Research article Special Issues

Reinforced MCTS for non-intrusive online load identification based on cognitive green computing in smart grid


  • Received: 04 July 2022 Revised: 26 July 2022 Accepted: 03 August 2022 Published: 12 August 2022
  • Cognitive green computing (CGC) is widely used in the Internet of Things (IoT) for the smart city. As the power system of the smart city, the smart grid has benefited from CGC, which can achieve the dynamic regulation of the electric energy and resource integration optimization. However, it is still challenging for improving the identification accuracy and the performance of the load model in the smart grid. In this paper, we present a novel algorithm framework based on reinforcement learning (RL) to improve the performance of non-invasive load monitoring and identification (NILMI). In this model, a knowledge base of load power facilities (LPF-KB) architecture is designed to facilitate the load data-shared collection and storage; utilizing deep convolutional neural networks (DNNs) structure based on the attentional mechanism to enhance the representations learning of load features; using RL-based Monte-Carlo tree search (MCTS) method to construct an optimal strategy network, and to realize the online combined load prediction without relying on the prior knowledge. We use the massive experiment on the real-world datasets of household appliances to evaluate the performance of our method. The experimental results show that our approach has remarkable performance in reducing the load online identification error rate. Our model is a generic model, and it can be widely used in practical load monitoring identification and the power prediction system.

    Citation: Yanmei Jiang, Mingsheng Liu, Jianhua Li, Jingyi Zhang. Reinforced MCTS for non-intrusive online load identification based on cognitive green computing in smart grid[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11595-11627. doi: 10.3934/mbe.2022540

    Related Papers:

    [1] Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214
    [2] Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061
    [3] Shanshan Liu, Abdenacer Makhlouf, Lina Song . The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141
    [4] Xueru Wu, Yao Ma, Liangyun Chen . Abelian extensions of Lie triple systems with derivations. Electronic Research Archive, 2022, 30(3): 1087-1103. doi: 10.3934/era.2022058
    [5] Pengliang Xu, Xiaomin Tang . Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29(4): 2771-2789. doi: 10.3934/era.2021013
    [6] Neşet Deniz Turgay . On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28(2): 951-959. doi: 10.3934/era.2020050
    [7] Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124
    [8] Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157
    [9] Baoling Guan, Xinxin Tian, Lijun Tian . Induced 3-Hom-Lie superalgebras. Electronic Research Archive, 2023, 31(8): 4637-4651. doi: 10.3934/era.2023237
    [10] Jinguo Jiang . Algebraic Schouten solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups. Electronic Research Archive, 2025, 33(1): 327-352. doi: 10.3934/era.2025017
  • Cognitive green computing (CGC) is widely used in the Internet of Things (IoT) for the smart city. As the power system of the smart city, the smart grid has benefited from CGC, which can achieve the dynamic regulation of the electric energy and resource integration optimization. However, it is still challenging for improving the identification accuracy and the performance of the load model in the smart grid. In this paper, we present a novel algorithm framework based on reinforcement learning (RL) to improve the performance of non-invasive load monitoring and identification (NILMI). In this model, a knowledge base of load power facilities (LPF-KB) architecture is designed to facilitate the load data-shared collection and storage; utilizing deep convolutional neural networks (DNNs) structure based on the attentional mechanism to enhance the representations learning of load features; using RL-based Monte-Carlo tree search (MCTS) method to construct an optimal strategy network, and to realize the online combined load prediction without relying on the prior knowledge. We use the massive experiment on the real-world datasets of household appliances to evaluate the performance of our method. The experimental results show that our approach has remarkable performance in reducing the load online identification error rate. Our model is a generic model, and it can be widely used in practical load monitoring identification and the power prediction system.



    The concept of embedded tensors initially emerged in the research on gauged supergravity theory [1]. Using embedding tensors, the N=8 supersymmetric gauge theories as well as the Bagger-Lambert theory of multiple M2-branes were investigated in [2]. See [3,4,5] and the references therein for a great deal of literature on embedding tensors and related tensor hierarchies. In [6], the authors first observed the mathematical essence behind the embedding tensor and proved that the embedding tensor naturally produced Leibniz algebra. In the application of physics, they observed that in the construction of the corresponding gauge theory, they focused more on Leibniz algebra than on embedding tensor.

    In [7], Sheng et al. considered cohomology, deformations, and homotopy theory for embedding tensors and Lie-Leibniz triples. Later on, the deformation and cohomology theory of embedding tensors on 3-Lie algebras were extensively elaborated in [8]. Tang and Sheng [9] first proposed the concept of a nonabelian embedding tensor on Lie algebras, which is a nonabelian generalization of the embedding tensors, and gave the algebraic structures behind the nonabelian embedding tensors as Leibniz-Lie algebras. This generalization for embedding tensors on associative algebras has been previously explored in [10,11], where they are referred to as average operators with any nonzero weights. Moreover, the nonabelian embedding tensor on Lie algebras has been extended to the Hom setting in [12].

    On the other hand, Filippov [13] first introduced the concepts of 3-Lie algebras and, more generally, n-Lie algebras (also called Filippov algebras). Over recent years, the study and application of 3-Lie algebras have expanded significantly across the realms of mathematics and physics, including string theory, Nambu mechanics [14], and M2-branes [15,16]. Further research on 3-Lie algebras could be found in [17,18,19] and references cited therein.

    Drawing inspiration from Tang and Sheng's [9] terminology of nonabelian embedding tensors and recognizing the significance of 3-Lie algebras, cohomology, and deformation theories, this paper primarily investigates the nonabelian embedding tensors on 3-Lie algebras, along with their fundamental algebraic structures, cohomology, and deformations.

    This paper is organized as follows: Section 2 first recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. Then we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra and the notion of nonabelian embedding tensors on 3-Lie algebras with respect to a coherent action. In Section 3, the concept of 3-Leibniz-Lie algebra is presented as the fundamental algebraic structure for a nonabelian embedding tensor on the 3-Lie algebra. Naturally, a 3-Leibniz-Lie algebra induces a 3-Leibniz algebra. Subsequently, we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras. In Section 4, the cohomology theory of nonabelian embedding tensors on 3-Lie algebras is introduced. As an application, we characterize the infinitesimal deformation using the first cohomology group.

    All vector spaces and algebras considered in this paper are on the field K with the characteristic of 0.

    This section recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. After that, we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra, and we introduce the concept of nonabelian embedding tensors on 3-Lie algebras by its coherent action as a nonabelian generalization of embedding tensors on 3-Lie algebras [8].

    Definition 2.1. (see [13]) A 3-Lie algebra is a pair (L,[,,]L) consisting of a vector space L and a skew-symmetric ternary operation [,,]L:3LL such that

    [l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L, (2.1)

    for all liL,1i5.

    A homomorphism between two 3-Lie algebras (L1,[,,]L1) and (L2,[,,]L2) is a linear map f:L1L2 that satisfies f([l1,l2,l3]L1)=[f(l1),f(l2),f(l3)]L2, for all l1,l2,l3L1.

    Definition 2.2. 1) (see [20]) A representation of a 3-Lie algebra (L,[,,]L) on a vector space H is a skew-symmetric linear map ρ:2LEnd(H), such that

    ρ([l1,l2,l3]L,l4)=ρ(l2,l3)ρ(l1,l4)+ρ(l3,l1)ρ(l2,l4)+ρ(l1,l2)ρ(l3,l4), (2.2)
    ρ(l1,l2)ρ(l3,l4)=ρ(l3,l4)ρ(l1,l2)+ρ([l1,l2,l3]L,l4)+ρ(l3,[l1,l2,l4]L), (2.3)

    for all l1,l2,l3,l4L. We also denote a representation of L on H by (H;ρ).

    2) A coherent action of a 3-Lie algebra (L,[,,]L) on another 3-Lie algebra (H,[,,]H) is defined by a skew-symmetric linear map ρ:2LDer(H) that satisfies Eqs (2.2) and (2.3), along with the condition that

    [ρ(l1,l2)h1,h2,h3]H=0, (2.4)

    for all l1,l2L and h1,h2,h3H. We denote a coherent action of L on H by (H,[,,]H;ρ).

    Note that Eq (2.4) and ρ(l1,l2)Der(H) imply that

    ρ(l1,l2)[h1,h2,h3]H=0. (2.5)

    Example 2.3. Let (H,[,,]H) be a 3-Lie algebra. Define ad:2HDer(H) by

    ad(h1,h2)h:=[h1,h2,h]H, for all h1,h2,hH.

    Then (H;ad) is a representation of (H,[,,]H), which is called the adjoint representation. Furthermore, if the ad satisfies

    [ad(h1,h2)h1,h2,h3]H=0, for allh1,h2,h3H,

    then (H,[,,]H;ad) is a coherent adjoint action of (H,[,,]H).

    Definition 2.4. (see [21]) A 3-Leibniz algebra is a vector space L together with a ternary operation [,,]L:LLLL such that

    [l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L,

    for all liL,1i5.

    Proposition 2.5. Let (L,[,,]L) and (H,[,,]H) be two 3-Lie algebras, and let ρ be a coherent action of L on H. Then, LH is a 3-Leibniz algebra under the following map:

    [l1+h1,l2+h2,l3+h3]ρ:=[l1,l2,l3]L+ρ(l1,l2)h3+[h1,h2,h3]H,

    for all l1,l2,l3L and h1,h2,h3H. This 3-Leibniz algebra (LH,[,,]ρ) is called the nonabelian hemisemidirect product 3-Leibniz algebra, which is denoted by LρH.

    Proof. For any l1,l2,l3,l4,l5L and h1,h2,h3,h4,h5H, by Eqs (2.1)–(2.5), we have

    [l1+h1,l2+h2,[l3+h3,l4+h4,l5+h5]ρ]ρ[[l1+h1,l2+h2,l3+h3]ρ,l4+h4,l5+h5]ρ[l3+h3,[l1+h1,l2+h2,l4+h4]ρ,l5+h5]ρ[l3+h3,l4+h4,[l1+h1,l2+h2,l5+h5]ρ]ρ=[l1,l2,[l3,l4,l5]L]L+ρ(l1,l2)ρ(l3,l4)h5+ρ(l1,l2)[h3,h4,h5]H+[h1,h2,ρ(l3,l4)h5]H+[h1,h2,[h3,h4,h5]H]H[[l1,l2,l3]L,l4,l5]Lρ([l1,l2,l3]L,l4)h5[ρ(l1,l2)h3,h4,h5]H[[h1,h2,h3]H,h4,h5]H[l3,[l1,l2,l4]L,l5]Lρ(l3,[l1,l2,l4]L)h5[h3,ρ(l1,l2)h4,h5]H[h3,[h1,h2,h4]H,h5]H[l3,l4,[l1,l2,l5]L]Lρ(l3,l4)ρ(l1,l2)h5ρ(l3,l4)[h1,h2,h5]H[h3,h4,ρ(l1,l2)h5]H[h3,h4,[h1,h2,h5]H]H=[h1,h2,ρ(l3,l4)h5]Hρ(l3,l4)[h1,h2,h5]H=0.

    Thus, (LH,[,,]ρ) is a 3-Leibniz algebra.

    Definition 2.6. 1) A nonabelian embedding tensor on a 3-algebra (L,[,,]L) with respect to a coherent action (H,[,,]H;ρ) is a linear map Λ:HL that satisfies the following equation:

    [Λh1,Λh2,Λh3]L=Λ(ρ(Λh1,Λh2)h3+[h1,h2,h3]H), (2.6)

    for all h1,h2,h3H.

    2) A nonabelian embedding tensor 3-Lie algebra is a triple (H,L,Λ) consisting of a 3-Lie algebra (L,[,,]L), a coherent action (H,[,,]H;ρ) of L and a nonabelian embedding tensor Λ:HL. We denote a nonabelian embedding tensor 3-Lie algebra (H,L,Λ) by the notation HΛL.

    3) Let HΛ1L and HΛ2L be two nonabelian embedding tensor 3-Lie algebras. Then, a homomorphism from HΛ1L to HΛ2L consists of two 3-Lie algebras homomorphisms fL:LL and fH:HH, which satisfy the following equations:

    Λ2fH=fLΛ1, (2.7)
    fH(ρ(l1,l2)h)=ρ(fL(l1),fL(l2))fH(h), (2.8)

    for all l1,l2L and hH. Furthermore, if fL and fH are nondegenerate, (fL,fH) is called an isomorphism from HΛ1L to HΛ2L.

    Remark 2.7. If (H,[,,]H) is an abelian 3-Lie algebra, then we can get that Λ is an embedding tensor on 3-Lie algebra (see [8]). In addition, If ρ=0, then Λ is a 3-Lie algebra homomorphism from H to L.

    Example 2.8. Let H be a 4-dimensional linear space spanned by α1,α2,α3 and α4. We define a skew-symmetric ternary operation [,,]H:3HH by

    [α1,α2,α3]H=α4.

    Then (H,[,,]H) is a 3-Lie algebra. It is obvious that (H,[,,]H;ad) is a coherent adjoint action of (H,[,,]H). Moreover,

    Λ=(1000010000000000)

    is a nonabelian embedding tensor on (H,[,,]H).

    Next, we use graphs to describe nonabelian embedding tensors on 3-Lie algebras.

    Theorem 2.9. A linear map Λ:HL is a nonabelian embedding tensor on a 3-Lie algebra (L,[,,]L) with respect to the coherent action (H,[,,]H;ρ) if and only if the graph Gr(Λ)={Λh+h|hH} forms a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra LρH.

    Proof. Let Λ:HL be a linear map. Then, for any h1,h2,h3H, we have

    [Λh1+h1,Λh2+h2,Λh3+h3]ρ=[Λh1,Λh2,Λh3]L+ρ(Λh1,Λh2)h3+[h1,h2,h3]H,

    Thus, the graph Gr(Λ)={Λh+h|hH} is a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra LρH if and only if Λ satisfies Eq (2.6), which implies that Λ is a nonabelian embedding tensor on L with respect to the coherent action (H,[,,]H;ρ).

    Because H and Gr(Λ) are isomorphic as linear spaces, there is an induced 3-Leibniz algebra structure on H.

    Corollary 2.10. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. If a linear map [,,]Λ:3HH is given by

    [h1,h2,h3]Λ=ρ(Λh1,Λh2)h3+[h1,h2,h3]H, (2.9)

    for all h1,h2,h3H, then (H,[,,]Λ) is a 3-Leibniz algebra. Moreover, Λ is a homomorphism from the 3-Leibniz algebra (H,[,,]Λ) to the 3-Lie algebra (L,[,,]L). This 3-Leibniz algebra (H,[,,]Λ) is called the descendent 3-Leibniz algebra.

    Proposition 2.11. Let (fL,fH) be a homomorphism from HΛ1L to HΛ2L. Then fH is a homomorphism of descendent 3-Leibniz algebra from (H,[,,]Λ1) to (H,[,,]Λ2).

    Proof. For any h1,h2,h3H, by Eqs (2.7)–(2.9), we have

    fH([h1,h2,h3]Λ1)=fH(ρ(Λ1h1,Λ1h2)h3+[h1,h2,h3]H)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)+fH([h1,h2,h3]H)=ρ(Λ2fL(h1),Λ2fL(h2))fH(h3)+[fH(h1),fH(h2),fH(h3)]H=[fH(h1),fH(h2),fH(h3)]Λ2.

    The proof is finished.

    In this section, we present the concept of the 3-Leibniz-Lie algebra, which serves as the fundamental algebraic framework for the nonabelian embedding tensor 3-Lie algebra. Then we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.

    Definition 3.1. A 3-Leibniz-Lie algebra (H,[,,]H,{,,}H) encompasses a 3-Lie algebra (H,[,,]H) and a ternary operation {,,}H:3HH, which satisfies the following equations:

    {h1,h2,h3}H={h2,h1,h3}H, (3.1)
    {h1,h2,{h3,h4,h5}H}H={{h1,h2,h3}H,h4,h5}H+{h3,{h1,h2,h4}H,h5}H+{h3,h4,{h1,h2,h5}H}H+{[h1,h2,h3]H,h4,h5}H+{h3,[h1,h2,h4]H,h5}H, (3.2)
    {h1,h2,[h3,h4,h5]H}H=[{h1,h2,h3}H,h4,h5]H=0, (3.3)

    for all h1,h2,h3,h4,h5H.

    A homomorphism between two 3-Leibniz-Lie algebras (H1,[,,]H1,{,,}H1) and (H2,[,,]H2,{,,}H2) is a 3-Lie algebra homomorphism f:(H1,[,,]H1)(H2,[,,]H2) such that f({h1,h2,h3}H1)={f(h1),f(h2),f(h3)}H2, for all h1,h2,h3H1.

    Remark 3.2. A 3-Lie algebra (H,[,,]H) naturally constitutes a 3-Leibniz-Lie algebra provided that the underlying ternary operation {h1,h2,h3}H=0, for all h1,h2,h3H.

    Example 3.3. Let (H,[,,]H) be a 4-dimensional 3-Lie algebra given in Example 2.8. We define a nonzero operation {,,}H:3HH by

    {α1,α2,α3}H={α2,α1,α3}H=α4.

    Then (H,[,,]H,{,,}H) is a 3-Leibniz-Lie algebra.

    The subsequent theorem demonstrates that a 3-Leibniz-Lie algebra inherently gives rise to a 3-Leibniz algebra.

    Theorem 3.4. Let (H,[,,]H,{,,}H) be a 3-Leibniz-Lie algebra. Then the ternary operation ,,H:3HH, defined as

    h1,h2,h3H:=[h1,h2,h3]H+{h1,h2,h3}H, (3.4)

    for all h1,h2,h3H, establishes a 3-Leibniz algebra structure on H. This structure is denoted by (H,,,H) and is referred to as the subadjacent 3-Leibniz algebra.

    Proof. For any h1,h2,h3,h4,h5H, according to (H,[,,]H) is a 3-Lie algebra and Eqs (3.2)–(3.4), we have

    h1,h2,h3,h4,h5HHh1,h2,h3H,h4,h5Hh3,h1,h2,h4H,h5Hh3,h4,h1,h2,h5HH=[h1,h2,[h3,h4,h5]H]H+[h1,h2,{h3,h4,h5}H]H+{h1,h2,[h3,h4,h5]H}H+{h1,h2,{h3,h4,h5}H}H[[h1,h2,h3]H,h4,h5]H[{h1,h2,h3}H,h4,h5]H{[h1,h2,h3]H,h4,h5}H{{h1,h2,h3}H,h4,h5}H[h3,[h1,h2,h4]H,h5]H[h3,{h1,h2,h4}H,h5]H{h3,[h1,h2,h4]H,h5}H{h3,{h1,h2,h4}H,h5}H[h3,h4,[h1,h2,h5]H]H[h3,h4,{h1,h2,h5}H]H{h3,h4,[h1,h2,h5]H}H{h3,h4,{h1,h2,h5}H}H={h1,h2,{h3,h4,h5}H}H{[h1,h2,h3]H,h4,h5}H{{h1,h2,h3}H,h4,h5}H{h3,[h1,h2,h4]H,h5}H{h3,{h1,h2,h4}H,h5}H{h3,h4,{h1,h2,h5}H}H=0.

    Hence, (H,,,H) is a 3-Leibniz algebra.

    The following theorem shows that a nonabelian embedding tensor 3-Lie algebra induces a 3-Leibniz-Lie algebra.

    Theorem 3.5. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. Then (H,[,,]H,{,,}Λ) is a 3-Leibniz-Lie algebra, where

    {h1,h2,h3}Λ:=ρ(Λh1,Λh2)h3, (3.5)

    for all h1,h2,h3H.

    Proof. For any h1,h2,h3,h4,h5H, by Eqs (2.3), (2.6), and (3.5), we have

    {h1,h2,h3}Λ=ρ(Λh1,Λh2)h3=ρ(Λh2,Λh1)h3={h2,h1,h3}Λ,{{h1,h2,h3}Λ,h4,h5}Λ+{h3,{h1,h2,h4}Λ,h5}Λ+{h3,h4,{h1,h2,h5}Λ}Λ+{[h1,h2,h3]H,h4,h5}Λ+{h3,[h1,h2,h4]H,h5}Λ{h1,h2,{h3,h4,h5}Λ}Λ=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ(Λ[h1,h2,h3]H,Λh4)h5+ρ(Λh3,Λ[h1,h2,h4]H)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]LΛρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]LΛρ(Λh1,Λh2)h4)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]L,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]L)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=0.

    Furthermore, by Eqs (2.4), (2.5), and (3.5), we have

    [{h1,h2,h3}Λ,h4,h5]H=[ρ(Λh1,Λh2)h3,h4,h5]H=0,{h1,h2,[h3,h4,h5]H}Λ=ρ(Λh1,Λh2)[h3,h4,h5]H=0.

    Thus, (H,[,,]H,{,,}Λ) is a 3-Leibniz-Lie algebra.

    Proposition 3.6. Let (fL,fH) be a homomorphism from HΛ1L to HΛ2L. Then fH is a homomorphism of 3-Leibniz-Lie algebras from (H,[,,]H,{,,}Λ1) to (H,[,,]H,{,,}Λ2).

    Proof. For any h1,h2,h3H, by Eqs (2.7), (2.8), and (3.5), we have

    fH({h1,h2,h3}Λ1)=fH(ρ(Λ1h1,Λ1h2)h3)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)=ρ(Λ2fH(h1),Λ2fH(h2))fH(h3)={fH(h1),fH(h2),fH(h3)}Λ2.

    The proof is finished.

    Motivated by the construction of 3-Lie algebras from Lie algebras [17], at the end of this section, we investigate 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.

    Definition 3.7. (see [9]) A Leibniz-Lie algebra (H,[,]H,) encompasses a Lie algebra (H,[,]H) and a binary operation ⊳:HHH, ensuring that

    h1(h2h3)=(h1h2)h3+h2(h1h3)+[h1,h2]Hh3,h1[h2,h3]H=[h1h2,h3]H=0,

    for all h1,h2,h3H.

    Theorem 3.8. Let (H,[,]H,) be a Leibniz-Lie algebra, and let ςH be a trace map, which is a linear map that satisfies the following conditions:

    ς([h1,h2]H)=0,ς(h1h2)=0,for allh1,h2H.

    Define two ternary operations by

    [h1,h2,h3]Hς=ς(h1)[h2,h3]H+ς(h2)[h3,h1]H+ς(h3)[h1,h2]H,{h1,h2,h3}Hς=ς(h1)h2h3ς(h2)h1h3,for allh1,h2,h3H.

    Then (H,[,,]Hς,{,,}Hς) is a 3-Leibniz-Lie algebra.

    Proof. First, we know from [17] that (H,[,,]Hς) is a 3-Lie algebra. Next, for any h1,h2,h3,h4,h5H, we have

    {h1,h2,h3}Hς=ς(h1)h2h3ς(h2)h1h3=(ς(h2)h1h3ς(h1)h2h3)={h2,h1,h3}Hς

    and

    {{h1,h2,h3}Hς,h4,h5}Hς+{h3,{h1,h2,h4}Hς,h5}Hς+{h3,h4,{h1,h2,h5}Hς}Hς+{[h1,h2,h3]Hς,h4,h5}Hς+{h3,[h1,h2,h4]Hς,h5}Hς{h1,h2,{h3,h4,h5}Hς}Hς=ς(h1)ς(h2h3)h4h5ς(h4)ς(h1)(h2h3)h5ς(h2)ς(h1h3)h4h5+ς(h4)ς(h2)(h1h3)h5+ς(h3)ς(h1)(h2h4)h5ς(h1)ς(h2h4)h3h5ς(h3)ς(h2)(h1h4)h5+ς(h2)ς(h1h4)h3h5+ς(h1)ς(h3)h4(h2h5)ς(h1)ς(h4)h3(h2h5)ς(h2)ς(h3)h4(h1h5)+ς(h2)ς(h4)h3(h1h5)+ς(h1)ς([h2,h3]H)h4h5ς(h4)ς(h1)[h2,h3]Hh5+ς(h2)ς([h3,h1]H)h4h5ς(h4)ς(h2)[h3,h1]Hh5+ς(h3)ς([h1,h2]H)h4h5ς(h4)ς(h3)[h1,h2]Hh5+ς(h3)ς(h1)[h2,h4]Hh5ς(h1)ς([h2,h4]H)h3h5+ς(h3)ς(h2)[h4,h1]Hh5ς(h2)ς([h4,h1]H)h3h5+ς(h3)ς(h4)[h1,h2]Hh5ς(h4)ς([h1,h2]H)h3h5ς(h1)ς(h3)h2(h4h5)+ς(h2)ς(h3)h1(h4h5)+ς(h1)ς(h4)h2(h3h5)ς(h2)ς(h4)h1(h3h5)=ς(h4)ς(h1)(h2h3)h5+ς(h4)ς(h2)(h1h3)h5+ς(h3)ς(h1)(h2h4)h5ς(h3)ς(h2)(h1h4)h5+ς(h1)ς(h3)h4(h2h5)ς(h1)ς(h4)h3(h2h5)ς(h2)ς(h3)h4(h1h5)+ς(h2)ς(h4)h3(h1h5)ς(h4)ς(h1)[h2,h3]Hh5ς(h4)ς(h2)[h3,h1]Hh5+ς(h3)ς(h1)[h2,h4]Hh5+ς(h3)ς(h2)[h4,h1]Hh5ς(h1)ς(h3)h2(h4h5)+ς(h2)ς(h3)h1(h4h5)+ς(h1)ς(h4)h2(h3h5)ς(h2)ς(h4)h1(h3h5)=0.

    Similarly, we obtain

    {h1,h2,[h3,h4,h5]Hς}Hς=ς(h1)ς(h3)h2[h4,h5]Hς(h2)ς(h3)h1[h4,h5]H+ς(h1)ς(h4)h2[h5,h3]Hς(h2)ς(h4)h1[h5,h3]H+ς(h1)ς(h5)h2[h3,h4]Hς(h2)ς(h5)h1[h3,h4]H=0

    and

    [{h1,h2,h3}Hς,h4,h5]Hς=ς(h1)ς(h2h3)[h4,h5]H+ς(h4)ς(h1)[h5,h2h3]H+ς(h5)ς(h1)[h2h3,h4]Hς(h2)ς(h1h3)[h4,h5]Hς(h4)ς(h2)[h5,h1h3]Hς(h5)ς(h2)[h1h3,h4]H=0.

    Hence Eqs (3.1)–(3.3) hold and we complete the proof.

    In this section, we revisit fundamental results pertaining to the representations and cohomologies of 3-Leibniz algebras. We construct a representation of the descendent 3-Leibniz algebra (H,[,,]Λ) on the vector space L and define the cohomologies of a nonabelian embedding tensor on 3-Lie algebras. As an application, we characterize the infinitesimal deformation using the first cohomology group.

    Definition 4.1. (see [22]) A representation of the 3-Leibniz algebra (H,[,,]H) is a vector space V equipped with 3 actions

    l:HHVV,m:HVHV,r:VHHV,

    satisfying for any a1,a2,a3,a4,a5H and uV

    l(a1,a2,l(a3,a4,u))=l([a1,a2,a3]H,a4,u)+l(a3,[a1,a2,a4]H,u)+l(a3,a4,l(a1,a2,u)), (4.1)
    l(a1,a2,m(a3,u,a5))=m([a1,a2,a3]H,u,a5)+m(a3,l(a1,a2,u),a5)+m(a3,u,[a1,a2,a5]H), (4.2)
    l(a1,a2,r(u,a4,a5))=r(l(a1,a2,u),a4,a5)+r(u,[a1,a2,a4]H,a5)+r(u,a4,[a1,a2,a5]H), (4.3)
    m(a1,u,[a3,a4,a5]H)=r(m(a1,u,a3),a4,a5)+m(a3,m(a1,u,a4),a5)+l(a3,a4,m(a1,u,a5)), (4.4)
    r(u,a2,[a3,a4,a5]H)=r(r(u,a2,a3),a4,a5)+m(a3,r(u,a2,a4),a5)+l(a3,a4,r(u,a2,a5)). (4.5)

    For n1, denote the n-cochains of 3-Leibniz algebra (H,[,,]H) with coefficients in a representation (V;l,m,r) by

    Cn3Leib(H,V)=Hom(n12H2HH,V).

    The coboundary map δ:Cn3Leib(H,V)Cn+13Leib(H,V), for Ai=aibi2H,1in and cH, as

    (δφ)(A1,A2,,An,c)=1j<kn(1)jφ(A1,,^Aj,,Ak1,ak[aj,bj,bk]H+[aj,bj,ak]Hbk,,An,c)+nj=1(1)jφ(A1,,^Aj,,An,[aj,bj,c]H)+nj=1(1)j+1l(Aj,φ(A1,,^Aj,,An,c))+(1)n+1(m(an,φ(A1,,An1,bn),c)+r(φ(A1,,An1,an),bn,c)).

    It was proved in [23,24] that δ2=0. Therefore, (+n=1Cn3Leib(H,V),δ) is a cochain complex.

    Let HΛL be a nonabelian embedding tensor 3-Lie algebra. By Corollary 2.10, (H,[,,]Λ) is a 3-Leibniz algebra. Next we give a representation of (H,[,,]Λ) on L.

    Lemma 4.2. With the above notations. Define 3 actions

    lΛ:HHLL,mΛ:HLHL,rΛ:LHHL,

    by

    lΛ(h1,h2,l)=[Λh1,Λh2,l]L,mΛ(h1,l,h2)=[Λh1,l,Λh2]LΛρ(Λh1,l)h2,rΛ(l,h1,h2)=[l,Λh1,Λh2]LΛρ(l,Λh1)h2,

    for all h1,h2H,lL. Then (L;lΛ,mΛ,rΛ) is a representation of the descendent 3-Leibniz algebra (H,[,,]Λ).

    Proof. For any h1,h2,h3,h4,h5H and lL, by Eqs (2.1), (2.3)–(2.6), and (2.9), we have

    lΛ(h1,h2,lΛ(h3,h4,l))lΛ([h1,h2,h3]Λ,h4,l)lΛ(h3,[h1,h2,h4]Λ,l)lΛ(h3,h4,lΛ(h1,h2,l))=[Λh1,Λh2,[Λh3,Λh4,l]L]L[[Λh1,Λh2,Λh3]L,Λh4,l]L[Λh3,[Λh1,Λh2,Λh4]L,l]L[Λh3,Λh4,[Λh1,Λh2,l]L]L=0

    and

    lΛ(h1,h2,mΛ(h3,l,h5))mΛ([h1,h2,h3]Λ,l,h5)mΛ(h3,lΛ(h1,h2,l),h5)mΛ(h3,l,[h1,h2,h5]Λ)=[Λh1,Λh2,[Λh3,l,Λh5]L]L[Λh1,Λh2,Λρ(Λh3,l)h5]L[[Λh1,Λh2,Λh3]L,l,Λh5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5[Λh3,[Λh1,Λh2,l]L,Λh5]L+Λρ(Λh3,[Λh1,Λh2,l]L)h5[Λh3,l,[Λh1,Λh2,Λh5]L]L+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=[Λh1,Λh2,Λρ(Λh3,l)h5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5+Λρ(Λh3,[Λh1,Λh2,l]L)h5+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=Λ(ρ(Λh1,Λh2)ρ(Λh3,l)h5+[h1,h2,ρ(Λh3,l)h5]H)+Λρ(Λh1,Λh2)ρ(Λh3,l)h5+Λρ(Λh3,l)[h1,h2,h5]H=Λ[h1,h2,ρ(Λh3,l)h5]H+Λρ(Λh3,l)[h1,h2,h5]H=0,

    which imply that Eqs (4.1) and (4.2) hold. Similarly, we can prove that Eqs (4.3)–(4.5) are true. The proof is finished.

    Proposition 4.3. Let HΛ1L and HΛ2L be two nonabelian embedding tensor 3-Lie algebras and (fL,fH) a homomorphism from HΛ1L to HΛ2L. Then the induced representation (L;lΛ1,mΛ1,rΛ1) of the descendent 3-Leibniz algebra (H,[,,]Λ1) and the induced representation (L;lΛ2,mΛ2,rΛ2) of the descendent 3-Leibniz algebra (H,[,,]Λ2) satisfying the following equations:

    fL(lΛ1(h1,h2,l))=lΛ2(fH(h1),fH(h2),fL(l)), (4.6)
    fL(mΛ1(h1,l,h2))=mΛ2(fH(h1),fL(l),fH(h2)), (4.7)
    fL(rΛ1(l,h1,h2))=rΛ2(fL(l),fH(h1),fH(h2)), (4.8)

    for all h1,h2H,lL. In other words, the following diagrams commute:

    Proof. For any h1,h2H,lL, by Eqs (2.7) and (2.8), we have

    fL(lΛ1(h1,h2,l))=fL([Λ1h1,Λ1h2,l]L)=[fL(Λ1h1),fL(Λ1h2),fL(l)]L=[Λ2fH(h1),Λ2fH(h2),fL(l)]L=lΛ2(fH(h1),fH(h2),fL(l)),fL(mΛ1(h1,l,h2))=fL([Λ1h1,l,Λ1h2]LΛ1ρ(Λ1h1,l)h2)=[fL(Λ1h1),fL(l),fL(Λ1h2)]LfL(Λ1ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]LΛ2fH(ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]LΛ2ρ(Λ2fH(h1),fL(l))fH(h2)=mΛ2(fH(h1),fL(l),fH(h2)).

    And the other equation is similar to provable.

    For n1, let δΛ:Cn3Leib(H,L)Cn+13Leib(H,L) be the coboundary operator of the 3-Leibniz algebra (H,[,,]Λ) with coefficients in the representation (L;lΛ,mΛ,rΛ). More precisely, for all ϕCn3Leib(H,L),Hi=uivi2H,1in and wH, we have

    (δΛϕ)(H1,H2,,Hn,w)=1j<kn(1)jϕ(H1,,^Hj,,Hk1,uk[uj,vj,vk]Λ+[uj,vj,uk]Λvk,,Hn,w)+nj=1(1)jϕ(H1,,^Hj,,Hn,[uj,vj,w]Λ)+nj=1(1)j+1lΛ(Hj,ϕ(H1,,^Hj,,Hn,w))+(1)n+1(mΛ(un,ϕ(H1,,Hn1,vn),w)+rΛ(ϕ(H1,,Hn1,un),vn,w)).

    In particular, for ϕC13Leib(H,L):=Hom(H,L) and u1,v1,wH, we have

    (δΛϕ)(u1,v1,w)=ϕ([u1,v1,w]Λ)+lΛ(u1,v1,ϕ(w))+mΛ(u1,ϕ(v1),w)+rΛ(ϕ(u1),v1,w)=ϕ([u1,v1,w]Λ)+[Λu1,Λv1,ϕ(w)]L+[Λu1,ϕ(v1),Λw]LΛρ(Λu1,ϕ(v1))w+[ϕ(u1),Λv1,Λw]LΛρ(ϕ(u1),Λv1)w.

    For any (a1,a2)C03Leib(H,L):=2L, we define δΛ:C03Leib(H,L)C13Leib(H,L),(a1,a2)δΛ(a1,a2) by

    δΛ(a1,a2)u=Λρ(a1,a2)u[a1,a2,Λu]L,uH.

    Proposition 4.4. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. Then δΛ(δΛ(a1,a2))=0, that is, the composition C03Leib(H,L)δΛC13Leib(H,L)δΛC23Leib(H,L) is the zero map.

    Proof. For any u1,v1,wV, by Eqs (2.1)–(2.6) and (2.9) we have

    δΛ(δΛ(a1,a2))(u1,v1,w)=δΛ(a1,a2)([u1,v1,w]Λ)+[Λu1,Λv1,δΛ(a1,a2)(w)]L+[Λu1,δΛ(a1,a2)(v1),Λw]LΛρ(Λu1,δΛ(a1,a2)(v1))w+[δΛ(a1,a2)(u1),Λv1,Λw]LΛρ(δΛ(a1,a2)(u1),Λv1)w=Λρ(a1,a2)[u1,v1,w]Λ+[a1,a2,[Λu1,Λv1,Λw]L]L+[Λu1,Λv1,Λρ(a1,a2)w]L[Λu1,Λv1,[a1,a2,Λw]L]L+[Λu1,Λρ(a1,a2)v1,Λw]L[Λu1,[a1,a2,Λv1]L,Λw]LΛρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+[Λρ(a1,a2)u1,Λv1,Λw]L[[a1,a2,Λu1]L,Λv1,Λw]LΛρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=Λρ(a1,a2)ρ(Λu1,Λv1)wΛρ(a1,a2)[u1,v1,w]H+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λ[u1,v1,ρ(a1,a2)w]H+Λρ(Λu1,Λρ(a1,a2)v1)w+Λ[u1,ρ(a1,a2)v1,w]HΛρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)w+Λ[ρ(a1,a2)u1,v1,w]HΛρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,Λρ(a1,a2)v1)wΛρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)wΛρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λρ([a1,a2,Λu1]L,Λv1)w=0.

    Therefore, we deduce that δΛ(δΛ(a1,a2))=0.

    Now we develop the cohomology theory of a nonabelian embedding tensor Λ on the 3-Lie algebra (L,[,,]L) with respect to the coherent action (H,[,,]H;ρ).

    For n0, define the set of n-cochains of Λ by CnΛ(H,L):=Cn3Leib(H,L). Then (n=0CnΛ(H,L),δΛ) is a cochain complex.

    For n1, we denote the set of n-cocycles by ZnΛ(H,L), the set of n-coboundaries by BnΛ(H,L), and the n-th cohomology group of the nonabelian embedding tensor Λ by

    HHnΛ(H,L)=ZnΛ(H,L)BnΛ(H,L).

    Proposition 4.5. Let HΛ1L and HΛ2L be two nonabelian embedding tensor 3-Lie algebras and let (fL,fH) be a homomorphism from HΛ1L to HΛ2L in which fH is invertible. We define a map Ψ:CnΛ1(H,L)CnΛ2(H,L) by

    Ψ(ϕ)(H1,H2,,Hn1,w)=fL(ϕ(f1H(u1)f1H(v1),,f1H(un1)f1H(vn1),f1H(w))),

    for all ϕCnΛ1(H,L),Hi=uivi2H,1in1, and wH. Then Ψ:(Cn+1Λ1(H,L),δΛ1)(Cn+1Λ2(H,L),δΛ2) is a cochain map.

    That is, the following diagram commutes:

    Consequently, it induces a homomorphism Ψ from the cohomology group HHn+1Λ1(H,L) to HHn+1Λ2(H,L).

    Proof. For any ϕCnΛ1(H,L),Hi=uivi2H,1in, and wH, by Eqs (4.6)–(4.8) and Proposition 2.11, we have

    (δΛ2Ψ(ϕ))(H1,H2,,Hn,w)=1j<kn(1)jΨ(ϕ)(H1,,^Hj,,Hk1,uk[uj,vj,vk]Λ2+[uj,vj,uk]Λ2vk,,Hn,w)+nj=1(1)jΨ(ϕ)(H1,,^Hj,,Hn,[uj,vj,w]Λ2)+nj=1(1)j+1lΛ2(Hj,Ψ(ϕ)(H1,,^Hj,,Hn,w))+(1)n+1mΛ2(un,Ψ(ϕ)(H1,,Hn1,vn),w)+(1)n+1rΛ2(Ψ(ϕ)(H1,,Hn1,un),vn,w)=1j<kn(1)jfL(ϕ(f1H(u1)f1H(v1),,^Hj,,f1H(uk1)f1H(vk1),f1H(uk)f1H([uj,vj,vk]Λ2)+f1H([uj,vj,uk]Λ2)f1H(vk),,f1H(un)f1H(vn),f1H(w)))+nj=1(1)jfL(ϕ(f1H(u1)f1H(v1),,^Hj,,f1H(un)f1H(vn),f1H([uj,vj,w]Λ2)))+nj=1(1)j+1lΛ2(Hj,fL(ϕ(f1H(u1)f1H(v1),,^Hj,,f1H(un)f1H(vn),f1H(w))))+(1)n+1mΛ2(un,fL(ϕ(f1H(u1)f1H(v1),,f1H(un1)f1H(vn1),f1H(vn))),w)+(1)n+1rΛ2(fL(ϕ(f1H(u1)f1H(v1),,f1H(un1)f1H(vn1),f1H(un))),vn,w)=fL(1j<kn(1)jϕ(f1H(u1)f1H(v1),,^Hj,,f1H(uk1)f1H(vk1),f1H(uk)[f1H(uj),f1H(vj),f1H(vk)]Λ1+[f1H(uj),f1H(vj),f1H(uk)]Λ1f1H(vk),,f1H(un)f1H(vn),f1H(w))+nj=1(1)jϕ(f1H(u1)f1H(v1),,^Hj,,f1H(un)f1H(vn),[f1H(uj),f1H(vj),f1H(w)]Λ1)+nj=1(1)j+1lΛ1(f1H(uj),f1H(vj),ϕ(f1H(u1)f1H(v1),,^Hj,,f1H(un)f1H(vn),f1H(w)))+(1)n+1mΛ1(f1H(un),ϕ(f1H(u1),f1H(v1),,f1H(un1)f1H(vn1),f1H(vn)),f1H(w))+(1)n+1rΛ1(ϕ(f1H(u1)f1H(v1),,f1H(un1)f1H(vn1),f1H(un)),f1H(vn),f1H(w)))=fL(δΛ1ϕ)(f1H(u1)f1H(v1),,f1H(un)f1H(vn),f1H(w))=Ψ(δΛ1ϕ)(H1,H2,,Hn,w).

    Hence, Ψ is a cochain map and induces a cohomology group homomorphism Ψ:HHn+1Λ1(H,L) HHn+1Λ2(H,L).

    At the conclusion of this section, we employ the well-established cohomology theory to describe the infinitesimal deformations of nonabelian embedding tensors on 3-Lie algebras.

    Definition 4.6. Let Λ:HL be a nonabelian embedding tensor on a 3-Lie algebra (L,[,,]L) with respect to a coherent action (H,[,,]H;ρ). An infinitesimal deformation of Λ is a nonabelian embedding tensor of the form Λt=Λ+tΛ1, where t is a parameter with t2=0.

    Let Λt=Λ+tΛ1 be an infinitesimal deformation of Λ, then we have

    [Λtu1,Λtu2,Λtu3]L=Λtρ(Λtu1,Λtu2)u3+Λt[u1,u2,u3]H,

    for all u1,u2,u3H. Therefore, we obtain the following equation:

    [Λ1u1,Λu2,Λu3]L+[Λu1,Λ1u2,Λu3]L+[Λu1,Λu2,Λ1u3]L=Λ1ρ(Λu1,Λu2)u3+Λρ(Λ1u1,Λu2)u3+Λρ(Λu1,Λ1u2)u3+Λ1[u1,u2,u3]H. (4.9)

    It follows from Eq (4.9) that Λ1C1Λ(H,L) is a 1-cocycle in the cohomology complex of Λ. Thus the cohomology class of Λ1 defines an element in HH1Λ(H,L).

    Let Λt=Λ+tΛ1 and Λt=Λ+tΛ1 be two infinitesimal deformations of Λ. They are said to be equivalent if there exists a1a22L such that the pair (idL+tad(a1,a2),idH+tρ(a1,a2)) is a homomorphism from HΛtL to HΛtL. That is, the following conditions must hold:

    1) The maps idL+tad(a1,a2):LL and idH+tρ(a1,a2):HH are two 3-Lie algebra homomorphisms,

    2) The pair (idL+tad(a1,a2),idH+tρ(a1,a2)) satisfies:

    (idH+tρ(a1,a2))(ρ(a,b)u)=ρ((idL+tad(a1,a2))a,(idL+tad(a1,a2))b)(idH+tρ(a1,a2))(u),(Λ+tΛ1)(idH+tρ(a1,a2))(u)=(idL+tad(a1,a2))((Λ+tΛ1)u), (4.10)

    for all a,bL,uH. It is easy to see that Eq (4.10) gives rise to

    Λ1uΛ1u=Λρ(a1,a2)u[a1,a2,Λu]=δΛ(a1,a2)uC1Λ(H,L).

    This shows that Λ1 and Λ1 are cohomologous. Thus, their cohomology classes are the same in HH1Λ(H,L).

    Conversely, any 1-cocycle Λ1 gives rise to the infinitesimal deformation Λ+tΛ1. Furthermore, we have arrived at the following result.

    Theorem 4.7. Let Λ:HL be a nonabelian embedding tensor on (L,[,,]L) with respect to (H,[,,]H;ρ). Then, there exists a bijection between the set of all equivalence classes of infinitesimal deformations of Λ and the first cohomology group HH1Λ(H,L).

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research is supported by the National Natural Science Foundation of China (Grant No. 12361005) and the Universities Key Laboratory of System Modeling and Data Mining in Guizhou Province (Grant No. 2023013).

    The authors declare there is no conflicts of interest.



    [1] D. P. M. Abellana, A systemic analysis of green computing adoption using genetically evolved fuzzy cognitive map: A Philippine scenario, Kybernetes, 50 (2020), 2668–2696. https://doi.org/10.1108/K-05-2020-0263 doi: 10.1108/K-05-2020-0263
    [2] W. M. Zheng, Q. W. Chai, J. hang, X. S. Xue, Ternary compound ontology matching for cognitive green computing, Math. Biosci. Eng., 18 (2021), 4860–4870. https://doi.org/10.3934/mbe.2021247 doi: 10.3934/mbe.2021247
    [3] X. Liu, Y. Li, X. Zhang, W. Lu, M. Xiong, Energy-efficient resource optimization in green cognitive internet of things, Mobile Networks Appl., 25 (2020), 107750–107770. https://doi.org/10.1007/s11036-020-01510-w doi: 10.1007/s11036-020-01510-w
    [4] Y. M. Jiang, M. S. Liu, H. Peng, M. Z. A. Bhuiyan, A reliable deep learning-based algorithm design for IoT load identification in smart grid, Ad Hoc Networks, 123 (2021), 102643–102673. https://doi.org/10.1016/j.adhoc.2021.102643 doi: 10.1016/j.adhoc.2021.102643
    [5] Y. Liu, L. Zhong, J. Qiu, J. Lu, W. Wang, Unsupervised domain adaptation for non-intrusive load monitoring via adversarial and joint adaptation network, IEEE Trans. Ind. Inf., 18 (2021), 266–277. https://doi.org/10.1109/TII.2021.3065934 doi: 10.1109/TII.2021.3065934
    [6] H. Peng, J. X. Li, S. Z. Wang, L. H. Wang, Q. R. Gong, R. Y. Yang, et al., Hierarchical taxonomy-aware and attentional graph capsule RCNNs for large-scale multi-label text classification, IEEE Trans. Knowl. Data Eng., 33 (2021), 2505–2519 https://doi.org/10.1109/TKDE.2019.2959991 doi: 10.1109/TKDE.2019.2959991
    [7] A. F. Moreno Jaramillo, D. M. Laverty, D. J. Morrow, J. Martinez del Rincon, A. M. Foley, Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks, Renewable Energy, 179 (2021), 445–466. https://doi.org/10.1016/j.renene.2021.07.056 doi: 10.1016/j.renene.2021.07.056
    [8] R. V. A. Monteiro, J. C. R. de Santana, R. F. S. Teixeira, A. S. Bretas, R. Aguiar, C. E. P. Poma, Non-intrusive load monitoring using artificial intelligence classifiers: Performance analysis of machine learning techniques, Electr. Power Syst. Res., 198 (2021), 107347. https://doi.org/10.1016/j.epsr.2021.107347 doi: 10.1016/j.epsr.2021.107347
    [9] H. X. Wang, J. S. Zhang, C. B. Lu, C. Y. Wu, Privacy preserving in non-intrusive load monitoring: A differential privacy perspective, IEEE Trans. Smart Grid, 12 (2020), 2529–2543. https://doi.org/10.1109/TSG.2020.3038757 doi: 10.1109/TSG.2020.3038757
    [10] D. Hua, F. Q. Huang, L. J. Wang, W. T. Chen, Simultaneous disaggregation of multiple appliances based on non-intrusive load monitoring, Electr. Power Syst. Res., 193 (2021), 106887. https://doi.org/10.1016/j.epsr.2020.106887 doi: 10.1016/j.epsr.2020.106887
    [11] M. Dincecco, S. Squartini, M. J. Zhong, Transfer learning for non-intrusive load monitoring, IEEE Trans. Smart Grid, 11 (2020), 1419-1429. https://doi.org/10.1109/TSG.2019.2938068 doi: 10.1109/TSG.2019.2938068
    [12] G. A. Raiker, R. B. Subba, U. Loganathan, S. Agrawal, A. S. Thakur, J. P. Barton, et al., Energy disaggregation using energy demand model and IoT based control, IEEE Trans. Ind. Appl., 57 (2020), 1746–1754. https://doi.org/10.1109/TIA.2020.3047016 doi: 10.1109/TIA.2020.3047016
    [13] F. Ciancetta, G. Bucci, E. Fiorucci, S. Mari, A. Fioravanti, A new convolutional neural network-based system for NILM applications, IEEE Trans. Instrum. Meas., 70 (2021), 1501112. https://doi.org/10.1109/TIM.2020.3035193 doi: 10.1109/TIM.2020.3035193
    [14] A. Faustine, L. Pereira, C. Klemenjak, Adaptive weighted recurrence graphs for appliance recognition in non-intrusive load monitoring, IEEE Trans. Smart Grid, 12 (2020), 398–406. https://doi.org/10.1109/TSG.2020.3010621 doi: 10.1109/TSG.2020.3010621
    [15] Y. Himeur, A. Alsalemi, F. Bensaali, A. Amira, An intelligent nonintrusive load monitoring scheme based on 2D phase encoding of power signals, Int. J. Intell. Syst., 36 (2020), 72–93. https://doi.org/10.1002/int.22292 doi: 10.1002/int.22292
    [16] Y. Yang, J. Zhong, W. Li, T. A. Gulliver, S. Li, Semisupervised multilabel deep learning based nonintrusive load monitoring in smart grids, IEEE Trans. Ind. Inf., 16 (2020), 6892–6902. https://doi.org/10.1109/TII.2019.2955470 doi: 10.1109/TII.2019.2955470
    [17] M. Kaselimi, N. Doulamis, A. Voulodimos, E. Protopapadakis, A. Doulamis, Context aware energy disaggregation using adaptive bidirectional LSTM models, IEEE Trans. Smart Grid, 11 (2020), 3054–3067. https://doi.org/10.1109/TSG.2020.2974347 doi: 10.1109/TSG.2020.2974347
    [18] H. Chen, Y. H. Wang, C. H. Fan, A convolutional autoencoder-based approach with batch normalization for energy disaggregation, J. Supercomput., 11 (2021), 2961–2978. https://doi.org/10.1007/s11227-020-03375-y doi: 10.1007/s11227-020-03375-y
    [19] P. Hao, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, et al., Large-scale hierarchical text classification with recursively regularized deep graph-CNN, in Web Conference 2018: Proceedings of the 2018 World Wide Web Conference, Macao, Lyon, France, (2018), 1063–1072. https://doi.org/10.1145/3178876.3186005
    [20] H. Peng, J. Li, Q. Gong, Y. Ning, S. Wang, L. He, Motif-matching based subgraph-level attentional convolutional network for graph classification, in Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2021), 5387–5394. https://doi.org/10.1609/aaai.v34i04.5987
    [21] A. Moradzadeh, O. Sadeghian, K. Pourhossein, B. Mohammadiivatloo, A. Anvarimoghaddam, Improving residential load disaggregation for sustainable development of energy via principal component analysis, Sustainability, 12 (2020), 1–14. https://doi.org/10.3390/su12083158 doi: 10.3390/su12083158
    [22] P. Hao, J. Li, Y. Song, Y. Liu, Incrementally learning the hierarchical softmax function for neural language models, in Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, 31 (2017), 3267–3273. https://doi.org/10.1609/aaai.v31i1.10994
    [23] A. U. Rehman, T. T. Lie, B. Vallès, S. R. Tito, Event-detection algorithms for low sampling nonintrusive load monitoring systems based on low complexity statistical features, IEEE Trans. Instrum. Meas., 69 (2019), 751–759. https://doi.org/10.1109/TIM.2019.2904351 doi: 10.1109/TIM.2019.2904351
    [24] M. S. Tsai, Y. H. Lin, Modern development of an adaptive non-intrusive appliance load monitoring system in electricity energy conservation, Appl. Energy, 96 (2012), 55–73. https://doi.org/10.1016/j.apenergy.2011.11.027 doi: 10.1016/j.apenergy.2011.11.027
    [25] Z. J. Zhou, Y. M. Xiang, H. Xu, Y. S. Wang, D. Shi, Z. W. Wang, Self-organizing probability neural network-based intelligent non-intrusive load monitoring with applications to low-cost residential measuring devices, Trans. Inst. Meas. Control, 96 (2020), 635–645. https://doi.org/10.1177/0142331220950865 doi: 10.1177/0142331220950865
    [26] C. Chen, P. Gao, J. Jiang, H. Wang, P. Li, S. Wan, A deep learning based non-intrusive household load identification for smart grid in China, Comput. Commun., 177 (2021), 175–184. https://doi.org/10.1016/j.comcom.2021.06.023 doi: 10.1016/j.comcom.2021.06.023
    [27] D. L. Su, Q. Shi, H. Xu, W. Wang, Nonintrusive load monitoring based on complementary features of spurious emissions, Electronics, 8 (2019), 1002. https://doi.org/10.3390/electronics8091002 doi: 10.3390/electronics8091002
    [28] F. Ciancetta, G. Bucci, E. Fiorucci, S. Mari, A. Fioravanti, A new convolutional neural network-based system for NILM applications, IEEE Trans. Instrum. Meas., 70 (2020), 1501112. https://doi.org/10.1109/TIM.2020.3035193 doi: 10.1109/TIM.2020.3035193
    [29] D. Ding, J. Li, K. Zhang, H. Wang, K. Wang, T. Cao, Non-intrusive load monitoring method with inception structured CNN, Appl. Intell., 30 (2021), 1–18. https://doi.org/10.1007/s10489-021-02690-y doi: 10.1007/s10489-021-02690-y
    [30] H. Peng, J. Li, Y. Song, R. Yang, R. Ranjan, P. S. Yu, et al., Streaming social event detection and evolution discovery in heterogeneous information networks, ACM Trans. Knowl. Discovery Data, 15 (2021), 1–33. https://doi.org/10.1145/3447585 doi: 10.1145/3447585
    [31] Z. Jia, L. Yang, Z. Zhang, H. Liu, F. Kong, Sequence to point learning based on bidirectional dilated residual network for non-intrusive load monitoring, Int. J. Electr. Power Energy Syst., 129 (2021), 106837. https://doi.org/10.1016/j.ijepes.2021.106837 doi: 10.1016/j.ijepes.2021.106837
    [32] H. Peng, R. Zhang, Y. Dou, R. Yang, J. Zhang, P. S. Yu, Reinforced neighborhood selection guided multi-relational graph neural networks, ACM Trans. Inf. Syst., 40 (2021), 1–46. https://doi.org/10.1145/3490181 doi: 10.1145/3490181
    [33] C. Dinesh, S. Makonin, I. V. Bajić, Residential power forecasting using load identification and graph spectral clustering, IEEE Trans. Circuits Syst. II Express Briefs, 66 (2019), 1900–1904. https://doi.org/10.1109/TCSII.2019.2891704 doi: 10.1109/TCSII.2019.2891704
    [34] H. Peng, J. Li, Z. Wang, R. Yang, M. Liu, M. Zhang, et al., Lifelong property price prediction: A case study for the toronto real estate market, IEEE Trans. Knowl. Data Eng., 40 (2021). https://doi.org/10.1109/TKDE.2021.3112749
    [35] Z. Wu, C. Wang, H. Zhang, W. Peng, W. Liu, A time-efficient factorial hidden Semi-Markov model for non-intrusive load monitoring, Electr. Power Syst. Res., 199 (2021), 107372. https://doi.org/10.1016/j.epsr.2021.107372 doi: 10.1016/j.epsr.2021.107372
    [36] N. Henao, K. Agbossou, S. Kelouwani, Y. Dubé, M. Fournier, Approach in nonintrusive type I load monitoring using subtractive clustering, IEEE Trans. Smart Grid, 8 (2017), 812–821. https://doi.org/10.1109/TSG.2015.2462719 doi: 10.1109/TSG.2015.2462719
    [37] D. Yang, X. Gao, L. Kong, Y. Pang, B. Zhou, An event-driven convolutional neural architecture for non-intrusive load monitoring of residential appliance, IEEE Trans. Consum. Electron., 66 (2020), 173–182. https://doi.org/10.1109/TCE.2020.2977964 doi: 10.1109/TCE.2020.2977964
    [38] T. T. H. Le, S. Heo, H. Kim, Toward load identification based on the hilbert transform and sequence to sequence long short-term memory, IEEE Trans. Smart Grid, 12 (2021), 3252–3264. https://doi.org/10.1109/TSG.2021.3066570 doi: 10.1109/TSG.2021.3066570
    [39] H. Rafiq, X. Shi, H. Zhang, H. Li, M. K. Ochani, A. A. Shah, Generalizability improvement of deep learning based non-intrusive load monitoring system using data augmentation, IEEE Trans. Smart Grid, 99 (2021), 75–114. https://doi.org/10.1109/TSG.2021.3082622 doi: 10.1109/TSG.2021.3082622
    [40] S. Makonin, F. Popowich, I. V. Bajić, B. Gill, L. Bartram, Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring, IEEE Trans. Smart Grid, 7 (2016), 2575–2585. https://doi.org/10.1109/TSG.2015.2494592 doi: 10.1109/TSG.2015.2494592
    [41] S. P. Cai, Z. M. Sun, J. Yan, D. H. Tang, Y. Chen, Z. Y. Zhou, Fisher information and online SVR-based dynamic modeling methodology for meteorological sensitive load forecasting in smart grids, IEEE Trans. Smart Grid, 104 (2021), 513–527. https://doi.org/10.1007/s00202-021-01308-3 doi: 10.1007/s00202-021-01308-3
    [42] V. Álvarez, S. Mazuelas, J. A. Lozano, Probabilistic load forecasting based on adaptive online learning, IEEE Trans. Smart Grid, 36 (2021), 3668–3680. https://doi.org/10.1109/TPWRS.2021.3050837 doi: 10.1109/TPWRS.2021.3050837
    [43] Y. Du, F. Li, Intelligent multi-microgrid energy management based on deep neural network and model-free reinforcement learning, IEEE Trans. Smart Grid, 11 (2019), 1066–1076. https://doi.org/10.1109/TSG.2019.2930299 doi: 10.1109/TSG.2019.2930299
    [44] C. Wang, S. Mei, H. Yu, S. Cheng, L. Du, P. Yang, Unintentional islanding transition control strategy for three-/single-phase multimicrogrids based on artificial emotional reinforcement learning, IEEE Syst. J., 15 (2021), 5464–5475. https://doi.org/10.1109/JSYST.2021.3074296 doi: 10.1109/JSYST.2021.3074296
    [45] H. Peng, H. Wang, B. Du, M. Bhuiyan, H. Ma, J. Liu, et al., Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting, Inf. Sci., 521 (2020), 277–290. https://doi.org/10.1016/j.ins.2020.01.043 doi: 10.1016/j.ins.2020.01.043
    [46] H. Peng, H. Li, Y. Song, V. W. Zheng, J. Li, Differentially private federated knowledge graphs embedding, IEEE Trans. Knowl. Data Eng., 40 (2021). https://doi.org/10.1145/3459637.3482252
    [47] Y. Li, R. Wang, Z. Yang, Optimal scheduling of isolated microgrids using automated reinforcement learning-based multi-period forecasting, IEEE Trans. Sustainable Energy, 13 (2022), 159–169. https://doi.org/10.1109/TSTE.2021.3105529 doi: 10.1109/TSTE.2021.3105529
    [48] D. Cao, W. Hu, X. Xu, Q. Wu, Q. Huang, Z. Chen, et al., Deep reinforcement learning based approach for optimal power flow of distribution networks embedded with renewable energy and storage devices, J. Mod. Power Syst. Clean Energy, 9 (2021), 1101–1110. https://doi.org/10.35833/MPCE.2020.000557 doi: 10.35833/MPCE.2020.000557
    [49] J. Li, H. Peng, Y. Cao, Y. Dou, H. Zhang, P. S. Yu, et al., Higher-order attribute-enhancing heterogeneous graph neural networks, IEEE Trans. Knowl. Data Eng., 40 (2021). https://doi.org/10.48550/arXiv.2104.07892
    [50] L. Xi, L. Zhou, L. Liu, D. Duan, Y. Xu, L. Yang, et al., A deep reinforcement learning algorithm for the power order optimization allocation of AGC in interconnected power grids, CSEE J. Power Energy Syst., 6 (2020), 712–723. https://doi.org/10.17775/CSEEJPES.2019.01840 doi: 10.17775/CSEEJPES.2019.01840
    [51] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, et al., Mastering the game of Go without human knowledge, Nature, 550 (2017), 354–359. https://doi.org/10.1038/nature24270 doi: 10.1038/nature24270
    [52] R. Yao, X. Lu, H. Zhou, J. Lai, A novel category-specific pricing strategy for demand response in microgrids, IEEE Trans. Sustainable Energy, 12 (2020), 182–195. https://doi.org/10.1109/TSTE.2021.3106329 doi: 10.1109/TSTE.2021.3106329
    [53] Z. Xiao, C. Fan, J. Yuan, X. Xu, W. Gang, Comparison between artificial neural network and random forest for effective disaggregation of building cooling load, Case Stud. Therm. Eng., 28 (2021), 101589. https://doi.org/10.1016/j.csite.2021.101589 doi: 10.1016/j.csite.2021.101589
    [54] R. Yao, H. Zhou, D. Zhou, H. Zhang, State characteristic clustering for nonintrusive load monitoring with stochastic bhaviours in smart grids, Complexity, 2021 (2021), 8839595. https://doi.org/10.1155/2021/8839595 doi: 10.1155/2021/8839595
    [55] H. Peng, J. Li, Q. Gong, Y. Song, P. S. Yu, Fine-grained event categorization with heterogeneous graph convolutional networks, in Twenty-Eighth International Joint Conference on Artificial Intelligence IJCAI-19, (2019), 3238–3245. https://doi.org/10.48550/arXiv.1906.04580
    [56] Y. J. Zhang, L. Yu, Z. J. Fang, N. N. Xiong, L. J. Zhang, H. Y. Tian, An end-to-end deep learning model for robust smooth filtering identification, Future Gener. Comput. Syst., 127 (2021), 182–195. https://doi.org/10.1016/j.future.2021.09.004 doi: 10.1016/j.future.2021.09.004
    [57] Q. Liu, K. M. Kamoto, X. Liu, M. Sun, N. Linge, Low-complexity non-intrusive load monitoring using unsupervised learning and generalized appliance models, IEEE Trans. Consum. Electron., 65 (2019), 28–37. https://doi.org/10.1109/TCE.2019.2891160 doi: 10.1109/TCE.2019.2891160
    [58] H. Shuai, H. He, Online scheduling of a residential microgrid via Monte-Carlo tree search and a learned model, IEEE Trans. Smart Grid, 12 (2020), 1073–1087. https://doi.org/10.1109/TSG.2020.3035127 doi: 10.1109/TSG.2020.3035127
    [59] T. Shao, H. Zhang, K. Cheng, K. Zhang, L. Bie, The hierarchical task network planning method based on Monte Carlo tree search, Knowl.-Based Syst., 225 (2021), 107067. https://doi.org/10.1016/j.knosys.2021.107067 doi: 10.1016/j.knosys.2021.107067
    [60] R. Lu, S. H. Hong, M. Yu, Demand response for home energy management using reinforcement learning and artificial neural network, IEEE Trans. Smart Grid, 10 (2019), 6629–6639. https://doi.org/10.1109/TSG.2019.2909266 doi: 10.1109/TSG.2019.2909266
    [61] V. de Carvalho Neiva Pinheiro, A. L. Francato, W. B. Powell, Reinforcement learning for electricity dispatch in grids with high intermittent generation and energy storage systems: A case study for the Brazilian grid, Int. J. Energy Res., 44 (2020), 8635–8653. https://doi.org/10.1002/er.5551 doi: 10.1002/er.5551
    [62] H. Shuai, H. He, Online scheduling of a residential microgrid via Monte-Carlo tree search and a learned model, IEEE Trans. Smart Grid, 12 (2020), 1073–1087. https://doi.org/10.1109/TSG.2020.3035127 doi: 10.1109/TSG.2020.3035127
    [63] X. Liu, A. Fotouhi, Formula-E race strategy development using artificial neural networks and Monte Carlo tree search, Neural Comput. Appl., 32 (2020), 15191–15207. https://doi.org/10.1007/s00521-020-04871-1 doi: 10.1007/s00521-020-04871-1
    [64] E. J. Powley, P. I. Cowling, D. Whitehouse, Memory bounded Monte Carlo tree search, in Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference, 13 (2017), 94–100. Available from: https://ojs.aaai.org/index.php/AIIDE/article/view/12932.
    [65] R. Bonfigli, A. Felicetti, E. Principi, M. Fagiani, S. Squartini, F. Piazza, Denoising autoencoders for non-intrusive load monitoring: Improvements and comparative evaluation, Energy Build., 158 (2018), 1461–1474. https://doi.org/10.1016/j.enbuild.2017.11.054 doi: 10.1016/j.enbuild.2017.11.054
    [66] Y. Himeur, A. Alsalemi, F. Bensaali, A. Amira, Smart non-intrusive appliance identification using a novel local power histogramming descriptor with an improved k-nearest neighbors classifier, Sustainable Cities Soc., 67 (2021), 102764. https://doi.org/10.1016/j.scs.2021.102764 doi: 10.1016/j.scs.2021.102764
    [67] L. D. Nolasco, A. E. Lazzaretti, B. M. Mulinari, DeepDFML-NILM: A new CNN-based architecture for detection, feature extraction and multi-label classification in NILM signals, IEEE Sens. J., 22 (2022), 501–509. https://doi.org/10.1109/JSEN.2021.3127322 doi: 10.1109/JSEN.2021.3127322
    [68] Z. Huang, X. Wei, Y. Kai, Bidirectional LSTM-CRF models for sequence tagging, Comput. Sci., 2015 (2015). https://doi.org/10.48550/arXiv.1508.01991
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2978) PDF downloads(110) Cited by(3)

Figures and Tables

Figures(16)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog