Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Research article Special Issues

Zero-watermarking Algorithm for Audio and Video Matching Verification

  • Received: 04 November 2021 Revised: 26 January 2022 Accepted: 06 February 2022 Published: 28 February 2022
  • MSC : 00A69

  • For the needs of tamper-proof detection and copyright identification of audio and video matching, this paper proposes a zero-watermark algorithm that can be used for audio and video matching verification. The algorithm segments audio and video in smaller time units, generates a video frame feature matrix based on NSCT, DCT, and SVD, and generates a sound watermark based on methods such as DWT and K-means. The zero watermark combines video, audio and copyright information. The experimental results show that the zero watermark generated by this algorithm can not only realize highly accurate matching detection and positioning of audio and video, but also well resist common single attack and combination attacks such as noise, scaling, rotation, frame attack and format conversion, which has good robustness.

    Citation: Wenxue Sun, Huiyuan Zhao, Xiao Zhang, Yuchao Sun, Xiaoxin Liu, Xueling Lv, Di Fan. Zero-watermarking Algorithm for Audio and Video Matching Verification[J]. AIMS Mathematics, 2022, 7(5): 8390-8407. doi: 10.3934/math.2022468

    Related Papers:

    [1] Xiaodie Luo, Kaimin Cheng . Counting solutions to a system of quadratic form equations over finite fields. AIMS Mathematics, 2025, 10(6): 13741-13754. doi: 10.3934/math.2025619
    [2] Yan Ma, Di Han . On the high-th mean of one special character sums modulo a prime. AIMS Mathematics, 2023, 8(11): 25804-25814. doi: 10.3934/math.20231316
    [3] Robert Reynolds, Allan Stauffer . Extended Prudnikov sum. AIMS Mathematics, 2022, 7(10): 18576-18586. doi: 10.3934/math.20221021
    [4] Junyong Zhao, Yang Zhao, Yujun Niu . On the number of solutions of two-variable diagonal quartic equations over finite fields. AIMS Mathematics, 2020, 5(4): 2979-2991. doi: 10.3934/math.2020192
    [5] Shuangnian Hu, Rongquan Feng . On the number of solutions of two-variable diagonal sextic equations over finite fields. AIMS Mathematics, 2022, 7(6): 10554-10563. doi: 10.3934/math.2022588
    [6] Mohra Zayed, Maged G. Bin-Saad, Waleed K. Mohammed . On Mittag-Leffler-Gegenbauer polynomials arising by the convolution of Mittag-Leffler function and Hermite polynomials. AIMS Mathematics, 2025, 10(7): 16642-16663. doi: 10.3934/math.2025746
    [7] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [8] Zhuoyu Chen, Wenpeng Zhang . A new reciprocity formula of Dedekind sums and its applications. AIMS Mathematics, 2024, 9(5): 12814-12824. doi: 10.3934/math.2024626
    [9] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [10] Shuangnian Hu, Rongquan Feng . The number of solutions of cubic diagonal equations over finite fields. AIMS Mathematics, 2023, 8(3): 6375-6388. doi: 10.3934/math.2023322
  • For the needs of tamper-proof detection and copyright identification of audio and video matching, this paper proposes a zero-watermark algorithm that can be used for audio and video matching verification. The algorithm segments audio and video in smaller time units, generates a video frame feature matrix based on NSCT, DCT, and SVD, and generates a sound watermark based on methods such as DWT and K-means. The zero watermark combines video, audio and copyright information. The experimental results show that the zero watermark generated by this algorithm can not only realize highly accurate matching detection and positioning of audio and video, but also well resist common single attack and combination attacks such as noise, scaling, rotation, frame attack and format conversion, which has good robustness.



    Let p be a prime, f be a polynomial with k variable and Fp=Z/(p) be the finite field, where Z is the integer ring, and let

    N(f;p)=#{(x1,x2,,xk)Fkp|f(x1,x2,,xk)=0}.

    Many scholars studied the exact formula (including upper bound and lower bound) for N(f;p) for many years, it is one of the main topics in the finite field theory, the most elementary upper bounds was given as follows (see [14])

    N(f;p)pk1degf.

    Let ordp denote the p-adic additive valuation normalized such that ordpp=1. The famous Chevalley-Warning theorem shows that ordpN(f;p)>0 if n>degf. Let [x] denote the least integer x and e denote the extension degree of Fq/Fp. Ax (see [2]) showed that

    ordpN(f;q)e[ndegfdegf].

    In 1977, S. Chowla et al. (see [7]) investigated a problem about the number of solutions of a equation in finite field Fp as follow,

    x31+x32++x3k0,

    where p is a prime with p1mod 3 and xiFp, 1ik.

    Let Mk denotes the number of solutions of the above equation. They proved that

    M3=p2+d(p1),M4=p2+6(p2p),s=1Msxs=x1px+x2(p1)(2+dx)13px2pdx3,

    where d is uniquely determined by 4p=d2+27y2 and d1 mod 3.

    Myerson [12] extended the result in [2] to the field Fq and first studied the following equation over Fq,

    x31+x32++x3k0.

    Recently J. Zhao et al. (see [17]) investigated the following equations over field Fp,

       f1=x41+x42+x43,f2=x41+x42+x43+x44.

    And they give exact value of N(f1;p) and N(f2;p). For more general problem about this issue interested reader can see [6,9,10,11].

    In this paper, let A(k,p) denotes the number of solutions of the following equation in Fp,

    x61+x62++x6k0,

    where p is a prime with p1mod 3 and xiFp, 1ik, and for simplicity, in the rest of this paper, we assume there exists an integer z such that z32mod p, we use analytic methods to give a recurrence formula for the number of solutions of the above equation. And our method is based on the properties of Gauss sum. It is worth noting that we used a novel method to simplify the steps and avoid a lot of complicated calculations. We proved the following:

    Theorem 1. For any positive integer k1, we have the recurrence formula

    A(k+6,p)=5pA(k+4,p)+10dpA(k+3,p)+(46p2+5d2p+dp)A(k+2,p)+(2p2+120dp2+3d3p+d2p+dp)A(k+1,p)+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p)A(k,p)+pk+5pk+4(10dp+2d2)pk+364pk+5/2(429+121d+5d2)pk+22d2pk+3/2(3d3+130d2+12d+6)pk+1d4pk,

    with the initial condition

    A(1,p)=1,A(2,p)=4(p1)+p,A(3,p)=10d(p1)+p2,A(4,p)=56p(p1)+10d2(p1)+p3,A(5,p)=188dp(p1)+5d3(p1)+16dC(p)(p1)+p4,A(6,p)=p5+1400p2(p1)+(388d2+8d576)p(p1)+d2pd2,

    where d is uniquely determined by 4p=d2+27y2 and d1 mod 3, and C(p)=pa=1ep(a3).

    Remark. Our method is suitable to calculus the number of solutions of the following equation in Fp,

    xt1+xt2++xtk0,

    where p satisfied a certain congruence conditions, and t is any nature number.

    Our Theorem 2 can be deduced from Theorem 1 and the theory of the Difference equations.

    Theorem 2. Let ti (1ik) be the real root of the below equation with multiplicity si (1ik) respectively, and ρje±iwj (1jh) be the complex root of the below equation with multiplicity rj (1jh) respectively,

    x6=5px4+10dpx3+(46p2+5d2p+dp)x2+(2p2+120dp2+3d3p+d2p+dp)x+(4p5+2d2p4+64p7/2+381p3+2d2p5/2+(129d2+11d+6)p2+d4p).

    We have

    A(n,p)=ki=1sia=1Ciansiatni+hj=1rjb=1Djbnrjbρnjcosnwj+hj=1rjb=1Ejbnrjbρnjsinnwj,

    where Cia,Djb,Ejb, are determined by

    A(6,p)=ki=1sia=1Cia6siat6i+hj=1rjb=1Djb6rjbρ6jcos6wj+hj=1rjb=1Ejb6rjbρ6jsin6wj,A(5,p)=ki=1sia=1Cia5siat5i+hj=1rjb=1Djb5rjbρ5jcos5wj+hj=1rjb=1Ejb5rjbρ5jsin5wj,A(4,p)=ki=1sia=1Cia4siat4i+hj=1rjb=1Djb4rjbρ4jcos4wj+hj=1rjb=1Ejb4rjbρ4jsin4wj,A(3,p)=ki=1sia=1Cia3siat3i+hj=1rjb=1Djb3rjbρ3jcos3wj+hj=1rjb=1Ejb3rjbρ3jsin3wj,A(2,p)=ki=1sia=1Cia2siat2i+hj=1rjb=1Djb2rjbρ2jcos2wj+hj=1rjb=1Ejb2rjbρ2jsin2wj,A(1,p)=ki=1sia=1Ciati+hj=1rjb=1Djbρjcoswj+hj=1rjb=1Ejbρjsinwj. (1.1)

    Before we prove these lemmas, we give some notations, χ2 denotes the second-order character of Fp, χ denotes the third-order character of Fp, ψ denotes the sixth order character of Fp.

    ep(x)=e2πixp,τ(χ)=pm=1χ(m)ep(m),G(χ,m)=pa=1χ(a)ep(am).

    We call G(χ,m) the Gauss sum, and we have the following:

    G(χ,m)=τ(χ)¯χ(m),(m,p)=1. (2.1)

    And also we have

    |τ(χ)|=p, (2.2)

    where χ is a primitive character of Fp. And let G(m,6;p)=p1a=0ep(ma6). For the property of the exponential sum and the general Gauss sum, interested readers can see [1,4,5,8,13,15].

    Lemma 1. Let p be a prime with p1mod 3. Then for any third-order character χ of Fp, we have the identity

    τ3(χ)+τ3(¯χ)=dp,

    where d is uniquely determined by 4p=d2+27y2 and d1mod 3.

    Proof. For the proof of this lemma see [3].

    Lemma 2. Let χ be a third-order character of Fp with p1mod 3, and C(p)=τ(χ)+τ(¯χ), then C(p)=pa=1ep(a3).

    Proof.

    A=τ(χ)+τ(¯χ)=pa=1(1+χ(a)+¯χ(a))e(ap)=pa=1e(a3p).

    Lemma 3. Let p1mod 6, 2z3mod p for some z, and let χ be a third-order character of Fp, ψ be a sixth-order character of Fp, then we have the identity

    τ(ψ)=τ2(χ)p.

    Proof. This is Lemma 3 in [16].

    Lemma 4. As the definition above, we have the identity

    G(m,6;p)=pχ2(m)+¯x2pψ(m)+x2p¯ψ(m)+¯xχ(m)+x¯χ(m),

    where (m,p)=1 and x=τ(χ).

    Proof. Firstly we have the identity

    1+χ2(m)+χ(m)+¯χ(m)+ψ(m)+¯ψ(m)={6, if  ma6 mod p;0,otherwise.

    So we have

    G(m,6;p)=p1a=0(1+χ2(a)+χ(a)+¯χ(a)+ψ(a)+¯ψ(a))ep(ma)=G(χ2,m)+G(ψ,m)+G(¯ψ,m)+G(χ,m)+G(¯χ,m)

    By (2.1) and Lemma 3, we have

    G(m,6;p)=τ(χ2)χ2(m)+τ(¯ψ)ψ(m)+τ(ψ)¯ψ(m)+τ(¯χ)χ(m)+τ(χ)¯χ(m)=pχ2(m)+¯x2pψ(m)+x2p¯ψ(m)+¯xχ(m)+x¯χ(m). (2.3)

    By (2.3), we complete the proof of our lemma.

    Next we let,

    Gn(m,6;p)=an+bnχ2(m)+cnψ(m)+dn¯ψ(m)+enχ(m)+fn¯χ(m). (2.4)

    Then we have following Lemma 5.

    Lemma 5. Let an,bn,cn,dn,en,fn are defined as above, then we have that an,bn,cn,dn,en,fn are uniquely determined by n, where n1.

    Proof. By the orthogonality of characters of Fp, we have

    \begin{eqnarray} \sum\limits_{a = 1}^{p-1}\chi\left(a\right) = \left\{ \begin{array}{ll} p-1, & \text{ if}\ χ = χ_0; \\ 0, & \text{otherwise.}\end{array}\right. \end{eqnarray} (2.5)

    By (2.4) and (2.5) we have

    \begin{eqnarray} \sum\limits_{m = 1}^{p-1}G^n(m, 6;p)& = &(p-1)a_n+b_n\sum\limits_{m = 1}^{p-1}\chi_2\left(m\right)+c_n\sum\limits_{m = 1}^{p-1}\psi\left(m\right)+d_n\sum\limits_{m = 1}^{p-1}\overline{\psi}\left(m\right)\\ &&+e_n\sum\limits_{m = 1}^{p-1}\chi\left(m\right)+f_n\sum\limits_{m = 1}^{p-1}\overline{\chi}\left(m\right)\\ & = &(p-1)a_n. \end{eqnarray}

    So we have

    \begin{eqnarray} &&a_n = \frac{1}{p-1}\sum\limits_{m = 1}^{p-1}G^n(m, 6;p). \end{eqnarray} (2.6)

    By the same method, we have

    \begin{eqnarray} &&b_n = \frac{1}{p-1}\sum\limits_{m = 1}^{p-1}\chi_2(m)G^n(m, 6;p), \\ &&c_n = \frac{1}{p-1}\sum\limits_{m = 1}^{p-1}\overline{\psi}(m)G^n(m, 6;p), \\ &&d_n = \frac{1}{p-1}\sum\limits_{m = 1}^{p-1}\psi(m)G^n(m, 6;p), \\ &&e_n = \frac{1}{p-1}\sum\limits_{m = 1}^{p-1}\overline{\chi}(m)G^n(m, 6;p), \\ &&f_n = \frac{1}{p-1}\sum\limits_{m = 1}^{p-1}\chi(m)G^n(m, 6;p). \end{eqnarray}

    So now it is easy to see the conclusion of the lemma.

    Lemma 6. The sequences \{a_n\} , \{b_n\} , \{c_n\} , \{d_n\} , \{e_n\} , \{f_n\} are defined above, then they satisfied the following recurrence formulae ( n\geq0 ):

    \begin{eqnarray} &&a_{n+1} = \sqrt{p}b_n+\frac{\overline{x^2}}{\sqrt{p}}d_n+\frac{x^2}{\sqrt{p}}c_n+xe_n+\overline{x}f_n, \end{eqnarray} (2.7)
    \begin{eqnarray} &&b_{n+1} = \sqrt{p}a_n+\frac{\overline{x^2}}{\sqrt{p}}e_n+\frac{x^2}{\sqrt{p}}f_n+xd_n+\overline{x}c_n, \end{eqnarray} (2.8)
    \begin{eqnarray} &&c_{n+1} = \sqrt{p}f_n+\frac{\overline{x^2}}{\sqrt{p}}a_n+\frac{x^2}{\sqrt{p}}e_n+xb_n+\overline{x}d_n, \end{eqnarray} (2.9)
    \begin{eqnarray} &&d_{n+1} = \sqrt{p}e_n+\frac{\overline{x^2}}{\sqrt{p}}f_n+\frac{x^2}{\sqrt{p}}a_n+xc_n+\overline{x}b_n, \end{eqnarray} (2.10)
    \begin{eqnarray} &&e_{n+1} = \sqrt{p}d_n+\frac{\overline{x^2}}{\sqrt{p}}c_n+\frac{x^2}{\sqrt{p}}b_n+xf_n+\overline{x}a_n, \end{eqnarray} (2.11)
    \begin{eqnarray} &&f_{n+1} = \sqrt{p}c_n+\frac{\overline{x^2}}{\sqrt{p}}b_n+\frac{x^2}{\sqrt{p}}d_n+xa_n+\overline{x}e_n, \end{eqnarray} (2.12)

    with the initial condition

    a_0 = 1, b_0 = c_0 = d_0 = e_0 = f_0 = 0.

    Proof. We only prove (2.7), the rest can be proved in the same way. By Lemma 5, we know a_n is unique determined by n . We can compare the coefficient of the equation

    G^{n+1}(m, 6;p) = G^{n}(m, 6;p)G(m, 6;p).

    We have

    a_{n+1} = \sqrt{p}b_n+\frac{\overline{x^2}}{\sqrt{p}}d_n+\frac{x^2}{\sqrt{p}}c_n+xe_n+\overline{x}f_n.

    So we complete the proof of the lemma.

    Lemma 7. Let a_n is defined as above, then we have

    \begin{eqnarray} &&a_0 = 1, a_1 = 0, a_2 = 5p, a_3 = 10dp, a_4 = 56p^2+10d^2p, \\&&a_5 = 188dp^2+5d^3p+16dpC(p). \end{eqnarray}

    Proof. By Lemma 4 and after some elementary calculations we have

    \begin{eqnarray} G^2(m, 6;p)& = &5p+2dp^{1/2}\chi_2(m)+4p^{1/2}x\psi(m)+4p^{1/2}\overline{x}\overline{\psi}(m)\\ &&+(p^{-1}\overline{x^4}+3x^2)\chi(m)+(p^{-1}x^4+3\overline{x^2})\overline{\chi}(m), \\ G^3(m, 6;p)& = &10dp+(16p^{3/2}+dp^{1/2})\chi_2(m)+(15p\overline{x}+2dx^2+p^{-1}x^5)\chi(m)\\ &&+(15px+2d\overline{x^2}+p^{-1}\overline{x^5})\overline{\chi}(m)\\ &&+(4p^{-1/2}x^4+12p^{1/2}\overline{x^2}+2dp^{1/2}x)\psi(m)\\ &&+(4p^{-1/2}\overline{x^4}+12p^{1/2}x^2+2dp^{1/2}\overline{x})\overline{\psi}(m), \\ G^4(m, 6;p)& = &60p^2+9d^2p+dp+48dp^{3/2}\chi_2(m)\\ &&+(p^{-2}x^8+17\overline{x^4}+46px^2+16dp)\chi(m)\\ &&+(p^{-2}\overline{x^8}+17x^4+46p\overline{x^2}+16dp)\overline{\chi}(m)\\ &&+(56p^{3/2}x+4dp^{-1/2}x^4+12dp^{1/2}\overline{x^2}+8p^{-1/2}\overline{x^5})\psi(m)\\ &&+(56p^{3/2}\overline{x}+4dp^{-1/2}\overline{x^4}+12dp^{1/2}x^2+8p^{-1/2}x^5)\overline{\psi}(m), \\ G^5(m, 6;p)& = &188dp^2+5d^3p+16dpC(p)\\ &&+(52d^2p^{3/2}+208p^{5/2}+16dp^{1/2}(x^2+\overline{x^2}))\chi_2(m)\\ &&+(p^{-2/5}x^{10}+p^{-3/2}\overline{x^8}+4dp^{-1/2}\overline{x^5}+71p^{1/2}x^4\\&&+(46p^{3/2}+16p^{1/2})x^2\\ &&+(129p^{3/2}+10d^2p^{1/2})\overline{x^2}+60dp^{3/2}x+16dp^{3/2})\psi(m)\\ &&+(p^{-2/5}\overline{x^{10}}+p^{-3/2}x^8+4dp^{-1/2}x^5+71p^{1/2}\overline{x^4}\\&&+(46p^{3/2}+16p^{1/2})\overline{x^2}\\ &&+(129p^{3/2}+10d^2p^{1/2})x^2+60dp^{3/2}\overline{x}+16dp^{3/2})\overline{\psi}(m)\\ &&+(8p^{-1}\overline{x^7}+p^{-1}x^7+25x^5+52dpx^2\\&&+(28dp+46p^2)x+16d\overline{x^4}+112p^2\overline{x})\chi(m)\\ &&+(8p^{-1}x^7+p^{-1}\overline{x^7}+25\overline{x^5}+52dp\overline{x^2}\\&&+(28dp+46p^2)\overline{x}+16dx^4+112p^2x)\overline{\chi}(m), \end{eqnarray}

    and comparing the above formulae with (2.6), we have

    a_0 = 1, a_1 = 0, a_2 = 5p, a_3 = 10dp, a_4 = 60p^2+9d^2p+dp, a_5 = 188dp^2+5d^3p+16dpC(p).\\

    Lemma 8. Let a_n , b_n , c_n , d_n , e_n , f_n are defined as above, then we have

    \begin{eqnarray} a_6& = &5pa_4+10dpa_3+(46p^2+5d^2p+dp)a_2+(2p^2+120dp^2+3d^3p+d^2p+dp)a_1\\ &&+(-4p^5+2d^2p^4+64p^{7/2}+381p^3+2d^2p^{5/2}+(129d^2+11d+6)p^2+d^4p)a_0\\ b_6& = &5pb_4+10dpb_3+(46p^2+5d^2p+dp)b_2+(2p^2+120dp^2+3d^3p+d^2p+dp)b_1\\ &&+(-4p^5+2d^2p^4+64p^{7/2}+381p^3+2d^2p^{5/2}+(129d^2+11d+6)p^2+d^4p)b_0\\ c_6& = &5pc_4+10dpc_3+(46p^2+5d^2p+dp)c_2+(2p^2+120dp^2+3d^3p+d^2p+dp)c_1\\ &&+(-4p^5+2d^2p^4+64p^{7/2}+381p^3+2d^2p^{5/2}+(129d^2+11d+6)p^2+d^4p)c_0\\ d_6& = &5pd_4+10dpd_3+(46p^2+5d^2p+dp)d_2+(2p^2+120dp^2+3d^3p+d^2p+dp)d_1\\ &&+(-4p^5+2d^2p^4+64p^{7/2}+381p^3+2d^2p^{5/2}+(129d^2+11d+6)p^2+d^4p)d_0\\ e_6& = &5pe_4+10dpe_3+(46p^2+5d^2p+dp)e_2+(2p^2+120dp^2+3d^3p+d^2p+dp)e_1\\ &&+(-4p^5+2d^2p^4+64p^{7/2}+381p^3+2d^2p^{5/2}+(129d^2+11d+6)p^2+d^4p)e_0\\ f_6& = &5pf_4+10dpf_3+(46p^2+5d^2p+dp)f_2+(2p^2+120dp^2+3d^3p+d^2p+dp)f_1\\ &&+(-4p^5+2d^2p^4+64p^{7/2}+381p^3+2d^2p^{5/2}+(129d^2+11d+6)p^2+d^4p)f_0 \end{eqnarray}

    Proof. We only proof the first formula, the rest can be proof in the same way. By Lemma 6, we have

    \begin{eqnarray} a_6& = &\sqrt{p}b_5+\frac{\overline{x^2}}{\sqrt{p}}d_5+\frac{x^2}{\sqrt{p}}c_5+xe_5+\overline{x}f_5\\ & = &5pa_4+2dp^{1/2}b_4+4p^{1/2}\overline{x}c_4+4p^{1/2}xd_4\\&&+(3\overline{x^2}+p^{-1}x^4)e_4+(3x^2+p^{-1}\overline{x^4})f_4\\ & = &5pa_4+10dpa_3+(d^2p^{1/2}+12p^{3/2})b_3+(2dp^{1/2}\overline{x}\\&&+8p^{1/2}x^2+p^{-1/2}\overline{x^4})c_3\\ &&+(2dp^{1/2}x+8p^{1/2}\overline{x^2}+p^{-1/2}x^4)d_3+(11px+\overline{x^2}+p^{-1}\overline{x^5})e_3\\ &&+(11p\overline{x}+x^2+p^{-1}x^5)f_3\\ & = &5pa_4+10dpa_3+(46p^2+5d^2p+dp)a_2+(25dp^{3/2}+2p^{3/2})b_2\\ &&+(p^{-3/2}\overline{x^7}+2p^{-1/2}x^5+p^{-1/2}\overline{x^4}+42p^{3/2}\overline{x}+2dp^{1/2}x^2\\&&+(d^2+1)p^{1/2}\overline{x})c_2\\ &&+(p^{-3/2}x^7+2p^{-1/2}\overline{x^5}+p^{-1/2}x^4+42p^{3/2}x+2dp^{1/2}\overline{x^2}\\&&+(d^2+1)p^{1/2}x)d_2\\ &&+(10x^4+(32p+d^2)\overline{x^2}+(4dp+p)x)e_2\\&&+(10\overline{x^4}+(32p+d^2)x^2+(4dp+p)\overline{x})f_2\\ & = &5pa_4+10dpa_3+(46p^2+5d^2p+dp)a_2\\&&+(2p^2+120dp^2+3d^3p+d^2p+dp)a_1\\ &&+(-4p^5+2d^2p^4+64p^{7/2}+381p^3+2d^2p^{5/2}\\&&+(129d^2+11d+6)p^2+d^4p)a_0. \end{eqnarray}

    So we complete the proof of this lemma.

    Lemma 9. Let a_n is defined as above, then for any integer n\geq0 , we have

    \begin{eqnarray} a_{n+6}& = &5pa_{n+4}+10dpa_{n+3}+(46p^2+5d^2p+dp)a_{n+2}\\&&+(2p^2+120dp^2+3d^3p+d^2p+dp)a_{n+1}\\ &&+(-4p^5+2d^2p^4+64p^{7/2}+381p^3+2d^2p^{5/2}\\&&+(129d^2+11d+6)p^2+d^4p)a_n. \end{eqnarray}

    Proof. By (2.4) and Lemma 8, we have

    \begin{eqnarray} G^{6}(m, 6;p)& = &5pG^{4}(m, 6;p)+10dpG^{3}(m, 6;p)+(46p^2+5d^2p+dp)G^{2}(m, 6;p)\\ &&+(2p^2+120dp^2+3d^3p+d^2p+dp)G(m, 6;p)\\ &&+(-4p^5+2d^2p^4+64p^{7/2}+381p^3+2d^2p^{5/2}\\&&+(129d^2+11d+6)p^2+d^4p). \end{eqnarray}

    We multiple G^{n}(m, 6;p) to the both side of the above formula, we have

    \begin{eqnarray} G^{n+6}(m, 6;p)& = &5pG^{n+4}(m, 6;p)+10dpG^{n+3}(m, 6;p)\\&&+(46p^2+5d^2p+dp)G^{n+2}(m, 6;p)\\ &&+(2p^2+120dp^2+3d^3p+d^2p+dp)G^{n+1}(m, 6;p)\\ &&+(-4p^5+2d^2p^4+64p^{7/2}+381p^3+2d^2p^{5/2}\\&&+(129d^2+11d+6)p^2+d^4p)G^n(m, 6;p). \end{eqnarray}

    By Lemma 5, we can compare the coefficient of the above equation, we have

    \begin{eqnarray} a_{n+6}& = &5pa_{n+4}+10dpa_{n+3}+(46p^2+5d^2p+dp)a_{n+2}\\&&+(2p^2+120dp^2+3d^3p+d^2p+dp)a_{n+1}\\ &&+(-4p^5+2d^2p^4+64p^{7/2}+381p^3+2d^2p^{5/2}\\&&+(129d^2+11d+6)p^2+d^4p)a_n. \end{eqnarray}

    In the formula below, we always let k\geq1 . By the following formula,

    \begin{eqnarray} \sum\limits_{a = 0}^{p-1}e_p\left(ma\right) = \left\{ \begin{array}{ll} p, & \text{ if }\ p\mid m; \\ 0, & \text{ otherwise, }\end{array}\right. \end{eqnarray}

    we have

    \begin{eqnarray} A(k, p)& = &\frac{1}{p}\sum\limits_{m = 0}^{p-1}\sum\limits_{x_1 = 0, x_2 = 0, \cdot\cdot\cdot, x_k = 0}^{p-1}e_p(m(x_1^6+x_2^6+\cdot\cdot\cdot+x_k^6))\\& = &\frac{1}{p}\sum\limits_{m = 0}^{p-1}G^k(m, 6;p). \end{eqnarray} (3.1)

    By (8), we have

    \begin{eqnarray} A(k, p)& = &\frac{1}{p}\sum\limits_{m = 0}^{p-1}G^k(m, 6;p)\\ & = &\frac{1}{p}(\sum\limits_{m = 1}^{p-1}G^k(m, 6;p)+p^k)\\ & = &\frac{1}{p}((p-1)a_k+p^k) = \frac{p-1}{p}a_k+p^{k-1}. \end{eqnarray} (3.2)

    So by Lemma 9, we have

    \begin{eqnarray} A(k+6, p)-p^{k+5}& = &5p(A(k+4, p)-p^{k+3})+10dp(A(k+3, p)-p^{k+2})\\ &&+(46p^2+5d^2p+dp)(A(k+2, p)-p^{k+1})\\ &&+(2p^2+120dp^2+3d^3p+d^2p+dp)(A(k+1, p)-p^k)\\ &&+(-4p^5+2d^2p^4+64p^{7/2}+381p^3+2d^2p^{5/2}\\ &&+(129d^2+11d+6)p^2+d^4p)(A(k, p)-p^{k-1}). \end{eqnarray}

    So we have

    \begin{eqnarray} A(k+6, p)& = &5pA(k+4, p)+10dpA(k+3, p)\\&&+(46p^2+5d^2p+dp)A(k+2, p)\\ &&+(2p^2+120dp^2+3d^3p+d^2p+dp)A(k+1, p)\\ &&+(-4p^5+2d^2p^4+64p^{7/2}+381p^3+2d^2p^{5/2}\\ &&+(129d^2+11d+6)p^2+d^4p)A(k, p)\\ &&+p^{k+5}-p^{k+4}-(10dp+2d^2)p^{k+3}-64p^{k+5/2}\\&&-(429+121d+5d^2)p^{k+2}\\ &&-2d^2p^{k+3/2}-(3d^3+130d^2+12d+6)p^{k+1}-d^4p^k. \end{eqnarray}

    And by Lemma 7 and (3.2), we have the initial conditions

    \begin{eqnarray} &&A(1, p) = 1, A(2, p) = 4(p-1)+p, A(3, p) = 10d(p-1)+p^2, \\ &&A(4, p) = 56p(p-1)+10d^2(p-1)+p^3, \\ &&A(5, p) = 188dp(p-1)+5d^3(p-1)+16dC(p)(p-1)+p^4.\\ &&A(6, p) = p^5+1400p^2(p-1)+(388d^2+8d-576)p(p-1)+d^2p-d^2. \end{eqnarray}

    So we complete the proof of the theorem.

    The main purpose of this paper is using analytic methods to give a recurrence formula of the number of solutions of an equation over finite field. And we give an expression of the number of solutions of the above equation by the root of sixth degree polynomial. We use analytic methods to give a recurrence formula for the number of solutions of the above equation. And our method is based on the properties of the Gauss sum. It is worth noting that we used a novel method to simplify the steps and avoid complicated calculations.

    The author thanks to referees for very important recommendations and warnings which improved the paper.

    The author declares that there is no competing interest.



    [1] H. Agarwal, F. Husain, Development of payload capacity enhanced robust video watermarking scheme based on symmetry of circle using lifting wavelet transform and SURF, J. Inf. Secur. Appl., 59 (2021), 102846. https://doi.org/10.1016/j.jisa.2021.102846 doi: 10.1016/j.jisa.2021.102846
    [2] S. Xuecheng, L. Zheming, W. Zhe, L. Yongliang, A geometrically robust multi-bit video watermarking algorithm based on 2-D DFT, Multimed. Tools Appl., 80 (2021), 13491-13511. https://doi.org/10.1007/s11042-020-10392-9 doi: 10.1007/s11042-020-10392-9
    [3] G. Sandaruwan, L. Ranathunga, Robust and adaptive watermarking technique for digital images. IEEE International Conference on Industrial & Information Systems. IEEE, 2017, 1-6. https://doi.org/10.1109/ICⅡNFS.2017.8300387
    [4] M. Reza Keyvanpour, N. Khanbani, M. Boreiry, A secure method in digital video watermarking with transform domain algorithms, Multimed. Tools Appl., 80 (2021), 20449-20476. https://doi.org/10.1007/s11042-021-10730-5 doi: 10.1007/s11042-021-10730-5
    [5] D. Ariatmanto, F. Ernawan, An improved robust image watermarking by using different embedding strengths, Multimed. Tools Appl., 79 (2020), 12041-12067. https://doi.org/10.1007/s11042-019-08338-x doi: 10.1007/s11042-019-08338-x
    [6] J. Abraham, V. Paul, An imperceptible spatial domain color image watermarking scheme, J. King Saud Univ.-Comput. Inf. Sci., 31 (2019), 125-133. https://doi.org/10.1016/j.jksuci.2016.12.004 doi: 10.1016/j.jksuci.2016.12.004
    [7] W. Zhou, G. Jiang, M. Yu, F. Shao, Z. Peng, Reduced-reference stereoscopic image quality assessment based on view and disparity zero-watermarks, Signal Process. Image Commun., 29 (2014), 167-176. https://doi.org/10.1016/j.image.2013.10.005 doi: 10.1016/j.image.2013.10.005
    [8] D. Fan, Y. Li, S. Gao, A novel zero watermark optimization algorithm based on Gabor transform and discrete cosine transform, Concurr. Comput. Pract. Exp., 2 (2020). https://doi.org/10.1002/cpe.5689 doi: 10.1002/cpe.5689
    [9] C. Kumar, A. K. Singh, P. Kumar, et al, SPHIT-based multiple image watermarking in NSCT domain, Concurr. Comput. Pract. Exp., 32 (2020), e4912.1-e4912.9. https://doi.org/10.1002/cpe.4912 doi: 10.1002/cpe.4912
    [10] M. Moosazadeh, G. Ekbatanifard, An improved robust image watermarking method using DCT and YCoCg-R color space, Optik, 140 (2017), 975-988. https://doi.org/10.1016/j.ijleo.2017.05.011 doi: 10.1016/j.ijleo.2017.05.011
    [11] C. Zhu, Y. Li, W. Chi, S. Gao, D. Fan, Zero-watermarking algorithm for color image in contourlet domain based on Schur decomposition, Inf. Technol. Inf. Technol., 227 (2019), 94-98.
    [12] D. Wei, Y. Li, Convolution and Multichannel Sampling for the Offset Linear Canonical Transform and Their Applications, IEEE T. Signal PR., 67 (2019), 6009-6024. https://doi.org/10.1109/TSP.2019.2951191 doi: 10.1109/TSP.2019.2951191
    [13] D. Wei, M. Jiang, A fast image encryption algorithm based on parallel compressive sensing and DNA sequence, Optik, 238 (2021), 166748. https://doi.org/10.1016/j.ijleo.2021.166748 doi: 10.1016/j.ijleo.2021.166748
    [14] Y. Li, D. Wei, L. Zhang, Double-encrypted watermarking algorithm based on cosine transform and fractional Fourier transform in invariant wavelet domain, Inf. Sci., 551 (2021), 205-227. https://doi.org/10.1016/j.ins.2020.11.020 doi: 10.1016/j.ins.2020.11.020
    [15] W. Zhou, C. Liu, J. Lei, L. Yu, T. Luo, HFNet: Hierarchical feedback network with multilevel atrous spatial pyramid pooling for RGB-D saliency detection, Neurocomputing, 2021. https://doi.org/10.1016/j.neucom.2021.11.100 doi: 10.1016/j.neucom.2021.11.100
    [16] W. Zhou, J. Liu, J. Lei, L. Yu, J. Hwang, GMNet: Graded-feature multilabel-learning network for RGB-thermal urban scene semantic segmentation, IEEE T. Image Process., 30 (2021), 7790-7802. https://doi.org/10.1109/TIP.2021.3109518 doi: 10.1109/TIP.2021.3109518
    [17] M. Tancik, B. Mildenhall, R. NG, Invisible hyperlinks in physical photographs, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020, 2117-2126. https://doi.org/10.1109/CVPR42600.2020.00219 doi: 10.1109/CVPR42600.2020.00219
    [18] S. Anguraj, P. S. Shantharajah, E J. Jeba, A steganographic method based on optimized audio embedding technique for secure data communication in the Internet of Things, Comput. Intell., 36 (2019), 557-573. https://doi.org/10.1111/coin.12253 doi: 10.1111/coin.12253
    [19] P. Hu, D. Peng, Z. Yi. Y. Xiang, Robust time-spread echo watermarking using characteristics of host signals, Electron. Lett., 52 (2016), 5-6. https://doi.org/10.1049/el.2015.1508 doi: 10.1049/el.2015.1508
    [20] M. Mosleh, S. Setayeshi, B. Barekatain, M. Mohammad, A novel audio watermarking scheme based on fuzzy inference system in DCT domain, Multimed. Tools Appl., 80 (2021), 20423-20447. https://doi.org/10.1007/s11042-021-10686-6 doi: 10.1007/s11042-021-10686-6
    [21] M. Abdelwahab Khaled, M. Abd El-atty Saied, Wi. El-Shafa, S. El-Rabaie, F. E. Abd El-Samie, Efficient SVD-based audio watermarking technique in FRT domain, Multimed. Tools Appl., 79 (2020), 5617-5648. https://doi.org/10.1007/s11042-019-08023-z doi: 10.1007/s11042-019-08023-z
    [22] H. Karajeh, T. Khatib, L. Rajab, M. Maqableh, A robust digital audio watermarking scheme based on DWT and Schur decomposition, Multimed. Tools Appl., 78 (2019), 18395-18418. https://doi.org/10.1007/s11042-019-7214-3 doi: 10.1007/s11042-019-7214-3
    [23] S. Bhargavi Latha, D. Venkata Reddy, A. Damodaram, Video watermarking using neural networks, Int. J. Inf. Comput. Secur., 14 (2021), 40-59. https://doi.org/10.1504/IJICS.2021.112207 doi: 10.1504/IJICS.2021.112207
    [24] J. Sang, Q. Liu, C. Song, Robust video watermarking using a hybrid DCT-DWT approach, J. Electron. Sci. Technol., 18 (2020), 179-189. https://doi.org/10.1016/j.jnlest.2020.100052 doi: 10.1016/j.jnlest.2020.100052
    [25] Kh. Manglem Singh, A robust rotation resilient video watermarking scheme based on the SIFT, Multimed. Tools Appl., 77 (2018), 16419-16444. https://doi.org/10.1007/s11042-017-5213-9 doi: 10.1007/s11042-017-5213-9
    [26] A. Rakesh, B. Sarabjeet Singh, Video watermarking scheme based on IDR frames using MPEG-2 structure, Int. J. Inf. Comput. Secur., 11 (2019), 585-603. https://doi.org/10.1504/IJICS.2019.103065 doi: 10.1504/IJICS.2019.103065
    [27] C. Li, Y. Yang, K. Liu, L. Tian, A Semi-Fragile video watermarking algorithm based on H.264/AVC, Wirel. Commun. Mob. Comput., 2020. https://doi.org/10.1155/2020/8848553 doi: 10.1155/2020/8848553
    [28] F. Madine, M. A. Akhaee, N. Zarmehi, A multiplicative video watermarking robust to H.264/AVC compression standard, Signal Process. Image Commun., 68 (2018), 229-240. https://doi.org/10.1016/j.image.2018.06.015 doi: 10.1016/j.image.2018.06.015
    [29] S. Gaj, A. Sur, PK. Bora, Prediction mode based H.265/HEVC video watermarking resisting re-compression attack, Multimed. Tools Appl., 79 (2020), 18089-18119. https://doi.org/10.1007/s11042-019-08301-w doi: 10.1007/s11042-019-08301-w
    [30] J. Dittmann, A. Steinmetz, R. Steinmetz, Content-based Digital Signature for Motion Pictures Authentication and Content-Fragile Watermarking, IEEE International Conference of the Multimedia Systems, 1 (1999), 574-579. https://doi.org/10.1109/MMCS.1999.779264 doi: 10.1109/MMCS.1999.779264
    [31] P. Agrawal, A. Khurshid, DWT and GA-PSO Based Novel Watermarking for Videos Using Audio Watermark, International conference on swarm intelligence. ICSI, 2014,212-220. https://doi.org/10.1007/978-3-319-11897-0_25
    [32] M. Sun dararajan, G. Yamuna, CWT and CS algorithm based video watermarking using audio watermark, Procedia Comput. Sci., 87 (2016), 93-98. https://doi.org/10.1016/j.procs.2016.05.132 doi: 10.1016/j.procs.2016.05.132
    [33] X. Wang, Y. Pan, Audio and video cross watermarking algorithm based-on visual saliency model, Electron. Meas. Technol., 40 (2017), 112-115.
    [34] Z. Esmaeilbeig, S. Ghaemmaghami, Compressed Video Watermarking for Authentication and Reconstruction of the Audio Part, 2018 15th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology. ISCISC. 2018, 1-6. https://doi.org/10.1109/ISCISC.2018.8546897
    [35] G. Sucharitha, R. Kumar Senapati, Biomedical image retrieval by using local directional edge binary patterns and Zernike moments, Multimed. Tools Appl., 79 (2020), 1847-1864. https://doi.org/10.1007/s11042-019-08215-7 doi: 10.1007/s11042-019-08215-7
    [36] J. Qu, Image encryption algorithm based on Logistic chaotic scrambling, Science and Technology Innovation, 2020, 2.
    [37] Y. Jiang, M. Cai, C. Song, SIFT based video watermarking algorithm against manifold attacks in contourlet domain, Comput. Simul., 35 (2018), 314-320.
    [38] C. Maiti, B. C. Dhara, Robust non-blind video watermarking using DWT and QR decomposition, Adv. Intel. Syst. Comput., 999 (2020), 333-343. https://doi.org/10.1007/978-981-13-9042-5_28 doi: 10.1007/978-981-13-9042-5_28
    [39] R. Singh, A. Ashok, M. Saraswat, Robust Video Watermarking in Frequency Domain for Copyright Protection, ACM International Conference Proceeding Series, AICPS, 2021,174-178. https://doi.org/10.1145/3474124.3474148
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2703) PDF downloads(81) Cited by(2)

Figures and Tables

Figures(10)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog