Research article Special Issues

Managing bed capacity and timing of interventions: a COVID-19 model considering behavior and underreporting

  • Received: 06 August 2022 Revised: 06 October 2022 Accepted: 20 October 2022 Published: 31 October 2022
  • MSC : 65K05, 90C26, 92-10, 92D30

  • We develop a mathematical model considering behavioral changes and underreporting to describe the first major COVID-19 wave in Metro Manila, Philippines. Key parameters are fitted to the cumulative cases in the capital from March to September 2020. A bi-objective optimization problem is formulated that allows for the easing of restrictions at an earlier time and minimizes the number of additional beds ensuring sufficient capacity in healthcare facilities. The well-posedness of the model and stability of the disease-free equilibria are established. Simulations show that if the behavior was changed one to four weeks earlier before the easing of restrictions, cumulative cases can be reduced by up to 55% and the peak delayed by up to four weeks. If reporting is increased threefold in the first three months of the estimation period, cumulative cases can be reduced by 61% by September 2020. Among the Pareto optimal solutions, the peak of cases is lowest if strict restrictions were eased on May 20, 2020 and with at least 56 additional beds per day.

    Citation: Victoria May P. Mendoza, Renier Mendoza, Youngsuk Ko, Jongmin Lee, Eunok Jung. Managing bed capacity and timing of interventions: a COVID-19 model considering behavior and underreporting[J]. AIMS Mathematics, 2023, 8(1): 2201-2225. doi: 10.3934/math.2023114

    Related Papers:

  • We develop a mathematical model considering behavioral changes and underreporting to describe the first major COVID-19 wave in Metro Manila, Philippines. Key parameters are fitted to the cumulative cases in the capital from March to September 2020. A bi-objective optimization problem is formulated that allows for the easing of restrictions at an earlier time and minimizes the number of additional beds ensuring sufficient capacity in healthcare facilities. The well-posedness of the model and stability of the disease-free equilibria are established. Simulations show that if the behavior was changed one to four weeks earlier before the easing of restrictions, cumulative cases can be reduced by up to 55% and the peak delayed by up to four weeks. If reporting is increased threefold in the first three months of the estimation period, cumulative cases can be reduced by 61% by September 2020. Among the Pareto optimal solutions, the peak of cases is lowest if strict restrictions were eased on May 20, 2020 and with at least 56 additional beds per day.



    加载中


    [1] B. M. Vallejo Jr., R. A. C. Ong, Policy responses and government science advice for the COVID-19 pandemic in the Philippines: January to April 2020, Progress Disaster Sci., 7 (2020), 100115. http://dx.doi.org/10.1016/j.pdisas.2020.100115 doi: 10.1016/j.pdisas.2020.100115
    [2] Department of Health, COVID-19 inter-agency task force for the management of emerging infectious diseases resolutions, omnibus guidelines on the implementation of community quarantine in the Philippines, 2020. Available from: https://doh.gov.ph/COVID-19/IATF-Resolutions.
    [3] World Health Organization, COVID-19 in the Philippines situation report 12, 2020. Available from: https://www.who.int/philippines/internal-publications-detail/covid-19-in-the-philippines-situation-report-12.
    [4] B. Magsambol, PH needs 94,000 contact tracers-DOH, 2020. Available from: https://www.rappler.com/nation/philippines-needs-contact-tracers.
    [5] World Health Organization, COVID-19 in the Philippines situation report 55, 2020. Available from: https://www.who.int/philippines/internal-publications-detail/covid-19-in-the-philippines-situation-report-55.
    [6] Department of Health, COVID-19 tracker Philippines, 2020. Available from: https://doh.gov.ph/covid19tracker.
    [7] World Health Organization, Public health criteria to adjust public health and social measures in the context of COVID-19, 2020. Available from: https://apps.who.int/iris/bitstream/handle/10665/332073/WHO-2019-nCoV-Adjusting_PH_measures-Criteria-2020.1-eng.pdf?sequence=1&isAllowed=y.
    [8] Philippine Statistics Authority, 2020 census of population and housing (2020 CPH) population counts declared official by the president, 2021. Available from: https://psa.gov.ph/content/2020-census-population-and-housing-2020-cph-population-counts-declared-official-president.
    [9] Department of Health, COVID-19 inter-agency task force for the management of emerging infectious diseases resolution No. 13, 2020. Available from: https://doh.gov.ph/COVID-19/IATF-Resolutions.
    [10] Department of Health, DOH case bulletin No. 149, 2020. Available from: https://doh.gov.ph/node/23979.
    [11] S. Tomacruz, After frontliners' plea, Duterte reverts Metro Manila to MECQ starting August 4, 2020. Available from: https://www.rappler.com/nation/after-frontliners-plea-duterte-reverts-metro-manila-mecq-starting-august-4-2020/.
    [12] Department of Health, COVID-19 inter-agency task Force for the management of emerging infectious diseases resolution No. 64, 2020. Available from: https://doh.gov.ph/COVID-19/IATF-Resolutions.
    [13] L. L. Lau, N. Hung, D. J. Go, M. Choi, W. Dodd, X. Wei, Dramatic increases in knowledge, attitudes and practices of COVID-19 observed among low-income households in the Philippines: A repeated cross-sectional study in 2020, J. Glob. Health, 12 (2022), 1–13. http://dx.doi.org/10.7189/jogh.12.05015 doi: 10.7189/jogh.12.05015
    [14] K. Hapal, The Philippines' COVID-19 response: securitising the pandemic and disciplining the pasaway, J. Curr. Southeast Asian Aff., 40 (2021), 224–244. http://dx.doi.org/10.1177/1868103421994261 doi: 10.1177/1868103421994261
    [15] N. Quijano, M. C. Fernandez, A. Pangilinan, Misplaced priorities, unnecessary effects: collective suffering and survival in pandemic Philippines, Asia-Pacific J.: Japan Focus, 18 (2020), 1–14.
    [16] J. C. G. Corpuz, 'We are not the virus': stigmatization and discrimination against frontline health workers, J. Public Health, 43 (2021), e327–e328. http://dx.doi.org/ 10.1093/pubmed/fdab031 doi: 10.1093/pubmed/fdab031
    [17] J. G. S. Kahambing, S. R. Edilo, Stigma, exclusion, and mental health during COVID19: 2 cases from the Philippines, Asian J. Psychiatr., 54 (2020), 102292. http://dx.doi.org/10.1016/j.ajp.2020.102292 doi: 10.1016/j.ajp.2020.102292
    [18] H. J. Alsakaji, F. A. Rihan, A. Hashish, Dynamics of a stochastic epidemic model with vaccination and multiple time-delays for COVID-19 in the UAE, Complexity, 2022 (2022), 1–15. http://dx.doi.org/10.1155/2022/4247800 doi: 10.1155/2022/4247800
    [19] F. A. Rihan, H. J. Alsakaji, Dynamics of a stochastic delay differential model for COVID-19 infection with asymptomatic infected and interacting people: case study in the UAE, Results Phys., 28 (2021), 104658. http://dx.doi.org/10.1016/j.rinp.2021.104658 doi: 10.1016/j.rinp.2021.104658
    [20] A. Atangana, S. İ. Araz, Advanced analysis in epidemiological modeling: detection of waves, AIMS Math., 7 (2022), 18010–18030. http://dx.doi.org/10.3934/math.2022992 doi: 10.3934/math.2022992
    [21] O. F. Egbelowo, J. B. Munyakazi, M. T. Hoang, Mathematical study of transmission dynamics of SARS-CoV-2 with waning immunity, AIMS Math., 7 (2022), 15917–15938. http://dx.doi.org/10.3934/math.2022871 doi: 10.3934/math.2022871
    [22] F. A. Rihan, H. J. Alsakaji, C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for COVID-19, Adv. Differ. Equ., 2020 (2020), 1–20. http://dx.doi.org/10.1186/s13662-020-02964-8 doi: 10.1186/s13662-020-02964-8
    [23] Y. Fadaei, F. A. Rihan, C. Rajivganthi, Immunokinetic model for COVID-19 patients, Complexity, 2022 (2022), 1–13. http://dx.doi.org/10.1155/2022/8321848 doi: 10.1155/2022/8321848
    [24] C. Maji, F. Al Basir, D. Mukherjee, K. S. Nisar, C. Ravichandran, COVID-19 propagation and the usefulness of awareness-based control measures: A mathematical model with delay, AIMS Math., 7 (2022), 12091–12105. http://dx.doi.org/10.3934/math.2022672 doi: 10.3934/math.2022672
    [25] S. Kim, Y. B. Seo, E. Jung, Prediction of COVID-19 transmission dynamics using a mathematical model considering behavior changes in Korea, Epidemiol. Health, 42 (2020), e2020026. http://dx.doi.org/10.4178/epih.e2020026 doi: 10.4178/epih.e2020026
    [26] J. Lee, S. M. Lee, E. Jung, How important is behavioral change during the early stages of the COVID-19 pandemic? A mathematical modeling study, Int. J. Environ. Res. Public Health, 18 (2021), 9855. http://dx.doi.org/10.3390/ijerph18189855 doi: 10.3390/ijerph18189855
    [27] S. Kim, Y. J. Kim, K. R. Peck, E. Jung, School opening delay effect on transmission dynamics of coronavirus disease 2019 in Korea: based on mathematical modeling and simulation study, J. Korean Med. Sci., 35 (2020), e143. http://dx.doi.org/10.3346/jkms.2020.35.e143 doi: 10.3346/jkms.2020.35.e143
    [28] S. Kim, Y. Ko, Y. J. Kim, E. Jung, The impact of social distancing and public behavior changes on COVID-19 transmission dynamics in the Republic of Korea, PLoS One, 15 (2020), e0238684. http://dx.doi.org/10.1371/journal.pone.0238684 doi: 10.1371/journal.pone.0238684
    [29] Z. Liu, P. Magal, G. Webb, Predicting the number of reported and unreported cases for the COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom, J. Theor. Biol., 509 (2021), 110501. http://dx.doi.org/10.1016/j.jtbi.2020.110501 doi: 10.1016/j.jtbi.2020.110501
    [30] V. Deo, G. Grover, A new extension of state-space SIR model to account for Underreporting–An application to the COVID-19 transmission in California and Florida, Results Phys., 24 (2021), 104182. http://dx.doi.org/10.1016/j.rinp.2021.104182 doi: 10.1016/j.rinp.2021.104182
    [31] M. Melis, R. Littera, Undetected infectives in the COVID-19 pandemic, Int. J. Infect. Dis., 104 (2021), 262–268. http://dx.doi.org/10.1016/j.ijid.2021.01.010 doi: 10.1016/j.ijid.2021.01.010
    [32] B. Ivorra, M. R. Ferrández, M. Vela-Pérez, A. M. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Commun. Nonlinear Sci. Numer. Simul., 88 (2020), 105303. http://dx.doi.org/10.1016/j.cnsns.2020.105303 doi: 10.1016/j.cnsns.2020.105303
    [33] Department of Health, Beat COVID-19 today: a COVID-19 Philippine situationer, 2020. Available from: https://drive.google.com/drive/folders/1Wxf8TbpSuWrGBOYitZCyFaG_NmdCooCa?usp=sharing.
    [34] N. Perra, D. Balcan, B. Gonçalves, A. Vespignani, Towards a characterization of behavior-disease models, PLoS One, 6 (2011), e23084. http://dx.doi.org/10.1371/journal.pone.0023084 doi: 10.1371/journal.pone.0023084
    [35] World Health Organization, Transmission of SARS-CoV-2: implications for infection prevention precautions, 2020. Available from: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
    [36] Y. Wang, R. Chen, F. Hu, Y. Lan, Z. Yang, C. Zhan, et al., Transmission, viral kinetics and clinical characteristics of the emergent SARS-CoV-2 Delta VOC in Guangzhou, China, EClinicalMedicine, 40 (2021), 101129. http://dx.doi.org/10.1016/j.eclinm.2021.101129 doi: 10.1016/j.eclinm.2021.101129
    [37] N. J. L. Haw, J. Uy, K. T. L. Sy, M. R. M. Abrigo, Epidemiological profile and transmission dynamics of COVID-19 in the Philippines, Epidemiol. Infect., 148 (2020), e204. http://dx.doi.org/10.1017/S0950268820002137 doi: 10.1017/S0950268820002137
    [38] L. Rampal, B. S. Liew, M. Choolani, K. Ganasegeran, A. Pramanick, S. A. Vallibhakara, et al., Battling COVID-19 pandemic waves in six South-East Asian countries: a real-time consensus review, Med. J. Malaysia, 75 (2020), 613–625.
    [39] Center for Disease Control and Prevention, Ending isolation and precautions for people with COVID-19: interim guidance, 2022. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html.
    [40] T. F. Coleman, Y. Li, An interior trust region approach for nonlinear minimization subject to bounds, SIAM J. Optim., 6 (1996), 418–445. http://dx.doi.org/10.1137/0806023 doi: 10.1137/0806023
    [41] T. F. Coleman, Y. Li, On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds, Math. Program., 67 (1994), 189–224. http://dx.doi.org/10.1007/BF01582221 doi: 10.1007/BF01582221
    [42] J. Nocedal, S. J. Wright, Numerical optimization, New York: Springer, 2006. http://dx.doi.org/10.1007/978-0-387-40065-5
    [43] S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. http://dx.doi.org/10.1016/j.jtbi.2008.04.011 doi: 10.1016/j.jtbi.2008.04.011
    [44] K. Dolan, A. L. Wirtz, B. Moazen, M. Ndeffo-Mbah, A. Galvani, S. A. Kinner, et al., Global burden of HIV, viral hepatitis, and tuberculosis in prisoners and detainees, Lancet, 388 (2016), 1089–1102. http://dx.doi.org/10.1016/S0140-6736(16)30466-4 doi: 10.1016/S0140-6736(16)30466-4
    [45] J. J. Minty, M. E. Singer, S. A. Scholz, C. H. Bae, J. H. Ahn, C. E. Foster, et al., Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass, Proc. Nat. Acad. Sci., 110 (2012), 14592–14597. http://dx.doi.org/10.1073/pnas.1218447110 doi: 10.1073/pnas.1218447110
    [46] Y. Xiao, S. Tang, J. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep., 5 (2015), 7838. http://dx.doi.org/10.1038/srep07838 doi: 10.1038/srep07838
    [47] M. Z. Ndii, R. I. Hickson, D. Allingham, G. N. Mercer, Modelling the transmission dynamics of dengue in the presence of Wolbachia, Math. Biosci., 262 (2015), 157–166. http://dx.doi.org/10.1016/j.mbs.2014.12.011 doi: 10.1016/j.mbs.2014.12.011
    [48] M. Laager, C. Mbilo, E. A. Madaye, A. Naminou, M. Léchenne, A. Tschopp, et al., The importance of dog population contact network structures in rabies transmission, PLoS Negl. Trop. Dis., 12 (2018), e0006680. http://dx.doi.org/10.1371/journal.pntd.0006680 doi: 10.1371/journal.pntd.0006680
    [49] G. Chowell, Fitting dynamic models to epidemic outbreaks with quantified uncertainty: a primer for parameter uncertainty, identifiability, and forecasts, Infect. Dis. Model., 2 (2017), 379–398. http://dx.doi.org/10.1016/j.idm.2017.08.001 doi: 10.1016/j.idm.2017.08.001
    [50] X. S. Yang, Nature-inspired optimization algorithms: challenges and open problems, J. Sci. Comput., 46 (2020), 101104. http://dx.doi.org/10.1016/j.jocs.2020.101104 doi: 10.1016/j.jocs.2020.101104
    [51] S. Katoch, S. S. Chauhan, V. Kumar, A review on genetic algorithm: past, present, and future, Multimed. Tools Appl., 80 (2021), 8091–8126. http://dx.doi.org/10.1007/s11042-020-10139-6 doi: 10.1007/s11042-020-10139-6
    [52] S. Sharma, V. Kumar, Application of genetic algorithms in healthcare: a review, In: B. K. Tripathy, P. Lingras, A. K. Kar, C. L. Chowdhary, Next generation healthcare informatics, Studies in Computational Intelligence, Vol. 1039, Singapore: Springer, 2022. http://dx.doi.org/10.1007/978-981-19-2416-3_5
    [53] K. Deb, Multi-objective optimisation using evolutionary algorithms: an introduction, In: L. Wang, A. Ng, K. Deb, Multi-objective evolutionary optimisation for product design and manufacturing, London: Springer, 2011. http://dx.doi.org/10.1007/978-0-85729-652-8_1
    [54] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ, IEEE Trans. Evol. Comput., 6 (2002), 182–197. http://dx.doi.org/10.1109/4235.996017 doi: 10.1109/4235.996017
    [55] J. K. Hale, Ordinary differential equations: pure and applied mathematics, New York: Wiley-Interscience, 1969.
    [56] S. M. Kassa, J. B. H. Njagarah, Y. A. Terefe, Analysis of the mitigation strategies for COVID-19: from mathematical modelling perspective, Chaos Solitons Fract., 138 (2020), 109968. http://dx.doi.org/10.1016/j.chaos.2020.109968 doi: 10.1016/j.chaos.2020.109968
    [57] Z. S. Kifle, L. L. Obsu, Mathematical modeling for COVID-19 transmission dynamics: a case study in Ethiopia, Results Phys., 34 (2022), 105191. http://dx.doi.org/10.1016/j.rinp.2022.105191 doi: 10.1016/j.rinp.2022.105191
    [58] P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model., 2 (2017), 288–303. http://dx.doi.org/10.1016/j.idm.2017.06.002 doi: 10.1016/j.idm.2017.06.002
    [59] L. J. S. Allen, An introduction to mathematical biology, Upper Saddle River, NJ: Pearson Prentice Hall, 2007.
    [60] W. M. Haddad, V. Chellaboina, Nonlinear dynamical systems and control: a Lyapunov-based approach, Princeton University Press, 2008. http://dx.doi.org/10.2307/j.ctvcm4hws doi: 10.2307/j.ctvcm4hws
    [61] T. W. Russell, N. Golding, J. Hellewell, S. Abbott, L. Wright, C. A. B. Pearson, et al., Reconstructing the early global dynamics of under-ascertained COVID-19 cases and infections, BMC Med., 18 (2020), 332. http://dx.doi.org/10.1186/s12916-020-01790-9 doi: 10.1186/s12916-020-01790-9
    [62] J. M. Caldwell, E. de Lara-Tuprio, T. R. Teng, M. R. J. E. Estuar, R. F. R. Sarmiento, M. Abayawardana, et al., Understanding COVID-19 dynamics and the effects of interventions in the Philippines: a mathematical modelling study, Lancet Reg. Health West. Pac., 14 (2021), 100211. http://dx.doi.org/10.1016/j.lanwpc.2021.100211 doi: 10.1016/j.lanwpc.2021.100211
    [63] L. L. Lau, N. Hung, D. J. Go, J. Ferma, M. Choi, W. Dodd, et al., Knowledge, attitudes and practices of COVID-19 among income-poor households in the Philippines: a cross-sectional study, J. Glob. Health, 10 (2020), 011007. http://dx.doi.org/10.7189/jogh.10.011007 doi: 10.7189/jogh.10.011007
    [64] J. Choi, K. H. Kim, The differential consequences of fear, anger, and depression in response to COVID-19 in South Korea, Int. J. Environ. Res. Public Health, 19 (2022), 6723. http://dx.doi.org/10.3390/ijerph19116723 doi: 10.3390/ijerph19116723
    [65] L. C. D. Barros, M. M. Lopes, F. S. Pedro, E. Esmi, J. P. C. D. Santos, D. E. Sánchez, The memory effect on fractional calculus: an application in the spread of COVID-19, Comp. Appl. Math., 40 (2021), 1–21. http://dx.doi.org/10.1007/s40314-021-01456-z doi: 10.1007/s40314-021-01456-z
    [66] M. A. Khan, S. Ullah, K. O. Okosun, K. Shah, A fractional order pine wilt disease model with Caputo-Fabrizio derivative, Adv. Differ. Equ., 410 (2018), 1–18. http://dx.doi.org/10.1186/s13662-018-1868-4 doi: 10.1186/s13662-018-1868-4
    [67] R. Zarin, A. Khan, Aurangzeb, A. Akgül, E. K. Akgül, U. W. Humphries, Fractional modeling of COVID-19 pandemic model with real data from Pakistan under the ABC operator, AIMS Math., 7 (2022), 15939-15964. http://dx.doi.org/10.3934/math.2022872 doi: 10.3934/math.2022872
    [68] I. M. Batiha, A. A. Al-Nana, R. B. Albadarneh, A. Ouannas, A. Al-Khasawneh, S. Momani, Fractional-order coronavirus models with vaccination strategies impacted on Saudi Arabia's infections, AIMS Math., 7 (2022), 12842–12858. http://dx.doi.org/10.3934/math.2022711 doi: 10.3934/math.2022711
    [69] I. U. Haq, N. Ali, H. Ahmad, T. A. Nofal, On the fractional-order mathematical model of COVID-19 with the effects of multiple non-pharmaceutical interventions, AIMS Math., 7 (2022), 16017–16036. http://dx.doi.org/10.3934/math.2022877 doi: 10.3934/math.2022877
    [70] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, Study of Hilfer fractional evolution equations by the properties of controllability and stability, Alex. Eng. J., 60 (2021), 3741–3749. http://dx.doi.org/10.1016/j.aej.2021.02.014 doi: 10.1016/j.aej.2021.02.014
    [71] A. Devi, A. Kumar, T. Abdeljawad, A. Khan, Existence and stability analysis of solutions for fractional langevin equation with nonlocal integral and anti-periodic-type boundary conditions, Fractals, 28 (2020), 2040006. http://dx.doi.org/10.1142/S0218348X2040006X doi: 10.1142/S0218348X2040006X
    [72] A. Devi, A. Kumar, D. Baleanu, A. Khan, On stability analysis and existence of positive solutions for a general non-linear fractional differential equations, Adv. Differ. Equ., 300 (2020), 1–16. http://dx.doi.org/10.1186/s13662-020-02729-3 doi: 10.1186/s13662-020-02729-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1877) PDF downloads(116) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog