[1]
|
J. Crona, F. Beuschlein, Adrenocortical carcinoma—towards genomics guided clinical care, Nat. Rev. Endocrinol., 15 (2019), 548-560. https://doi.org/10.1038/s41574-019-0221-7 doi: 10.1038/s41574-019-0221-7
|
[2]
|
G. G. F. Ranvier, W. B. R. Inabnet, Surgical management of adrenocortical carcinoma, Endocrinol. Metab. Clin., 44 (2015), 435-452. https://doi.org/10.1016/j.ecl.2015.02.008 doi: 10.1016/j.ecl.2015.02.008
|
[3]
|
N. Georgantzoglou, S. Kokkali, G. Tsourouflis, S. Theocharis, Tumor microenvironment in adrenocortical carcinoma: Barrier to immunotherapy success, Cancers, 13 (2021), 1798. https://doi.org/10.3390/cancers13081798 doi: 10.3390/cancers13081798
|
[4]
|
M. Fassnacht, S. Johanssen, M. Quinkler, P. Bucsky, H. S. Willenberg, F. Beuschlein, et al., Limited prognostic value of the 2004 international union against cancer staging classification for adrenocortical carcinoma: Proposal for a revised TNM classification, Cancer, 115 (2009), 243-250. https://doi.org/10.1002/cncr.24030 doi: 10.1002/cncr.24030
|
[5]
|
G. Assié, A. Jouinot, M. Fassnacht, R. Libé, S. Garinet, L. Jacob, et al., Value of molecular classification for prognostic assessment of adrenocortical carcinoma, JAMA Oncol., 5 (2019), 1440-1447. https://doi.org/10.1001/jamaoncol.2019.1558 doi: 10.1001/jamaoncol.2019.1558
|
[6]
|
P. Zhao, L. Li, X. Jiang, Q. Li, Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy, J. Hematol. Oncol., 12 (2019), 54. https://doi.org/10.1186/s13045-019-0738-1 doi: 10.1186/s13045-019-0738-1
|
[7]
|
S. T. Paijens, A. Vledder, M. de Bruyn, H. W. Nijman, Tumor-infiltrating lymphocytes in the immunotherapy era, Cell. Mol. Immunol., 18 (2021), 842-859. https://doi.org/10.1038/s41423-020-00565-9 doi: 10.1038/s41423-020-00565-9
|
[8]
|
T. A. Chan, M. Yarchoan, E. Jaffee, C. Swanton, S. A. Quezada, A. Stenzinger, et al., Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic, Ann. Oncol., 30 (2019), 44-56. https://doi.org/10.1093/annonc/mdy495 doi: 10.1093/annonc/mdy495
|
[9]
|
S. E. Stanton, M. L. Disis, Clinical significance of tumor-infiltrating lymphocytes in breast cancer, J. Immunother. Cancer, 4 (2016), 59. https://doi.org/10.1186/s40425-016-0165-6 doi: 10.1186/s40425-016-0165-6
|
[10]
|
R. M. Bremnes, L. Busund, T. L. Kilvær, S. Andersen, E. Richardsen, E. E. Paulsen, et al., The role of tumor-infiltrating lymphocytes in development, progression, and prognosis of non-small cell lung cancer, J. Thorac. Oncol., 11 (2016), 789-800. https://doi.org/10.1016/j.jtho.2016.01.015 doi: 10.1016/j.jtho.2016.01.015
|
[11]
|
M. Poch, M. Hall, A. Joerger, K. Kodumudi, M. Beatty, P. P. Innamarato, et al., Expansion of tumor infiltrating lymphocytes (TIL) from bladder cancer, Oncoimmunology, 7 (2018), e1476816. https://doi.org/10.1080/2162402X.2018.1476816 doi: 10.1080/2162402X.2018.1476816
|
[12]
|
L. Ye, T. Zhang, Z. Kang, G. Guo, Y. Sun, K. Lin, et al., Tumor-infiltrating immune cells act as a marker for prognosis in colorectal cancer, Front. Immunol., 10 (2019), 2368. https://doi.org/10.3389/fimmu.2019.02368 doi: 10.3389/fimmu.2019.02368
|
[13]
|
X. Tian, W. Xu, Y. Wang, A. Anwaier, H. Wang, F. Wan, et al., Identification of tumor-infiltrating immune cells and prognostic validation of tumor-infiltrating mast cells in adrenocortical carcinoma: Results from bioinformatics and real-world data, Oncoimmunology, 9 (2020), 1784529. https://doi.org/10.1080/2162402X.2020.1784529 doi: 10.1080/2162402X.2020.1784529
|
[14]
|
L. Fancello, S. Gandini, P. G. Pelicci, L. Mazzarella, Tumor mutational burden quantification from targeted gene panels: major advancements and challenges, J. Immunother. Cancer, 7 (2019), 183. https://doi.org/10.1186/s40425-019-0647-4 doi: 10.1186/s40425-019-0647-4
|
[15]
|
C. Luo, J. Chen, L. Chen, Exploration of gene expression profiles and immune microenvironment between high and low tumor mutation burden groups in prostate cancer, Int. Immunopharmacol., 86 (2020), 106709. https://doi.org/10.1016/j.intimp.2020.106709 doi: 10.1016/j.intimp.2020.106709
|
[16]
|
H. Zhou, L. Chen, Y. Lei, T. Li, H. Li, X. Cheng, Integrated analysis of tumor mutation burden and immune infiltrates in endometrial cancer, Curr. Probl. Cancer, 45 (2021), 100660. https://doi.org/10.1016/j.currproblcancer.2020.100660 doi: 10.1016/j.currproblcancer.2020.100660
|
[17]
|
N. A. Rizvi, M. D. Hellmann, A. Snyder, P. Kvistborg, V. Makarov, J. J. Havel, et al., Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer, Science, 348 (2015), 124-128. https://doi.org/10.1126/science.aaa1348 doi: 10.1126/science.aaa1348
|
[18]
|
M. D. Hellmann, T. Ciuleanu, A. Pluzanski, J. S. Lee, G. A. Otterson, C. Audigier-Valette, et al., Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden, N. Engl. J. Med., 378 (2018), 2093-2104. https://doi.org/10.1056/NEJMoa1801946 doi: 10.1056/NEJMoa1801946
|
[19]
|
M. D. Hellmann, M. K. Callahan, M. M. Awad, E. Calvo, P. A. Ascierto, A. Atmaca, et al., Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer, Cancer Cell, 33 (2018), 853-861. https://doi.org/10.1016/j.ccell.2018.04.001 doi: 10.1016/j.ccell.2018.04.001
|
[20]
|
C. Zhang, Z. Li, F. Qi, X. Hu, J. Luo, Exploration of the relationships between tumor mutation burden with immune infiltrates in clear cell renal cell carcinoma, Ann. Transl. Med., 7 (2019), 648. https://doi.org/10.21037/atm.2019.10.84 doi: 10.21037/atm.2019.10.84
|
[21]
|
J. Yan, X. Wu, J. Yu, Y. Zhu, S. Cang, Prognostic role of tumor mutation burden combined with immune infiltrates in skin cutaneous melanoma based on multi-omics analysis, Front. Oncol., 10 (2020), 570654. https://doi.org/10.3389/fonc.2020.570654 doi: 10.3389/fonc.2020.570654
|
[22]
|
J. D. Wasserman, A. Novokmet, C. Eichler-Jonsson, R. C. Ribeiro, C. Rodriguez-Galindo, G. P. Zambetti, et al., Prevalence and functional consequence of TP53 mutations in pediatric adrenocortical carcinoma: A children's oncology group study, J. Clin. Oncol., 33 (2015), 602-609. https://doi.org/10.1200/JCO.2013.52.6863 doi: 10.1200/JCO.2013.52.6863
|
[23]
|
N. Riaz, L. Morris, J. J. Havel, V. Makarov, A. Desrichard, T. A. Chan, The role of neoantigens in response to immune checkpoint blockade, Int. Immunol., 28 (2016), 411-419. https://doi.org/10.1093/intimm/dxw019 doi: 10.1093/intimm/dxw019
|
[24]
|
D. A. Braun, K. P. Burke, E. M. Van Allen, Genomic approaches to understanding response and resistance to immunotherapy, Clin. Cancer Res., 22 (2016), 5642-5650. https://doi.org/10.1158/1078-0432.CCR-16-0066 doi: 10.1158/1078-0432.CCR-16-0066
|
[25]
|
A. Mayakonda, D. Lin, Y. Assenov, C. Plass, H. P. Koeffler, Maftools: Efficient and comprehensive analysis of somatic variants in cancer, Genome Res., 28 (2018), 1747-1756. https://doi.org/10.1101/gr.239244.118 doi: 10.1101/gr.239244.118
|
[26]
|
M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, et al., Limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 43 (2015), e47. https://doi.org/10.1093/nar/gkv007 doi: 10.1093/nar/gkv007
|
[27]
|
Gene Ontology Consortium, Gene Ontology Consortium: Going forward, Nucleic Acids Res., 43 (2015), D1049-D1056. https://doi.org/10.1093/nar/gku1179
|
[28]
|
G. Yu, L. Wang, Y. Han, Q. He, ClusterProfiler: An R package for comparing biological themes among gene clusters, Omics: J. Integr. Biol., 16 (2012), 284-287. https://doi.org/10.1089/omi.2011.0118 doi: 10.1089/omi.2011.0118
|
[29]
|
M. Kanehisa, S. Goto, KEGG: Kyoto encyclopedia of genes and genomes, Nucleic Acids Res., 28 (2000), 27-30. https://doi.org/10.1093/nar/28.1.27 doi: 10.1093/nar/28.1.27
|
[30]
|
A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, et al., Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci., 102 (2005), 15545-15550. https://doi.org/10.1073/pnas.0506580102 doi: 10.1073/pnas.0506580102
|
[31]
|
K. A. Zalocusky, M. J. Kan, Z. Hu, P. Dunn, E. Thomson, J. Wiser, et al., The 10,000 immunomes project: Building a resource for human immunology, Cell Rep., 25 (2018), 513-522. https://doi.org/10.1016/j.celrep.2018.09.021 doi: 10.1016/j.celrep.2018.09.021
|
[32]
|
B. Chen, M. S. Khodadoust, C. L. Liu, A. M. Newman, A. A. Alizadeh, Profiling tumor infiltrating immune cells with CIBERSORT, Methods Mol. Biol., 1711 (2018), 243-259. https://doi.org/10.1007/978-1-4939-7493-1_12 doi: 10.1007/978-1-4939-7493-1_12
|
[33]
|
Y. Ma, X. Feng, W. Yang, C. You, Exploring the pathological mechanism of bladder cancer based on tumor mutational burden analysis, Biomed. Res. Int., 2019 (2019), 1093815. https://doi.org/10.1155/2019/1093815 doi: 10.1155/2019/1093815
|
[34]
|
S. Turajlic, A. Sottoriva, T. Graham, C. Swanton, Resolving genetic heterogeneity in cancer, Nat. Rev. Genet., 20 (2019), 404-416. https://doi.org/10.1038/s41576-019-0114-6 doi: 10.1038/s41576-019-0114-6
|
[35]
|
Y. Ino, R. Yamazaki-Itoh, K. Shimada, M. Iwasaki, T. Kosuge, Y. Kanai, et al., Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer, Br. J. Cancer, 108 (2013), 914-923. https://doi.org/10.1038/bjc.2013.32 doi: 10.1038/bjc.2013.32
|
[36]
|
M. V. Dieci, F. Miglietta, V. Guarneri, Immune infiltrates in breast cancer: Recent updates and clinical implications, Cells, 10 (2021). https://doi.org/10.3390/cells10020223 doi: 10.3390/cells10020223
|
[37]
|
X. Liu, S. Wu, Y. Yang, M. Zhao, G. Zhu, Z. Hou, The prognostic landscape of tumor-infiltrating immune cell and immunomodulators in lung cancer, Biomed. Pharmacother., 95 (2017), 55-61. https://doi.org/10.1016/j.biopha.2017.08.003 doi: 10.1016/j.biopha.2017.08.003
|
[38]
|
E. Billon, P. Finetti, A. Bertucci, P. Niccoli, D. Birnbaum, E. Mamessier, et al., PDL1 expression is associated with longer postoperative, survival in adrenocortical carcinoma, Oncoimmunology, 8 (2019), e1655362. https://doi.org/10.1080/2162402X.2019.1655362 doi: 10.1080/2162402X.2019.1655362
|
[39]
|
C. Zhang, L. Shen, F. Qi, J. Wang, J. Luo, Multi-omics analysis of tumor mutation burden combined with immune infiltrates in bladder urothelial carcinoma, J. Cell. Physiol., 235 (2020), 3849-3863. https://doi.org/10.1002/jcp.29279 doi: 10.1002/jcp.29279
|
[40]
|
K. Sakai, M. Tsuboi, H. Kenmotsu, T. Yamanaka, T. Takahashi, K. Goto, et al., Tumor mutation burden as a biomarker for lung cancer patients treated with pemetrexed and cisplatin (the JIPANG-TR), Cancer Sci., 112 (2021), 388-396. https://doi.org/10.1111/cas.14730 doi: 10.1111/cas.14730
|
[41]
|
T. Jiang, J. Shi, Z. Dong, L. Hou, C. Zhao, X. Li, et al., Genomic landscape and its correlations with tumor mutational burden, PD-L1 expression, and immune cells infiltration in Chinese lung squamous cell carcinoma, J. Hematol. Oncol., 12 (2019), 75. https://doi.org/10.1186/s13045-019-0762-1 doi: 10.1186/s13045-019-0762-1
|
[42]
|
A. Parrales, T. Iwakuma, Targeting oncogenic mutant p53 for cancer therapy, Front. Oncol., 5 (2015), 288. https://doi.org/10.3389/fonc.2015.00288 doi: 10.3389/fonc.2015.00288
|
[43]
|
M. Kanapathipillai, Treating p53 mutant aggregation-associated cancer, Cancers, 10 (2018). https://doi.org/10.3390/cancers10060154 doi: 10.3390/cancers10060154
|
[44]
|
A. Chassot, M. Le Rolle, M. Jourden, M. M. Taketo, N. B. Ghyselinck, M. Chaboissier, Constitutive WNT/CTNNB1 activation triggers spermatogonial stem cell proliferation and germ cell depletion, Dev. Biol., 426 (2017), 17-27. https://doi.org/10.1016/j.ydbio.2017.04.010 doi: 10.1016/j.ydbio.2017.04.010
|
[45]
|
D. Messerschmidt, W. N. de Vries, C. Lorthongpanich, S. Balu, D. Solter, B. B. Knowles, Β-catenin-mediated adhesion is required for successful preimplantation mouse embryo development, Development, 143 (2016), 1993-1999. https://doi.org/10.1242/dev.133439 doi: 10.1242/dev.133439
|
[46]
|
S. Devarakonda, F. Rotolo, M. Tsao, I. Lanc, E. Brambilla, A. Masood, et al., Tumor mutation burden as a biomarker in resected non-small-cell lung cancer, J. Clin. Oncol., 36 (2018), 2995-3006. https://doi.org/10.1200/JCO.2018.78.1963 doi: 10.1200/JCO.2018.78.1963
|
[47]
|
X. Wang, M. Li, Correlate tumor mutation burden with immune signatures in human cancers, BMC Immunol., 20 (2019), 4. https://doi.org/10.1186/s12865-018-0285-5 doi: 10.1186/s12865-018-0285-5
|
[48]
|
H. Kitao, M. Iimori, Y. Kataoka, T. Wakasa, E. Tokunaga, H. Saeki, et al., DNA replication stress and cancer chemotherapy, Cancer Sci., 109 (2018), 264-271. https://doi.org/10.1111/cas.13455 doi: 10.1111/cas.13455
|
[49]
|
S. Zheng, A. D. Cherniack, N. Dewal, R. A. Moffitt, L. Danilova, B. A. Murray, et al., Comprehensive pan-genomic characterization of adrenocortical carcinoma, Cancer Cell, 29 (2016), 723-736. https://doi.org/10.1016/j.ccell.2016.04.002 doi: 10.1016/j.ccell.2016.04.002
|
[50]
|
M. Ingham, G. K. Schwartz, Cell-cycle therapeutics come of age, J. Clin. Oncol., 35 (2017), 2949-2959. https://doi.org/10.1200/JCO.2016.69.0032 doi: 10.1200/JCO.2016.69.0032
|
[51]
|
M. Zhu, W. Xu, C. Wei, J. Huang, J. Xu, Y. Zhang, et al., CCL14 serves as a novel prognostic factor and tumor suppressor of HCC by modulating cell cycle and promoting apoptosis, Cell Death Dis., 10 (2019), 796. https://doi.org/10.1038/s41419-019-1966-6 doi: 10.1038/s41419-019-1966-6
|
[52]
|
L. Xu, W. Yu, H. Xiao, K. Lin, BIRC5 is a prognostic biomarker associated with tumor immune cell infiltration, Sci. Rep., 11 (2021), 1-13. https://doi.org/10.1038/s41598-020-79736-7 doi: 10.1038/s41598-020-79736-7
|
[53]
|
Y. Vahidi, Z. Faghih, A. Talei, M. Doroudchi, A. Ghaderi, Memory CD4(+) T cell subsets in tumor draining lymph nodes of breast cancer patients: A focus on T stem cell memory cells, Cell. Oncol., 41 (2018), 1-11. https://doi.org/10.1007/s13402-017-0352-6 doi: 10.1007/s13402-017-0352-6
|
[54]
|
K. Hiraoka, M. Miyamoto, Y. Cho, M. Suzuoki, T. Oshikiri, Y. Nakakubo, et al., Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma, Br. J. Cancer, 94 (2006), 275-280. https://doi.org/10.1038/sj.bjc.6602934 doi: 10.1038/sj.bjc.6602934
|
[55]
|
L. E. Harrington, K. M. Janowski, J. R. Oliver, A. J. Zajac, C. T. Weaver, Memory CD4 T cells emerge from effector T-cell progenitors, Nature, 452 (2008), 356-360. https://doi.org/10.1038/nature06672 doi: 10.1038/nature06672
|