| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
This article is concerned with the minimal wave speed of traveling wave solutions for an integrodifference equation of higher order. Besides the operator may be nonmonotone, the kernel functions may be not Lebesgue measurable and integrable such that the equation has lower regularity. By constructing a proper set of potential wave profiles, we obtain the existence of smooth traveling wave solutions when the wave speed is larger than a threshold. Here, the profile set is obtained by giving a pair of upper and lower solutions. When the wave speed is the threshold, the existence of nontrivial traveling wave solutions is proved by passing to a limit function. Moreover, we obtain the nonexistence of nontrivial traveling wave solutions when the wave speed is smaller than the threshold.
Citation: Fuzhen Wu. Traveling wave solutions for an integrodifference equation of higher order[J]. AIMS Mathematics, 2022, 7(9): 16482-16497. doi: 10.3934/math.2022902
[1] | Pengliang Xu, Xiaomin Tang . Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29(4): 2771-2789. doi: 10.3934/era.2021013 |
[2] | Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061 |
[3] | Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063 |
[4] | Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214 |
[5] | Shanshan Liu, Abdenacer Makhlouf, Lina Song . The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141 |
[6] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
[7] | Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157 |
[8] | Jinguo Jiang . Algebraic Schouten solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups. Electronic Research Archive, 2025, 33(1): 327-352. doi: 10.3934/era.2025017 |
[9] | Hongyan Guo . Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008 |
[10] | Ying Hou, Liangyun Chen, Keli Zheng . Super-bimodules and O-operators of Bihom-Jordan superalgebras. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264 |
This article is concerned with the minimal wave speed of traveling wave solutions for an integrodifference equation of higher order. Besides the operator may be nonmonotone, the kernel functions may be not Lebesgue measurable and integrable such that the equation has lower regularity. By constructing a proper set of potential wave profiles, we obtain the existence of smooth traveling wave solutions when the wave speed is larger than a threshold. Here, the profile set is obtained by giving a pair of upper and lower solutions. When the wave speed is the threshold, the existence of nontrivial traveling wave solutions is proved by passing to a limit function. Moreover, we obtain the nonexistence of nontrivial traveling wave solutions when the wave speed is smaller than the threshold.
The Schrödinger-Virasoro algebra is an infinite-dimensional Lie algebra that was introduced (see, e.g., [10]) in the context of non-equilibrium statistical physics. In [21], the author give a representation of the Schrödinger-Virasoro algebra by using vertex algebras, and introduced an extension of the Schrödinger-Virasoro algebra. To be precise, for
{Li,Hj,Ii|i∈Z,j∈ε+Z} |
and Lie brackets
[Lm,Ln]=(m−n)Lm+n,[Lm,Hn]=(12m−n)Hm+n,[Lm,In]=−nIm+n,[Hm,Hn]=(m−n)Im+n,[Hm,In]=[Im,In]=0. |
The Lie algebra
Post-Lie algebras were introduced around 2007 by B. Vallette [22], who found the structure in a purely operadic manner as the Koszul dual of a commutative trialgebra. Post-Lie algebras have arose the interest of a great many authors, see [4,5,12,13]. One of the most important problems in the study of post-Lie algebras is to find the post-Lie algebra structures on the (given) Lie algebras. In [13,18,20], the authors determined all post-Lie algebra structures on
In this paper, we shall study the graded post-Lie algebra structures on the Schrödinger-Virasoro algebra. We only study the twisted Schrödinger-Virasoro algebra
Throughout this paper, we denote by
The paper is organized as follows. In Section 2, we give general results on post-Lie algebras and some lemmas which will be used to our proof. In Section 3, we completely characterize the graded post-Lie algebra structures on Schrödinger-Virasoro algebra
We will give the essential definitions and results as follows.
Definition 2.1. A post-Lie algebra
[x,y]▹z=x▹(y▹z)−y▹(x▹z)−⟨x,y⟩▹z, | (1) |
x▹[y,z]=[x▹y,z]+[y,x▹z] | (2) |
for all
Suppose that
τ(x▹1y)=τ(x)▹2τ(y),∀x,y∈L. |
Remark 1. The left multiplications of the post-Lie algebra
Lemma 2.2. [15] Denote by
Der(S)=Inn(S)⊕CD1⊕CD2⊕CD3 |
where
D1(Ln)=0,D1(Hn)=Hn,D1(In)=2In,D2(Ln)=nIn,D2(Hn)=0,D2(In)=0,D3(Ln)=In,D3(Hn)=0,D3(In)=0. |
Since the Schrödinger-Virasoro algebra
Lm▹Ln=ϕ(m,n)Lm+n, | (3) |
Lm▹Hn=φ(m,n)Hm+n, | (4) |
Lm▹In=χ(m,n)Im+n, | (5) |
Hm▹Ln=ψ(m,n)Hm+n, | (6) |
Hm▹Hn=ξ(m,n)Im+n, | (7) |
Im▹Ln=θ(m,n)Im+n, | (8) |
Hm▹In=Im▹Hn=Im▹In=0, | (9) |
for all
We start with the crucial lemma.
Lemma 3.1. There exists a graded post-Lie algebra structure on
ϕ(m,n)=(m−n)f(m), | (10) |
φ(m,n)=(m2−n)f(m)+δm,0μ, | (11) |
χ(m,n)=−nf(m)+2δm,0μ, | (12) |
ψ(m,n)=−(n2−m)h(m), | (13) |
ξ(m,n)=(m−n)h(m), | (14) |
θ(m,n)=mg(m)+δm,0na, | (15) |
(m−n)(f(m+n)(1+f(m)+f(n))−f(n)f(m))=0, | (16) |
(m−n)δm+n,0μ(1+f(m)+f(n))=0, | (17) |
(m2−n)(h(m+n)(1+f(m)+h(n))−f(m)h(n))=0, | (18) |
nδm+n,0a(1+f(m)+g(n))=0, | (19) |
n(m+n)(g(m+n)(1+f(m)+g(n))−f(m)g(n)) =δn,0m2a(f(m)−g(m)), | (20) |
(m−n)δm+n,0a(1+h(m)+h(n))=0, | (21) |
(m−n)(g(m+n)(1+h(m)+h(n))−h(m)h(n))=0. | (22) |
Proof. Suppose that there exists a graded post-Lie algebra structure satisfying (3)-(9) on
x▹y=(adψ(x)+α(x)D1+β(x)D2+γ(x)D3)(y)=[ψ(x),y]+α(x)D1(y)+β(x)D2(y)+γ(x)D3(y) |
where
Lm▹Ln=[ψ(Lm),Ln]+β(Lm)nIn+γ(Lm)In=ϕ(m,n)Lm+n, | (23) |
Lm▹Hn=[ψ(Lm),Hn]+α(Lm)Hn=φ(m,n)Hm+n, | (24) |
Lm▹In=[ψ(Lm),In]+α(Lm)2In=χ(m,n)Im+n, | (25) |
Hm▹Ln=[ψ(Hm),Ln]+β(Hm)nIn+γ(Hm)In=ψ(m,n)Hm+n, | (26) |
Hm▹Hn=[ψ(Hm),Hn]+α(Hm)Hn=ξ(m,n)Im+n, | (27) |
Hm▹In=[ψ(Hm),In]+α(Hm)2In=0, | (28) |
Im▹Ln=[ψ(Im),Ln]+β(Im)nIn+γ(Im)In=θ(m,n)Im+n, | (29) |
Im▹Hn=[ψ(Im),Hn]+α(Im)Hn=0, | (30) |
Im▹In=[ψ(Im),In]+α(Im)2In=0. | (31) |
Let
ψ(Lm)=∑i∈Za(m)iLi+∑i∈Zb(m)iHi+∑i∈Zc(m)iIi,ψ(Hm)=∑i∈Zd(m)iLi+∑i∈Ze(m)iHi+∑i∈Zf(m)iIi,ψ(Im)=∑i∈Zg(m)iLi+∑i∈Zh(m)iHi+∑i∈Zx(m)iIi |
where
The "if'' part is a direct checking. The proof is completed.
Lemma 3.2. Let
g(n),h(n)∈{0,−1}for everyn≠0. | (32) |
Proof. By letting
Lemma 3.3. Let
g(Z)=h(Z)=0org(Z)=h(Z)=−1. |
Proof. Since
a(1+g(−1))=0. | (33) |
By letting
(m2−n)(h(m+n)(1+h(n))=0, | (34) |
n(m+n)(g(m+n)(1+g(n))=0, | (35) |
(m−n)(g(m+n)−h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0. | (36) |
We now prove the following four claims:
Claim 1. If
By (34) with
Claim 2. If
By (34) with
Claim 3. If
By (35) with
Claim 4. If
By (35) with
Now we consider the values of
Case i. If
Case ii. If
Case iii. If
Case iv. If
Lemma 3.4. Let
(i)
(ii)
(iii)
Proof. By
h(m+n)(h(n)+1)=0 if m⩽1,m2−n≠0, | (37) |
g(m+n)(g(n)+1)=0 if m⩽1,n≠0,m+n≠0, | (38) |
g(m+n)(1+h(m)+h(n))=h(m)h(n) if m≠n. | (39) |
We first prove the following six claims:
Claim 1. If
By (37) with
Claim 2. If
By (37) with
Claim 3. If
By (37) with
Claim 4. If
By (37) with
Next, similar to Claims 1 and 3, we from (38) obtain the following claims.
Claim 5. If
Claim 6. If
Now we discuss the values of
Case i. When
By Claim 1 we have
Case ii. When
By Claim 2 we have
Case iii. When
By Claims 3 and 4 we have
It is easy to check that the values of
Lemma 3.5. Let
(i)
(ii)
(iii)
for some
(iv)
Proof. Take
h(0)(1+f(−n)+h(n))=f(−n)h(n), for all n≠0, | (40) |
a(1+f(−n)+g(n))=0, for all n≠0, | (41) |
a(1+h(−n)+h(n))=0, for all n≠0, | (42) |
g(0)(1+h(−n)+h(n))=h(−n)h(n), for all n≠0. | (43) |
Note that
h(n)(h(m+n)+1)=0 for all m>0,m2−n≠0; | (44) |
h(m+n)(h(n)+1)=0 for all m<0,m2−n≠0; | (45) |
g(n)(g(m+n)+1)=0 for all m>0,n≠0,m+n≠0; | (46) |
g(m+n)(g(n)+1)=0 for all m<0,n≠0,m+n≠0; | (47) |
g(m+n)(1+h(m)+h(n))=h(m)h(n) for all m≠n. | (48) |
For any
Claim 1. If
In fact, by (44) with
Claim 2. If
This proof is similar to Claim 1 by using (44) and (45). Also, similar to Claims 1 and 2, by (46) and (47) we can obtain the following two claims:
Claim 3. If
Claim 4. If
According to (32), by Claims 1 and 2,
(1)
(2)
(3)
(4)
In view of the above result, the next proof will be divided into the following cases.
Case i. When
By taking
Case ii. When
By taking
Case iii. When
By (48) we see that
Case iv. When
Note that
Lemma 3.6. Let
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
Proof. The proof of the "if" direction can be directly verified. We now prove the "only if" direction. In view of
| |
| |
| |
| |
| |
| |
| |
| |
|
When
When
When
Lemma 3.7. Let (P(ϕi,φi,χi,ψi,ξi,θi),▹i), i=1,2 be two algebras with the same linear space as S and equipped with C-bilinear products x▹iy such that
Lm▹iLn=ϕi(m,n)Lm+n,Lm▹iHn=φi(m,n)Hm+n,Lm▹iIn=χi(m,n)Im+n,Hm▹iLn=ψi(m,n)Hm+n,Hm▹iHn=ξi(m,n)Im+n,Im▹iLn=θi(m,n)Im+n,Hm▹iIn=Im▹iHn=Im▹iIn=0 |
for all m,n∈Z, where ϕi,φi,χi,ψi,ξi,θi, i=1,2 are complex-valued functions on Z×Z. Furthermore, let τ:P(ϕ1,φ1,χ1,ψ1,ξ1,θ1)→P(ϕ2,φ2,χ2,ψ2,ξ2,θ2) be a linear map determined by
τ(Lm)=−L−m,τ(Hm)=−H−m,τ(Im)=−I−m |
for all
{ϕ2(m,n)=−ϕ1(−m,−n);φ2(m,n)=−φ1(−m,−n);χ2(m,n)=−χ1(−m,−n);ψ2(m,n)=−ψ1(−m,−n);ξ2(m,n)=−ξ1(−m,−n);θ2(m,n)=−θ1(−m,−n). | (49) |
Proof. Clearly,
τ(Lm▹iLn)=−ϕi(m,n)L−(m+n),τ(Lm▹iHn)=−φi(m,n)H−(m+n),τ(Lm▹iIn)=−χi(m,n)I−(m+n),τ(Hm▹iLn)=−ψi(m,n)H−(m+n),τ(Hm▹iHn)=−ξi(m,n)I−(m+n),τ(Im▹iLn)=−θi(m,n)I−(m+n) |
for
The remainder is to prove that
τ(Lm▹1Ln)=−ϕ1(m,n)L−(m+n)=ϕ2(−m,−n)L−(m+n)=τ(Lm)▹2τ(Ln),τ(Lm▹1Hn)=−φ1(m,n)H−(m+n)=φ2(−m,−n)H−(m+n)=τ(Lm)▹2τ(Hn),τ(Lm▹1In)=−χ1(m,n)I−(m+n)=χ2(−m,−n)I−(m+n)=τ(Lm)▹2τ(In),τ(Hm▹1Ln)=−ψ1(m,n)H−(m+n)=ψ2(−m,−n)H−(m+n)=τ(Hm)▹2τ(Ln),τ(Hm▹1Hn)=−φ1(m,n)I−(m+n)=φ2(−m,−n)I−(m+n)=τ(Hm)▹2τ(Hn), |
τ(Im▹1Ln)=−θ1(m,n)I−(m+n)=ϕ2(−m,−n)I−(m+n)=τ(Im)▹2τ(Ln) |
and
Theorem 3.8. A graded post-Lie algebra structure on
where
Proof. Suppose that
Conversely, every type of the
Finally, by Lemma 3.7 with maps
The Rota-Baxter algebra was introduced by the mathematician Glen E. Baxter [2] in 1960 in his probability study, and was popularized mainly by the work of Rota [G. Rota1, G. Rota2] and his school. Recently, the Rota-Baxter algebra relation were introduced to solve certain analytic and combinatorial problem and then applied to many fields in mathematics and mathematical physics (see [6,7,19,23] and the references therein). Now let us recall the definition of Rota-Baxter operator.
Definition 4.1. Let
[R(x),R(y)]=R([R(x),y]+[x,R(y)])+λR([x,y]),∀x,y∈L. | (50) |
Note that if
In this section, we mainly consider the homogeneous Rota-Baxter operator
R(Lm)=f(m)Lm, R(Hm)=h(m)Hm, R(Im)=g(m)Im | (51) |
for all
Lemma 4.2. (see [1]) Let
Theorem 4.3. A homogeneous Rote-Baxrer operator
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
for all
Proof. In view of Lemma 4.2, if we define a new operation
Lm▹Ln=[R(Lm),Ln]=(m−n)f(m)Lm+n, | (52) |
Lm▹Hn=[R(Lm),Hn]=(m2−n)f(m)Hm+n, | (53) |
Lm▹In=[R(Lm),In]=−nf(m)Im+n, | (54) |
Hm▹Ln=[R(Hm),Ln]=−(n2−m)h(m)Hm+n, | (55) |
Hm▹Hn=[R(Hm),Hn]=(m−n)h(m)Im+n, | (56) |
Im▹Ln=[R(Im),Ln]=mg(m)Im+n | (57) |
and
A similar discussion to Lemma 3.1 gives
(m−n)(f(m+n)−f(n)f(m)+f(m)f(m+n)+f(n)f(m+n))=0,(m2−n)(h(m+n)−f(m)h(n)+f(m)h(m+n)+h(n)h(m+n))=0,n(m+n)(g(m+n)(1+f(m)+g(n))−f(m)g(n))=0,(m−n)(g(m+n)−h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0. |
From this we conclude that Equations (10)-(22) hold with
The natural question is: how we can characterize the Rota-Baxter operators of weight zero on the Schrödinger-Virasoro
Definition 4.4. A pre-Lie algebra
(x▹y)▹z−x▹(y▹z)=(y▹x)▹z−y▹(x▹z),∀x,y,z∈A. | (58) |
As a parallel result of Lemma 4.2, one has the following conclusion.
Proposition 1. (see [8]) Let
Using a similar method on classification of Rota-Baxter operators of weight
We would like to express our sincere thanks to the anonymous referees for their careful reading and valuable comments towards the improvement of this article.
[1] |
A. R. A. Anderson, B. D. Sleeman, Wave front propagation and its failure in coupled systems of discrete bistable cells modeled by FitzHugh-Nagumo dynamics, Int. J. Bifurcat. Chaos, 5 (1995), 63–74. https://doi.org/10.1142/S0218127495000053 doi: 10.1142/S0218127495000053
![]() |
[2] |
A. Arbi, Novel traveling waves solutions for nonlinear delayed dynamical neural networks with leakage term, Chaos Soliton. Fract., 152 (2021), 111436. http://doi.org/10.1016/j.chaos.2021.111436 doi: 10.1016/j.chaos.2021.111436
![]() |
[3] |
Y. Guo, S. S. Ge, A. Arbi, Stability of traveling waves solutions for nonlinear cellular neural networks with distributed delays, J. Syst. Sci. Complex, 35 (2022), 18–31. http://doi.org/10.1007/s11424-021-0180-7 doi: 10.1007/s11424-021-0180-7
![]() |
[4] | S.-B. Hsu, X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776–789. http://doi.org/10.1137/070703016 |
[5] |
J. P. Keener, Propagation and its failure to coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556–572. http://doi.org/10.1137/0147038 doi: 10.1137/0147038
![]() |
[6] | V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Dordrecht: Springer, 1993. https://doi.org/10.1007/978-94-017-1703-8 |
[7] | M. Kot, Discrete-time travelling waves: Ecological examples, J. Math. Biol., 30 (1992), 413–436. http://doi.org/10.1007/BF00173295 |
[8] |
B. Li, M. A. Lewis, H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323–338. http://doi.org/10.1007/s00285-008-0175-1 doi: 10.1007/s00285-008-0175-1
![]() |
[9] |
B. Li, Traveling wave solutions in a plant population model with a seed bank, J. Math. Biol., 65 (2012), 855–873. http://doi.org/10.1007/s00285-011-0481-x doi: 10.1007/s00285-011-0481-x
![]() |
[10] |
G. Lin, Travelling wave solutions for integro-difference systems, J. Differ. Equations, 258 (2015), 2908–2940. http://doi.org/10.1016/j.jde.2014.12.030 doi: 10.1016/j.jde.2014.12.030
![]() |
[11] |
G. Lin, T. Su, Asymptotic speeds of spread and traveling wave solutions of a second order integrodifference equation without monotonicity, J. Differ. Equ. Appl., 22 (2016), 542–557. http://doi.org/10.1080/10236198.2015.1112383 doi: 10.1080/10236198.2015.1112383
![]() |
[12] |
G. Lin, S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to Lotka-Volterra competition-diffusion models with distributed delays, J. Dyn. Differ. Equ., 26 (2014), 583–605. http://doi.org/10.1007/s10884-014-9355-4 doi: 10.1007/s10884-014-9355-4
![]() |
[13] |
R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory, Math. Biosci., 93 (1989), 269–295. http://doi.org/10.1016/0025-5564(89)90026-6 doi: 10.1016/0025-5564(89)90026-6
![]() |
[14] |
R. Lui, Biological growth and spread modeled by systems of recursions. II. Biological theory, Math. Biosci., 107 (1991), 255–287. http://doi.org/10.1016/0025-5564(89)90027-8 doi: 10.1016/0025-5564(89)90027-8
![]() |
[15] | F. Lutscher, Integrodifference equations in spatial ecology, Cham: Springer, 2019. http://doi.org/10.1007/978-3-030-29294-2 |
[16] |
S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differ. Equations, 171 (2001), 294–314. http://doi.org/10.1006/jdeq.2000.3846 doi: 10.1006/jdeq.2000.3846
![]() |
[17] |
I. ¨Ozt¨urk, F. Bozkurt, F. Gurcan, Stability analysis of a mathematical model in a microcosm with piecewise constant arguments, Math. Biosci., 240 (2012), 85–91. http://doi.org/10.1016/j.mbs.2012.08.003 doi: 10.1016/j.mbs.2012.08.003
![]() |
[18] |
S. Pan, G. Lin, Traveling wave solutions in an integrodifference equation with weak compactness, J. Nonl. Mod. Anal., 3 (2021), 465–475. http://doi.org/10.12150/jnma.2021.465 doi: 10.12150/jnma.2021.465
![]() |
[19] |
L.-Y. Pang, S.-L. Wu, Propagation dynamics for lattice differential equations in a time-periodic shifting habitat, Z. Angew. Math. Phys., 72 (2021), 93. http://doi.org/10.1007/s00033-021-01522-w doi: 10.1007/s00033-021-01522-w
![]() |
[20] |
Y. Pan, New methods for the existence and uniqueness of traveling waves of non-monotone integro-difference equations with applications, J. Differ. Equations, 268 (2020), 6319–6349. http://doi.org/10.1016/j.jde.2019.11.030 doi: 10.1016/j.jde.2019.11.030
![]() |
[21] |
H. Wang, C. Castillo-Chavez, Spreading speeds and traveling waves for non-cooperative integro-difference systems, Discrete Contin. Dyn. Syst. B, 17 (2012), 2243–2266. http://doi.org/10.3934/dcdsb.2012.17.2243 doi: 10.3934/dcdsb.2012.17.2243
![]() |
[22] |
Z. C. Wang, W. T. Li, S. Ruan, Traveling wave fronts of reaction-diffusion systems with spatio-temporal delays, J. Differ. Equations, 222 (2006), 185–232. http://doi.org/10.1016/j.jde.2005.08.010 doi: 10.1016/j.jde.2005.08.010
![]() |
[23] | H. F. Weinberger, Long-time behavior of a class of biological model, SIAM J. Math. Anal., 13 (1982), 353–396. http://doi.org/10.1137/0513028 |
[24] |
J. Wu, X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ. Equ., 13 (2001), 651–687. http://doi.org/10.1023/A:1016690424892 doi: 10.1023/A:1016690424892
![]() |
[25] |
Z.-X. Yu, R. Yuan, C.-H. Hsu, Q. Jiang, Traveling waves for nonlinear cellular neural networks with distributed delays, J. Differ. Equations, 251 (2011), 630–650. http://doi.org/10.1016/j.jde.2011.05.008 doi: 10.1016/j.jde.2011.05.008
![]() |
[26] |
R. Zhang, J. Wang, S. Liu, Traveling wave solutions for a class of discrete diffusive SIR epidemic model, J. Nonlinear Sci., 31 (2021), 10. http://doi.org/10.1007/s00332-020-09656-3 doi: 10.1007/s00332-020-09656-3
![]() |
[27] |
J. Zhou, L. Song, J. Wei, Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay, J. Differ. Equations, 268 (2020), 4491–4524. http://doi.org/10.1016/j.jde.2019.10.034 doi: 10.1016/j.jde.2019.10.034
![]() |
1. | Zhongxian Huang, Biderivations of the extended Schrödinger-Virasoro Lie algebra, 2023, 8, 2473-6988, 28808, 10.3934/math.20231476 | |
2. | Ivan Kaygorodov, Abror Khudoyberdiyev, Zarina Shermatova, Transposed Poisson structures on not-finitely graded Witt-type algebras, 2025, 31, 1405-213X, 10.1007/s40590-024-00702-8 |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
| |
| |
| |
| |
| |
| |
| |
| |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
| |
| |
| |
| |
| |
| |
| |
| |
|