Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Electric vehicles can have only a minor role in reducing transport's energy and environmental challenges

  • Many governments have supported the introduction of electric vehicles (EVs) through purchase subsidies or waiving fuel taxes. The key findings of this paper are that the benefits of EVs may have been overstated, at least for some countries, as their energy savings and climate mitigation advantages depend on such factors as annual kilometres travelled per vehicle, electricity fuel mix, vehicle size and even local conditions. Because serious climate change has already arrived in the form of increasing frequency and severity of extreme events, we do not have the decades required for electricity production to be predominantly from non-carbon sources. Further, there are a variety of other challenges facing private transport—EVs just as much as conventionally powered vehicles. These include traffic casualties, non-engine air and noise pollution, light pollution, land requirements for roads and parking, and the intrusion of roads into natural habitats. With the promotion of EVs, these other transport problems run the risk of being downplayed. If all the environmental challenges facing road vehicles are to be effectively and quickly tackled, significant reductions in road vehicular travel are needed.

    Citation: Patrick Moriarty. Electric vehicles can have only a minor role in reducing transport's energy and environmental challenges[J]. AIMS Energy, 2022, 10(1): 131-148. doi: 10.3934/energy.2022008

    Related Papers:

    [1] Gilles Pijaudier-Cabot, David Grégoire . A review of non local continuum damage: Modelling of failure?. Networks and Heterogeneous Media, 2014, 9(4): 575-597. doi: 10.3934/nhm.2014.9.575
    [2] Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321
    [3] Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667
    [4] Andrea Braides, Anneliese Defranceschi, Enrico Vitali . Variational evolution of one-dimensional Lennard-Jones systems. Networks and Heterogeneous Media, 2014, 9(2): 217-238. doi: 10.3934/nhm.2014.9.217
    [5] Anya Désilles, Hélène Frankowska . Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks and Heterogeneous Media, 2013, 8(3): 727-744. doi: 10.3934/nhm.2013.8.727
    [6] Hyeontae Jo, Hwijae Son, Hyung Ju Hwang, Eun Heui Kim . Deep neural network approach to forward-inverse problems. Networks and Heterogeneous Media, 2020, 15(2): 247-259. doi: 10.3934/nhm.2020011
    [7] Antonio DeSimone, Natalie Grunewald, Felix Otto . A new model for contact angle hysteresis. Networks and Heterogeneous Media, 2007, 2(2): 211-225. doi: 10.3934/nhm.2007.2.211
    [8] G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini . Globally stable quasistatic evolution in plasticity with softening. Networks and Heterogeneous Media, 2008, 3(3): 567-614. doi: 10.3934/nhm.2008.3.567
    [9] Seung-Yeal Ha, Shi Jin, Jinwook Jung . A local sensitivity analysis for the kinetic Kuramoto equation with random inputs. Networks and Heterogeneous Media, 2019, 14(2): 317-340. doi: 10.3934/nhm.2019013
    [10] Gianni Dal Maso, Francesco Solombrino . Quasistatic evolution for Cam-Clay plasticity: The spatially homogeneous case. Networks and Heterogeneous Media, 2010, 5(1): 97-132. doi: 10.3934/nhm.2010.5.97
  • Many governments have supported the introduction of electric vehicles (EVs) through purchase subsidies or waiving fuel taxes. The key findings of this paper are that the benefits of EVs may have been overstated, at least for some countries, as their energy savings and climate mitigation advantages depend on such factors as annual kilometres travelled per vehicle, electricity fuel mix, vehicle size and even local conditions. Because serious climate change has already arrived in the form of increasing frequency and severity of extreme events, we do not have the decades required for electricity production to be predominantly from non-carbon sources. Further, there are a variety of other challenges facing private transport—EVs just as much as conventionally powered vehicles. These include traffic casualties, non-engine air and noise pollution, light pollution, land requirements for roads and parking, and the intrusion of roads into natural habitats. With the promotion of EVs, these other transport problems run the risk of being downplayed. If all the environmental challenges facing road vehicles are to be effectively and quickly tackled, significant reductions in road vehicular travel are needed.



    In this article, we consider the following time-fractional generalized Rosenau-RLW-Burgers equation:

    utC0Dαtuxx+C0Dβtuxxxx+uxuxx+f(u)x=g(x,t), (x,t)Ω×J, (1.1)

    with boundary conditions

    u(x,t)=uxx(x,t)=0, (x,t)Ω×ˉJ, (1.2)

    and initial condition

    u(x,0)=u0(x), xΩ, (1.3)

    where Ω=(a,b) is the spatial domain, J=(0,T] is the time interval with T(0,), and g(x,t) is a known source term function. The nonlinear term f(u) satisfies the assumption condition |f(u)|cf(u)|u|, where cf(u) is a positive constant on u. C0Dαtu and C0Dβtu are both Caputo fractional derivatives with 0<α,β<1. Since C0Dγtu=γ(uu0)tγ, all of the above Caputo fractional derivatives can be converted into the Riemann-Liouville fractional derivative, note that

    γutγ=1Γ(1γ)tt0u(x,s)(ts)γds,0<γ<1. (1.4)

    Specifically, when α=1, β=1, (1.1) degenerates into the generalized Rosenau-RLW-Burgers equation which can be seen as the combined system between the generalized Rosenau-RLW equation and the generalized Rosenau-Burgers equation.

    The RLW equation, the Rosenau equation, and their combined systems with other equations are significant mathematical and physical equations that effectively describe nonlinear wave behaviors. These equations have become interesting topics in the study of nonlinear dispersion dynamics. Since obtaining analytical solutions for these equations is challenging, studying their numerical methods is paramount. Over the years, there has been extensive research on numerical methods for solving this type of equation. In [1], Atouani and Omrani discussed the numerical solution of the Rosenau-RLW (RRLW) equation based on the Galerkin finite element method. In [2], He and Pan developed a three-level, linearly implicit finite difference method for solving the generalized Rosenau-Kawahara-RLW equation. In [3], Wongsaijai and Poochinapan developed a pseudo-compact finite difference scheme for solving the generalized Rosenau-RLW-Burgers equation. In [4], Mouktonglang et al. analyzed a generalized Rosenau-RLW-Burgers equation with periodic initial-boundary value. For more papers on related equations, please refer to [5,6,7,8]. It is worth noting that the literature on the fractional generalized Rosenau-RLW-Burgers equation is relatively scarce, and its analytical solution is difficult to obtain. Therefore, we have to consider effective numerical methods such as finite element methods [9,10,11,12], finite difference methods [13,14,15], finite volume methods [16], spectral methods [17,18,19], and mixed finite element methods [20,21,22]. In addition, the existence of time-fractional derivatives increases the difficulty of studying numerical methods. Therefore, it is crucial to choose an appropriate high-order approximation formula for the fractional derivative to establish a stable numerical scheme for (1.1).

    In 1986, Lubich [23] proposed the convolution quadrature (CQ) formula for Riemann Liouville fractional operators using the discrete convolution. In [24], Chen et al. developed an alternating direction implicit fractional trapezoidal rule type to solve a two-dimensional fractional evolution equation. In [25], Jin et al. proposed a corrected approximation formula for high-order BDFs through appropriate initial modifications to discretize fractional evolution equations. Based on the CQ formula, in [26], Liu et al. developed the shifted convolution quadrature (SCQ) theory, which extended the CQ formula at xnθ and discussed the constraints of parameter θ. In [27], Yin et al. studied the generalized BDF2-θ with the finite element method for solving the fractional mobile/immobile transport model, and also developed a correction scheme by adding the starting part to restore convergence order. For more related papers, please refer to [28,29,30,31,32,33].

    In this article, we develop the generalized BDF2-θ in time combined with the mixed finite element method in space to solve (1.1). The focuses of this article are as follows:

    ● It is noted that the time-fractional generalized Rosenau-RLW-Burgers equation containing two time-fractional operators is studied.

    ● The stability of the time-fractional generalized Rosenau-RLW-Burgers equation (1.1) based on the mixed finite element method is given.

    ● Based on a comprehensive analysis of some numerical examples, the numerical method's feasibility and effectiveness have been extensively validated. Specifically, the issue of decreasing the convergence rate of nonsmooth solutions is solved by adding correction terms.

    The structure of this article is as follows: In Section 2, the generalized BDF2-θ is introduced, and the fully discrete mixed finite element scheme is provided. In Section 3, the existence and uniqueness theorem for the fully discrete mixed finite element scheme is given. In Section 4, the stability of the scheme is proved. In Section 5, some numerical examples with smooth and nonsmooth solutions based on the discrete scheme are presented. In Section 6, some conclusions are given.

    In this section, we present the fully discrete mixed finite element scheme for (1.1) in space, which combines the generalized BDF2-θ in time. The generalized BDF2-θ with the starting part is introduced in [27]. Further, we divide the time interval [0,T] into 0=t0<t1<<tN1<tN=T, and let tn=nτ(n=1,2,,N), where τ is time step length size and N is a positive integer.

    For the convenience of research, set ˆu:=uu0, and assume that ˆu has the following form:

    ˆu(x,t)=ˆu1(x,t)+ˆu2(x,t):=κj=1cjtσj+tσκ+1ϕ(x,t), (2.1)

    where cj=c(x), 1<σ1<σ2<<σκ<σκ+1 and ϕ(x,t) is sufficiently differentiable with respect to t.

    Using ˆu:=uu0, we can write (1.1)–(1.3) as

    ˆutαˆuxxtα+βˆuxxxxtβ+ˆuxˆuxx+f(ˆu)x=ˆg(x,t),(x,t)Ω×J, (2.2)

    with boundary conditions

    ˆu(x,t)=ˆuxx(x,t)=0,(x,t)Ω×ˉJ, (2.3)

    and initial condition

    ˆu(x,0)=0,xΩ, (2.4)

    where ˆg(x,t)=g(x,t)+(u0)x(u0)xx.

    Now, we introduce an auxiliary variable q=ˆuxx to obtain the following coupled system:

    ˆutαˆuxxtα+βqxxtβ+ˆuxˆuxx+f(ˆu)x=ˆg(x,t), (2.5)

    and

    q=ˆuxx. (2.6)

    Multiplying (2.5) and (2.6) by vH10 and wH10, respectively, integrating the result equations, and using integration by parts, we obtain the following weak form:

    (ˆut,v)+(αˆuxtα,vx)(βqxtβ,vx)(ˆu,vx)+(ˆux,vx)(f(ˆu),vx)=(ˆg,v),vH10, (2.7)

    and

    (q,w)+(ˆux,wx)=0,wH10. (2.8)

    To provide the fully discrete numerical scheme, we first introduce the relevant formulas and lemmas for the generalized BDF2-θ.

    For smooth functions ˆu and q in [0,T], we let ˆun=ˆu(,tn), qn=(,tn). The approximation formula for the Riemann-Liouville fractional derivative at time tnθ with the generalized BDF2-θ is

    γˆunθtγ=τγnj=0ω(γ)jˆunj+τγκj=1ω(γ)n,jˆuj+Rnθγ:=Ψγ,nτˆu+Sγ,nτ,κˆu+Rnθγ, (2.9)

    where |Rnθγ|Cτ2.

    The discrete convolution part is denoted as

    Ψγ,nτˆu:=τγnj=0ω(γ)jˆunj, (2.10)

    and the starting part is

    Sγ,nτ,κˆu:=τγκj=1ω(γ)n,jˆuj. (2.11)

    The convolution weights {ω(γ)j}j=0 in (2.10) are generated by the following generating function:

    ω(γ)(ξ)=(3γ2θ2γ2γ2θγξ+γ2θ2γξ2)γ. (2.12)

    Lemma 2.1. [27] We give the convolution weights {ω(γ)j}j=0 of the generalized BDF2-θ as follows:

    ω(γ)0=(3γ2θ2γ)γ,ω(γ)1=2(θγ)(2γ3γ2θ)1γ,ω(γ)j=2γj(3γ2θ)[2(γθ)(j1γ1)ω(γ)j1+(γ2θ)(1j22γ)ω(γ)j2],j2. (2.13)

    Lemma 2.2. [27] The starting weights {ω(γ)n,j}κj=1 of the generalized BDF2-θ are given as the following:

    κj=1ω(γ)n,jj=Γ(+1)Γ(γ+1)(nθ)γnj=1ω(γ)njj,=σ1,σ2,,σκ. (2.14)

    Lemma 2.3. [12,15] For ˆuC4[0,π], the following two approximate formulas at tnθ hold:

    g(tnθ)=gnθ+O(τ2),f(ˆu(tnθ))=f(ˆunθ)+O(τ2), (2.15)

    where gnθ:=(1θ)gn+θgn1 and f(ˆunθ):=(2θ)f(ˆun1)(1θ)f(ˆun2).

    Next, we have the following approximate formula:

    ˆu(tnθ)=ˆunθ+S0,nτ,κˆu+O(τ2):=(1θ)ˆun+θˆun1+S0,nτ,κˆu+O(τ2). (2.16)

    Without considering the starting part, we can obtain the weak form of (2.5) and (2.6) at tnθ:

    (Ψ1,nτˆu,v)+(Ψα,nτˆux,vx)(Ψβ,nτqx,vx)(ˆunθ,vx)+(ˆunθx,vx)=(f(ˆunθ),vx)+(ˆgnθ,v)(Rnθ1,v), (2.17)

    and

    (qnθ,w)+(ˆunθx,wx)=(Rnθ2,w), (2.18)

    where Rnθ1=O(τ2) and Rnθ2=O(τ2).

    To establish the fully discrete mixed finite element scheme, we introduce the following finite element space:

    Vh={vh|vhH10,vh|IiPk(Ii),IiTh,k1},

    where Th is a subdivision of ˉΩ=[a,b] into M subintervals Ii=[xi1,xi], with hi=xixi1, h=max1iMhi, and Pk(Ii) represent the polynomials with a degree less than or equal to k in Ii.

    Next, we provide linear basis functions {φi}Mi=1 of finite element space Vh as follows:

    φi(x)={1+xxihi,xIi,1xxihi+1,xIi+1,0,others, (2.19)
    φM(x)={1+xxMhM,xIM,0,others. (2.20)

    Based on the above finite element space, we find {Unθ,Qnθ}Vh×Vh satisfying

    (Ψ1,nτU,V)+(Ψα,nτUx,Vx)(Ψβ,nτQx,Vx)(Unθ,Vx)+(Unθx,Vx)=(f(Unθ),Vx)+(ˆgnθ,V),VVh, (2.21)

    and

    (Qnθ,W)+(Unθx,Wx)=0,WVh. (2.22)

    Theorem 3.1. The solution of the fully discrete mixed finite element scheme (2.21) and (2.22) is uniquely solvable.

    Proof. Taking basis functions {φi}Mi=1 of finite element space Vh, we have

    Un=Mi=1uniφi,Qn=Mi=1qniφi. (3.1)

    Taking V=φj and W=φj from (2.21) and (2.22), we have

    τ1ω(1)0AUn+ταω(α)0BUn+(1θ)BUn(1θ)CUnτβω(β)0BQn=Fnθ+Gnθτ1nk=1ω(1)kAUnkταnk=1ω(α)kBUnkθBUn1+θCUn1+τβnk=1ω(β)kBQnk, (3.2)

    and

    (1θ)BUn+(1θ)AQn=θBUnθAQn, (3.3)

    where

    A=[(φi,φj)]T1i,jM,B=[(φix,φjx)]T1i,jM,C=[(φi,φjx)]T1i,jM,Fnθ=[(f(Unθ),φ1x),,(f(Unθ),φMx)]T,Gnθ=[(gnθ,φ1),,(gnθ,φM)]T.

    Obviously, A and B are symmetric and positive definite. Further, processing the boundary and simplifying the right-hand term, we have

    (τ1ω(1)0˜A+ταω(α)0˜B+(1θ)˜B(1θ)˜C)Unτβω(β)0˜BQn=Hn1, (3.4)

    and

    (1θ)˜BUn+(1θ)˜AQn=Hn2, (3.5)

    where

    Hn1=Fnθ+Gnθτ1nk=1ω(1)kAUnkταnk=1ω(α)kBUnkθBUn1+θCUn1+τβnk=1ω(β)kBQnk,Hn2=θBUnθAQn.

    Multiplying (3.4) by τ˜A1, we have

    (ω(1)0E+τ1αω(α)0˜A1˜B+τ(1θ)˜A1˜Bτ(1θ)˜A1˜C)Unτ1βω(β)0˜A1˜BQn=τ˜A1Hn1. (3.6)

    Further, rewrite (3.5) as

    Qn=Hn3, (3.7)

    where Hn3=(1θ)1˜A1Hn2˜A1˜BUn.

    Substitute (3.7) into (3.6) to obtain

    KUn=Hn4, (3.8)

    where

    K=ω(1)0E+τ1αω(α)0˜A1˜B+τ(1θ)˜A1˜Bτ(1θ)˜A1˜C+τ1βω(β)0˜A1˜B˜A1˜B,
    Hn4=τ˜A1Hn1+τ1β(1θ)1ω(β)0˜A1˜B˜A1Hn2.

    It is easy to see that (3.7) and (3.8) are equivalent to (3.4) and (3.5). Due to τ being small enough and E being an identity matrix, the matrix K is invertible. Additionally, since Uk(k=0,1,,n1) is known, after multiple iterations, (3.7) and (3.8) have a unique solution.

    Remark 3.1. Since we introduce the auxiliary variable q=ˆuxx to transform (2.2) into a first-order system (2.5) and (2.6), according to [34,35], the mixed finite element scheme (2.21) and (2.22) do not need to satisfy the LBB condition. In [36], the LBB condition is a condition for the problem to be well posed. From this perspective, typically satisfying the LBB condition is to obtain the existence and uniqueness of a solution. Although the mixed finite element scheme in this article does not need to satisfy the LBB condition, it still satisfies the existence and uniqueness of a solution.

    Lemma 4.1. [12,14] For UmVh, satisfying Um=0(m<0), we have

    (Ψ1,mtU,Umθ)14τ(H[Um]H[Um1]), m1,

    where

    H[Um]=(32θ)Um2(12θ)Um12+(2θ)(12θ)UmUm12,

    and

    H[Um]11θUm2, m1.

    Lemma 4.2. [27] } {For any vector (v0,v1,,vn1)Rn, defining {ω(γ)k}k=0(0<γ<1) be a sequence of coefficients of the generating function ω(γ)(ξ) in (2.12) and 0θmin{γ,12}, we have

    n1m=1vmmk=1ω(γ)mkvk0, n1.

    Theorem 4.1. Let unh=Un+ˉu0h, where ˉu0h is an approximation of u0, the following stability of the fully discrete scheme (2.21) and (2.22) holds:

    uLh2  C(ˉu0h2+τLn=1gnθ2), 1LN, (4.1)

    where C is a positive constant independent of h and τ.

    Proof. Taking V=Unθ, W=Ψβ,nτQ, (2.21) and (2.22) can be written as

    (Ψ1,nτU,Unθ)+(Ψα,nτUx,Unθx)(Ψβ,nτQx,Unθx)+Unθx2=(Unθ,Unθx)+(f(Unθ),Unθx)+(ˆgnθ,Unθ), (4.2)

    and

    (Qnθ,Ψβ,nτQ)+(Unθx,Ψβ,nτQx)=0. (4.3)

    Adding (4.2) and (4.3), we have

    (Ψ1,nτU,Unθ)+(Ψα,nτUx,Unθx)+(Qnθ,Ψβ,nτQ)+Unθx2=(Unθ,Unθx)+(f(Unθ),Unθx)+(ˆgnθ,Unθ). (4.4)

    Using Lemma 4.1, we obtain

    14τ(H[Un]H[Un1])+(Ψα,nτUx,Unθx)+(Qnθ,Ψβ,nτQ)+Unθx2(Unθ,Unθx)+(f(Unθ),Unθx)+(ˆgnθ,Unθ). (4.5)

    Multiply (4.5) by 4τ and sum it with respect to n from 1 to L to get

    H[UL]H[U0]+4τLn=1(Ψα,ntUx,Unθx)+4τLn=1(Qnθ,Ψβ,nτQ)+4τLn=1Unθx24τ(Ln=1(Unθ,Unθx)+Ln=1(f(Unθ),Unθx)+Ln=1(ˆgnθ,Unθ)). (4.6)

    By the Hölder inequality and Young inequality, the three terms on the right-hand side of (4.6) can be expanded to

    Ln=1(Unθ,Unθx)12Ln=1Unθ2+12Ln=1Unθx2, (4.7)
    Ln=1(f(Unθ),Unθx)Ln=1cf(Unθ)UnθUnθxCLn=1Unθ2+12Ln=1Unθx2, (4.8)
    Ln=1(ˆgnθ,Unθ)12Ln=1ˆgnθ2+12Ln=1Unθ2, (4.9)

    where we use the bounded condition cf(Unθ)C.

    Substituting (4.7)–(4.9) into (4.6), we arrive at

    H[UL]H[U0]+4τLn=1(Ψα,ntUx,Unθx)+4τLn=1(Qnθ,Ψβ,nτQ)Cτ(Ln=1ˆgnθ2+Ln=1Unθ2). (4.10)

    In what follows, using Lemmas 4.1 and 4.2 and the Gronwall inequality, we have

    UL2U02CτLn=1ˆgnθ2. (4.11)

    Since U0=0, we obtain

    UL2CτLn=1ˆgnθ2. (4.12)

    Noting that UL=uLhˉu0h and using the triangle inequality, the conclusion of this theorem is derived.

    In this section, we present numerical simulation results for both smooth and nonsmooth solutions to verify the effectiveness of the numerical scheme. Next, we set the nonlinear term f(u)=u2, the spatial domain Ω=(0,1), and the time interval J=(0,1].

    Example 5.1 The exact solution is u(x,t)=t2sin(2πx) satisfying u(x,0)=0, and the known source function g(x,t) is given by

    g(x,t)=sin(2πx)(2t+8π2t2αΓ(3α)+32π4t2βΓ(3β)+4π2t2)+2πt2cos(2πx)+2πt4sin(4πx). (5.1)

    In Table 1, fixing τ=1/1000 and choosing h=1/10,1/20,1/40,1/80, we provide the L2-errors and the spatial convergence rates for u and q with different parameters α, β, and θ, where θmin{α,β,12}. Similarly, in Table 2, taking h=1/1000, we calculate the L2-errors and the time convergence rates with τ=1/10,1/20,1/40,1/80. From Tables 1 and 2, one can see that the convergence rates in both space and time are close to 2 when the exact solution is smooth. In Table 3, if θ>min{α,β,12}, the convergence accuracy will be unstable, which verifies the range of θ values from a numerical perspective. To observe the effect of numerical simulation more clearly, we provide the comparison images between numerical solutions and exact solutions. In Figure 1, we show distinct comparison images of the numerical solutions of uh and qh and the exact solutions of u and q with τ=1/1000, h=1/80, α=0.2, β=0.8, and θ=0.2.

    Table 1.  Spatial convergence results with τ=1/1000.
    α β θ h uhu Rate qhq Rate
    1/10 2.2165E-02 - 2.6449E-02 -
    0.2 1/20 5.6375E-03 1.9752 6.1401E-03 2.1069
    1/40 1.4151E-03 1.9941 1.5121E-03 2.0217
    1/80 3.5399E-04 1.9992 3.8250E-04 1.9830
    1/10 2.2165E-02 - 2.6470E-02 -
    0.2 0.8 -0.5 1/20 5.6369E-03 1.9753 6.1607E-03 2.1032
    1/40 1.4146E-03 1.9945 1.5327E-03 2.0070
    1/80 3.5346E-04 2.0008 4.0308E-04 1.9269
    1/10 2.2164E-02 - 2.6490E-02 -
    -1 1/20 5.6364E-03 1.9754 6.1810E-03 2.0996
    1/40 1.4141E-03 1.9949 1.5530E-03 1.9928
    1/80 3.5293E-04 2.0024 4.2346E-04 1.8747
    1/10 2.1828E-02 - 4.0463E-02 -
    0.5 1/20 5.5499E-03 1.9756 9.6844E-03 2.0629
    1/40 1.3932E-03 1.9941 2.3964E-03 2.0148
    1/80 3.4861E-04 1.9987 5.9910E-04 2.0000
    1/10 2.1828E-02 - 4.0465E-02 -
    0.5 0.5 0.2 1/20 5.5499E-03 1.9757 9.6868E-03 2.0626
    1/40 1.3931E-03 1.9941 2.3988E-03 2.0137
    1/80 3.4854E-04 1.9989 6.0151E-04 1.9956
    1/10 2.1826E-02 - 4.0523E-02 -
    -1 1/20 5.5484E-03 1.9759 9.7445E-03 2.0561
    1/40 1.3916E-03 1.9953 2.4564E-03 1.9880
    1/80 3.4706E-04 2.0035 6.5921E-04 1.8977
    1/10 2.1399E-02 - 5.8275E-02 -
    0.2 1/20 5.4386E-03 1.9763 1.4195E-02 2.0375
    1/40 1.3651E-03 1.9943 3.5279E-03 2.0085
    1/80 3.4156E-04 1.9988 8.8248E-04 1.9992
    1/10 2.1399E-02 - 5.8276E-02 -
    0.8 0.2 0 1/20 5.4386E-03 1.9763 1.4196E-02 2.0374
    1/40 1.3650E-03 1.9943 3.5290E-03 2.0082
    1/80 3.4153E-04 1.9989 8.8360E-04 1.9978
    1/10 2.1396E-02 - 5.8410E-02 -
    -1 1/20 5.4352E-03 1.9769 1.4329E-02 2.0272
    1/40 1.3616E-03 1.9970 3.6619E-03 1.9683
    1/80 3.3812E-04 2.0097 1.0167E-03 1.8487

     | Show Table
    DownLoad: CSV
    Table 2.  Time convergence results with h=1/1000.
    α β θ τ uhu Rate qhq Rate
    1/10 1.9614E-03 - 7.7510E-02 -
    0.2 1/20 5.0017E-04 1.9714 1.9814E-02 1.9679
    1/40 1.2703E-04 1.9773 5.0533E-03 1.9712
    1/80 3.2128E-05 1.9832 1.2867E-03 1.9736
    1/10 7.2565E-03 - 2.8650E-01 -
    0.2 0.8 -0.5 1/20 1.8309E-03 1.9867 7.2335E-02 1.9858
    1/40 4.6032E-04 1.9919 1.8206E-02 1.9903
    1/80 1.1551E-04 1.9946 4.5778E-03 1.9917
    1/10 1.2197E-02 - 4.8151E-01 -
    -1 1/20 3.1215E-03 1.9662 1.2329E-01 1.9655
    1/40 7.8542E-04 1.9907 3.1091E-02 1.9875
    1/80 1.9579E-04 2.0042 7.8135E-03 1.9924
    1/10 5.3041E-04 - 2.1042E-02 -
    0.5 1/20 1.3386E-04 1.9863 5.3622E-03 1.9724
    1/40 3.3676E-05 1.9910 1.3637E-03 1.9753
    1/80 8.4582E-06 1.9933 3.4761E-04 1.9720
    1/10 1.1457E-03 - 4.5326E-02 -
    0.5 0.5 0.2 1/20 2.8884E-04 1.9879 1.1461E-02 1.9836
    1/40 7.2679E-05 1.9907 2.8911E-03 1.9871
    1/80 1.8260E-05 1.9929 7.2972E-04 1.9862
    1/10 1.5622E-02 - 6.1668E-01 -
    -1 1/20 4.0111E-03 1.9615 1.5838E-01 1.9611
    1/40 1.0095E-03 1.9904 3.9868E-02 1.9901
    1/80 2.5362E-04 1.9929 1.0017E-02 1.9928
    1/10 5.2861E-04 - 2.0885E-02 -
    0.5 1/20 1.3465E-04 1.9730 5.3245E-03 1.9717
    1/40 3.4107E-05 1.9811 1.3530E-03 1.9765
    1/80 8.5857E-06 1.9901 3.4270E-04 1.9812
    1/10 2.2763E-03 - 8.9851E-02 -
    0.8 0.5 0 1/20 5.7402E-04 1.9875 2.2660E-02 1.9874
    1/40 1.4460E-04 1.9890 5.7086E-03 1.9889
    1/80 3.6405E-05 1.9899 1.4372E-03 1.9898
    1/10 1.5534E-02 - 6.1313E-01 -
    -1 1/20 3.9902E-03 1.9609 1.5749E-01 1.9609
    1/40 1.0033E-03 1.9917 3.9605E-02 1.9916
    1/80 2.5177E-04 1.9946 9.9391E-03 1.9945

     | Show Table
    DownLoad: CSV
    Table 3.  Time convergence results with h=1/1000.
    α β θ τ uhu Rate qhq Rate
    1/10 2.4519E-03 - 9.6803E-02 -
    0.1 0.9 0.11 1/20 6.2095E-04 1.9813 2.4519E-02 1.9811
    1/40 5.2080E-04 0.2538 2.0647E-02 0.2480
    1/80 4.0699E+02 -19.5758 1.6068E+04 -19.5699
    1/10 1.8093E-03 - 7.1425E-02 -
    0.5 0.5 0.51 1/20 4.5109E-04 2.0039 1.7808E-02 2.0039
    1/40 2.0018E-04 1.1721 7.8154E-03 1.1881
    1/80 5.1099E-04 -1.3520 2.0090E-02 -1.3621
    1/10 4.8552E-04 - 1.9119E-02 -
    0.8 0.2 0.21 1/20 1.2438E-04 1.9647 4.8398E-03 1.9820
    1/40 5.8298E-05 1.0933 2.2123E-03 1.1294
    1/80 2.3759E-02 -8.6708 9.3790E-01 -8.7277

     | Show Table
    DownLoad: CSV
    Figure 1.  uh, qh and u, q with τ=1/1000, h=1/80, α=0.2, β=0.8, θ=0.2.

    Example 5.2 In this example, we consider the case where the nonsmooth solution is taken as u=(tα+β+t3)sin(2πx), and the known source term g(x,t) is

    g(x,t)=sin(2πx)[(α+β)tα+β1+3t2+4π2(tβΓ(α+β+1)Γ(β+1)+6t3αΓ(4α))]+sin(2πx)[16π4(tαΓ(α+β+1)Γ(α+1)+6t3βΓ(4β))+4π2(tα+β+t3)]+2π(tα+β+t3)cos(2πx)+2π(tα+β+t3)2sin(4πx). (5.2)

    Table 4 presents the L2-errors and the spatial convergence rates of u and q before and after adding the starting parts with h=1/10,1/20,1/40,1/80, τ=1/2000, where Erroro denotes the error before adding the starting parts and Errorc denotes the error after adding the starting parts.

    Table 4.  Spatial convergence results with α=0.9, β=0.2, τ=1/2000.
    uhu qhq
    θ h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.2694E-02 - 4.2693E-02 - 1.2162E-01 - 1.2163E-01 -
    0.2 1/20 1.0850E-02 1.9763 1.0850E-02 1.9763 2.9675E-02 2.0351 2.9679E-02 2.0349
    1/40 2.7235E-03 1.9942 2.7234E-03 1.9942 7.3708E-03 2.0094 7.3746E-03 2.0088
    1/80 6.8165E-04 1.9984 6.8155E-04 1.9985 1.8361E-03 2.0051 1.8400E-03 2.0029
    1/10 4.2693E-02 - 4.2692E-02 - 1.2165E-01 - 1.2168E-01 -
    -0.5 1/20 1.0849E-02 1.9764 1.0849E-02 1.9764 2.9706E-02 2.0340 2.9728E-02 2.0331
    1/40 2.7227E-03 1.9945 2.7221E-03 1.9947 7.4017E-03 2.0048 7.4237E-03 2.0016
    1/80 6.8085E-04 1.9996 6.8028E-04 2.0005 1.8671E-03 1.9871 1.8891E-03 1.9744
    1/10 4.2691E-02 - 4.2690E-02 - 1.2172E-01 - 1.2177E-01 -
    -1 1/20 1.0848E-02 1.9766 1.0846E-02 1.9767 2.9776E-02 2.0314 2.9822E-02 2.0297
    1/40 2.7209E-03 1.9952 2.7197E-03 1.9957 7.4714E-03 1.9947 7.5178E-03 1.9880
    1/80 6.7905E-04 2.0025 6.7786E-04 2.0044 1.9368E-03 1.9477 1.9833E-03 1.9224

     | Show Table
    DownLoad: CSV

    The spatial convergence rate is almost unaffected before and after correction, based on a comparison of the data in Table 5. In Tables 6 and 7, we present the L2-errors and the time convergence rates of u and q before and after adding the starting parts. Without the addition of the starting parts, the time convergence rates are unstable and cannot reach the second-order convergence results computed by the generalized BDF2-θ. After adding the starting parts, the time convergence rates keep around 2, indicating that the starting part plays a major role in correcting the time convergence rates.

    Table 5.  Spatial convergence results with α=0.5, β=0.7, τ=1/2000.
    uhu qhq
    θ h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.3949E-02 - 4.3948E-02 - 6.8838E-02 - 6.8891E-02 -
    0.5 1/20 1.1177E-02 1.9753 1.1176E-02 1.9754 1.6266E-02 2.0814 1.6318E-02 2.0778
    1/40 2.8070E-03 1.9934 2.8057E-03 1.9940 3.9696E-03 2.0348 4.0219E-03 2.0205
    1/80 7.0358E-04 1.9963 7.0222E-04 1.9984 9.4708E-04 2.0674 9.9935E-04 2.0088
    1/10 4.3949E-02 - 4.3948E-02 - 6.8842E-02 - 6.8897E-02 -
    0.2 1/20 1.1177E-02 1.9753 1.1176E-02 1.9754 1.6270E-02 2.0811 1.6324E-02 2.0774
    1/40 2.8069E-03 1.9935 2.8055E-03 1.9940 3.9739E-03 2.0336 4.0279E-03 2.0189
    1/80 7.0346E-04 1.9964 7.0206E-04 1.9986 9.5140E-04 2.0624 1.0054E-03 2.0023
    1/10 4.3948E-02 - 4.3946E-02 - 6.8877E-02 - 6.8974E-02 -
    -1 1/20 1.1176E-02 1.9754 1.1174E-02 1.9756 1.6304E-02 2.0788 1.6401E-02 2.0722
    1/40 2.8061E-03 1.9938 2.8035E-03 1.9948 4.0077E-03 2.0244 4.1049E-03 1.9984
    1/80 7.0259E-04 1.9978 7.0007E-04 2.0017 9.8520E-04 2.0243 1.0824E-03 1.9231

     | Show Table
    DownLoad: CSV
    Table 6.  Time convergence results with α=0.9, β=0.2, h=1/2000.
    uhu qhq
    θ τ Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 2.1916E-03 - 4.2694E-02 - 8.6515E-02 - 1.2162E-01 -
    0.2 1/20 1.6194E-03 0.4365 1.0850E-02 1.9763 6.3929E-02 0.4365 2.9675E-02 2.0351
    1/40 1.0890E-03 0.5725 2.7235E-03 1.9942 4.2990E-02 0.5725 7.3710E-03 2.0093
    1/80 6.8790E-04 0.6627 6.8165E-04 1.9984 2.7157E-02 0.6627 1.8364E-03 2.0050
    1/10 2.5540E-03 - 4.2693E-02 - 1.0123E-01 - 1.2164E-01 -
    0 1/20 1.1111E-03 1.2007 1.0850E-02 1.9763 4.3864E-02 1.2065 2.9692E-02 2.0345
    1/40 7.7616E-04 0.5176 2.7231E-03 1.9944 3.0641E-02 0.5176 7.3878E-03 2.0069
    1/80 5.0234E-04 0.6277 6.8122E-04 1.9990 1.9831E-02 0.6277 1.8531E-03 1.9952
    1/10 2.4652E-02 - 4.2689E-02 - 9.7312E-01 - 1.2182E-01 -
    -0.5 1/20 7.1878E-03 1.7781 1.0845E-02 1.9768 2.8376E-01 1.7779 2.9872E-02 2.0279
    1/40 1.9420E-03 1.8880 2.7184E-03 1.9962 7.6702E-02 1.8874 7.5673E-03 1.9809
    1/80 5.5906E-04 1.7965 6.7658E-04 2.0064 2.2071E-02 1.7971 2.0329E-03 1.8962

     | Show Table
    DownLoad: CSV
    Table 7.  Time convergence results with α=0.5, β=0.7, h=1/2000.
    uhu qhq
    θ τ Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 1.1456E-02 - 4.3948E-02 - 4.5228E-01 - 6.8880E-02 -
    0.5 1/20 5.0680E-03 1.1767 1.1176E-02 1.9754 2.0008E-01 1.1767 1.6307E-02 2.0786
    1/40 2.2184E-03 1.1919 2.8060E-03 1.9939 8.7577E-02 1.1919 4.0110E-03 2.0235
    1/80 9.6796E-04 1.1965 7.0250E-04 1.9979 3.8213E-02 1.1965 9.8850E-04 2.0207
    1/10 5.4375E-03 - 4.3948E-02 - 2.1466E-01 - 6.8904E-02 -
    0.2 1/20 2.5220E-03 1.1084 1.1176E-02 1.9754 9.9562E-02 1.1084 1.6332E-02 2.0769
    1/40 1.1387E-03 1.1472 2.8053E-03 1.9941 4.4952E-02 1.1472 4.0351E-03 2.0170
    1/80 5.0160E-04 1.1828 7.0188E-04 1.9989 1.9802E-02 1.1827 1.0126E-03 1.9946
    1/10 2.8636E-02 - 4.3948E-02 - 1.1304E+00 - 6.8904E-02 -
    -1 1/20 7.7097E-03 1.8931 1.1176E-02 1.9754 3.0439E-01 1.8929 1.6332E-02 2.0769
    1/40 1.9098E-03 2.0133 2.8053E-03 1.9941 7.5437E-02 2.0126 4.0351E-03 2.0170
    1/80 6.3574E-04 1.5869 7.0188E-04 1.9989 2.5098E-02 1.5877 1.0126E-03 1.9946

     | Show Table
    DownLoad: CSV

    In Figure 2, we obtain the comparison images between the numerical solution and the exact solution with τ=1/1000, h=1/80, α=0.9, β=0.2, and θ=0.2. In Figures 3 and 4, we present the space and time convergence rate images of uh and qh under different parameters α, β, and θ. From Figure 4, one can see that the corrected scheme with the starting parts can effectively restore the second-order convergence rate for the nonsmooth problem.

    Figure 2.  uh, qh and u, q with τ=1/2000, h=1/80, α=0.9, β=0.2, θ=0.2.
    Figure 3.  The spatial convergence rates in L2-errors with different parameters α, β, and θ.
    Figure 4.  The time convergence rates in L2-errors with different parameters α, β, and θ.

    Example 5.3. To better investigate the effect of changes of two fractional parameters α and β on the convergence rates, we introduce the numerical example with two nonsmooth terms. Here, we take the nonsmooth solution u with

    u=(t1+α+t1+β+t3)sin(2πx),

    and the known source term

    g(x,t)=sin(2πx)[(1+α)tα+(1+β)tβ+3t2+4π2(tΓ(2+α)+t1+βαΓ(2+β)Γ(2+βα)+6t3αΓ(4α))]+sin(2πx)[16π4(t1+αβΓ(2+α)Γ(2+αβ)+tΓ(2+β)+6t3βΓ(4β))+4π2(t1+α+t1+β+t3)]+2π(t1+α+t1+β+t3)cos(2πx)+2π(t1+α+t1+β+t3)2sin(4πx). (5.3)

    In Table 8, we provide the errors of uhu and qhq and the spatial convergence rates under different parameters, which indicate that the corrected term hardly affects the spatial convergence rate.

    Table 8.  Spatial convergence results with α=0.5, β=0.6, τ=1/2000.
    uhu qhq
    θ h Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 6.5710E-02 - 6.5710E-02 - 1.1335E-01 - 1.1335E-01 -
    0.5 1/20 1.6709E-02 1.9755 1.6709E-02 1.9755 2.7037E-02 2.0678 2.7037E-02 2.0678
    1/40 4.1946E-03 1.9940 4.1946E-03 1.9940 6.6773E-03 2.0176 6.6775E-03 2.0175
    1/80 1.0498E-03 1.9984 1.0498E-03 1.9984 1.6615E-03 2.0068 1.6617E-03 2.0066
    1/10 6.5710E-02 - 6.5710E-02 - 1.1336E-01 - 1.1336E-01 -
    0.2 1/20 1.6708E-02 1.9755 1.6708E-02 1.9755 2.7042E-02 2.0676 2.7042E-02 2.0676
    1/40 4.1944E-03 1.9940 4.1944E-03 1.9940 6.6826E-03 2.0167 6.6825E-03 2.0167
    1/80 1.0497E-03 1.9986 1.0497E-03 1.9985 1.6668E-03 2.0033 1.6667E-03 2.0034
    1/10 6.5709E-02 - 6.5709E-02 - 1.1339E-01 - 1.1339E-01 -
    -0.5 1/20 1.6708E-02 1.9756 1.6708E-02 1.9756 2.7078E-02 2.0661 2.7077E-02 2.0662
    1/40 4.1935E-03 1.9943 4.1935E-03 1.9943 6.7188E-03 2.0109 6.7178E-03 2.0110
    1/80 1.0487E-03 1.9995 1.0487E-03 1.9995 1.7031E-03 1.9801 1.7020E-03 1.9808

     | Show Table
    DownLoad: CSV

    In Tables 911, fixing τ=1/4000, choosing h=1/10,1/20,1/40,1/80, and changing parameters α, β, and θ, we provide the L2-errors and the time convergence rates for u and q based on the corrected scheme and uncorrected scheme. The impact of different fractional parameters on the time convergence rates of nonsmooth problems is evident from Tables 911. Furthermore, one can see that the corrected scheme with the starting part can effectively restore the second-order convergence rate.

    Table 9.  Time convergence results with α=0.1, β=0.9, h=1/4000.
    uhu qhq
    θ τ Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 8.9204E-03 - 6.2820E-03 - 3.5216E-01 - 2.4809E-01 -
    0.1 1/20 5.2261E-03 0.7714 1.8535E-03 1.7609 2.0632E-01 0.7714 7.3209E-02 1.7608
    1/40 2.6562E-03 0.9764 4.9663E-04 1.9001 1.0486E-01 0.9764 1.9628E-02 1.8992
    1/80 1.2855E-03 1.0470 1.2782E-04 1.9580 5.0749E-02 1.0470 5.0645E-03 1.9544
    1/10 1.1291E-02 - 9.1163E-03 - 4.4575E-01 - 3.5998E-01
    0 1/20 6.8182E-03 0.7277 2.7085E-03 1.7510 2.6917E-01 0.7277 1.0696E-01 1.7509
    1/40 3.4949E-03 0.9641 7.2773E-04 1.8960 1.3797E-01 0.9641 2.8751E-02 1.8954
    1/80 1.6987E-03 1.0408 1.8766E-04 1.9553 6.7062E-02 1.0408 7.4268E-03 1.9528
    1/10 2.1457E-02 - 2.6030E-02 - 1.1105E+00 - 1.7696E+00 -
    -0.5 1/20 1.4552E-02 0.5603 8.3150E-03 1.6464 8.5207E-01 0.3822 6.2053E-01 1.5118
    1/40 7.7887E-03 0.9017 2.2980E-03 1.8554 4.7736E-01 0.8359 1.7762E-01 1.8047
    1/80 3.8350E-03 1.0222 6.0067E-04 1.9357 2.3888E-01 0.9988 4.7205E-02 1.9118

     | Show Table
    DownLoad: CSV
    Table 10.  Time convergence results with α=0.5, β=0.6, h=1/4000.
    uhu qhq
    θ τ Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 4.3621E-03 - 3.6704E-03 - 1.7226E-01 - 1.4498E-01 -
    0.5 1/20 1.0876E-03 2.0039 9.5152E-04 1.9476 4.2941E-02 2.0042 3.7576E-02 1.9480
    1/40 3.3133E-04 1.7148 2.4178E-04 1.9765 1.3080E-02 1.7150 9.5356E-03 1.9784
    1/80 1.1132E-04 1.5735 6.1138E-05 1.9835 4.3948E-03 1.5735 2.3985E-03 1.9912
    1/10 1.4643E-03 - 1.0614E-03 - 5.8318E-02 - 4.2803E-02 -
    0.2 1/20 4.8956E-04 1.5806 3.0032E-04 1.8214 1.9326E-02 1.5934 1.2126E-02 1.8197
    1/40 1.6670E-04 1.5542 7.8625E-05 1.9335 6.5811E-03 1.5541 3.1895E-03 1.9267
    1/80 5.7051E-05 1.5470 1.9768E-05 1.9918 2.2523E-03 1.5470 8.1546E-04 1.9676
    1/10 8.7609E-03 - 6.8360E-03 - 3.4601E-01 - 2.7011E-01 -
    0 1/20 2.2404E-03 1.9673 1.9129E-03 1.8374 8.8510E-02 1.9669 7.5599E-02 1.8371
    1/40 5.6418E-04 1.9895 5.0061E-04 1.9340 2.2304E-02 1.9886 1.9798E-02 1.9330
    1/80 1.5985E-04 1.8194 1.2738E-04 1.9746 6.3107E-03 1.8214 5.0505E-03 1.9709

     | Show Table
    DownLoad: CSV
    Table 11.  Time convergence results with α=0.9, β=0.1, h=1/4000.
    uhu qhq
    θ τ Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 1.2779E-03 - 4.4043E-04 - 5.0452E-02 - 2.5629E-02 -
    0.1 1/20 1.0267E-03 0.3157 1.1804E-04 1.8996 4.0534E-02 0.3158 7.0942E-03 1.8531
    1/40 7.5884E-04 0.4362 3.0793E-05 1.9386 2.9957E-02 0.4362 1.8662E-03 1.9265
    1/80 5.0089E-04 0.5993 8.1141E-06 1.9241 1.9774E-02 0.5993 4.7828E-04 1.9642
    1/10 4.3621E-03 - 1.4545E-03 - 7.7482E-02 - 6.1261E-02 -
    0 1/20 1.8873E-03 0.6822 3.9496E-04 1.8807 4.6434E-02 0.7387 1.6763E-02 1.8697
    1/40 9.2034E-04 0.3539 1.0228E-04 1.9492 3.6333E-02 0.3539 4.3730E-03 1.9386
    1/80 6.1337E-04 0.5854 2.5740E-05 1.9904 2.4215E-02 0.5854 1.1169E-03 1.9692
    1/10 9.0746E-03 - 6.1035E-03 - 3.5896E-01 - 2.4209E-01 -
    -0.1 1/20 2.3761E-03 1.9332 1.7550E-03 1.7982 9.4044E-02 1.9324 6.9621E-02 1.7980
    1/40 7.1647E-04 1.7296 4.6664E-04 1.9111 2.8284E-02 1.7333 1.8526E-02 1.9100
    1/80 5.9682E-04 0.2636 1.1984E-04 1.9612 2.3561E-02 0.2636 4.7711E-03 1.9572

     | Show Table
    DownLoad: CSV

    To further validate the performance of the parameter θ in numerical simulations with nonsmooth solutions, we provide the computing data in Table 12, from which one can see that the parameter θ still needs to satisfy θmin{α,β,12}, whether before or after correction. Notably, when θ is negative, as long as it is not much less than 0, we can still obtain second-order convergence accuracy.

    Table 12.  Time convergence results with α=0.7, β=0.3, h=1/4000.
    uhu qhq
    θ τ Erroro Rate Errorc Rate Erroro Rate Errorc Rate
    1/10 3.3675E-03 - 2.0604E-03 - 1.3333E-01 - 8.2027E-02 -
    0.31 1/20 1.2977E-03 1.3757 5.3018E-04 1.9584 5.1287E-02 1.3783 2.1127E-02 1.9570
    1/40 1.9442E-03 -0.5833 1.4145E-04 1.9062 7.6738E-02 -0.5813 5.6232E-03 1.9096
    1/80 6.1733E-02 -4.9888 1.3510E-04 0.0663 2.4372E+00 -4.9892 5.3212E-03 0.0797
    1/10 4.5472E-02 - 3.0346E-02 - 1.7952E+00 - 1.1983E+00 -
    -0.5 1/20 1.2127E-02 1.9067 9.1861E-03 1.7240 4.7880E-01 1.9066 3.6273E-01 1.7240
    1/40 3.1344E-03 1.9520 2.4851E-03 1.8861 1.2376E-01 1.9518 9.8141E-02 1.8859
    1/80 7.9608E-04 1.9772 6.4304E-04 1.9504 3.1447E-02 1.9766 2.5407E-02 1.9496
    1/10 1.1762E+00 - 3.4223E-01 - 4.6430E+01 - 1.3512E+01 -
    -5 1/20 3.9521E-01 1.5734 1.9704E-01 0.7964 1.5601E+01 1.5734 7.7788E+00 0.7966
    1/40 1.2069E-01 1.7113 7.7857E-02 1.3396 4.7643E+00 1.7113 3.0736E+00 1.3396
    1/80 3.3458E-02 1.8509 2.4673E-02 1.6579 1.3208E+00 1.8509 9.7402E-01 1.6579

     | Show Table
    DownLoad: CSV

    The time convergence rates of u and q are compared before and after correction with different parameters α, β, and θ in Figure 5, where the slope of the line segment indicates the convergence rate. The slope of each line segment in the corrected images is the same regardless of the parameters chosen, indicating that the introduction of the starting part has a significant effect on the time convergence rates for the case with nonsmooth solutions.

    Figure 5.  The time convergence rates in L2-errors with different parameters α, β, and θ.

    In this article, the spatial mixed finite element method with the generalized BDF2-θ for solving the time-fractional generalized Rosenau-RLW-Burgers equation was presented. Detailed proofs of stability were shown. The numerical scheme's effectiveness and feasibility were verified by conducting numerical examples that included both smooth and nonsmooth solutions. The numerical examples with good regularity indicated that our algorithm with changed parameters α, β, and θ can maintain second-order convergence in time. Especially, the nonsmooth examples demonstrated that adding the correction term could effectively solve the problem of reduced order caused by weak singularity.

    N. Yang: Writing–original draft, Formal analysis, Software; Y. Liu: Methodology, Validation, Formal analysis, Funding acquisition, Supervision, Writing–review & editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Natural Science Foundation of China (12061053), Young Innovative Talents Project of Grassland Talents Project and Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT2413).

    The authors declare that they have no conflicts of interest.



    [1] Santini DJ (2011) Electric vehicle waves of history: lessons learned about market deployment of electric vehicles, In: S Soylu (Ed), Electric Vehicles—The Benefits and Barriers, 35–62. https://doi.org/10.5772/22411
    [2] International Energy Agency (IEA) (2021) Global EV Outlook. IEA/OECD, Paris. Available from: https://www.iea.org/reports/global-ev-outlook-2021.
    [3] Bloomberg NEF (2021) Electric vehicle outlook 2021. Available from: https://about.bnef.com/electric-vehicle-outlook/.
    [4] Rietmann N, Hügler B, Lieven T (2020) Forecasting the trajectory of electric vehicle sales and the consequences for worldwide CO2 emissions. J Cleaner Prod 261: 121038. https://doi.org/10.1016/j.jclepro.2020.121038 doi: 10.1016/j.jclepro.2020.121038
    [5] Organization of the Petroleum Exporting Countries (OPEC) (2021) OPEC World Oil Outlook, OPEC, Vienna, Austria. Available from: http://www.opec.org.
    [6] BP (2021) BP statistical review of world energy 2021. BP, London. Available from: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
    [7] Bloomberg NEF (2021) Electric vehicle sales headed for five and a half million in 2021 as automakers target 40 million per year by 2030. Available from: https://about.bnef.com/blog/electric-vehicle-sales-headed-for-five-and-a-half-million-in-2021-as-automakers-target-40-million-per-year-by-2030/.
    [8] Plötz P, Axsen J, Funke SA, et al. (2019) Designing car bans for sustainable transportation. Nature Sustain 2: 534–536. https://doi.org/10.1038/s41893-019-0328-9 doi: 10.1038/s41893-019-0328-9
    [9] Shaffer B, Auffhammer M, Samaras C (2021) Make electric vehicles lighter to maximize climate and safety benefits. Nature 598: 254–256. https://doi.org/10.1038/d41586-021-02760-8 doi: 10.1038/d41586-021-02760-8
    [10] Senecal PK, Leach F (2019) Diversity in transportation: Why a mix of propulsion technologies is the way forward for the future fleet. Results Eng 4: 100060. https://doi.org/10.1016/j.rineng.2019.100060 doi: 10.1016/j.rineng.2019.100060
    [11] International Energy Agency (IEA) (2021) Key world energy statistics 2021. Paris: IEA/OECD. Available from: https://www.iea.org/reports/key-world-energy-statistics-2021.
    [12] International Energy Agency (IEA) (2021) Global hydrogen review 2021. Available from: https://www.iea.org/reports/global-hydrogen-review-2021.
    [13] Intergovernmental Panel on Climate Change (IPCC) (2021) Climate change 2021: The physical science basis. AR6, WG1. CUP, Cambridge UK (Also earlier reports). Available from: https://www.ipcc.ch/report/ar6/wg1/#FullReport.
    [14] Luin B, Petelin S, Al-Mansour F (2019) Microsimulation of electric vehicle energy consumption. Energy 174: 24e32. https://doi.org/10.1016/j.energy.2019.02.034 doi: 10.1016/j.energy.2019.02.034
    [15] Doluweera G, Hahn F, Bergerson J, et al. (2021) A scenario-based study on the impacts of electric vehicles on energy consumption and sustainability in Alberta. Appl Energy 268: 114961. https://doi.org/10.1016/j.apenergy.2020.114961 doi: 10.1016/j.apenergy.2020.114961
    [16] Michaelides EE (2020) Thermodynamics and energy usage of electric vehicles. Energy Convers Mgt 203: 112246. https://doi.org/10.1016/j.enconman.2019.112246 doi: 10.1016/j.enconman.2019.112246
    [17] Zhang R, Fujimori S (2020) The role of transport electrification in global climate change mitigation scenarios. Environ Res Lett 15: 034019. https://doi.org/10.1088/1748-9326/ab6658 doi: 10.1088/1748-9326/ab6658
    [18] Yuksel T, Tamayao M-AM, Hendrickson C, et al. (2016) Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States. Environ Res Lett 11: 044007. https://doi.org/10.1088/1748-9326/11/4/044007 doi: 10.1088/1748-9326/11/4/044007
    [19] Archsmith J, Kendall A, Rapson D (2015) From cradle to junkyard: assessing the life cycle greenhouse gas benefits of electric vehicles. Res Trans Econ 52: 72–90. https://doi.org/10.1016/j.retrec.2015.10.007 doi: 10.1016/j.retrec.2015.10.007
    [20] Liu K, Wang J, Yamamoto T, et al. (2018) Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption. Appl Energy 227: 324–331. https://doi.org/10.1016/j.apenergy.2017.08.074 doi: 10.1016/j.apenergy.2017.08.074
    [21] Lovins A (2020) Reframing automotive fuel efficiency. SAE J STEEP 1: 59–84. https://doi.org/10.4271/13-01-01-0004. doi: 10.4271/13-01-01-0004
    [22] Moriarty P, Honnery D (2019) Energy accounting for a renewable energy future. Energies 12: 4280. https://doi.org/10.3390/en12224280 doi: 10.3390/en12224280
    [23] Moriarty P, Honnery D (2016) Can renewable energy power the future? Energy Pol 93: 3–7. https://doi.org/10.1016/j.enpol.2016.02.051 doi: 10.1016/j.enpol.2016.02.051
    [24] Moriarty P, Honnery D (2021) The limits of renewable energy. AIMS Energy 9: 812–829. https://doi.org/10.3934/energy.2021037 doi: 10.3934/energy.2021037
    [25] Giarola S, Molar-Cruz A, Vaillancourt K, et al. (2021) The role of energy storage in the uptake of renewable energy: A model comparison approach. Energy Pol 151: 112159. https://doi.org/10.1016/j.enpol.2021.112159 doi: 10.1016/j.enpol.2021.112159
    [26] Moriarty P, Honnery D (2018) Energy policy and economics under climate change. AIMS Energy 6: 272–290. https://doi.org/10.3934/energy.2018.2.272 doi: 10.3934/energy.2018.2.272
    [27] Jacobson MZ (2017) Roadmaps to transition countries to 100% clean, renewable energy for all purposes to curtail global warming, air pollution, and energy risk. Earth's Future 5: 948–952. https://doi.org/10.1002/2017EF000672 doi: 10.1002/2017EF000672
    [28] Davis SJ, Lewis NS, Shaner M, et al. (2018) Net-zero emissions energy systems. Science 360: eaas9793. https://doi.org/10.1126/science.aas9793 doi: 10.1126/science.aas9793
    [29] Fthenakis V, Raugei M, Breyer C, et al. (2022) Comment on Seibert, M.K.; Rees, W.E. Through the eye of a needle: An eco-heterodox perspective on the renewable energy transition. Energies 2021, 14, 4508. Energies 15: 971. https://doi.org/10.3390/en15030971.
    [30] Seibert MK, Rees WE (2021) Through the eye of a needle: An eco-heterodox perspective on the renewable energy transition. Energies 14: 4508. https://doi.org/10.3390/en14154508. doi: 10.3390/en14154508
    [31] Moriarty P, Honnery D (2019) Ecosystem maintenance energy and the need for a green EROI. Energy Pol 131: 229–234. https://doi.org/10.1016/j.enpol.2019.05.006 doi: 10.1016/j.enpol.2019.05.006
    [32] Moriarty P, Honnery D (2020) Feasibility of a 100% global renewable energy system. Energies 13: 5543. https://doi.org/10.3390/en13215543 doi: 10.3390/en13215543
    [33] Moriarty P, Honnery D (2021) The risk of catastrophic climate change: Future energy implications. Futures 128: 102728. https://doi.org/10.1016/j.futures.2021.102728 doi: 10.1016/j.futures.2021.102728
    [34] Nieto J, Carpintero O, Miguel LJ, et al. (2020) Macroeconomic modelling under energy constraints: Global low carbon transition scenarios. Energy Pol 137: 111090. https://doi.org/10.1016/j.enpol.2019.111090 doi: 10.1016/j.enpol.2019.111090
    [35] de Blas I, Mediavilla M, Capellan-Perez I, et al. (2020) The limits of transport decarbonization under the current growth paradigm. Energy Strategy Rev 32: 100543. https://doi.org/10.1016/j.esr.2020.100543 doi: 10.1016/j.esr.2020.100543
    [36] Wohlfahrt G, Tomelleri E, Hammerle A (2021) The albedo-climate penalty of hydropower reservoirs. Nature Energy 6: 372–377. https://doi.org/10.1038/s41560-021-00784-y. doi: 10.1038/s41560-021-00784-y
    [37] Moriarty P, Honnery D (2020) New approaches for ecological and social sustainability in a post-pandemic world. World 1: 191–204. https://doi.org/10.3390/world1030014 doi: 10.3390/world1030014
    [38] Hertwich EG, Gibon T, Bouman EA, et al. (2015) Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. PNAS 112: 6277–6282. https://doi.org/10.1073/pnas.1312753111 doi: 10.1073/pnas.1312753111
    [39] International Energy Agency (IEA) (2021) The role of critical minerals in clean energy transitions. Available from: https://iea.blob.core.windows.net/assets/24d5dfbb-a77a-4647-abcc-667867207f74/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf.
    [40] Lawton G (2021) Net zero's dirty secret. New Sci 13: 38–43. https://doi.org/10.1016/S0262-4079(21)02032-7 doi: 10.1016/S0262-4079(21)02032-7
    [41] King LC, van den Bergh JCJM (2018) Implications of net energy-return-on-investment for a low-carbon energy transition. Nat Energy 3: 334–340. https://doi.org/10.1038/s41560-018-0116-1 doi: 10.1038/s41560-018-0116-1
    [42] Capellán-Pérez I, de Castro C, González LJM (2019) Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Rev 26: 100399. https://doi.org/10.1016/j.esr.2019.100399 doi: 10.1016/j.esr.2019.100399
    [43] Lenton TM, Rockström J, Gaffney O, et al. (2019) Climate tipping points—too risky to bet against. Nature 575: 592–595. https://doi.org/10.1038/d41586-019-03595-0 doi: 10.1038/d41586-019-03595-0
    [44] Ripple WJ, Wolf C, Newsome TM, et al. (2021) World scientists' warning of a climate emergency. BioScience 71: 894–898. https://doi.org/10.1093/biosci/biab079 doi: 10.1093/biosci/biab079
    [45] Edelenbosch O, McCollum D, Pettifor H, et al. (2018) Interactions between social learning and technological learning in electric vehicle futures. Environ Res Lett 13 124004. https://doi.org/10.1088/1748-9326/aae948 doi: 10.1088/1748-9326/aae948
    [46] Edelenbosch O, Hof A, Nykvist B, et al. (2018) Transport electrification: the effect of recent battery cost reduction on future emission scenarios. Clim Change 151: 95–108. https://doi.org/10.1007/s10584-018-2250-y doi: 10.1007/s10584-018-2250-y
    [47] Moriarty P (2021) Nuclear energy: An uncertain future. AIMS Energy 9: 1027–1042. https://doi.org/10.3934/energy.2021047 doi: 10.3934/energy.2021047
    [48] International Atomic Energy Agency (IAEA) (2020) Energy, electricity and nuclear power estimates for the period up to 2050. Reference Data Series No. 1, 2020 Edition. Available from: https://www.iaea.org/publications/14786/energy-electricity-and-nuclear-power-estimates-for-the-period-up-to-2050.
    [49] Zhao Y, Wang Z, Shen Z-JM, et al. (2021) Assessment of battery utilization and energy consumption in the large-scale development of urban electric vehicles. PNAS 118: e2017318118. https://doi.org/10.1073/pnas.2017318118 doi: 10.1073/pnas.2017318118
    [50] Dillman KJ, Árnadóttir Á, Heinonen J, et al. (2020) Review and meta-analysis of EVs: embodied emissions and environmental breakeven. Sustainability 12: 9390. https://doi.org/10.3390/su12229390 doi: 10.3390/su12229390
    [51] Hawkins TR, Singh B, Majeau-Bettez G, et al. (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17: 53–64. https://doi.org/10.1111/j.1530-9290.2012.00532.x doi: 10.1111/j.1530-9290.2012.00532.x
    [52] Ager-Wick Ellingsen L, Singh B, Strømman AH (2016) The size and range effect: lifecycle greenhouse gas emissions of electric vehicles. Environ Res Lett 11: 054010. https://doi.org/10.1088/1748-9326/11/5/054010 doi: 10.1088/1748-9326/11/5/054010
    [53] Xu L, Yilmaz HU, Wang Z, et al. (2020) Greenhouse gas emissions of electric vehicles in Europe considering different charging strategies. Transp Res Part D 87: 102534. https://doi.org/10.1016/j.trd.2020.102534 doi: 10.1016/j.trd.2020.102534
    [54] Teixeira ACR, Sodré JR (2018) Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions. Transp Res Part D 59: 375–384. https://doi.org/10.1016/j.trd.2018.01.004 doi: 10.1016/j.trd.2018.01.004
    [55] Qiao Q, Zhao F, Liu Z, et al. (2019) Life cycle greenhouse gas emissions of electric vehicles in China: Combining the vehicle cycle and fuel cycle. Energy 177: 222–233. https://doi.org/10.1016/j.energy.2019.04.080 doi: 10.1016/j.energy.2019.04.080
    [56] Bradshaw CJA, Ehrlich PR, Beattie A, et al. (2021) Underestimating the challenges of avoiding a ghastly future. Front Conserv Sci 1: 615419. https://doi.org/10.3389/fcosc.2020.615419 doi: 10.3389/fcosc.2020.615419
    [57] Folke C, Polasky S, Rockström J, et al. (2021) Our future in the Anthropocene biosphere. Ambio 50: 834–869 https://doi.org/10.1007/s13280-021-01544-8 doi: 10.1007/s13280-021-01544-8
    [58] Akbari H, Rose LS, Taha H (2003) Analyzing the land cover of an urban environment using high-resolution orthophotos. Landscape Urb Plann 63: 1–14. https://doi.org/10.1016/S0169-2046(02)00165-2 doi: 10.1016/S0169-2046(02)00165-2
    [59] Wong NH, Tan CL, Kolokotsa DD, et al. (2021) Greenery as a mitigation and adaptation strategy to urban heat. Nature Rev: Earth Environ 2: 166–181. https://doi.org/10.1038/s43017-020-00129-5 doi: 10.1038/s43017-020-00129-5
    [60] Laurance WF, Arrea IR (2017) Roads to riches or ruin? Science 358: 442–444. https://doi.org/10.1126/science.aao0312 doi: 10.1126/science.aao0312
    [61] Laurance WF, Balmford A (2013) A global map for road building. Nature 495: 308–309. https://doi.org/10.1038/495308a doi: 10.1038/495308a
    [62] Moriarty P (2021) Global passenger transport. Encycl 1: 189–197. https://doi.org/10.3390/encyclopedia1010018. doi: 10.3390/encyclopedia1010018
    [63] Marshall M (2019) Light is leaking into vital habitats. New Sci 241: 8. https://doi.org/10.1016/S0262-4079(19)30351-3 doi: 10.1016/S0262-4079(19)30351-3
    [64] Münzel1 T, Hahad O, Daiber A (2021) The dark side of nocturnal light pollution. Outdoor light at night increases risk of coronary heart disease. Eur Heart J 42: 831–834. https://doi.org/10.1093/eurheartj/ehaa866 doi: 10.1093/eurheartj/ehaa866
    [65] Nadybal SM, Collins TW, Grineski SE (2020) Light pollution inequities in the continental United States: A distributive environmental justice analysis. Environ Res 189: 109959. https://doi.org/10.1016/j.envres.2020.109959 doi: 10.1016/j.envres.2020.109959
    [66] World Health Organization (WHO) (2021) Road traffic injuries. Available from: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.
    [67] Hegewald J, Schubert M, Lochmann M, et al. (2021) The burden of disease due to road traffic noise in Hesse, Germany. Int J Environ Res Public Health 18: 9337. https://doi.org/10.3390/ijerph18179337. doi: 10.3390/ijerph18179337
    [68] Seidler A, Weihofen VM (2021) Commentary: PostCOVID-19 mobility and traffic noise-induced health effects. Int J Epidem 50: 1157–1159. https://doi.org/10.1093/ije/dyab146 doi: 10.1093/ije/dyab146
    [69] Karaaslan E, Noori M, Lee JY, et al. (2018) Modeling the effect of electric vehicle adoption on pedestrian traffic safety: An agent-based approach. Transp Res Part C 93: 198–210. https://doi.org/10.1016/j.trc.2018.05.026 doi: 10.1016/j.trc.2018.05.026
    [70] Pecher WT, Al Madadha ME, DasSarma P, et al. (2019) Effects of road salt on microbial communities: Halophiles as biomarkers of road salt pollution. PLoS ONE 14: e0221355. https://doi.org/10.1371/journal.pone.0221355. doi: 10.1371/journal.pone.0221355
    [71] Stokstad E (2020) Why were salmon dying? The answer washed off the road. Science 370: 1145. https://doi.org/10.1126/science.370.6521.1145 doi: 10.1126/science.370.6521.1145
    [72] Khare P, Machesky J, Soto R, et al. (2020) Asphalt-related emissions are a major missing nontraditional source of secondary organic aerosol precursors. Sci Adv 6: eabb9785. https://doi.org/10.1126/sciadv.abb9785 doi: 10.1126/sciadv.abb9785
    [73] Howgego J (2022) Waste not… want not? New Sci 253: 38–47. https://doi.org/10.1016/S0262-4079(22)00248-2 doi: 10.1016/S0262-4079(22)00248-2
    [74] Stubbins A, Law KL, Muñoz SE, et al. (2021) Plastics in the Earth system. Science 373: 51–55. https://doi.org/10.1126/science.abb0354 doi: 10.1126/science.abb0354
    [75] Morse I (2021) A dead battery dilemma. Science 372: 780–783. https://doi.org/10.1126/science.372.6544.780 doi: 10.1126/science.372.6544.780
    [76] Skeete J-P, Wells P, Dong X, et al. (2020) Beyond the EVent horizon: Battery waste, recycling, and sustainability in the United Kingdom electric vehicle transition. Energy Res Soc Sci 69: 101581. https://doi.org/10.1016/j.erss.2020.101581 doi: 10.1016/j.erss.2020.101581
    [77] Guttikunda SK, Nishadh KA, Jawahar P (2019) Air pollution knowledge assessments (APnA) for 20 Indian cities. Urban Clim 27: 124–141. https://doi.org/10.1016/j.uclim.2018.11.005 doi: 10.1016/j.uclim.2018.11.005
    [78] Guo J, Zhang X, Gu F, et al. (2020) Does air pollution stimulate electric vehicle sales? Empirical evidence from twenty major cities in China. J Cleaner Prod 249: 119372. https://doi.org/10.1016/j.jclepro.2019.119372 doi: 10.1016/j.jclepro.2019.119372
    [79] Ma L (2020) Mapping the clean air haves and have-nots. Science 369: 503–504. https://doi.org/10.1126/science.abb0943 doi: 10.1126/science.abb0943
    [80] Piscitello A, Bianco C, Casasso A, et al. (2021) Non-exhaust traffic emissions: Sources, characterization, and mitigation measures. Sci Total Environ 766: 144440. https://doi.org/10.1016/j.scitotenv.2020.144440 doi: 10.1016/j.scitotenv.2020.144440
    [81] Beddows DCS, Harrison RM (2021) PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: Dependence upon vehicle mass and implications for battery electric vehicles. Atmos Environ 244: 117886. https://doi.org/10.1016/j.atmosenv.2020.117886 doi: 10.1016/j.atmosenv.2020.117886
    [82] Timmers VRJH, Achten PAJ (2016) Non-exhaust emissions from electric vehicles. Atmos Environ 134: 10–17. https://doi.org/10.1016/j.atmosenv.2016.03.017 doi: 10.1016/j.atmosenv.2016.03.017
    [83] Beji A, Deboudt K, Khardi S, et al. (2020) Non-exhaust particle emissions under various driving conditions: Implications for sustainable mobility. Transp Res Part D 81: 102290. https://doi.org/10.1016/j.trd.2020.102290 doi: 10.1016/j.trd.2020.102290
    [84] Bicer Y, Dincer I (2018) Life cycle environmental impact assessments and comparisons of alternative fuels for clean vehicles. Resour, Conserv Recycl 132: 141–157. https://doi.org/10.1016/j.resconrec.2018.01.036 doi: 10.1016/j.resconrec.2018.01.036
    [85] Klöckner CA, Nayum A, Mehmetoglu M (2013) Positive and negative spillover effects from electric car purchase to car use. Transp Res Part D 21: 32–38. https://doi.org/10.1016/j.trd.2013.02.007 doi: 10.1016/j.trd.2013.02.007
    [86] Hasan S, Simsekoglu Ö (2020) The role of psychological factors on vehicle kilometer travelled (VKT) for battery electric vehicle (BEV) users. Res Transp Econ 82: 100880. https://doi.org/10.1016/j.retrec.2020.100880 doi: 10.1016/j.retrec.2020.100880
    [87] Dütschke E, Galvin R, Brunzema I (2021) Rebound and spillovers: Prosumers in transition. Front Psych 12: 636109. https://doi.org/10.3389/fpsyg.2021.636109 doi: 10.3389/fpsyg.2021.636109
    [88] Huwe V, Gessner J (2020) Are there rebound effects from electric vehicle adoption? Evidence from German household data. ZEW—Centre for European Economic Research Discussion Paper No. 20-048: 10/2020. https://doi.org/10.2139/ssrn.3711321
    [89] Henderson J (2020) EVs are not the answer: A mobility justice critique of electric vehicle transitions. Annals Amer Assoc Geog 110: 1993–2010. https://doi.org/10.1080/24694452.2020.1744422 doi: 10.1080/24694452.2020.1744422
    [90] Sovacool BK, Hook A, Martiskainen M, et al. (2019) The whole systems energy injustice of four European low-carbon transitions. Glob Environ Change 58: 101958. https://doi.org/10.1016/j.gloenvcha.2019.101958 doi: 10.1016/j.gloenvcha.2019.101958
    [91] Zhang R, Zhang J (2021) Long-term pathways to deep decarbonization of the transport sector in the post-COVID world. Transp Pol 110: 28–36. https://doi.org/10.1016/j.tranpol.2021.05.018 doi: 10.1016/j.tranpol.2021.05.018
    [92] Wanitschke A, Hoffmann S (2020) Are battery electric vehicles the future? An uncertainty comparison with hydrogen and combustion engines. Environ Innov Soc Trans 35: 509–523. https://doi.org/10.1016/j.eist.2019.03.003 doi: 10.1016/j.eist.2019.03.003
    [93] Adams J (1999) The social implications of hypermobility. OECD Project on Environmentally Sustainable Transport, UCL. Available from: https://iris.ucl.ac.uk/iris/publication/36139/1.
    [94] Milovanoff A, Posen ID, MacLean HL (2020) Electrification of light-duty vehicle fleet alone will not meet mitigation targets. Nature Clim Change 10: 1102–1107. https://doi.org/10.1038/s41558-020-00921-7 doi: 10.1038/s41558-020-00921-7
    [95] Delannoy L, Longaretti P-Y, Murphy DJ, et al. (2021) Peak oil and the low-carbon energy transition: a net-energy perspective. Appl Energy 304: 117843. https://doi.org/10.1016/j.apenergy.2021.117843 doi: 10.1016/j.apenergy.2021.117843
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3669) PDF downloads(304) Cited by(7)

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog