/10.3390/asi3010015 doi: 10.3390/asi3010015
![]() |
[95] |
G. Gabajova, B. Furmannova, I. Medvecka, P. Grznar, M. Krajčovič, R. Furmann, Virtual training application by use of augmented and virtual reality under university technology enhanced learning in slovakia, Sustainability-Basel, 11 (2019), 6677. https://doi.org/10.3390/su11236677 doi: 10.3390/su11236677
![]() |
[96] |
W. Qi, S. E. Ovur, Z. Li, A. Marzullo, R. Song, Multi-sensor guided hand gesture recognition for a teleoperated robot using a recurrent neural network, IEEE Robot Autom Lett., 6 (2021), 6039–6045. https://doi.org/10.1109/LRA.2021.3089999 doi: 10.1109/LRA.2021.3089999
![]() |
[97] |
L. Pérez, S. Rodríguez-Jiménez, N. Rodríguez, R. Usamentiaga, D. F. García, Digital twin and virtual reality based methodology for multi-robot manufacturing cell commissioning, Appl. Sci., 10 (2020), 3633. https://doi.org/10.3390/app10103633 doi: 10.3390/app10103633
![]() |
[98] |
J. Mora-Serrano, F. Muñoz-La Rivera, I. Valero, Factors for the automation of the creation of virtual reality experiences to raise awareness of occupational hazards on construction sites, Electronics-Switz., 10 (2021), 1355. https://doi.org/10.3390/electronics10111355 doi: 10.3390/electronics10111355
![]() |
[99] |
C. McDonald, K. A. Campbell, C. Benson, M. J. Davis, C. J. Frost, Workforce development and multiagency collaborations: A presentation of two case studies in child welfare, Sustainability-Basel, 13 (2021), 10190. https://doi.org/10.3390/su131810190 doi: 10.3390/su131810190
![]() |
[100] |
Z. Xu, N. Zheng, Incorporating virtual reality technology in safety training solution for construction site of urban cities, Sustainability-Basel, 13 (2020), 243. https://doi.org/10.3390/su13010243 doi: 10.3390/su13010243
![]() |
[101] |
L. Frizziero, L. Galletti, L. Magnani, E. G. Meazza, M. Freddi, Blitz vision: Development of a new full-electric sports sedan using qfd, sde and virtual prototyping, Inventions, 7 (2022), 41. https://doi.org/10.3390/inventions7020041 doi: 10.3390/inventions7020041
![]() |
[102] | N. Lyons, Deep learning-based computer vision algorithms, immersive analytics and simulation software, and virtual reality modeling tools in digital twin-driven smart manufacturing, Econom. Manag. Financ. Markets, 17 (2022). |
[103] |
H. Qiao, S. Zhong, Z. Chen, H. Wang, Improving performance of robots using human-inspired approaches: A survey, Sci. China Inf. Sci., 65 (2022), 221201. https://doi.org/10.1007/s11432-022-3606-1 doi: 10.1007/s11432-022-3606-1
![]() |
[104] |
H. Su, A. Mariani, S. E. Ovur, A. Menciassi, G. Ferrigno, E. De Momi, Toward teaching by demonstration for robot-assisted minimally invasive surgery, IEEE Trans. Autom, 18 (2021), 484 - 494. https://doi.org/10.1109/TASE.2020.3045655 doi: 10.1109/TASE.2020.3045655
![]() |
[105] |
H. Su, W. Qi, Z. Li, Z. Chen, G. Ferrigno, E. De Momi, Deep neural network approach in EMG-based force estimation for human–robot interaction, IEEE Trans. Artif. Intell., 2 (2021), 404 - 412. https://doi.org/10.1109/TAI.2021.3066565 doi: 10.1109/TAI.2021.3066565
![]() |
[106] |
A. A. Malik, T. Masood, A. Bilberg, Virtual reality in manufacturing: immersive and collaborative artificial-reality in design of human-robot workspace, Int. J. Comput. Integr. Manuf., 33 (2020), 22–37. https://doi.org/10.1080/0951192X.2019.1690685 doi: 10.1080/0951192X.2019.1690685
![]() |
[107] |
A. Corallo, A. M. Crespino, M. Lazoi, M. Lezzi, Model-based big data analytics-as-a-service framework in smart manufacturing: A case study, Robot. Comput. Integr. Manuf., 76 (2022), 102331. https://doi.org/10.1016/j.rcim.2022.102331 doi: 10.1016/j.rcim.2022.102331
![]() |
[108] |
Y.-M. Tang, G. T. S. Ho, Y.-Y. Lau, S.-Y. Tsui, Integrated smart warehouse and manufacturing management with demand forecasting in small-scale cyclical industries, Machines, 10 (2022), 472. https://doi.org/10.3390/machines10060472 doi: 10.3390/machines10060472
![]() |
[109] | M. Samardžić, D. Stefanović, U. Marjanović, Transformation towards smart working: Research proposal, in 2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH). IEEE, (2022), 1–6. https://doi.org/10.1109/INFOTEH53737.2022.9751256 |
[110] |
T. Caporaso, S. Grazioso, G. Di Gironimo, Development of an integrated virtual reality system with wearable sensors for ergonomic evaluation of human–robot cooperative workplaces, Sensors-Basel, 22 (2022), 2413. https://doi.org/10.3390/s22062413 doi: 10.3390/s22062413
![]() |
[111] |
W. Qi, N. Wang, H. Su, A. Aliverti DCNN based human activity recognition framework with depth vision guiding, Neurocomputing, 486 (2022), 261–271. https://doi.org/10.1016/j.neucom.2021.11.044 doi: 10.1016/j.neucom.2021.11.044
![]() |
[112] |
W. Zhu, X. Fan, Y. Zhang, Applications and research trends of digital human models in the manufacturing industry, VRIH, 1 (2019), 558–579. https://doi.org/10.1016/j.vrih.2019.09.005 doi: 10.1016/j.vrih.2019.09.005
![]() |
[113] |
O. Robert, P. Iztok, B. Borut, Real-time manufacturing optimization with a simulation model and virtual reality, Procedia Manuf., 38 (2019), 1103–1110. https://doi.org/10.1016/j.promfg.2020.01.198 doi: 10.1016/j.promfg.2020.01.198
![]() |
[114] |
I. Kačerová, J. Kubr, P. Hořejší, J. Kleinová, Ergonomic design of a workplace using virtual reality and a motion capture suit, Appl. Sci., 12 (2022), 2150. https://doi.org/10.3390/app12042150 doi: 10.3390/app12042150
![]() |
[115] |
M. Woschank, D. Steinwiedder, A. Kaiblinger, P. Miklautsch, C. Pacher, H. Zsifkovits, The integration of smart systems in the context of industrial logistics in manufacturing enterprises, Procedia Comput. Sci., 200 (2022), 727–737. https://doi.org/10.1016/j.procs.2022.01.271 doi: 10.1016/j.procs.2022.01.271
![]() |
[116] |
A. Umbrico, A. Orlandini, A. Cesta, M. Faroni, M. Beschi, N. Pedrocchi, A. Scala, P. Tavormina, S. Koukas, A. Zalonis et al., Design of advanced human–robot collaborative cells for personalized human–robot collaborations, Appl. Sci., 12 (2022), 6839. https://doi.org/10.3390/app12146839 doi: 10.3390/app12146839
![]() |
[117] |
W. Qi, A. Aliverti, A multimodal wearable system for continuous and real-time breathing pattern monitoring during daily activity, IEEE JBHI., 24 (2019), 2199–2207. https://doi.org/10.1109/JBHI.2019.2963048 doi: 10.1109/JBHI.2019.2963048
![]() |
[118] |
J. M. Runji, Y.-J. Lee, C.-H. Chu, User requirements analysis on augmented reality-based maintenance in manufacturing, J. Comput. Inf. Sci. Eng., 22 (2022), 050901. https://doi.org/10.1115/1.4053410 doi: 10.1115/1.4053410
![]() |
[119] | D. Wuttke, A. Upadhyay, E. Siemsen, A. Wuttke-Linnemann, Seeing the bigger picture? ramping up production with the use of augmented reality, Manuf. Serv. Oper. Manag., (2022). https://doi.org/10.1287/msom.2021.1070 |
[120] |
M. Catalano, A. Chiurco, C. Fusto, L. Gazzaneo, F. Longo, G. Mirabelli, L. Nicoletti, V. Solina, S. Talarico, A digital twin-driven and conceptual framework for enabling extended reality applications: A case study of a brake discs manufacturer, Procedia Comput. Sci., 200 (2022), 1885–1893. https://doi.org/10.1016/j.procs.2022.01.389 doi: 10.1016/j.procs.2022.01.389
![]() |
[121] | J. S. Devagiri, S. Paheding, Q. Niyaz, X. Yang, S. Smith, Augmented reality and artificial intelligence in industry: Trends, tools, and future challenges, Expert Syst. Appl., (2022), 118002. https://doi.org/10.1016/j.eswa.2022.118002 |
[122] |
P. T. Ho, J. A. Albajez, J. Santolaria, J. A. Yagüe-Fabra, Study of augmented reality based manufacturing for further integration of quality control 4.0: A systematic literature review, Appl. Sci., 12 (2022), 1961. https://doi.org/10.3390/app12041961 doi: 10.3390/app12041961
![]() |
[123] |
Z.-H. Lai, W. Tao, M. C. Leu, Z. Yin, Smart augmented reality instructional system for mechanical assembly towards worker-centered intelligent manufacturing, J. Manuf. Syst., 55 (2020), 69–81. https://doi.org/10.1016/j.jmsy.2020.02.010 doi: 10.1016/j.jmsy.2020.02.010
![]() |
[124] |
J. Xiong, E.-L. Hsiang, Z. He, T. Zhan, S.-T. Wu, Augmented reality and virtual reality displays: emerging technologies and future perspectives, Light Sci. Appl., 10 (2021), 1–30. https://doi.org/10.1038/s41377-021-00658-8 doi: 10.1038/s41377-021-00658-8
![]() |
[125] |
M.-G. Kim, J. Kim, S. Y. Chung, M. Jin, M. J. Hwang, Robot-based automation for upper and sole manufacturing in shoe production, Machines, 10 (2022), 255. https://doi.org/10.3390/machines10040255 doi: 10.3390/machines10040255
![]() |
[126] |
P. Grefen, I. Vanderfeesten, K. Traganos, Z. Domagala-Schmidt, J. van der Vleuten, Advancing smart manufacturing in europe: Experiences from two decades of research and innovation projects, Machines, 10 (2022), 45. https://doi.org/10.3390/machines10010045 doi: 10.3390/machines10010045
![]() |
[127] |
Y. Zhou, J. Zang, Z. Miao, T. Minshall, Upgrading pathways of intelligent manufacturing in china: Transitioning across technological paradigms, Engineering-Prc, 5 (2019), 691–701. https://doi.org/10.1016/j.eng.2019.07.016 doi: 10.1016/j.eng.2019.07.016
![]() |
[128] |
K. S. Kiangala, Z. Wang, An experimental safety response mechanism for an autonomous moving robot in a smart manufacturing environment using q-learning algorithm and speech recognition, Sensors-Basel, 22 (2022), 941. https://doi.org/10.3390/s22030941 doi: 10.3390/s22030941
![]() |
[129] |
S. Fernandes, Which way to cope with covid-19 challenges? contributions of the iot for smart city projects, Big Data Cogn. Comput., 5 (2021), 26. https://doi.org/10.3390/bdcc5020026 doi: 10.3390/bdcc5020026
![]() |
[130] | C. Thomay, U. Bodin, H. Isakovic, R. Lasch, N. Race, C. Schmittner, G. Schneider, Z. Szepessy, M. Tauber, Z. Wang, Towards adaptive quality assurance in industrial applications, in 2022 IEEE/IFIP NOMS.. IEEE, (2022), 1–6. https://doi.org/10.1109/NOMS54207.2022.9789928 |
[131] |
D. Stadnicka, P. Litwin, D. Antonelli, Human factor in intelligent manufacturing systems-knowledge acquisition and motivation, Proced. CIRP, 79 (2019), 718–723. https://doi.org/10.1016/j.procir.2019.02.023 doi: 10.1016/j.procir.2019.02.023
![]() |
[132] |
H.-X. Li, H. Si, Control for intelligent manufacturing: A multiscale challenge, Engineering-Prc, 3 (2017), 608–615. https://doi.org/10.1016/J.ENG.2017.05.016 doi: 10.1016/J.ENG.2017.05.016
![]() |
[133] |
T. Kalsoom, N. Ramzan, S. Ahmed, M. Ur-Rehman, Advances in sensor technologies in the era of smart factory and industry 4.0, Sensors-Basel, 20 (2020), 6783. https://doi.org/10.3390/s20236783 doi: 10.3390/s20236783
![]() |
[134] |
J. Radianti, T. A. Majchrzak, J. Fromm, I. Wohlgenannt, A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda, Comput. Educ., 147 (2020), COMPUT EDUC103778. https://doi.org/10.1016/j.compedu.2019.103778 doi: 10.1016/j.compedu.2019.103778
![]() |
[135] |
D. Kamińska, T. Sapiński, S. Wiak, T. Tikk, R. E. Haamer, E. Avots, A. Helmi, C. Ozcinar, G. Anbarjafari, Virtual reality and its applications in education: Survey, Information, 10 (2019), 318. https://doi.org/10.3390/info10100318 doi: 10.3390/info10100318
![]() |
[136] |
T. Joda, G. Gallucci, D. Wismeijer, N. U. Zitzmann, Augmented and virtual reality in dental medicine: A systematic review, Comput. Biol. Med., 108 (2019), 93–100. https://doi.org/10.1016/j.compbiomed.2019.03.012 doi: 10.1016/j.compbiomed.2019.03.012
![]() |
[137] | C. Li, Y. Chen, Y. Shang, A review of industrial big data for decision making in intelligent manufacturing, J. Eng. Sci. Technol., (2021). https://doi.org/10.1016/j.jestch.2021.06.001 |
[138] |
L. Zhou, Z. Jiang, N. Geng, Y. Niu, F. Cui, K. Liu, N. Qi, Production and operations management for intelligent manufacturing: a systematic literature review, Int. J. Prod. Res., 60 (2022), 808–846. https://doi.org/10.1080/00207543.2021.2017055 doi: 10.1080/00207543.2021.2017055
![]() |
[139] |
L. Adriana Crdenas-Robledo, scar Hernndez-Uribe, C. Reta, J. Antonio Cantoral-Ceballos, Extended reality applications in industry 4.0. a systematic literature review, Telemat. Inform., 73 (2022), 101863. https://doi.org/10.1016/j.tele.2022.101863 doi: 10.1016/j.tele.2022.101863
![]() |
[140] |
Z. Wang, X. Bai, S. Zhang, M. Billinghurst, W. He, P. Wang, W. Lan, H. Min, Y. Chen, A comprehensive review of augmented reality-based instruction in manual assembly, training and repair, Robot. Comput. Integr. Manuf., 78 (2022), 102407. https://doi.org/10.1016/j.rcim.2022.102407 doi: 10.1016/j.rcim.2022.102407
![]() |
[141] |
N. Kumar, S. C. Lee, Human-machine interface in smart factory: A systematic literature review, Technol. Forecast. Soc. Change, 174 (2022), 121284. https://doi.org/10.1016/j.techfore.2021.121284 doi: 10.1016/j.techfore.2021.121284
![]() |
[142] | M. Javaid, A. Haleem, R. P. Singh, R. Suman, Enabling flexible manufacturing system (fms) through the applications of industry 4.0 technologies, Int. Things Cyber-Phys. Syst., (2022). https://doi.org/10.1016/j.iotcps.2022.05.005 |
[143] | A. Künz, S. Rosmann, E. Loria, J. Pirker, The potential of augmented reality for digital twins: A literature review, in 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, (2022), 389–398. https://doi.org/10.1109/VR51125.2022.00058 |
[144] |
I. Shah, C. Doshi, M. Patel, S. Tanwar, W.-C. Hong, R. Sharma, A comprehensive review of the technological solutions to analyse the effects of pandemic outbreak on human lives, Medicina (Kaunas), 58 (2022), 311. https://doi.org/10.3390/medicina58020311 doi: 10.3390/medicina58020311
![]() |
[145] |
R. P. Singh, M. Javaid, R. Kataria, M. Tyagi, A. Haleem, R. Suman, Significant applications of virtual reality for covid-19 pandemic, Diabetes Metab. Syndr., 14 (2020), 661–664. https://doi.org/10.1016/j.dsx.2020.05.011 doi: 10.1016/j.dsx.2020.05.011
![]() |
[146] |
A. O. Kwok, S. G. Koh, Covid-19 and extended reality (xr), Curr. Issues Tour., 24 (2021), 1935–1940. https://doi.org/10.1080/13683500.2020.1798896 doi: 10.1080/13683500.2020.1798896
![]() |
[147] | G. Czifra, Z. Molnár et al., Covid-19, industry 4.0, Research papers faculty of materials science and technology slovak university of technology, 28 (2020), 36–45. https://doi.org/10.2478/rput-2020-0005 |
[148] | Q. Yu-ming, D. San-peng et al., Research on intelligent manufacturing flexible production line system based on digital twin, in 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC), IEEE, (2020), 854–862. https://doi.org/10.1109/YAC51587.2020.9337500 |
[149] |
L. O. Alpala, D. J. Quiroga-Parra, J. C. Torres, D. H. Peluffo-Ordóñez, Smart factory using virtual reality and online multi-user: Towards a metaverse for experimental frameworks, Appl. Sci., 12 (2022), 6258. https://doi.org/10.3390/app12126258 doi: 10.3390/app12126258
![]() |
[150] |
E. Chang, H. T. Kim, B. Yoo, Virtual reality sickness: A review of causes and measurements, Int. J. Hum-Comput. Int., 36 (2020), 1658–1682. https://doi.org/10.1080/10447318.2020.1778351 doi: 10.1080/10447318.2020.1778351
![]() |
[151] |
H. Su, W. Qi, C. Yang, J. Sandoval, G. Ferrigno, E. De Momi, Deep neural network approach in robot tool dynamics identification for bilateral teleoperation, IEEE Robot. Autom. Lett., 5 (2020), 2943–2949. https://doi.org/10.1109/LRA.2020.2974445 doi: 10.1109/LRA.2020.2974445
![]() |
[152] |
H. Su, Y. Hu, H. R. Karimi, A. Knoll, G. Ferrigno, E. De Momi, Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results, Neural Netw., 131 (2020), 291–299. https://doi.org/10.1016/j.neunet.2020.07.033 doi: 10.1016/j.neunet.2020.07.033
![]() |
[153] |
S. Phuyal, D. Bista, R. Bista, Challenges, opportunities and future directions of smart manufacturing: A state of art review, Sustain. Fut., 2 (2020), 100023. https://doi.org/10.1016/j.sftr.2020.100023 doi: 10.1016/j.sftr.2020.100023
![]() |
1. | Xing-Xing Yang, Guo-Bao Zhang, Yu-Cai Hao, Existence and stability of traveling wavefronts for a discrete diffusion system with nonlocal delay effects, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023160 | |
2. | Zhi-Jiao Yang, Guo-Bao Zhang, Ge Tian, Global stability of traveling wave solutions for a discrete diffusion epidemic model with nonlocal delay effects, 2025, 66, 0022-2488, 10.1063/5.0202813 | |
3. | Jiao Dang, Guo-Bao Zhang, Ge Tian, Wave Propagation for a Discrete Diffusive Mosquito-Borne Epidemic Model, 2024, 23, 1575-5460, 10.1007/s12346-024-00964-7 |