Manufacturing plants generate toxic waste that can be harmful to workers, the population and the atmosphere. Solid waste disposal location selection (SWDLS) for manufacturing plants is one of the fastest growing challenges in many countries. The weighted aggregated sum product assessment (WASPAS) is a unique combination of the weighted sum model and the weighted product model. The purpose of this research paper is to introduce a WASPAS method with a 2-tuple linguistic Fermatean fuzzy (2TLFF) set for the SWDLS problem by using the Hamacher aggregation operators. As it is based on simple and sound mathematics, being quite comprehensive in nature, it can be successfully applied to any decision-making problem. First, we briefly introduce the definition, operational laws and some aggregation operators of 2-tuple linguistic Fermatean fuzzy numbers. Thereafter, we extend the WASPAS model to the 2TLFF environment to build the 2TLFF-WASPAS model. Then, the calculation steps for the proposed WASPAS model are presented in a simplified form. Our proposed method, which is more reasonable and scientific in terms of considering the subjectivity of the decision maker's behaviors and the dominance of each alternative over others. Finally, a numerical example for SWDLS is proposed to illustrate the new method, and some comparisons are also conducted to further illustrate the advantages of the new method. The analysis shows that the results of the proposed method are stable and consistent with the results of some existing methods.
Citation: Muhammad Akram, Usman Ali, Gustavo Santos-García, Zohra Niaz. 2-tuple linguistic Fermatean fuzzy MAGDM based on the WASPAS method for selection of solid waste disposal location[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 3811-3837. doi: 10.3934/mbe.2023179
[1] | Lukáš Pichl, Taisei Kaizoji . Volatility Analysis of Bitcoin Price Time Series. Quantitative Finance and Economics, 2017, 1(4): 474-485. doi: 10.3934/QFE.2017.4.474 |
[2] | Andres Fernandez, Norman R. Swanson . Further Evidence on the Usefulness of Real-Time Datasets for Economic Forecasting. Quantitative Finance and Economics, 2017, 1(1): 2-25. doi: 10.3934/QFE.2017.1.2 |
[3] | Samuel Asante Gyamerah . Modelling the volatility of Bitcoin returns using GARCH models. Quantitative Finance and Economics, 2019, 3(4): 739-753. doi: 10.3934/QFE.2019.4.739 |
[4] | Guillermo Peña . Interest rates affect public expenditure growth. Quantitative Finance and Economics, 2023, 7(4): 622-645. doi: 10.3934/QFE.2023030 |
[5] | Abdul Haque, Huma Fatima, Ammar Abid, Muhammad Ali Jibran Qamar . Impact of firm-level uncertainty on earnings management and role of accounting conservatism. Quantitative Finance and Economics, 2019, 3(4): 772-794. doi: 10.3934/QFE.2019.4.772 |
[6] | Arifenur Güngör, Hüseyin Taştan . On macroeconomic determinants of co-movements among international stock markets: evidence from DCC-MIDAS approach. Quantitative Finance and Economics, 2021, 5(1): 19-39. doi: 10.3934/QFE.2021002 |
[7] | Cemile Özgür, Vedat Sarıkovanlık . An application of Regular Vine copula in portfolio risk forecasting: evidence from Istanbul stock exchange. Quantitative Finance and Economics, 2021, 5(3): 452-470. doi: 10.3934/QFE.2021020 |
[8] | Md Qamruzzaman, Jianguo Wei . Do financial inclusion, stock market development attract foreign capital flows in developing economy: a panel data investigation. Quantitative Finance and Economics, 2019, 3(1): 88-108. doi: 10.3934/QFE.2019.1.88 |
[9] | David Melkuev, Danqiao Guo, Tony S. Wirjanto . Applications of random-matrix theory and nonparametric change-point analysis to three notable systemic crises. Quantitative Finance and Economics, 2018, 2(2): 413-467. doi: 10.3934/QFE.2018.2.413 |
[10] | Fredrik Hobbelhagen, Ioannis Diamantis . A comparative study of symbolic aggregate approximation and topological data analysis. Quantitative Finance and Economics, 2024, 8(4): 705-732. doi: 10.3934/QFE.2024027 |
Manufacturing plants generate toxic waste that can be harmful to workers, the population and the atmosphere. Solid waste disposal location selection (SWDLS) for manufacturing plants is one of the fastest growing challenges in many countries. The weighted aggregated sum product assessment (WASPAS) is a unique combination of the weighted sum model and the weighted product model. The purpose of this research paper is to introduce a WASPAS method with a 2-tuple linguistic Fermatean fuzzy (2TLFF) set for the SWDLS problem by using the Hamacher aggregation operators. As it is based on simple and sound mathematics, being quite comprehensive in nature, it can be successfully applied to any decision-making problem. First, we briefly introduce the definition, operational laws and some aggregation operators of 2-tuple linguistic Fermatean fuzzy numbers. Thereafter, we extend the WASPAS model to the 2TLFF environment to build the 2TLFF-WASPAS model. Then, the calculation steps for the proposed WASPAS model are presented in a simplified form. Our proposed method, which is more reasonable and scientific in terms of considering the subjectivity of the decision maker's behaviors and the dominance of each alternative over others. Finally, a numerical example for SWDLS is proposed to illustrate the new method, and some comparisons are also conducted to further illustrate the advantages of the new method. The analysis shows that the results of the proposed method are stable and consistent with the results of some existing methods.
The Caginalp phase-field system
∂u∂t−Δu+f(u)=θ, | (1.1) |
∂θ∂t−Δθ=−∂u∂t, | (1.2) |
has been introduced in [1] in order to describe the phase transition phenomena in certain class of material. In this context,
ψ=∫Ω(12|∇u|2+F(u)−uθ−12θ2)dx, | (1.3) |
where
H=u+θ. | (1.4) |
Then, the evolution equation for the order parameter
∂u∂t=−δuψ, | (1.5) |
where
∂H∂t=−divq, | (1.6) |
where
q=−∇θ, | (1.7) |
we obtain (1.2). Now, a well-known side effect of the Fourier heat law is the infinite speed of propagation of thermal disturbances, deemed physically unreasonable and thus called paradox of heat conduction (see, for example, [9]). In order to account for more realistic features, several variations of (1.7), based, for example, on the Maxwell-Cattaneo law or recent laws from thermomechanics, have been proposed in the context of the Caginalp phase-field system (see, for example, [19], [20], [21], [23], [24], [25], [26], [27], [28], [30], [31], [35], [36], [37], [38], [44], [45] and [46]).
A different approach to heat conduction was proposed in the Sixties (see, [47], [48] and [49]), where it was observed that two temperatures are involved in the definition of the entropy: the conductive temperature
θ=φ−Δφ. | (1.8) |
Our aim in this paper is to study a generalization of the Caginalp phase-field system based on this two temperatures theory and the usual Fourier law with a nonlinear coupling.
The purpose of our study is the following initial and boundary value problem
∂u∂t−Δu+f(u)=g(u)(φ−Δφ), | (1.9) |
∂φ∂t−Δ∂φ∂t−Δφ=−g(u)∂u∂t, | (1.10) |
u=φ=0on∂Ω, | (1.11) |
u|t=0=u0, φ|t=0=φ0. | (1.12) |
The paper is organized as follows. In Section 2, we give the derivation of the model. The Section 3 states existence, regularity and uniqueness results. In Section 4, we address the question of dissipativity properties of the system. The last section, analyzes the spatial behavior of solutions in a semi-infinite cylinder, assuming their existence.
Thoughout this paper, the same letters
In our case, to obtain equations (1.9) and (1.10), the total free energy reads in terms of the conductive temperature
ψ(u,θ)=∫Ω(12|∇u|2+F(u)−G(u)θ−12θ2)dx, | (2.1) |
where
H=G(u)+θ=G(u)+φ−Δφ, | (2.2) |
which yields thanks to (1.6), the energy equation,
∂φ∂t−Δ∂φ∂t+divq=−g(u)∂u∂t. | (2.3) |
Considering the usual Fourier law (
Remark 2.1. We can note that we still have an infinite speed of propagation here.
Before stating the existence result, we make some assumptions on nonlinearities
|G(s)|2≤c1F(s)+c2,c0,c1,c2≥0, | (3.1) |
|g(s)s|≤c3(|G(s)|2+1),c3≥0, | (3.2) |
c4sk+2−c5≤F(s)≤f(s)s+c0≤c6sk+2−c7,c4,c6>0,c5,c7≥0, | (3.3) |
|g(s)|≤c8(|s|+1),|g′(s)|≤c9c8,c9≥0, | (3.4) |
|f′(s)|≤c10(|s|k+1),c10≥0, | (3.5) |
where
Theorem 3.1. We assume that (3.1)-(3.4) hold true. For all initial data
Proof. The proof is based on the Galerkin scheme. Here, we just make formally computations to get a priori estimates, having in mind that these estimates can be rigourously justified using the Galerkin scheme see, for example, [10], [11] and [40] for details.
Multiplying (1.9) by
12ddt(‖∇u‖2+2∫ΩF(u)dx)+‖∂u∂t‖2=∫Ωg(u)∂u∂t(φ−Δφ)dx. | (3.6) |
Multiplying (1.10) by
12ddt(‖φ‖2+2‖∇φ‖2+‖Δφ‖2)+‖∇φ‖2+‖Δφ‖2=−∫Ωg(u)∂u∂t(φ−Δφ)dx. | (3.7) |
Now, summing (3.6) and (3.7), we are led to,
ddt(‖∇u‖2+2∫ΩF(u)dx+‖φ‖2+2‖∇φ‖2+‖Δφ‖2)+2(‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2)=0. | (3.8) |
Multiplying (1.9) by
12ddt‖u‖2+‖∇u‖2+∫Ωf(u)udx=∫Ωg(u)u(φ−Δφ)dx. | (3.9) |
Using (3.2)-(3.3), (3.9) becomes
12ddt‖u‖2+‖∇u‖2+c∫ΩF(u)dx≤c′∫Ω|G(u)|2dx+12(‖φ‖2+‖Δφ‖2)+c″. | (3.10) |
Adding (3.8) and (3.10), one has
dE1dt+2(‖∇u‖2+c∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2)+‖Δφ‖2≤c′∫Ω|G(u)|2dx+‖φ‖2+c″, | (3.11) |
where
E1=‖u‖2+‖∇u‖2+2∫ΩF(u)dx+‖φ‖2+2‖∇φ‖2+‖Δφ‖2 | (3.12) |
enjoys
E1≤c(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c′ | (3.13) |
and
E1≤c″(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c‴. | (3.14) |
Multiplying now (1.10) by
12ddt‖∇φ‖2+‖∂φ∂t‖2+‖∇∂φ∂t‖2=−∫Ωg(u)∂u∂t∂φ∂tdx. | (3.15) |
Taking into account (3.4) and using Hölder's inequality, we get
12ddt‖∇φ‖2+12‖∂φ∂t‖2+‖∇∂φ∂t‖2≤c(‖∇u‖2+1)‖∂u∂t‖2 | (3.16) |
and then, summing (3.11) and (3.16), we have
dE2dt+2(‖∇u‖2+c∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2+12‖Δφ‖2+12‖∂φ∂t‖2+‖∇∂φ∂t‖2)≤c∫Ω|G(u)|2dx+‖φ‖2+c″(‖∇u‖2+1)‖∂u∂t‖2+c‴, | (3.17) |
where
E2=E1+‖∇φ‖2 | (3.18) |
satisfies similar estimates as
We deduce from (3.1) and (3.17)
dE2dt+c(‖∂φ∂t‖2+‖∇∂φ∂t‖2)≤c′E2+c″, | (3.19) |
which achieve the proof.
For more regularity on solutions, we make following additional assumptions:
f(0)=0andf′(s)≥−c,c≥0. | (3.20) |
We have:
Theorem 3.2. Under assumptions of Theorem 3.1 and assuming that (3.20) is satisfied. For every initial data
Proof. As above proof, we focus on a priori estimates.
We multiply (1.10) by
12ddt‖∇φ‖2+‖∇∂φ∂t‖2+‖Δ∂φ∂t‖2=∫Ωg(u)∂u∂tΔ∂φ∂tdx. | (3.21) |
Thanks to (3.4) and Hölder's inequality:
∫Ωg(u)∂u∂tΔ∂φ∂tdx≤c∫Ω(|u|+1)|∂u∂t||Δ∂φ∂t|dx≤c(‖∇u‖2+1)‖∂u∂t‖2+12‖Δ∂φ∂t‖2 | (3.22) |
and then,
12ddt‖∇φ‖2+‖∇∂φ∂t‖2+12‖Δ∂φ∂t‖2≤c(‖∇u‖2+1)‖∂u∂t‖2. | (3.23) |
Differentiating (1.9) with respect to time, we get
∂2u∂t2−Δ∂u∂t+f′(u)∂u∂t=g′(u)∂u∂t(φ−Δφ)+g(u)(∂φ∂t−Δ∂φ∂t). | (3.24) |
Multiplying (3.24) by
12ddt‖∂u∂t‖2+‖∇∂u∂t‖2+∫Ωf′(u)|∂u∂t|2dx=∫Ωg′(u)|∂u∂t|2(φ−Δφ)dx+∫Ωg(u)∂u∂t(∂φ∂t−Δ∂φ∂t)dx. | (3.25) |
Using (1.10), we write,
∫Ωg(u)∂u∂t(∂φ∂t−Δ∂φ∂t)dx=∫Ωg(u)∂u∂t(−g(u)∂u∂t+Δφ)dx=−∫Ω|g(u)∂u∂t|2dx+∫Ωg(u)∂u∂tΔφdx. | (3.26) |
Owing to (3.26), (3.25) reads
12ddt‖∂u∂t‖2+‖∇∂u∂t‖2+∫Ωf′(u)|∂u∂t|2dx=∫Ωg′(u)|∂u∂t|2(φ−Δφ)dx+∫Ωg(u)∂u∂tΔφdx−∫Ω|g(u)∂u∂t|2dx, | (3.27) |
since
∫Ωg′(u)|∂u∂t|2(φ−Δφ)dx≤c∫Ω|∂u∂t|2(|φ|+|Δφ|)dx≤12‖∇∂u∂t‖2+c(‖φ‖2+‖Δφ‖2), | (3.28) |
∫Ωg(u)∂u∂tΔφdx=−∫Ωg′(u)∇u∂u∂t∇φdx−∫Ωg(u)∇∂u∂t∇φdx | (3.29) |
and then,
|∫Ωg′(u)∇u∂u∂t∇φdx|≤c∫Ω|∇u||∂u∂t||∇φ|dx≤16‖∇∂u∂t‖2+c‖∇u‖2‖Δφ‖2 | (3.30) |
and
|∫Ωg(u)∇∂u∂t∇φdx|≤c∫Ω(|u|+1)|∇∂u∂t||∇φ|dx≤16‖∇∂u∂t‖2+c(‖∇u‖2+1)‖∇φ‖2. | (3.31) |
Furthemore,
∫Ω|g(u)∂u∂t|2dx≤c∫Ω(|u|+1)2|∂u∂t|2dx≤c(‖∇u‖2+‖u‖2+1)‖∂u∂t‖2. | (3.32) |
Now, collecting (3.27)–(3.32) and owing to (3.20), we are led to
ddt‖∂u∂t‖2+c‖∇∂u∂t‖2≤c′(‖u‖2H1(Ω)+1)(‖∂u∂t‖2+‖φ‖2H2(Ω)). | (3.33) |
Adding (3.19),
dE3dt+c(‖∂u∂t‖2H1(Ω)+‖∂φ∂t‖2H2(Ω))≤c′E3+c″, | (3.34) |
where
E3=E2+ε1‖∇φ‖2+ε2‖∂u∂t‖2 | (3.35) |
enjoys
E3≥c(‖u‖2H(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c′ | (3.36) |
and
E3≤c″(‖u‖2H(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c‴. | (3.37) |
We complete the proof applying Gronwall's lemma.
We now give a uniqueness result
Theorem 3.3. Under assumptions of Theorem 3.2 and assuming that (3.5) holds true. The problem (1.9)-(1.12) has a unique solution
Proof. We suppose the existence of two solutions
∂u∂t−Δu+f(u1)−f(u2)=g(u1)(φ−Δφ)+(g(u1)−g(u2))(φ2−Δφ2), | (3.38) |
∂φ∂t−Δ∂φ∂t−Δφ=−g(u1)∂u∂t−(g(u1)−g(u2))∂u2∂t, | (3.39) |
u|∂Ω=φ|∂Ω=0, | (3.40) |
u|t=0=u01−u02,φ|t=0=φ01−φ02, | (3.41) |
with
Multiplying (3.38) by
12ddt‖∇u‖2+‖∂u∂t‖2+∫Ω(f(u1−f(u2)))∂u∂tdx=∫Ωg(u1)(φ−Δφ)∂u∂tdx+∫Ω(g(u1)−g(u2))(φ2−Δφ2)∂u∂tdx. | (3.42) |
Multiplying (3.39) by
12ddt(‖φ‖2+‖∇φ‖2)+‖∇φ‖2=−∫Ωg(u1)∂u∂tφdx−∫Ω(g(u1)−g(u2))∂u2∂tφdx. | (3.43) |
Multiplying (3.39) by
12ddt(‖∇φ‖2+‖Δφ‖2)+‖Δφ‖2=∫Ωg(u1)∂u∂tΔφdx+∫Ω(g(u1)−g(u2))∂u2∂tΔφdx. | (3.44) |
Finally, adding (3.42), (3.43) and (3.44), we get
dE4dt+‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2+∫Ω(f(u1)−f(u2))∂u∂tdx=∫Ω(g(u1)−g(u2))(φ2−Δφ2)∂u∂tdx−∫Ω(g(u1)−g(u2))(φ−Δφ)∂u2∂tdx, | (3.45) |
where
E4=‖∇u‖2+‖φ‖2+2‖∇φ‖2+‖Δφ‖2. | (3.46) |
Now, owing to (3.5), and applying Hölder's inequality for
∫Ω(f(u1)−f(u2))∂u∂tdx≤c∫Ω(|u2|k+1)|u||∂u∂t|dx≤c(‖∇u2‖2k+1)‖∇u‖2+‖∂u∂t‖2, | (3.47) |
we also get, thanks to (3.4), and applying Hölder's inequality,
∫Ω(g(u1)−g(u2))(φ2−Δφ2)∂u∂tdx≤c∫Ω|u||φ2−Δφ2||∂u∂t|dx≤c‖∇u‖2(‖φ2‖2+‖Δφ2‖2)+‖∂u∂t‖2 | (3.48) |
and
∫Ω(g(u1)−g(u2))(φ−Δφ)∂u2∂tdx≤c∫Ω|u||∂u∂t||φ−Δφ|dx≤c‖∂u2∂t‖2(‖φ‖2+‖Δφ‖2)+‖∇u‖2. | (3.49) |
From (3.45)-(3.49), we deduce a differential inequality of the type
dE4dt+c‖∂u∂t‖2≤c(‖∇u2‖2k+‖∂u2∂t‖2+‖φ2‖2+‖Δφ2‖2+1)E4. | (3.50) |
In particular,
dE4dt≤cE4 | (3.51) |
and then applying the Gronwall's lemma to (3.51), we end the proof.
This section is devoted to the existence of bounded absorbing sets for the semigroup
∀ϵ>0,|G(u)|2≤ϵF(s)+cϵ,s∈R. | (4.1) |
We then have
Theorem 4.1. Under the assumptions of the Theorem 3.3 and assuming that (4.1) holds true. Then,
Proof. Going from (3.8) and (3.10), we get, summing (3.8) and
dE5dt+2(c‖∇u‖2+δ∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2)≤2c′δ∫Ω|G(u)|2dx+δ(‖φ‖2+‖Δφ‖2)+c″≤2c′δ∫Ω|G(u)|2dx+δ(c‖∇φ‖2+‖Δφ‖2)+c″, | (4.2) |
where
E5=δ‖u‖2+‖∇u‖2+2∫ΩF(u)dx+‖φ‖2+2‖∇φ‖2+‖Δφ‖2 | (4.3) |
satisfies
E5≥c(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c′ | (4.4) |
and
E5≤c″(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c‴. | (4.5) |
From (4.2) and owing to (4.1), we obtain
dE5dt+2(c‖∇u‖2+δ∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2)≤Cϵ∫ΩF(u)dx+δ(c‖∇φ‖2+‖Δφ‖2)+C′ϵ, | (4.6) |
where
2δ≥Cϵand2>cδ, | (4.7) |
we then deduce from (4.6),
dE5dt+c(E5+‖∂u∂t‖2)≤c′, | (4.8) |
we complete the proof applying the Gronwall's lemma.
Remark 4.2. It follows from theorems 3.1, 3.2 and 4.1 that we can define the family solving operators:
S(t):Φ⟶Φ,(u0,φ0)↦(u(t),φ(t)),∀t≥0, | (4.9) |
where
The aim of this section is to study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist. This study is motivated by the possibility of extending results obtained above to the case of unbounded domains like semi-infinite cylinders. To do so, we will study the behavior of solutions in a semi-infinite cylinder denoted
u=φ=0on(0,+∞)×∂D×(0,T) | (5.1) |
and
u(0,x2,x3;t)=h(x2,x3;t),φ(0,x2,x3;t)=l(x2,x3;t)on{0}×D×(0,T), | (5.2) |
where
We also consider following initial data
u|t=0=φ|t=0=0onR. | (5.3) |
Let us suppose that such solutions exist. We consider the function
Fw(z,t)=∫t0∫D(z)e−ws(usu,1+φ(φ,1+φ,1s)+φsφ,1)dads, | (5.4) |
where
Fw(z+h,t)−Fw(z,t)=e−wt2∫R(z,z+h)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+∫t0∫R(z,z+h)e−ws(|us|2+|∇φ|2+|Δφ|2)dxds+w2∫t0∫R(z,z+h)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds, | (5.5) |
where
Hence,
∂Fw∂t(z,t)=e−wt2∫D(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)da+∫t0∫D(z)e−ws(|us|2+|∇φ|2+|Δφ|2)dads+w2∫t0∫D(z)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dads. | (5.6) |
We consider a second function, namely,
Gw(z,t)=∫t0∫D(z)e−ws(usu,1+φ(θ,1+φ,1s))dads, | (5.7) |
where
Similarly, we have
Gw(z+h,t)−Gw(z,t)=e−wt2∫R(z,z+h)(|u|2+|∇θ|2)dx+∫t0∫R(z,z+h)e−ws(|∇u|2+f(u)u+uΔφ+|φ|2+|∇φ|2)dxds+w2∫t0∫R(z,z+h)e−ws(|u|2+|∇θ|2)dxds+∫t0∫R(z,z+h)e−ws(G(u)−g(u)u)φdxds | (5.8) |
and then
∂Gw∂t(z,t)=e−wt2∫D(z)(|u|2+|∇θ|2)da+∫t0∫D(z)e−ws(|∇u|2+f(u)u+uΔφ+|φ|2+|∇φ|2)dads+w2∫t0∫D(z)e−ws(|u|2+|∇θ|2)dads+∫t0∫D(z)e−ws(G(u)−g(u)u)φdads. | (5.9) |
We choose
2F(u)+τu2≥C1u2,C1>0. | (5.10) |
Now, we focus on the nonliear part i.e.,
w(F(u)+τ2|u|2)+τf(u)u+τ(G(u)−g(u)u)φ+w2|φ|2. | (5.11) |
We assume that
For
w(F(u)+τ2|u|2)+τf(u)u+τ(G(u)−g(u)u)φ+w2|φ|2≥C3(|u|2+|φ|2+|Δφ|2). | (5.12) |
Taking into account previous choices, it clearly appears that the following function
Hw=Fw+τGw | (5.13) |
satisfies
∂Hw∂t(z,t)≥C4∫t0∫D(z)e−ws(|u|2+|∇u|2+|us|2+|φ|2+|∇φ|2+|Δφ|2+|∇θ|2)dads. | (5.14) |
We give now an estimate of
|Fw|≤(∫t0∫D(z)e−wsu2sdads)1/2(e−wsu2,1)1/2+(∫t0∫D(z)e−wsφ2dads)1/2(e−wsφ2,1)1/2+(∫t0∫D(z)e−wsφ2dads)1/2(e−wsφ2,1s)1/2+(∫t0∫D(z)e−wsφ2sdads)1/2(e−wsφ2,1)1/2≤C5∫t0∫D(z)e−ws(|∇u|2+|us|2+|φ|2+|∇φ|2+|φs|2+|∇φs|2)dads,C5>0. | (5.15) |
Similarly,
|Gw|≤(∫t0∫D(z)e−wsu2dads)1/2(∫t0∫D(z)e−wsu2,1dads)1/2+(∫t0∫D(z)e−wsφ2dads)1/2(∫t0∫D(z)e−wsθ2,1dads)1/2+(∫t0∫D(z)e−wsφ2sdads)1/2(∫t0∫D(z)e−wsφ2,1dads)1/2≤C6∫t0∫D(z)e−ws(|u|2+|∇u|2+|φ|2+|∇φ|2+|∇θ|2)dads,C6>0. | (5.16) |
We then deduce the existence of a positive constant
|Hw|≤C7∂Hw∂z. | (5.17) |
Remark 5.1. The inequality (5.17) is well known in the study of spatial estimates and leads to the Phragmén-Lindelöf alternative (see, e.g., [9], [39]).
In particular, if there exist
Hw(z,t)≥Hw(z0,t)eC−17(z−z0),z≥z0. | (5.18) |
The estimate (5.18) gives information in terms of measure defined in the cylinder. Actually, from (5.18), we deduce that
e−wt2∫R(0,z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+τe−wt2∫R(0,z)(|u|2+|∇θ|2)dx+∫t0∫R(0,z)e−ws(|us|2+|∇φ|2+|Δφ|2)dxds+τ∫t0∫R(0,z)e−ws(|∇u|2+f(u)u+g(u)uΔφ+|φ|2+2|∇φ|2)dxds+w2∫t0∫R(0,z)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds+τw2∫t0∫R(0,z)e−ws(|u|2+|∇θ|2)dx+τ∫t0∫R(0,z)e−ws(G(u)−g(u)u)φdxds | (5.19) |
tends to infinity exponentially fast. On the other hand, if
−Hw(z,t)≤−Hw(0,t)eC−17z,z≥0, | (5.20) |
where
Ew(z,t)=e−wt2∫R(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+τe−wt2∫R(z)(|u|2+|∇θ|2)dx+∫t0∫R(z)e−ws(|us|2+|∇φ|2+|Δφ|2)dxds+τ∫t0∫R(z)e−ws(|∇u|2+f(u)u+g(u)uΔφ+|φ|2+2|∇φ|2)dxds+w2∫t0∫R(z)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds+τw2∫t0∫R(z)e−ws(|u|2+|∇θ|2)dx+τ∫t0∫R(z)e−ws(G(u)−g(u)u)φdxds | (5.21) |
and
Finally, setting
Ew(z,t)=12∫R(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+τ12∫R(z)(|u|2+|∇θ|2)dx+∫t0∫R(z)(|us|2+|∇φ|2+|Δφ|2)dxds+τ∫t0∫R(z)(|∇u|2+f(u)u+g(u)uΔφ+|φ|2+2|∇φ|2)dxds+w2∫t0∫R(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds+τw2∫t0∫R(z)(|u|2+|∇θ|2)dx+τ∫t0∫R(z)(G(u)−g(u)u)φdxds. | (5.22) |
We have the following result
Theorem 5.2. Let
Ew(z,t)≤Ew(0,t)ewt−C−17z,z≥0, | (5.23) |
where the energy
The author would like to thank Alain Miranville for his advices and for his careful reading of this paper.
The author declares no conflicts of interest in this paper.
[1] |
W. Doaemo, S. Dhiman, A. Borovskis, W. Zhang, S. Bhat, S. Jaipuria, et al., Assessment of municipal solid waste management system in Lae City, Papua New Guinea in the context of sustainable development, Environ. Develop. Sustain., 23 (2021), 18509–18539. https://doi.org/10.1007/s10668-021-01465-2 doi: 10.1007/s10668-021-01465-2
![]() |
[2] |
M. Eskandari, M. Homaee, A. Falamaki, Landfill site selection for municipal solid wastes in mountainous areas with landslide susceptibility, Environ. Sci. Pollut. Res., 23 (2016), 12423–12434. https://doi.org/10.1007/s11356-016-6459-x doi: 10.1007/s11356-016-6459-x
![]() |
[3] |
L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1142/9789814261302_0021 doi: 10.1142/9789814261302_0021
![]() |
[4] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. |
[5] | E. Szmidt, J. Kacprzyk, Intuitionistic fuzzy sets in some medical applications, in International Conference on Computational Intelligence, Springer, Berlin, Heidelberg, (2001), 148–151. |
[6] | R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22(2014), 958–965. |
[7] |
T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Amb. Intell. Human. Comput., 11 (2020), 663–674. https://doi.org/10.1007/s12652-019-01377-0 doi: 10.1007/s12652-019-01377-0
![]() |
[8] | T. Senapati, R. R. Yager, Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making, Informatica, 30 (2019), 391–412. |
[9] |
T. Senapati, R. R. Yager, Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods, Eng. Appl. Artif. Intell., 85 (2019), 112–121. https://doi.org/10.1016/j.engappai.2019.05.012 doi: 10.1016/j.engappai.2019.05.012
![]() |
[10] | M. Akram, N. Ramzan, F. Feng, Extending COPRAS method with linguistic Fermatean fuzzy sets and Hamy mean operators, J. Math., (2022), Article ID 8239263. https://doi.org/10.1155/2022/8239263 |
[11] | H. Garg, M. Akram, G. Shahzadi, Decision-making analysis based on Fermatean fuzzy Yager aggregation operators with application in COVID−19 testing facility, Math. Problems Eng., (2020), Article ID 7279027. https://doi.org/10.1155/2020/7279027 |
[12] | P. Liu, Y. Li, X. Zhang, W. Pedrycz, A multiattribute group decision-making method with probabilistic linguistic information based on an adaptive consensus reaching model and evidential reasoning, IEEE Trans. Cybern., (2022). https://doi.org/10.1109/TCYB.2022.3165030 |
[13] | P. Liu, Y. Li, P. Wang, Opinion dynamics and minimum adjustment-driven consensus model for multi-criteria large-scale group decision making under a novel social trust propagation mechanism, IEEE Trans. Fuzzy Syst., (2022). https://doi.org/10.1109/TFUZZ.2022.3186172 |
[14] | P. Liu, S. M. Chen, G. Tang, Multicriteria decision making with incomplete weights based on 2-D uncertain linguistic Choquet integral operators, IEEE Trans. Cybern., 51 (2019), 1860–1874. |
[15] |
F. Herrera, L. Martínez, An approach for combining linguistic and numerical information based on the 2−tuple fuzzy linguistic representation model in decision-making, Int. J. Uncert. Fuzz. Knowl. Syst., 8 (2000), 539–562. https://doi.org/10.1142/S0218488500000381 doi: 10.1142/S0218488500000381
![]() |
[16] | F. Herrera, L. Martínez, A 2−tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst., 8 (2000), 746–752. |
[17] |
S. Faizi, W. Sałabun, S. Nawaz, A. Rehman, J. Watróbski, Best-worst method and Hamacher aggregation operations for intuitionistic 2−tuple linguistic sets, Expert Syst. Appl., 181 (2021), 115088. https://doi.org/10.1016/j.eswa.2021.115088 doi: 10.1016/j.eswa.2021.115088
![]() |
[18] |
F. Herrera, E. Herrera-Viedma, Linguistic decision analysis: Steps for solving decision problems under linguistic information, Fuzzy Sets Syst., 115 (2000), 67–82. https://doi.org/10.1016/S0165-0114(99)00024-X doi: 10.1016/S0165-0114(99)00024-X
![]() |
[19] | X. M. Deng, H. Gao, TODIM method for multiple attribute decision making with 2−tuple linguistic Pythagorean fuzzy information, J. Intell. Fuzzy Syst., 37 (2019), 1769–1780. |
[20] |
P. Liu, S. Naz, M. Akram, M. Muzammal, Group decision-making analysis based on linguistic q-rung orthopair fuzzy generalized point weighted aggregation operators, Int. J. Mach. Learn. Cybern., 13 (2022), 883–906. https://doi.org/10.1007/s13042-021-01425-2 doi: 10.1007/s13042-021-01425-2
![]() |
[21] | E. K. Zavadskas, Z. Turskis, J. Antucheviciene, A. Zakarevicius, Optimization of weighted aggregated sum product assessment, Elektronika ir elektrotechnika, 122 (2012), 3–6. |
[22] |
E. K. Zavadskas, R. Bausys, M. Lazauskas, Sustainable assessment of alternative sites for the construction of a waste incineration plant by applying WASPAS method with single-valued neutrosophic set, Sustainability, 7 (2015), 15923–15936. https://doi.org/10.3390/su71215792 doi: 10.3390/su71215792
![]() |
[23] |
A. R. Mishra, P. Rani, K. R. Pardasani, A. Mardani, A novel hesitant fuzzy WASPAS method for assessment of green supplier problem based on exponential information measures, J. Clean. Product., 238 (2019), 117901. https://doi.org/10.1016/j.jclepro.2019.117901 doi: 10.1016/j.jclepro.2019.117901
![]() |
[24] |
D. Schitea, M. Deveci, M. Iordache, K. Bilgili, I. Z. Akyurt, I. Iordache, Hydrogen mobility roll-up site selection using intuitionistic fuzzy sets based WASPAS, COPRAS and EDAS, Int. J. Hyd. Energy, 44 (2019), 8585–8600. https://doi.org/10.1016/j.ijhydene.2019.02.011 doi: 10.1016/j.ijhydene.2019.02.011
![]() |
[25] |
A. Mardani, M. K. Saraji, A. R. Mishra, P. Rani, A novel extended approach under hesitant fuzzy sets to design a framework for assessing the key challenges of digital health interventions adoption during the COVID−19 outbreak, Appl. Soft Comput., 142 (2017), 403–412. https://doi.org/10.1016/j.asoc.2020.106613 doi: 10.1016/j.asoc.2020.106613
![]() |
[26] | M. Akram, Z. Niaz, 2-Tuple linguistic Fermatean fuzzy decision-making method based on COCOSO with CRITIC for drip irrigation system analysis, J. Comput. Cognit. Eng., (2022). https://doi.org/10.47852/bonviewJCCE2202356 |
[27] |
P. Rani, A. R. Mishra, K. R. Pardasani, A novel WASPAS approach for multi criteria physician selection problem with intuitionistic fuzzy type-2 sets, Soft Comput., 24 (2020), 2355–2367. https://doi.org/10.1007/s00500-019-04065-5 doi: 10.1007/s00500-019-04065-5
![]() |
[28] | J. Antucheviciene, J. Saparauskas, MCDM methods WASPAS and MULTIMOORA: Verification of robustness of methods when assessing alternative solutions, Econ. Comput. Econ. Cybern. Stud. Res., 47 (2013), 5–20. |
[29] |
S. Lashgari, J. Antucheviien, A. Delavari, O. Kheirkhah, Using QSPM and WASPAS methods for determining outsourcing strategies, J. Business Econ. Manag., 15 (2014), 729–743. https://doi.org/10.3846/16111699.2014.908789 doi: 10.3846/16111699.2014.908789
![]() |
[30] |
E. K. Zavadskas, J. Antucheviciene, S. H. R. Hajiagha, S. S. Hashemi, Extension of weighted aggregated sum product assessment with interval-valued intuitionistic fuzzy numbers (WASPAS-IVIF), Appl. Soft Comput., 24(2014), 1013–1021. https://doi.org/10.1016/j.asoc.2014.08.031 doi: 10.1016/j.asoc.2014.08.031
![]() |
[31] | S. Chakraborty, E. K. Zavadskas, Applications of WASPAS method in manufacturing decision making, Informatica, 25 (2014), 1–20. |
[32] | S. Chakraborty, E. K. Zavadskas, J. Antucheviciene, Applications of WASPAS method as a multi-criteria decision-making tool, Econ. Comput. Econ. Cyber. Stud. Res., 49 (2015), 5–22. |
[33] |
E. K. Zavadskas, S. Chakraborty, O. Bhattacharyya, J. Antucheviciene, Application of WASPAS method as an optimization tool in non-traditional machining processes, Inform. Technol. Control, 44 (2015), 77–88. https://doi.org/10.5755/j01.itc.44.1.7124 doi: 10.5755/j01.itc.44.1.7124
![]() |
[34] |
D. Karabašević, D. Stanujkić, S. Urošević, M. Maksimović, An approach to personnel selection based on SWARA and WASPAS methods, Bizinfo (Blace) J. Econ. Manag. Inform., 7 (2016), 1–11. https://doi.org/10.5937/bizinfo1601001K doi: 10.5937/bizinfo1601001K
![]() |
[35] | E. K. Zavadskas, D. Kalibatas, D. Kalibatiene, A multi-attribute assessment using WASPAS for choosing an optimal indoor environment, Arch. Civil Mechan. Eng., 16(2016), 76–85. |
[36] |
A. Mardani, M. Nilashi, N. Zakuan, N. Loganathan, S. Soheilirad, M. Z. M. Saman, et al., A systematic review and meta-analysis of SWARA and WASPAS methods: Theory and applications with recent fuzzy developments, Appl. Soft Comput., 57 (2017), 265–292. https://doi.org/10.1016/j.asoc.2017.03.045 doi: 10.1016/j.asoc.2017.03.045
![]() |
[37] |
R. Bausys, B. Juodagalvien, Garage location selection for residential house by WASPAS-SVNS method, J. Civil Eng. Manag., 23 (2017), 421–429. https://doi.org/10.3846/13923730.2016.1268645 doi: 10.3846/13923730.2016.1268645
![]() |
[38] |
D. Stanujki, D. Karabasevi, An extension of the WASPAS method for decision-making problems with intuitionistic fuzzy numbers: A case of website evaluation, Oper. Res. Eng. Sci. Theory Appl., 1 (2018), 29–39. https://doi.org/10.31181/oresta19012010129s doi: 10.31181/oresta19012010129s
![]() |
[39] |
Z. Turskis, N. Goranin, A. Nurusheva, S. Boranbayev, A fuzzy WASPAS-based approach to determine critical information infrastructures of EU sustainable development, Sustainability, 11 (2019), 424. https://doi.org/10.3390/su11020424 doi: 10.3390/su11020424
![]() |
[40] |
F. K. Gündoğdu, C. Kahraman, Extension of WASPAS with spherical fuzzy sets, Informatica, 30 (2019), 269–292. https://doi.org/10.15388/Informatica.2019.206 doi: 10.15388/Informatica.2019.206
![]() |
[41] | S. J. H. Dehshiri, M. Aghaei, Identifying and prioritizing solutions to overcome obstacles of the implementation of reverse logistics with a hybrid approach: Fuzzy Delphi, SWARA and WASPAS in the paper industry, Iranian J. Supply Chain Manag., 21 (2019), 85–98. |
[42] |
P. Rani, A. R. Mishra, Multi-criteria weighted aggregated sum product assessment framework for fuel technology selection using q-rung orthopair fuzzy sets, Sustain. Product. Consumpt., 24 (2020), 90–104. https://doi.org/10.1016/j.spc.2020.06.015 doi: 10.1016/j.spc.2020.06.015
![]() |
[43] | V. Mohagheghi, S. M. Mousavi, D−WASPAS: Addressing social cognition in uncertain decision-making with an application to a sustainable project portfolio problem, Cognit. Comput., 12 (2020), 619–641. https://doi.org/10.1007/s12559-019-09679-3 |
[44] |
D. Sergi, I. Ucal Sari, Prioritization of public services for digitalization using fuzzy Z-AHP and fuzzy Z-WASPAS, Complex Intell. Syst., 7 (2021), 841–856. https://doi.org/10.1007/s40747-020-00239-z doi: 10.1007/s40747-020-00239-z
![]() |
[45] |
K. Rudnik, G. Bocewicz, A. Kucińska-Landwójtowicz, & I. D. Czabak-Górska, Ordered fuzzy WASPAS method for selection of improvement projects, Expert Syst. Appl., 169 (2021), 114471. https://doi.org/10.1016/j.eswa.2020.114471 doi: 10.1016/j.eswa.2020.114471
![]() |
[46] |
M. Badalpur, E. Nurbakhsh, An application of WASPAS method in risk qualitative analysis: A case study of a road construction project in Iran, Int. J. Construct. Manag., 21 (2021), 910–918. https://doi.org/10.1080/15623599.2019.1595354 doi: 10.1080/15623599.2019.1595354
![]() |
[47] |
D. Pamucar, M. Deveci, I. Gokasar, M. Popovic, Fuzzy Hamacher WASPAS decision-making model for advantage prioritization of sustainable supply chain of electric ferry implementation in public transportation, Environ. Develop. Sustain., 24 (2022), 7138–7177. https://doi.org/10.1007/s10668-021-01742-0 doi: 10.1007/s10668-021-01742-0
![]() |
[48] |
M. Yazdani, M. Tavana, D. Pamucar, P. Chatterjee, A rough based multi-criteria evaluation method for healthcare waste disposal location decisions, Comput. Indust. Eng., 143 (2020), 106394. https://doi.org/10.1016/j.cie.2020.106394 doi: 10.1016/j.cie.2020.106394
![]() |
[49] |
A. R. Mishra, A. Mardani, P. Rani, E. K. Zavadskas, A novel EDAS approach on intuitionistic fuzzy set for assessment of health-care waste disposal technology using new parametric divergence measures, J. Clean. Product., 272 (2020), 122807. https://doi.org/10.1016/j.jclepro.2020.122807 doi: 10.1016/j.jclepro.2020.122807
![]() |
[50] | M. N. Yahya, H. Gokceku, D. U. Ozsahin, B. Uzun, Evaluation of wastewater treatment technologies using TOPSIS, Desalin Water Treat, 177 (2020), 416–422. |
[51] |
S. Suntrayuth, X. Yu and J. Su, A comprehensive evaluation method for industrial sewage treatment projects based on the improved entropy-TOPSIS, Sustainability, 12 (2020), 6734. https://doi.org/10.3390/su12176734 doi: 10.3390/su12176734
![]() |
[52] |
P. Liu, P. Rani, A. R. Mishra, A novel Pythagorean fuzzy combined compromise solution framework for the assessment of medical waste treatment technology, J. Clean. Product., 292 (2021), 126047. https://doi.org/10.1016/j.jclepro.2021.126047 doi: 10.1016/j.jclepro.2021.126047
![]() |
[53] |
A. Mussa, K. Y. Suryabhagavan, Solid waste dumping site selection using GIS-based multi-criteria spatial modeling: A case study in Logia town, Afar region, Ethiopia, Geol. Ecol. Landscapes, 5 (2021), 186–198. https://doi.org/10.1080/24749508.2019.1703311 doi: 10.1080/24749508.2019.1703311
![]() |
[54] |
B. Aslam, A. Maqsoom, M. D. Tahir, F. Ullah, M. S. U. Rehman, M. Albattah, Identifying and ranking landfill sites for municipal solid waste management: An integrated remote sensing and GIS approach, Buildings, 12 (2022), 605. https://doi.org/10.3390/buildings12050605 doi: 10.3390/buildings12050605
![]() |
[55] |
T. D. Bui, J. W. Tseng, M. L. Tseng, M. K. Lim, Opportunities and challenges for solid waste reuse and recycling in emerging economies: A hybrid analysis, Resour. Conserv. Recycl., 177 (2022), 105968. https://doi.org/10.1016/j.resconrec.2021.105968 doi: 10.1016/j.resconrec.2021.105968
![]() |
[56] |
X. Deng, J. Wang, G. Wei, Some 2−tuple linguistic Pythagorean Heronian mean operators and their application to multiple attribute decision-making, J. Exper. Theor. Artif. Intell., 31 (2019), 555–574. https://doi.org/10.1080/0952813X.2019.1579258 doi: 10.1080/0952813X.2019.1579258
![]() |
[57] | X. Deng, G. Wei, H. Gao, J. Wang, Models for safety assessment of construction project with some 2-tuple linguistic Pythagorean fuzzy Bonferroni mean operators, IEEE Access, 6 (2018), 52105–52137. |
[58] | M. Akram, R. Bibi, M. A. Al−Shamiri, A decision-making framework based on 2−tuple linguistic Fermatean fuzzy Hamy mean operators, Math. Problems Eng., (2022), Article ID 1501880. https://doi.org/10.1155/2022/1501880 |
[59] | M. Akram, Z. Niaz, F. Feng, Extended CODAS method for multi attribute group decision making based on 2-tuple linguistic Fermatean fuzzy Hamacher aggregation operators, Gran. Comput., (2022). https://doi.org/10.1007/s41066-022-00332-3 |
[60] | N. H. Zardari, K. Ahmed, S. M. Shirazi, Z. B. Yusop, Weighting methods and their effects on multi-criteria decision making model outcomes in water resources management, Springer, (2015). |
[61] | T. He, S. Zhang, G. Wei, R. Wang, J. Wu, C. Wei, CODAS method for 2-tuple linguistic Pythagorean fuzzy multiple attribute group decision making and its application to financial management performance assessment, Technol. Econ. Develop. Econ., 26 (2020), 920–932. https://doi.org/10.3846/tede.2020.11970 |