Research article Special Issues

Identify the characteristic in the evolution of the causality between the gold and dollar

  • Received: 10 May 2022 Revised: 22 July 2022 Accepted: 29 July 2022 Published: 03 August 2022
  • The causal inference method based on the time-series analysis has been subject to intense scrutiny, by which the interaction has been revealed between gold and the dollar. The positive or negative causality between them has been captured by the existing methods. However, the dynamic interactions are time-varying rather than immutable, i.e., the evolution of the causality between gold and the dollar is likely to be covered by the statistical process. In this article, a method which combines the pattern causality and the state-transition network is developed to identify the characteristics of the causality evolution between gold and the dollar. Based on this method, we can identify not only the causality intensity but also the causality type, including the types of positive causality, negative causality and the third causality (dark causality). Furthermore, the patterns of the causalities for the segments of the bivariate time series are transformed to a state-transition network from which the characteristics in the evolution of the causality have also been identified. The results show that the causality has some prominent motifs over time, that are the states of negative causality. More interestingly, the states that act as a bridge in the transition between states are also negative causality. Therefore, our findings provide a new perspective to explain the relatively stable negative causality between gold and the dollar from the evolution of causality. It can also help market participants understand and monitor the dynamic process of causality between gold and the dollar.

    Citation: Ping Wang, Changgui Gu, Huijiu Yang, Haiying Wang. Identify the characteristic in the evolution of the causality between the gold and dollar[J]. Electronic Research Archive, 2022, 30(10): 3660-3678. doi: 10.3934/era.2022187

    Related Papers:

    [1] Baoye Song, Shumin Tang, Yao Li . A new path planning strategy integrating improved ACO and DWA algorithms for mobile robots in dynamic environments. Mathematical Biosciences and Engineering, 2024, 21(2): 2189-2211. doi: 10.3934/mbe.2024096
    [2] Jian Si, Xiaoguang Bao . A novel parallel ant colony optimization algorithm for mobile robot path planning. Mathematical Biosciences and Engineering, 2024, 21(2): 2568-2586. doi: 10.3934/mbe.2024113
    [3] Yuzhuo Shi, Huijie Zhang, Zhisheng Li, Kun Hao, Yonglei Liu, Lu Zhao . Path planning for mobile robots in complex environments based on improved ant colony algorithm. Mathematical Biosciences and Engineering, 2023, 20(9): 15568-15602. doi: 10.3934/mbe.2023695
    [4] Zhen Yang, Junli Li, Liwei Yang, Qian Wang, Ping Li, Guofeng Xia . Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments. Mathematical Biosciences and Engineering, 2023, 20(1): 145-178. doi: 10.3934/mbe.2023008
    [5] Tian Xue, Liu Li, Liu Shuang, Du Zhiping, Pang Ming . Path planning of mobile robot based on improved ant colony algorithm for logistics. Mathematical Biosciences and Engineering, 2021, 18(4): 3034-3045. doi: 10.3934/mbe.2021152
    [6] Xuewu Wang, Bin Tang, Xin Zhou, Xingsheng Gu . Double-robot obstacle avoidance path optimization for welding process. Mathematical Biosciences and Engineering, 2019, 16(5): 5697-5708. doi: 10.3934/mbe.2019284
    [7] Zhenao Yu, Peng Duan, Leilei Meng, Yuyan Han, Fan Ye . Multi-objective path planning for mobile robot with an improved artificial bee colony algorithm. Mathematical Biosciences and Engineering, 2023, 20(2): 2501-2529. doi: 10.3934/mbe.2023117
    [8] Ping Li, Liwei Yang . Conflict-free and energy-efficient path planning for multi-robots based on priority free ant colony optimization. Mathematical Biosciences and Engineering, 2023, 20(2): 3528-3565. doi: 10.3934/mbe.2023165
    [9] Jinzhuang Xiao, Xuele Yu, Keke Sun, Zhen Zhou, Gang Zhou . Multiobjective path optimization of an indoor AGV based on an improved ACO-DWA. Mathematical Biosciences and Engineering, 2022, 19(12): 12532-12557. doi: 10.3934/mbe.2022585
    [10] Chikun Gong, Yuhang Yang, Lipeng Yuan, Jiaxin Wang . An improved ant colony algorithm for integrating global path planning and local obstacle avoidance for mobile robot in dynamic environment. Mathematical Biosciences and Engineering, 2022, 19(12): 12405-12426. doi: 10.3934/mbe.2022579
  • The causal inference method based on the time-series analysis has been subject to intense scrutiny, by which the interaction has been revealed between gold and the dollar. The positive or negative causality between them has been captured by the existing methods. However, the dynamic interactions are time-varying rather than immutable, i.e., the evolution of the causality between gold and the dollar is likely to be covered by the statistical process. In this article, a method which combines the pattern causality and the state-transition network is developed to identify the characteristics of the causality evolution between gold and the dollar. Based on this method, we can identify not only the causality intensity but also the causality type, including the types of positive causality, negative causality and the third causality (dark causality). Furthermore, the patterns of the causalities for the segments of the bivariate time series are transformed to a state-transition network from which the characteristics in the evolution of the causality have also been identified. The results show that the causality has some prominent motifs over time, that are the states of negative causality. More interestingly, the states that act as a bridge in the transition between states are also negative causality. Therefore, our findings provide a new perspective to explain the relatively stable negative causality between gold and the dollar from the evolution of causality. It can also help market participants understand and monitor the dynamic process of causality between gold and the dollar.





    [1] N. Apergis, Can gold prices forecast the Australian dollar movements? Int. Rev. Econ. Finance, 29 (2014), 75–82. http://doi.org/10.1016/j.iref.2013.04.004 doi: 10.1016/j.iref.2013.04.004
    [2] T. D. Kaufmann, R. A. Winters, The price of gold: a simple model, Resour. Policy 15 (1989), 309–313. https://doi.org/10.1016/0301-4207(89)90004-4 doi: 10.1016/0301-4207(89)90004-4
    [3] B. Mo, H. Nie, Y. Jiang, Dynamic linkages among the gold market, US dollar and crude oil market, Phys. A, 491 (2017), 984–994. https://doi.org/10.1016/j.physa.2017.09.091 doi: 10.1016/j.physa.2017.09.091
    [4] X. M. Ma, R. X. Yang, D. Zou, R. Liu, Measuring extreme risk of sustainable financial system using GJR-GARCH model trading data-based, Int. J. Inf. Manage., 50 (2020), 526–537. https://doi.org/10.1016/j.ijinfomgt.2018.12.013 doi: 10.1016/j.ijinfomgt.2018.12.013
    [5] Z. H. Ding, K. Shi, B. Wang, Dollar's influence on crude oil and gold based on MF-DPCCA method, Discrete Dyn. Nat. Soc., 2021 (2021), 5558967. https://doi.org/10.1155/2021/5558967 doi: 10.1155/2021/5558967
    [6] J. Chai, C. Y. Zhao, Y. Hu, Z. G. Zhang, Structural analysis and forecast of gold price returns, J. Manage. Sci. Eng., 6 (2021), 135–145. https://doi.org/10.1016/j.jmse.2021.02.011 doi: 10.1016/j.jmse.2021.02.011
    [7] N. Diniz-Maganini, E. H. Dinizb, A. A. Rasheedc, Bitcoin's price efficiency and safe haven properties during the COVID-19 pandemic: a comparison, Res. Int. Bus. Finance, 58 (2021), 101472. https://doi.org/10.1016/j.ribaf.2021.101472 doi: 10.1016/j.ribaf.2021.101472
    [8] R. W. Jastram, The Golden Constant, J. Econ., 100 (2010), 189–190. http://doi.org/10.1007/s00712-010-0124-5 doi: 10.1007/s00712-010-0124-5
    [9] B. M. Lucey, E. Tully, Seasonality, risk and return in daily comex gold and silver, Appl. Financ. Econ., 16 (2006), 319–333. http://doi.org/10.1080/09603100500386586 doi: 10.1080/09603100500386586
    [10] M. Joy, Gold and the US dollar: hedge or haven? Finance Res. Lett., 8 (2011), 120–131. http://doi.org/10.1016/j.frl.2011.01.001 doi: 10.1016/j.frl.2011.01.001
    [11] C. S. Liu, M. S. Chang, X. M. Wu, C. M. Chui, Hedges or safe havens–revisit the role of gold and USD against stock: a multivariate extended skew-t copula approach, Quant. Finance, 16 (2016), 1763–1789. http://doi.org/10.1080/14697688.2016.1176238 doi: 10.1080/14697688.2016.1176238
    [12] K. Pukthuanthong, R. Roll, Gold and the Dollar (and the Euro, Pound, and Yen), J. Banking Finance, 35 (2011), 2070–2083. http://doi.org/10.1016/j.jbankfin.2011.01.014 doi: 10.1016/j.jbankfin.2011.01.014
    [13] J. C. Reboredo, Is gold a safe haven or a hedge for the US dollar? Implications for risk management, J. Banking Finance, 37 (2013), 2665–2676. http://doi.org/10.1016/j.jbankfin.2013.03.020 doi: 10.1016/j.jbankfin.2013.03.020
    [14] F. Capie, T. C. Mills, G. Wood, Gold as a hedge against the dollar, J. Int. Financ. Mark., Inst. Money, 15 (2005), 343–352. http://doi.org/10.1016/j.intfin.2004.07.002 doi: 10.1016/j.intfin.2004.07.002
    [15] M. Massimiliano, Z. Paolo, Gold and the U.S. dollar: tales from the turmoil, Quant. Finance, 13 (2013), 571–582. http://doi.org/10.2139/ssrn.1598745 doi: 10.2139/ssrn.1598745
    [16] F. L. Lin, Y. F. Chen, S. Y. Yang, Does the value of US dollar matter with the price of oil and gold? A dynamic analysis from time-frequency space, Int. Rev. Econ. Finance, 43 (2016), 59–71. https://doi.org/10.1016/j.iref.2015.10.031 doi: 10.1016/j.iref.2015.10.031
    [17] H. An, X. Y. Gao, W. Fang, Y. Ding, W. Zhong, Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: a complex network approach, Appl. Energy, 136 (2014), 1067–1075. https://doi.org/10.1016/j.apenergy.2014.07.081 doi: 10.1016/j.apenergy.2014.07.081
    [18] A. L. Barabasi, R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509–512. https://doi.org/10.1126/science.286.5439.509 doi: 10.1126/science.286.5439.509
    [19] M. E. J. Newman, D. J. Watts, Renormalization group analysis of the small-world network model, Phys. Lett., 263 (1999), 341–346. https://doi.org/10.1016/S0375-9601(99)00757-4 doi: 10.1016/S0375-9601(99)00757-4
    [20] L. Lacasa, B. Luque, F. J. Ballesteros, J. Luque, J. C. Nuno, From time series to complex networks: the visibility graph, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 4972–4975. http://doi.org/10.1073/pnas.0709247105 doi: 10.1073/pnas.0709247105
    [21] R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. Xiang, et al., Recurrence-based time series analysis by means of complex network methods, Int. J. Bifurcation Chaos, 21 (2011), 1019–1046. https://doi.org/10.1142/S0218127411029021 doi: 10.1142/S0218127411029021
    [22] X. Y. Gao, W. Fang, F. An, Y. Wang, Detecting method for crude oil price fluctuation mechanism under different periodic time series, Appl. Energy, 192 (2017), 201–212. https://doi.org/10.1016/j.apenergy.2017.02.014 doi: 10.1016/j.apenergy.2017.02.014
    [23] X. Han, Y. Zhao, M. Small, Identification of dynamical behavior of pseudoperiodic time series by network community structure, IEEE Trans. Circuits Syst. Ⅱ: Express Briefs, 66 (2019), 1905–1909. https://doi.org/10.1109/TCSII.2019.2903936 doi: 10.1109/TCSII.2019.2903936
    [24] Y. Zhao, T. Weng, S. Ye, Geometrical invariability of transformation between a time series and a complex network, Phys. Rev. E, 90 (2014), 012804. https://doi.org/10.1103/PhysRevE.90.012804 doi: 10.1103/PhysRevE.90.012804
    [25] C. Zhou, L. Ding, Y. Zhou, H. Luo, Topological mapping and assessment of multiple settlement time series in deep excavation: a complex network perspective, Adv. Eng. Inf., 36 (2018), 1–19. https://doi.org/10.1016/j.aei.2018.02.005 doi: 10.1016/j.aei.2018.02.005
    [26] S. Mutua, C. G. Gu, H. j. Yang, Visibility graphlet approach to chaotic time series, Chaos, 26 (2016), 053107. http://doi.org/10.1063/1.4951681 doi: 10.1063/1.4951681
    [27] Z. K. Gao, Q. Cai, Y. X. Yang, W. D. Dang, S. S. Zhang, Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear timeseries, Sci. Rep., 6 (2016), 035622. https://doi.org/10.1038/srep35622 doi: 10.1038/srep35622
    [28] Y. Y. Zhao, C. G. Gu, H. J. Yang, Visibility-graphlet approach to the output series of a Hodgkin-Huxley neuron, Chaos, 31 (2021), 043102. https://doi.org/10.1063/5.0018359 doi: 10.1063/5.0018359
    [29] J. Zhang, D. C. Broadstock, The causality between energy consumption and economic growth for China in a time-varying framework, Energy J., 37 (2016), 29–53. https://doi.org/10.5547/01956574.37.SI1.jzha doi: 10.5547/01956574.37.SI1.jzha
    [30] O. Nataf, L. De Moor, Debt rating downgrades of financial institutions: causality tests on single-issue CDS and iTraxx, Quant. Finance, 19 (2019), 1975–1993. https://doi.org/10.1080/14697688.2019.1619933 doi: 10.1080/14697688.2019.1619933
    [31] T. Wu, X. Y. Gao, S. F. An, S. Y. Liu, Diverse causality inference in foreign exchange markets, Int. J. Bifurcation Chaos, 31 (2021), 2150070. https://doi.org/10.1142/S021812742150070X doi: 10.1142/S021812742150070X
    [32] G. Sugihara, Detecting causality in complex ecosystems, Science, 338 (2012), 496–500. https://doi.org/10.1126/science.1227079 doi: 10.1126/science.1227079
    [33] S. Y. Leng, H. F. Ma, J. Kurths, Y. C. Lai, W. Lin, K. Aihara, et al., Partial cross mapping eliminates indirect causal influences, Nat. Commun., 11 (2020), 2632. http://doi.org/10.1038/s41467-020-16238-0 doi: 10.1038/s41467-020-16238-0
    [34] S. K. Stavroglou, A. A. Pantelous, H. E. Stanley, K. M. Zuev, Hidden interactions in financial markets, Proc. Natl. Acad. Sci., 116 (2019), 10646–10651. http://doi.org/10.1073/pnas.1819449116 doi: 10.1073/pnas.1819449116
    [35] S. K. Stavroglou, A. A. Pantelous, H. E. Stanley, K. M. Zuev, Unveiling causal interactions in complex systems, Proc. Natl. Acad. Sci., 117 (2020), 7599–7605. http://doi.org/10.1073/pnas.1918269117 doi: 10.1073/pnas.1918269117
    [36] G. Sugihara, R. M. May, Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Nature, 344 (1990), 734–741. http://doi.org/10.1038/344734a0 doi: 10.1038/344734a0
    [37] F. Takens, Dynamical systems and turbulence, Lect. Notes Math., Springer-Verlag, New York, 898 (1981), 366–381.
    [38] H. S. Kim, R. Eykholt, J. D. Salas, Nonlinear dynamics, delay times, and embedding windows, Phys. D, 127 (1999), 48–60. https://doi.org/10.1016/S0167-2789(98)00240-1 doi: 10.1016/S0167-2789(98)00240-1
    [39] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs: simple building blocks of complex networks, Science, 298 (2002), 824–827. https://doi.org/10.1126/science.298.5594.824 doi: 10.1126/science.298.5594.824
    [40] A. Reka, A. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47–97. https://doi.org/10.1103/RevModPhys.74.47 doi: 10.1103/RevModPhys.74.47
    [41] M. S. Taqqu, V. Teverovsky, W. Willinger, Estimators for long-range dependence: an empirical study, Fractals, 3 (1995), 785–798. https://doi.org/10.1142/S0218348X95000692 doi: 10.1142/S0218348X95000692
    [42] H. E. Hurst, Long-term syorage capacity of reservoirs, Trans. Am. Soc. Civ. Eng., 116 (1951), 770–799. https://doi.org/10.1061/TACEAT.0006518 doi: 10.1061/TACEAT.0006518
    [43] E. E. Peters, Fractal Market Analysis: Applying Chaos Theory to Investment and Economics, Inc: John Wiley Sons, 1994. Available from: https://vdoc.pub/documents/fractal-market-analysis-applying-chaos-theory-to-investment-and-economics-2eb6d1gv7jsg.
    [44] A. Barulescu, C. Serban, C. Maftel, Evaluation of Hurst exponent for precipitation time series, in Proceedings of the 14th WSEAS international conference on Computers: part of the 14th WSEAS CSCC multiconference, (2010), 590–595. Available from: https://www.researchgate.net/publication/262253543.
    [45] P. M. Robinson, Gaussian semiparametric estimation of longrange dependence, Ann. Stat., 23 (1995), 1630–1661. https://doi.org/10.1214/aos/1176324317 doi: 10.1214/aos/1176324317
    [46] G. W. Wornell, A. V. Oppenheim, Estimation of fraetal signals from noisy measurements using wavelets, IEEE Trans. Signal Process., 40 (1992), 61l–623. https://doi.org/10.1109/78.120804 doi: 10.1109/78.120804
    [47] S. Fortunato, C. Castellano, Community structure in graphs, Comput. Complexity, Springer, New York, preprint, arXiv: 0712.2716.
    [48] X. T. Sun, W. Fang, X. Y. Gao, S. F. An, S. Y. Liu, T. Wu, Time-varying causality inference of different nickel markets based on the convergent cross mapping method, Resour. Policy, 74 (2021), 102385. https://doi.org/10.1016/j.resourpol.2021.102385 doi: 10.1016/j.resourpol.2021.102385
    [49] V. D. Blondel, J. L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech.: Theory Exp., 10 (2008), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008 doi: 10.1088/1742-5468/2008/10/P10008
  • This article has been cited by:

    1. Liwei Yang, Lixia Fu, Ping Li, Jianlin Mao, Ning Guo, An Effective Dynamic Path Planning Approach for Mobile Robots Based on Ant Colony Fusion Dynamic Windows, 2022, 10, 2075-1702, 50, 10.3390/machines10010050
    2. Qian Wang, Junli Li, Liwei Yang, Zhen Yang, Ping Li, Guofeng Xia, Distributed Multi-Mobile Robot Path Planning and Obstacle Avoidance Based on ACO–DWA in Unknown Complex Terrain, 2022, 11, 2079-9292, 2144, 10.3390/electronics11142144
    3. Pranshav Gajjar, Virensinh Dodia, Siddharth Mandaliya, Pooja Shah, Vijay Ukani, Madhu Shukla, 2022, Chapter 19, 978-3-031-23094-3, 262, 10.1007/978-3-031-23095-0_19
    4. Xingcheng Pu, Xinlin Song, Ling Tan, Yi Zhang, Improved ant colony algorithm in path planning of a single robot and multi-robots with multi-objective, 2023, 1864-5909, 10.1007/s12065-023-00821-7
    5. Xiaoling Meng, Xijing Zhu, Autonomous Obstacle Avoidance Path Planning for Grasping Manipulator Based on Elite Smoothing Ant Colony Algorithm, 2022, 14, 2073-8994, 1843, 10.3390/sym14091843
    6. Sai Zhang, Li Tang, Yan-Jun Liu, Formation deployment control of multi-agent systems modeled with PDE, 2022, 19, 1551-0018, 13541, 10.3934/mbe.2022632
    7. Jie Zhang, Xiuqin Pan, 2022, Chapter 1, 978-3-031-23584-9, 3, 10.1007/978-3-031-23585-6_1
    8. Zhen Yang, Junli Li, Liwei Yang, Qian Wang, Ping Li, Guofeng Xia, Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments, 2022, 20, 1551-0018, 145, 10.3934/mbe.2023008
    9. Nour Abujabal, Raouf Fareh, Saif Sinan, Mohammed Baziyad, Maamar Bettayeb, A comprehensive review of the latest path planning developments for multi-robot formation systems, 2023, 0263-5747, 1, 10.1017/S0263574723000322
    10. Yiqi Xu, Qiongqiong Li, Xuan Xu, Jiafu Yang, Yong Chen, Research Progress of Nature-Inspired Metaheuristic Algorithms in Mobile Robot Path Planning, 2023, 12, 2079-9292, 3263, 10.3390/electronics12153263
    11. Wenjie Ning, Li Ma, Zhichuang Wang, Fangyuan Hou, 2024, Chapter 33, 978-981-97-3327-9, 393, 10.1007/978-981-97-3328-6_33
    12. Semonti Banik, Sajal Chandra Banik, Sarker Safat Mahmud, Path Planning Approaches in Multi‐robot System: A Review, 2024, 2577-8196, 10.1002/eng2.13035
    13. Georgios Karamitsos, Dimitrios Bechtsis, Naoum Tsolakis, Dimitrios Vlachos, 2024, Chapter 5, 978-3-031-58918-8, 139, 10.1007/978-3-031-58919-5_5
    14. Liwei Yang, Ping Li, Song Qian, He Quan, Jinchao Miao, Mengqi Liu, Yanpei Hu, Erexidin Memetimin, Path Planning Technique for Mobile Robots: A Review, 2023, 11, 2075-1702, 980, 10.3390/machines11100980
    15. Bilal Gurevin, Furkan Gulturk, Muhammed Yildiz, Ihsan Pehlivan, Trung Thanh Nguyen, Fatih Caliskan, Baris Boru, Mustafa Zahid Yildiz, A Novel GUI Design for Comparison of ROS-Based Mobile Robot Local Planners, 2023, 11, 2169-3536, 125738, 10.1109/ACCESS.2023.3327705
    16. Zhen Zhou, Chenchen Geng, Buhu Qi, Aiwen Meng, Jinzhuang Xiao, Research and experiment on global path planning for indoor AGV via improved ACO and fuzzy DWA, 2023, 20, 1551-0018, 19152, 10.3934/mbe.2023846
    17. Mohammed Baziyad, Nour AbuJabal, Raouf Fareh, Tamer Rabie, Ibrahim Kamel, Maamar Bettayeb, 2023, A Direction for Swarm Robotic Path Planning Technique Using Potential Field Concepts and Particle Swarm Optimization, 979-8-3503-8239-6, 7, 10.1109/IIT59782.2023.10366467
    18. Shuai Wu, Ani Dong, Qingxia Li, Wenhong Wei, Yuhui Zhang, Zijing Ye, Application of ant colony optimization algorithm based on farthest point optimization and multi-objective strategy in robot path planning, 2024, 167, 15684946, 112433, 10.1016/j.asoc.2024.112433
    19. Yongrong Cai, Haibin Liu, Mingfei Li, Fujie Ren, A Method of Dual-AGV-Ganged Path Planning Based on the Genetic Algorithm, 2024, 14, 2076-3417, 7482, 10.3390/app14177482
    20. Shuai Wu, Qingxia Li, Wenhong Wei, Zijing Ye, 2023, Research on Mobile Robot Path Planning in Angle-Guided Ant Colony Optimization Algorithm, 979-8-3503-0375-9, 7070, 10.1109/CAC59555.2023.10450803
    21. Nour AbuJabal, Tamer Rabie, Mohammed Baziyad, Ibrahim Kamel, Khawla Almazrouei, Path Planning Techniques for Real-Time Multi-Robot Systems: A Systematic Review, 2024, 13, 2079-9292, 2239, 10.3390/electronics13122239
    22. Nour Ayman Abujabal, Tamer Rabie, Ibrahim Kamel, 2023, Path Planning Techniques for Multi-robot Systems: A Systematic Review, 979-8-3503-8239-6, 1, 10.1109/IIT59782.2023.10366472
    23. Cuicui Cai, Chaochuan Jia, Yao Nie, Jinhong Zhang, Ling Li, A path planning method using modified harris hawks optimization algorithm for mobile robots, 2023, 9, 2376-5992, e1473, 10.7717/peerj-cs.1473
    24. Shuai Wu, Qingxia Li, Wenhong Wei, Application of Ant Colony Optimization Algorithm Based on Triangle Inequality Principle and Partition Method Strategy in Robot Path Planning, 2023, 12, 2075-1680, 525, 10.3390/axioms12060525
    25. Meltem Eyuboglu, Gokhan Atali, A novel collaborative path planning algorithm for 3-wheel omnidirectional Autonomous Mobile Robot, 2023, 169, 09218890, 104527, 10.1016/j.robot.2023.104527
    26. Wenteng Wang, 2024, Chapter 4, 978-981-97-3209-8, 39, 10.1007/978-981-97-3210-4_4
    27. Haobo Feng, Qiao Hu, Zhenyi Zhao, Xinglong Feng, Chuan Jiang, A varied-width path planning method for multiple AUV formation, 2025, 199, 03608352, 110746, 10.1016/j.cie.2024.110746
    28. Luis E. Ruiz-Fernandez, Javier Ruiz-Leon, David Gomez-Gutierrez, Rafael Murrieta-Cid, Decentralized multi-robot formation control in environments with non-convex and dynamic obstacles based on path planning algorithms, 2025, 1861-2776, 10.1007/s11370-024-00582-x
    29. Yong Li, Neng Long, 2024, Path Planning for Mobile Robots Based on the Improved Adaptive Ant Colony Algorithm, 979-8-3503-6860-4, 1761, 10.1109/CAC63892.2024.10865367
    30. Wenyan Zhu, Wenzheng Cai, Hoiio Kong, Optimal Path Planning Based on ACO in Intelligent Transportation, 2025, 26663074, 10.1016/j.ijcce.2025.02.006
    31. Huiliao Yang, Bo Zhang, Chang Xiao, 2025, Chapter 44, 978-981-96-2227-6, 470, 10.1007/978-981-96-2228-3_44
    32. Guangping Qiu, Jizhong Deng, Jincan Li, Weixing Wang, Hybrid Clustering-Enhanced Brain Storm Optimization Algorithm for Efficient Multi-Robot Path Planning, 2025, 10, 2313-7673, 347, 10.3390/biomimetics10060347
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2203) PDF downloads(114) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog