
Using the method of Petryshyn's fixed point theorem in Banach algebra, we investigate the existence of solutions for functional integral equations, which involves as specific cases many functional integral equations that appear in different branches of non-linear analysis and their applications. Finally, we recall some particular cases and examples to validate the applicability of our study.
Citation: Soniya Singh, Satish Kumar, Mohamed M. A. Metwali, Saud Fahad Aldosary, Kottakkaran S. Nisar. An existence theorem for nonlinear functional Volterra integral equations via Petryshyn's fixed point theorem[J]. AIMS Mathematics, 2022, 7(4): 5594-5604. doi: 10.3934/math.2022309
[1] | Aslı Alkan, Halil Anaç . A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2024, 9(10): 27979-27997. doi: 10.3934/math.20241358 |
[2] | Qasim Khan, Anthony Suen, Hassan Khan, Poom Kumam . Comparative analysis of fractional dynamical systems with various operators. AIMS Mathematics, 2023, 8(6): 13943-13983. doi: 10.3934/math.2023714 |
[3] | Manal Alqhtani, Khaled M. Saad, Rasool Shah, Thongchai Botmart, Waleed M. Hamanah . Evaluation of fractional-order equal width equations with the exponential-decay kernel. AIMS Mathematics, 2022, 7(9): 17236-17251. doi: 10.3934/math.2022949 |
[4] | Aslı Alkan, Halil Anaç . The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237 |
[5] | Naveed Iqbal, Saleh Alshammari, Thongchai Botmart . Evaluation of regularized long-wave equation via Caputo and Caputo-Fabrizio fractional derivatives. AIMS Mathematics, 2022, 7(11): 20401-20419. doi: 10.3934/math.20221118 |
[6] | Azzh Saad Alshehry, Naila Amir, Naveed Iqbal, Rasool Shah, Kamsing Nonlaopon . On the solution of nonlinear fractional-order shock wave equation via analytical method. AIMS Mathematics, 2022, 7(10): 19325-19343. doi: 10.3934/math.20221061 |
[7] | Zeliha Korpinar, Mustafa Inc, Dumitru Baleanu . On the fractional model of Fokker-Planck equations with two different operator. AIMS Mathematics, 2020, 5(1): 236-248. doi: 10.3934/math.2020015 |
[8] | Emad Salah, Ahmad Qazza, Rania Saadeh, Ahmad El-Ajou . A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system. AIMS Mathematics, 2023, 8(1): 1713-1736. doi: 10.3934/math.2023088 |
[9] | Yudhveer Singh, Devendra Kumar, Kanak Modi, Vinod Gill . A new approach to solve Cattaneo-Hristov diffusion model and fractional diffusion equations with Hilfer-Prabhakar derivative. AIMS Mathematics, 2020, 5(2): 843-855. doi: 10.3934/math.2020057 |
[10] | Yousef Jawarneh, Humaira Yasmin, M. Mossa Al-Sawalha, Rasool Shah, Asfandyar Khan . Fractional comparative analysis of Camassa-Holm and Degasperis-Procesi equations. AIMS Mathematics, 2023, 8(11): 25845-25862. doi: 10.3934/math.20231318 |
Using the method of Petryshyn's fixed point theorem in Banach algebra, we investigate the existence of solutions for functional integral equations, which involves as specific cases many functional integral equations that appear in different branches of non-linear analysis and their applications. Finally, we recall some particular cases and examples to validate the applicability of our study.
Fractional calculus (FC) is a discipline of mathematics concerned with the study of derivatives and integrals of non-integer orders. It was invented in September 1695 by L'Hospital. In a letter to L'-Hospital [1], who discussed the differentiation of product functions of order 12, which laid the groundwork for FC [2,3,4]. It provides a great tool for characterizing memory and inherited qualities of different materials and procedures [4,5,6]. FC has grown in interest in recent decades as a result of the intensive development of fractional calculus theory and its applications in diverse sectors of science and engineering due to its high precision and applicability, for example, fractional control theory, image processing, signal processing, bio-engineering, groundwater problems, heat conduction, and behavior of viscoelastic and visco-plastic materials, see [7,8,9]. In addition, the electrical RLC circuit's performance has been determined using the fractional model [10].
In the last few decades, numerical and analytical solutions of fractional partial differential equations (FPDEs) have drawn a lot of attention among researchers [11,12,13,14,15]. The qualitative behavior of these mathematical models is significantly influenced by the fractional derivatives that are employed in FPDEs. This has numerous applications in the fields of solid-state physics, plasma physics, mathematical biology, electrochemistry, diffusion processes, turbulent flow, and materials science [16,17,18].
However, solving PDEs is not an easy task. A lot of mathematicians have put their effort into formulating analytical and numerical methods to solve fractional partial differential equations. The widely recognized methods for the solution of (FPDEs) are the Adomian decomposition method [19], homotopy analysis method [20,21], q-homotopy analysis transform method [22], homotopy perturbation method [23], variation iteration method [24], differential transform method [25], projected differential transform method [26], meshless method [27], backlund transformation method [28], Haar wavelet method [29], G'/G expansion method [30], residual power series method [31], Adam Bashforth's moulton technique [32], operational matrix method [33].
The nonlinear partial differential Navier-Stokes (N-S) equation, which expresses viscous fluid motion, was first developed by Claude Louis and Gabriel Stokes in 1822 [34]. This equation describes the conservation of mass and conservation of momentum for Newtonian and is referred to as the Newton's second law for fluids. The N-S equation has wide applications in engineering science, for example, examining liquid flow, studying wind current around wings, climate estimation, and blood flow [35,36]. Furthermore, along with Maxwell's equations the (N-S) equation can be applied to study and model magnetohydrodynamics, plasma physics, geophysics, etc. Also, fluid-solid interaction problems have been modeled and investigated by the N-S equation [37].
The multi-dimensional Navier-Stokes equation (MDNSE) stands as a fundamental cornerstone in fluid dynamics, providing a comprehensive mathematical framework to describe the motion of fluid substances in multiple dimensions. Derived from the Navier-Stokes equation, which govern the conservation of momentum for incompressible fluids, the MDNSE extends these principles to encompass the complexities of fluid flow in more than one spatial dimension. The equation accounts for the conservation of mass and the interplay of viscous and inertial forces, offering a powerful tool to model and analyze fluid behavior in diverse physical scenarios. The application of the multi-dimensional Navier-Stokes equation spans a wide range of scientific and engineering disciplines, playing a crucial role in understanding fluid dynamics across various contexts. In the field of aerospace engineering, MDNSE is employed to simulate the airflow around aircraft, aiding in the design and optimization of aerodynamic profiles. In marine engineering, it finds application in predicting the behavior of water currents around ships and offshore structures. Additionally, MDNSE is instrumental in weather modeling, allowing meteorologists to simulate and analyze atmospheric conditions in multiple dimensions for more accurate weather predictions. In the realm of biomedical engineering, it contributes to the study of blood flow in arteries and the behavior of biological fluids. Overall, the multi-dimensional Navier-Stokes equation serves as a versatile and indispensable tool for gaining insights into the intricate dynamics of fluid motion in diverse scientific and engineering.
In literature, many researchers have used numerous techniques to analyze the N-S equation. First of all, the authors of [38] solved the fractional-order N-S equation by using the Laplace transform, Fourier sine transform, and Hankel transform. The authors of [39,40,41] investigated the time-fractional N-S equation by using the homotopy perturbation method. Biraider [42] used the Adomian decomposition method to find a numerical solution. Recently, many researchers have focused on examining the multi-dimensional time-fractional N-S equation, by combining a variety of techniques with different transforms, see [43,44,45,46].
Motivated by the mentioned work, in the present article the new iterative transform method (NITM) and homotopy perturbation transform method (HPTM) combined with natural transform are implemented to analyze the solution of the time-fractional multi-dimensional Navier-Stokes equation in the sense of Caputo-Fabrizio operator. The article is structured in the following way: In Section 2, some basic definitions and properties are explained. In Section 3, the interpretation of the NITM is explained for the solution of fractional PDEs. In Section 4, the above-mentioned method's convergence analysis is also presented. In Section 5, the outcome of the suggested method is illustrated by examples, and validated graphically. In Section 6, the HPTM is explicated. In Section 7, similar examples are presented to elucidate the HPTM.
Definition 1 ([47]). The Caputo fractional derivative of f(ℓ) is defined as
C0Dθℓf(ℓ)={1Γ(m−θ)∫ℓ0(ℓ−ζ)m−θ−1fm(ζ)dζ,m−1<θ<m,fm(ℓ),θ=m. | (2.1) |
where, m∈Z+,θ∈R+.
Definition 2 ([48]). The Caputo-Fabrizio fractional derivative of f(ℓ) is defined as
CF0Dθℓf(ℓ)=(2−θ)B(θ)2(1−θ)∫ℓ0exp(−θ(ℓ−ζ)1−θ)D(f(ζ))dζℓ≥0. | (2.2) |
where θ∈[0,1], and B(θ) is a normalization function and satisfies the condition B(0)=B(1)=1.
Definition 3 ([49]). The fractional integral of function f(ℓ) of order θ, is defined as
CF0Iθℓf(ℓ)=2(1−θ)(2−θ)B(θ)f(ℓ)+2θ(2−θ)B(θ)∫ℓ0f(ζ)dζ,ℓ≥0. | (2.3) |
From Eq (2.3), the following results hold:
2(1−θ)(2−θ)B(θ)+2θ(2−θ)B(θ)=1, |
which gives,
B(θ)=22−θ,0≤θ≤1. |
Thus, Losada and Nieto [49] redefined the Caputo-Fabrizio fractional derivative as
CF0Dθℓf(ℓ)=11−θ∫ℓ0exp(−θ(ℓ−ζ)1−θ)D(f(ζ))dζℓ≥0. | (2.4) |
Definition 4 ([50]). The natural transform of ℧(ℓ) is given by
N(℧(ℓ))=U(s,v)=∫∞−∞e−sℓ℧(vℓ)dℓ,s,v∈(−∞,∞). | (2.5) |
For ℓ∈(0,∞), the natural transform of ℧(ℓ) is given by
N(℧(ℓ)H(ℓ))=N+=U+(s,v)=∫∞0e−sℓ℧(vℓ)dℓs,v∈(0,∞), | (2.6) |
where H is the Heaviside function.
The inverse of natural transform of U(s,v) is defined as
N−1[U(s,v)]=℧(ℓ),∀ℓ>0. |
Definition 5 ([51]). The natural transform of the fractional Caputo differential operator C0Dθℓ℧(ℓ) is defined as
N[C0Dθℓ℧(ℓ)]=(1s)θ(N[℧(ℓ)]−(1s)℧(0)). | (2.7) |
Definition 6 ([52]). The natural transform of the fractional Caputo-Fabrizio differential operator CF0Dθℓ℧(ℓ) is defined as
N[CF0Dθℓ℧(ℓ)]=11−θ+θ(vs)(N[℧(ℓ)]−(1s)℧(0)). | (2.8) |
This section considers, NITM with the CF fractional derivative operator in order to evaluate the multi-dimensional (N-S) problem. This iterative method is a combination of the new iterative method introduced in [53] and the natural transform [50].
Consider the fractional PDE of the form
CF0Dθℓ℧(φ,ϱ,ℓ)+R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))−P(φ,ϱ,ℓ)=0, | (3.1) |
with respect to the initial condition
℧(φ,ϱ,0)=h(φ,ϱ). | (3.2) |
CF0Dθℓ is the Caputo-Fabrizio fractional differential operator of order θ,R and N are linear and non-linear terms, and P is the source term.
By employing the natural transform on both sides of Eq (3.1), we get
N[CF0Dθℓ℧(φ,ϱ,ℓ)+R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))−P(φ,ϱ,ℓ)=0], | (3.3) |
N[℧(φ,ϱ,ℓ)]=s−1℧(φ,ϱ,0)+(1−θ+θ(vs))N{P(φ,ϱ,ℓ)−[R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))]}. | (3.4) |
By using the inverse natural transform, Eq (3.4) can reduced to the form
℧(φ,ϱ,ℓ)=N−1{s−1℧(φ,ϱ,0)+(1−θ+θ(vs))N{P(φ,ϱ,ℓ)−[R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))]}}. | (3.5) |
The nonlinear operator N as in [53], can be decomposed as
N(℧(φ,ϱ,ℓ))=N(∞∑r=0℧r(φ,ϱ,ℓ))=N(℧0(φ,ϱ,ℓ))+∞∑r=1{N(r∑i=0℧i(φ,ϱ,ℓ))−N(r−1∑i=0℧i(φ,ϱ,ℓ))}. | (3.6) |
Now, define an mth-order approximate series
D(m)(φ,ϱ,ℓ)=m∑r=0℧r(φ,ϱ,ℓ)=℧0(φ,ϱ,ℓ)+℧1(φ,ϱ,ℓ)+℧2(φ,ϱ,ℓ)+–−+℧m(φ,ϱ,ℓ),m∈N. | (3.7) |
Consider the solution of Eq (3.1) in a series form as
℧(φ,ϱ,ℓ)=limm⟶∞D(m)(φ,ϱ,ℓ)=∞∑r=0℧r(φ,ϱ,ℓ). | (3.8) |
By substituting Eqs (3.6) and (3.7) into Eq (3.5), we get
∞∑r=0℧r(φ,ϱ,ℓ)=N−1{s−1℧(φ,ϱ,0)+(1−θ+θ(vs))N[P(φ,ϱ,ℓ)−[R(℧0(φ,ϱ,ℓ))+N(℧0(φ,ϱ,ℓ))]]}−N−1{(1−θ+θ(vs))N[∞∑r=1{R(℧r(φ,ϱ,ℓ))+[N(r∑i=0℧i(φ,ϱ,ℓ))−N(r−1∑i=0℧i(φ,ϱ,ℓ))]}]}. | (3.9) |
From Eq (3.9), the following iterations are obtained.
℧0(φ,ϱ,ℓ)=N−1[s−1℧(φ,ϱ,0)+(1−θ+θ(vs))N[P(φ,ϱ,ℓ)]], | (3.10) |
℧1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[R(℧0(φ,ϱ,ℓ))+N(℧0(φ,ϱ,ℓ))]],⋮ | (3.11) |
ur+1(φ,ϱ,ℓ)=−N−1{(1−θ+θ(vs))N[∞∑r=1{R(℧r(φ,ϱ,ℓ))+[N(r∑i=0℧i(φ,ϱ,ℓ))−N(r−1∑i=0℧i(φ,ϱ,ℓ))]}]}. | (3.12) |
In this section, we demonstrate the uniqueness and convergence of the NITMCF.
Theorem 1. The solution derived with the aid of the NITMCF of Eq (3.1) is unique whenever 0<(℘1,℘2)[1−θ+θℓ]<1.
Proof. Let X=(C[J],∥.∥) be the Banach space for all continuous functions over the interval J=[0,T], with the norm ∥ϕ(ℓ)=maxℓ∈J|ϕ(ℓ)|.
Define the mapping F:X→X, where
℧Cr+1=℧C0−N−1[(1−θ+θvs)N{R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))−P(φ,ϱ,ℓ)}],r≥0. |
Now, assume that R(℧) and N(℧) satisfy the Lipschitz conditions with Lipschitz constants ℘1,℘2 and |R(℧)−R(ˉ℧)|<℘1|℧−ˉ℧|, |N(℧)−N(ˉ℧)|<℘2|℧−ˉ℧|, where ℧=℧(φ,ϱ,ℓ) and ˉ℧=℧(φ,ϱ,ℓ) are the values of two distinct functions.
∥F(℧)−F(ˉ℧)∥≤maxℓ∈J|N−1[(1−θ+θvs)N{R(℧(φ,ϱ,ℓ))−R(ˉ℧(φ,ϱ,ℓ))}+(1−θ+θvs)N{N(℧(φ,ϱ,ℓ))−N(ˉ℧(φ,ϱ,ℓ))}]|≤maxℓ∈J[℘1N−1{(1−θ+θvs)N|℧(φ,ϱ,ℓ)−ˉ℧(φ,ϱ,ℓ)|}+℘2N−1{(1−θ+θvs)N|℧(φ,ϱ,ℓ)−ˉ℧(φ,ϱ,ℓ)|}]≤maxℓ∈J(℘1+℘2)[N−1{(1−θ+θvs)N|℧(φ,ϱ,ℓ)−ˉ℧(φ,ϱ,ℓ)|}]≤(℘1+℘2)[N−1{(1−θ+θvs)N|℧(φ,ϱ,ℓ)−ˉ℧(φ,ϱ,ℓ)|}]≤(℘1+℘2)[1−θ+θℓ]∥℧−ˉ℧∥. |
F is contraction as 0<(℘1+℘2)[1−θ+θℓ]<1. Thus, the result of (3.1) is unique with the aid of the Banach fixed-point theorem.
Theorem 2. The solution derived from Eq (3.1) using the NITMCF converges if 0<℧<1 and ∥℧i∥<∞, where ℧=(℘1+℘2)[1−θ+θℓ].
Proof. Let ℧n=∑nr=0℧r(φ,ϱ,ℓ) be a partial sum of series. To prove that {℧n} is a Cauchy sequence in the Banach space X, we consider
∥(℧m−℧n∥=maxℓ∈J|m∑r=n+1℧r(φ,ϱ,ℓ)|,n=1,2,3,...≤maxℓ∈J|N−1[(1−θ+θvs)N{m∑r=n+1[R(℧r−1(φ,ϱ,ℓ))+N(℧r−1(φ,ϱ,ℓ))]}]|≤maxℓ∈J|N−1[(1−θ+θvs)N{R(℧m−1)−R(℧n−1)+N(℧m−1)−N(℧n−1)}]| |
≤℘1maxℓ∈J|N−1[(1−θ+θvs)N{R(℧m−1)−R(℧n−1)}]|+℘2maxℓ∈J|N−1[(1−θ+θvs)N{N(℧m−1)−N℧n−1)}]|=(℘1+℘2)[1−θ+θℓ]∥℧m−1−℧n−1∥. |
If m=n+1, then
∥℧n+1−℧n∥≤℘∥℧n−℧n−1∥≤℘2∥℧n−1−℧n−2∥≤...≤℘n∥℧1−℧0∥, |
where ℘=(℘1+℘2)[1−θ+θℓ]. In a similar way
∥℧m−℧n∥≤∥℧n+1−℧n∥≤∥℧n+2−℧n+1∥≤...∥℧m−℧m−1∥,≤(℘n+℘n+1+...+℘m−1)∥℧1−℧0∥,≤℘n(1−℘m−n1−℘)∥℧1∥. |
We see that, 1−℘m−n<1, as 0<℘<1. Thus,
∥℧m−℧n∥≤(℘n1−℘)maxℓ∈J∥℧1∥. |
Since ∥℧1∥<∞, ∥℧m−℧n∥→0 as n→∞. Hence, ℧m is a Cauchy sequence in X. So, the series ℧m is convergent.
In this section, we demonstrate the effectiveness of the NITM with the natural transformation for the Caputo-Fabrizio fractional derivative to solve the two-dimensional fractional N-S equation.
Consider the two-dimensional fractional N-S equation
CF0Dθℓ(μ)+μ∂μ∂φ+ν∂μ∂ϱ=ρ[∂2μ∂φ2+∂2μ∂ϱ2]+q,CF0Dθℓ(ν)+μ∂ν∂φ+ν∂ν∂ϱ=ρ[∂2ν∂φ2+∂2ν∂ϱ2]−q, | (5.1) |
with initial conditions
{μ(φ,ϱ,0)=−sin(φ+ϱ),ν(φ,ϱ,0)=sin(φ+ϱ). | (5.2) |
From Eqs (5.1) and (5.2), we set the following
{P1(φ,ϱ,ℓ)=q,R(μ(φ,ϱ,ℓ))=−ρ[∂2μ∂φ2+∂2μ∂ϱ2],N(μ(φ,ϱ,ℓ))=μ∂μ∂φ+ν∂μ∂ϱ,P2(φ,ϱ,ℓ)=−q,R(ν(φ,ϱ,ℓ))=−ρ[∂2ν∂φ2+∂2ν∂ϱ2],N(ν(φ,ϱ,ℓ))=μ∂ν∂φ+ν∂ν∂ϱ,μ0(φ,ϱ,0)=−sin(φ+ϱ),ν0(φ,ϱ,0)=sin(φ+ϱ). |
Using the iteration process outlined in Section 3, we have
μ0(φ,ϱ,ℓ)=N−1[s−1μ(φ,ϱ,0)+(1−θ+θ(vs))N[P1(φ,ϱ,ℓ)]],0<θ≤1=−sin(φ+ϱ)+q.[(1−θ)+θℓ],ν0(φ,ϱ,ℓ)=N−1[s−1ν(φ,ϱ,0)+(1−θ+θ(vs))N[P2(φ,ϱ,ℓ)]]=sin(φ+ϱ)−q.[(1−θ)+θℓ], | (5.3) |
μ1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N{R(μ0(φ,ϱ,ℓ))+N(μ0(φ,ϱ,ℓ))}]=−N−1[(1−θ+θ(vs))N(−ρ[∂2μ0∂φ2+∂2μ0∂ϱ2]+μ0∂μ0∂φ+ν0∂μ0∂ϱ)]=2ρsin(φ+ϱ)[(1−θ)+θℓ],ν1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N(R(ν0(φ,ϱ,ℓ))+N(ν0(φ,ϱ,ℓ)))]=−N−1[(1−θ+θ(vs))N(−ρ[∂2ν0∂φ2+∂2ν0∂ϱ2]+μ0∂ν0∂φ+ν0∂ν0∂ϱ)]=−2ρsin(φ+ϱ)[(1−θ)+θℓ], | (5.4) |
μ2(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(μ1(φ,ϱ,ℓ))+{N(μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ))−N(μ0(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2μ1∂φ2+∂2μ1∂ϱ2]+(μ0+μ1)∂(μ0+μ1)∂φ+(ν0+ν1)∂(μ0+μ1)∂ϱ−μ0∂μ0∂φ−ν0∂μ0∂ϱ)]=−(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!],ν2(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(ν1(φ,ϱ,ℓ))+{N(ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ))−N(ν0(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2ν1∂φ2+∂2ν1∂ϱ2]+(μ0+μ1)∂(ν0+ν1)∂φ+(ν0+ν1)∂(ν0+ν1)∂ϱ−μ0∂ν0∂φ−ν0∂ν0∂ϱ)]=(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!], | (5.5) |
μ3(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(μ2(φ,ϱ,ℓ))+{N(μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ)+μ2(φ,ϱ,ℓ))−N(μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2μ2∂φ2+∂2μ2∂ϱ2]+(μ0+μ1+μ2)∂(μ0+μ1+μ2)∂φ+(ν0+ν1+ν2)∂(μ0+μ1+μ2)∂ϱ−(μ0+μ1)∂(μ0+μ1)∂φ−(ν0+ν1)∂(μ0+μ1)∂ϱ)]=(2ρ)3sin(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!], | (5.6) |
ν3(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(ν2(φ,ϱ,ℓ))+{N(ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ)+ν2(φ,ϱ,ℓ))−N(ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2ν2∂φ2+∂2ν2∂ϱ2]+(μ0+μ1+μ2)∂(ν0+ν1+ν2)∂φ+(ν0+ν1+ν2)∂(ν0+ν1+ν2)∂ϱ−(μ0+μ1)∂(ν0+ν1)∂φ−(ν0+ν1)∂(ν0+ν1)∂ϱ)]=−(2ρ)3sin(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!],⋮ | (5.7) |
In a general way,
μ(φ,ϱ,ℓ)=∞∑r=0μr(φ,ϱ,ℓ)=μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ)+μ2(φ,ϱ,ℓ)+⋯.ν(φ,ϱ,ℓ)=∞∑r=0νr(φ,ϱ,ℓ)=ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ)+ν2(φ,ϱ,ℓ)+⋯. |
With the addition of all μ and ν,
μ(φ,ϱ,ℓ)=−sin(φ+ϱ)+q.[(1−θ)+θℓ]+2ρsin(φ+ϱ)[(1−θ)+θℓ]−(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]+(2ρ)3sin(φ+ϱ)×[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]−⋯, |
ν(φ,ϱ,ℓ)=sin(φ+ϱ)−q.[(1−θ)+θℓ]−2ρsin(φ+ϱ)[(1−θ)+θℓ]+(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]−(2ρ)3sin(φ+ϱ)×[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]+⋯. |
The exact solution of Eq (5.1) at θ=1 and q=0 is given by
μ(φ,ϱ,ℓ)=−e−2ρℓsin(φ+ϱ),ν(φ,ϱ,ℓ)=e−2ρℓsin(φ+ϱ). | (5.8) |
Consider the two-dimensional fractional N-S equation
CF0Dθℓ(μ)+μ∂μ∂φ+ν∂μ∂ϱ=ρ[∂2μ∂φ2+∂2μ∂ϱ2]+q,CF0Dθℓ(ν)+μ∂ν∂φ+ν∂ν∂ϱ=ρ[∂2ν∂φ2+∂2ν∂ϱ2]−q, | (5.9) |
with the initial conditions
{μ(φ,ϱ,0)=−e(φ+ϱ),ν(φ,ϱ,0)=e(φ+ϱ). | (5.10) |
From Eqs (5.9) and (5.10), we set the following:
{P1(φ,ϱ,ℓ)=q,R(μ(φ,ϱ,ℓ))=−ρ[∂2μ∂φ2+∂2μ∂ϱ2],N(μ(φ,ϱ,ℓ))=μ∂μ∂φ+ν∂μ∂ϱ,P2(φ,ϱ,ℓ)=−q,R(ν(φ,ϱ,ℓ))=−ρ[∂2ν∂φ2+∂2ν∂ϱ2],N(ν(φ,ϱ,ℓ))=μ∂ν∂φ+ν∂ν∂ϱ,μ0(φ,ϱ,0)=−e(φ+ϱ),ν0(φ,ϱ,0)=e(φ+ϱ). |
Using the iteration process outlined in Section 3, we have
μ0(φ,ϱ,ℓ)=N−1[s−1μ(φ,ϱ,0)+(1−θ+θ(vs))N[P1(φ,ϱ,ℓ)]],0<θ≤1=−e(φ+ϱ)+q.[(1−θ)+θℓ],ν0(φ,ϱ,ℓ)=N−1[s−1ν(φ,ϱ,0)+(1−θ+θ(vs))N[P2(φ,ϱ,ℓ)]]=e(φ+ϱ)−q.[(1−θ)+θℓ], | (5.11) |
μ1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N{R(μ0(φ,ϱ,ℓ))+N(μ0(φ,ϱ,ℓ))}]=−N−1[(1−θ+θ(vs))N(−ρ[∂2μ0∂φ2+∂2μ0∂ϱ2]+μ0∂μ0∂φ+ν0∂μ0∂ϱ)]=−2ρe(φ+ϱ)[(1−θ)+θℓ],ν1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N(R(ν0(φ,ϱ,ℓ))+N(ν0(φ,ϱ,ℓ)))]=−N−1[(1−θ+θ(vs))N(−ρ[∂2ν0∂φ2+∂2ν0∂ϱ2]+μ0∂ν0∂φ+ν0∂ν0∂ϱ)]=2ρe(φ+ϱ)[(1−θ)+θℓ],μ2(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(μ1(φ,ϱ,ℓ))+{N(μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ))−N(μ0(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2μ1∂φ2+∂2μ1∂ϱ2]+(μ0+μ1)∂(μ0+μ1)∂φ+(ν0+ν1)∂(μ0+μ1)∂ϱ−μ0∂μ0∂φ−ν0∂μ0∂ϱ)]=−(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!], | (5.12) |
ν2(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(ν1(φ,ϱ,ℓ))+{N(ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ))−N(ν0(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2ν1∂φ2+∂2ν1∂ϱ2]+(μ0+μ1)∂(ν0+ν1)∂φ+(ν0+ν1)∂(ν0+ν1)∂ϱ−μ0∂ν0∂φ−ν0∂ν0∂ϱ)]=(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!], | (5.13) |
μ3(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(μ2(φ,ϱ,ℓ))+{N(μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ)+μ2(φ,ϱ,ℓ))−N(μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2μ2∂φ2+∂2μ2∂ϱ2]+(μ0+μ1+μ2)∂(μ0+μ1+μ2)∂φ+(ν0+ν1+ν2)∂(μ0+μ1+μ2)∂ϱ−(μ0+μ1)∂(μ0+μ1)∂φ−(ν0+ν1)∂(μ0+μ1)∂ϱ)]=−(2ρ)3e(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!],ν3(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(ν2(φ,ϱ,ℓ))+{N(ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ)+ν2(φ,ϱ,ℓ))−N(ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2ν2∂φ2+∂2ν2∂ϱ2]+(μ0+μ1+μ2)∂(ν0+ν1+ν2)∂φ+(ν0+ν1+ν2)∂(ν0+ν1+ν2)∂ϱ−(μ0+μ1)∂(ν0+ν1)∂φ−(ν0+ν1)∂(ν0+ν1)∂ϱ)]=(2ρ)3e(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!],⋮ | (5.14) |
In a general way,
μ(φ,ϱ,ℓ)=∞∑r=0μr(φ,ϱ,ℓ)=μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ)+μ2(φ,ϱ,ℓ)+⋯,ν(φ,ϱ,ℓ)=∞∑r=0νr(φ,ϱ,ℓ)=ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ)+ν2(φ,ϱ,ℓ)+⋯. |
With the addition of all μ and ν,
μ(φ,ϱ,ℓ)=−e(φ+ϱ)+q.[(1−θ)+θℓ]−2ρe(φ+ϱ)[(1−θ)+θℓ]−(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]−(2ρ)3e(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]−⋯, |
ν(φ,ϱ,ℓ)=e(φ+ϱ)−q.[(1−θ)+θℓ]+2ρe(φ+ϱ)[(1−θ)+θℓ]+(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]+(2ρ)3e(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]+⋯. |
The exact solution of Eq (5.9) at θ=1 and q=0 is given by
μ(φ,ϱ,ℓ)=−eφ+ϱ+2ρℓ,ν(φ,ϱ,ℓ)=eφ+ϱ+2ρℓ. | (5.15) |
Consider the following non-linear fractional PDEs
CF0Dθℓ℧(φ,ϱ,ℓ)+R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))−P(φ,ϱ,ℓ)=0,0<θ≤1, | (6.1) |
subject to the initial condition
℧(φ,ϱ,0)=℧0(φ,ϱ). | (6.2) |
CF0Dθℓ is the Caputo-Fabrizio fractional differential operator of order θ,R and N are linear and non-linear terms, and P is the source term.
By using the natural transform on both sides of Eq (6.1), we get
N[CF0Dθℓ℧(φ,ϱ,ℓ)+R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,))−P(φ,ϱ,ℓ)=0], | (6.3) |
N[℧(φ,ϱ,ℓ)]=ϖ(℧(φ,ϱ,s))−(1−θ+θ(vs))N{[R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))]}, | (6.4) |
where
ϖ(℧(φ,ϱ,s))=s−1℧(φ,ϱ,0)+(1−θ+θ(vs))˜P(φ,ϱ,s). |
By applying the inverse natural transform, Eq (6.4) is reduced to the form
℧(φ,ϱ,ℓ)=ϖ(℧(φ,ϱ,ℓ))−N−1[(1−θ+θ(vs))N{[R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))]}], | (6.5) |
where ϖ(℧(φ,ϱ,ℓ)) represents the term arising from the source term. Now, applying the HPTM to find the solution of Eq (6.5), we get
℧(φ,ϱ,ℓ)=∞∑r=0zr℧r(φ,ϱ,ℓ), | (6.6) |
and the non-linear tern can be decomposed as
N(℧(φ,ϱ,ℓ))=∞∑r=0zrHr(φ,ϱ,ℓ). | (6.7) |
Cnsider some He's polynomials [54], given as
Hr(℧0,℧1,...,℧r)=1r!∂r∂zr[N(∞∑j=0zj℧j)],r=0,1,2,⋯. | (6.8) |
By substituting Eqs (6.6) and (6.7) into Eq (6.5), we get
∞∑r=0℧r(φ,ϱ,ℓ)zr=ϖ(℧(φ,ϱ,ℓ))−z.N−1[(1−θ+θ(vs))N{R∞∑r=0zr℧r(φ,ϱ,ℓ)+N∞∑r=0zrHr(φ,ϱ,ℓ)}]. | (6.9) |
Comparing the coefficients of like powers of z, the following approximations are obtained:
z0:℧0(φ,ϱ,ℓ)=ϖ(℧(φ,ϱ,ℓ)) | (6.10) |
z1:℧1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N{R[℧0(φ,ϱ,ℓ)]+H0(℧)}]⋮ | (6.11) |
zr+1:℧r+1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N{R[℧r(φ,ϱ,ℓ)]+Hr(℧)}]. | (6.12) |
Consider the two-dimensional fractional N-S equation
CF0Dθℓ(μ)+μ∂μ∂φ+ν∂μ∂ϱ=ρ[∂2μ∂φ2+∂2μ∂ϱ2]+q,CF0Dθℓ(ν)+μ∂ν∂φ+ν∂ν∂ϱ=ρ[∂2ν∂φ2+∂2ν∂ϱ2]−q, | (6.13) |
with initial conditions
{μ(φ,ϱ,0)=−sin(φ+ϱ),ν(φ,ϱ,0)=sin(φ+ϱ). | (6.14) |
Applying the natural transform and inversion in Eq (6.13), we obtain
μ(φ,ϱ,ℓ)=μ(φ,ϱ,0)+N−1[(1−θ+θ(vs))N[q]]+N−1[(1−θ+θ(vs))×N{ρ(∂2μ∂φ2+∂2μ∂ϱ2)−(μ∂μ∂φ+ν∂μ∂ϱ)}],ν(φ,ϱ,ℓ)=ν(φ,ϱ,0)−N−1[(1−θ+θ(vs))N[q]]+N−1[(1−θ+θ(vs))×N{ρ(∂2ν∂φ2+∂2ν∂ϱ2)−(μ∂ν∂φ+ν∂ν∂ϱ)}]. | (6.15) |
By implementing HPTM in Eq (6.15), we get
∞∑r=0zrμ(φ,ϱ,ℓ)=−sin(φ+ϱ)+N−1[(1−θ+θ(vs))N[q]]+z.N−1[(1−θ+θ(vs))×N{ρ∞∑r=0zr(∂2μ∂φ2+∂2μ∂ϱ2)−∞∑r=0zrHr(φ,ϱ)}],∞∑r=0zrν(φ,ϱ,ℓ)=sin(φ+ϱ)−N−1[(1−θ+θ(vs))N[q]]+z.N−1[(1−θ+θ(vs))×N{ρ∞∑r=0zr(∂2ν∂φ2+∂2ν∂ϱ2)−∞∑r=0zrIr(φ,ϱ)}]. | (6.16) |
where Hr(φ,ϱ)=μ∂μ∂φ+ν∂μ∂ϱ and Ir(φ,ϱ)=μ∂ν∂φ+ν∂ν∂ϱ, represent the nonlinear term.
From Eq (6.16), comparing the powers of z, we get
z0:μ0(φ,ϱ,ℓ)=−sin(φ+ϱ)+q.[(1−θ)+θℓ],z0:ν0(φ,ϱ,ℓ)=sin(φ+ϱ)−q.[(1−θ)+θℓ], | (6.17) |
z1:μ1(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2μ0∂φ2+∂2μ0∂ϱ2)−H0(φ,ϱ)}]=2ρsin(φ+ϱ)[(1−θ)+θℓ],z1:ν1(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2ν0∂φ2+∂2ν0∂ϱ2)−I0(φ,ϱ)}]=−2ρsin(φ+ϱ)[(1−θ)+θℓ], | (6.18) |
where H0(φ,ϱ)=μ0∂μ0∂φ+ν0∂μ0∂ϱ and I0(φ,ϱ)=μ0∂ν0∂φ+ν0∂ν0∂ϱ.
z2:μ2(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2μ1∂φ2+∂2μ1∂ϱ2)−H1(φ,ϱ)}]=−(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!],z2:ν2(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2ν1∂φ2+∂2ν1∂ϱ2)−I1(φ,ϱ)}]=(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!], | (6.19) |
where H1(φ,ϱ)=(μ0∂μ1∂φ+μ1∂μ0∂φ)+(ν0∂μ1∂ϱ+ν1∂μ0∂ϱ),
and I1(φ,ϱ)=(μ0∂ν1∂φ+μ1∂ν0∂φ)+(ν0∂ν1∂ϱ+ν1∂ν0∂ϱ).
z3:μ3(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2μ2∂φ2+∂2μ2∂ϱ2)−H2(φ,ϱ)}]=(2ρ)3sin(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!],z3:ν3(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2ν2∂φ2+∂2ν2∂ϱ2)−I2(φ,ϱ)}]=−(2ρ)3sin(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!], | (6.20) |
where H2(φ,ϱ)=(μ0∂μ2∂φ+μ1∂μ1∂φ+μ2∂μ0∂φ)+(ν0∂μ2∂ϱ+ν1∂μ1∂ϱ+ν2∂μ0∂ϱ),
and I2(φ,ϱ)=(μ0∂ν2∂φ+μ1∂ν1∂φ+μ2∂ν0∂φ)+(ν0∂ν2∂ϱ+ν1∂ν1∂ϱ+ν2∂ν0∂ϱ).
⋮
In a general way,
μ(φ,ϱ,ℓ)=∞∑r=0μr(φ,ϱ,ℓ)=μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ)+μ2(φ,ϱ,ℓ)+⋯,ν(φ,ϱ,ℓ)=∞∑r=0νr(φ,ϱ,ℓ)=ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ)+ν2(φ,ϱ,ℓ)+⋯. |
With the addition of all μ and ν,
μ(φ,ϱ,ℓ)=−sin(φ+ϱ)+q.[(1−θ)+θℓ]+2ρsin(φ+ϱ)[(1−θ)+θℓ]−(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]+(2ρ)3sin(φ+ϱ)×[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]−⋯. |
ν(φ,ϱ,ℓ)=sin(φ+ϱ)−q.[(1−θ)+θℓ]−2ρsin(φ+ϱ)[(1−θ)+θℓ]+(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]−(2ρ)3sin(φ+ϱ)×[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]+⋯. |
The exact solution of Eq (6.13) at θ=1 and q=0 is given by
μ(φ,ϱ,ℓ)=−e−2ρℓsin(φ+ϱ),ν(φ,ϱ,ℓ)=e−2ρℓsin(φ+ϱ). | (6.21) |
Consider the two-dimensional fractional order N-S equation
CF0Dθℓ(μ)+μ∂μ∂φ+ν∂μ∂ϱ=ρ[∂2μ∂φ2+∂2μ∂ϱ2]+q,CF0Dθℓ(ν)+μ∂ν∂φ+ν∂ν∂ϱ=ρ[∂2ν∂φ2+∂2ν∂ϱ2]−q, | (6.22) |
with initial conditions
{μ(φ,ϱ,0)=−e(φ+ϱ),ν(φ,ϱ,0)=e(φ+ϱ). | (6.23) |
Applying the natural transform and inversion in Eq (6.22), we obtain
μ(φ,ϱ,ℓ)=μ(φ,ϱ,0)+N−1[(1−θ+θ(vs))N[q]]+N−1[(1−θ+θ(vs))×N{ρ(∂2μ∂φ2+∂2μ∂ϱ2)−(μ∂μ∂φ+ν∂μ∂ϱ)}],ν(φ,ϱ,ℓ)=ν(φ,ϱ,0)−N−1[(1−θ+θ(vs))N[q]]+N−1[(1−θ+θ(vs))×N{ρ(∂2ν∂φ2+∂2ν∂ϱ2)−(μ∂ν∂φ+ν∂ν∂ϱ)}]. | (6.24) |
By implementing HPTM in Eq (6.24), we get
∞∑r=0zrμ(φ,ϱ,ℓ)=−e(φ+ϱ)+N−1[(1−θ+θ(vs))N[q]]+z.N−1[(1−θ+θ(vs))×N{ρ∞∑r=0zr(∂2μ∂φ2+∂2μ∂ϱ2)−∞∑r=0zrHr(φ,ϱ)}],∞∑r=0zrν(φ,ϱ,ℓ)=e(φ+ϱ)−N−1[(1−θ+θ(vs))N[q]]+z.N−1[(1−θ+θ(vs))×N{ρ∞∑r=0zr(∂2ν∂φ2+∂2ν∂ϱ2)−∞∑r=0zrIr(φ,ϱ)}]. | (6.25) |
where Hr(φ,ϱ)=μ∂μ∂φ+ν∂μ∂ϱ and Ir(φ,ϱ)=μ∂ν∂φ+ν∂ν∂ϱ represent the nonlinear terms.
From Eq (6.25), comparing the powers of z, we get
z0:μ0(φ,ϱ,ℓ)=−e(φ+ϱ)+q.[(1−θ)+θℓ],z0:ν0(φ,ϱ,ℓ)=e(φ+ϱ)−q.[(1−θ)+θℓ], | (6.26) |
z1:μ1(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2μ0∂φ2+∂2μ0∂ϱ2)−H0(φ,ϱ)}]=−2ρe(φ+ϱ)[(1−θ)+θℓ],z1:ν1(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2ν0∂φ2+∂2ν0∂ϱ2)−I0(φ,ϱ)}]=2ρe(φ+ϱ)[(1−θ)+θℓ]. | (6.27) |
where H0(φ,ϱ)=μ0∂μ0∂φ+ν0∂μ0∂ϱ and I0(φ,ϱ)=μ0∂ν0∂φ+ν0∂ν0∂ϱ.
z2:μ2(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2μ1∂φ2+∂2μ1∂ϱ2)−H1(φ,ϱ)}]=−(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!],z2:ν2(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2ν1∂φ2+∂2ν1∂ϱ2)−I1(φ,ϱ)}]=(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!], | (6.28) |
where H1(φ,ϱ)=(μ0∂μ1∂φ+μ1∂μ0∂φ)+(ν0∂μ1∂ϱ+ν1∂μ0∂ϱ),
and I1(φ,ϱ)=(μ0∂ν1∂φ+μ1∂ν0∂φ)+(ν0∂ν1∂ϱ+ν1∂ν0∂ϱ).
z3:μ3(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2μ2∂φ2+∂2μ2∂ϱ2)−H2(φ,ϱ)}]=−(2ρ)3e(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!],z3:ν3(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2ν2∂φ2+∂2ν2∂ϱ2)−I2(φ,ϱ)}]=(2ρ)3e(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!], | (6.29) |
where H2(φ,ϱ)=(μ0∂μ2∂φ+μ1∂μ1∂φ+μ2∂μ0∂φ)+(ν0∂μ2∂ϱ+ν1∂μ1∂ϱ+ν2∂μ0∂ϱ),
and I2(φ,ϱ)=(μ0∂ν2∂φ+μ1∂ν1∂φ+μ2∂ν0∂φ)+(ν0∂ν2∂ϱ+ν1∂ν1∂ϱ+ν2∂ν0∂ϱ).
⋮
In a general way,
μ(φ,ϱ,ℓ)=∞∑r=0μr(φ,ϱ,ℓ)=μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ)+μ2(φ,ϱ,ℓ)+⋯,ν(φ,ϱ,ℓ)=∞∑r=0νr(φ,ϱ,ℓ)=ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ)+ν2(φ,ϱ,ℓ)+⋯. |
With the addition of all μ and ν,
μ(φ,ϱ,ℓ)=−e(φ+ϱ)+q.[(1−θ)+θℓ]−2ρe(φ+ϱ)[(1−θ)+θℓ]−(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]−(2ρ)3e(φ+ϱ)×[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]−... |
ν(φ,ϱ,ℓ)=e(φ+ϱ)−q.[(1−θ)+θℓ]+2ρe(φ+ϱ)[(1−θ)+θℓ]+(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]+(2ρ)3e(φ+ϱ)×[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]+... |
The exact solution of Eq (6.22) at θ=1 and q=0 is given by
μ(φ,ϱ,ℓ)=−eφ+ϱ+2ρℓ,ν(φ,ϱ,ℓ)=eφ+ϱ+2ρℓ. | (6.30) |
Effective analytical techniques were used to analyze the solution of the time-fractional multi-dimensional N-S equation. The fractional derivatives are defined in the form of Caputo-Fabrizio, and are examined by the NITM and HPTM, along with NT. To verify that the suggested approaches are accurate and applicable, the graphical interpretation is illustrated for both fractional and integer orders for some examples.
Figures 1 and 2 demonstrate the behavior of the exact and analytical solutions of Example 1 for μ(φ,ϱ,ℓ) and ν(φ,ϱ,ℓ) at θ=1, and demonstrate that the NITM solution figures are identical and in close contact with the exact solution of the example.
The physical attributes of μ(φ,ϱ,ℓ) corresponding to the various fractional-orders θ=0.2,0.4,0.6,0.8 of Example 1 are plotted in Figures 3 and 4.
Similarly, the graphical solutions of ν(φ,ϱ,ℓ) for various fractional-orders θ=0.2,0.4,0.6,0.8 of Example 1 are examined in Figures 5 and 6. It is shown that the NITM solutions are in strong agreement with the exact solutions and show a high rate of convergence.
Figures 7 and 8 represent the analytical and exact solutions of Examples 2 and 4 for μ(φ,ϱ,ℓ) and ν(φ,ϱ,ℓ) at θ=1.
It can be seen that the NITM solution figures are identical and in close contact with the exact solution of the example. Furthermore, in Figures 9 and 10, Examples 2 and 4 are calculated by the NITM method, and the value of μ(φ,ϱ,ℓ) is examined corresponding to the various fractional orders θ=0.2,0.4,0.6,0.8 by graphical interpretation.
Similarly, the graphical solution of ν(φ,ϱ,ℓ) for various fractional orders θ=0.2,0.4,0.6,0.8 of Example 2 is analyzed in Figures 11 and 12.
It is observed that the outcome of the NITM method and its graphical interpretation demonstrate the accuracy and applicability of the suggested techniques, and it is noted that the fractional-order solution exhibits the same convergence trends as that of integer-order solutions.
This article presents the successful implementation of NITM and HPTM to evaluate the solution of the time-fractional multi-dimensional N-S equation analytically. The efficacy and accuracy of the proposed methods are examined with the support of four examples, and the outcomes show how effective, precise, and easy the methods are to use. The graphical interpretation of different values of the fractional-order θ on the solution profile is displayed in Figures 2–6 and in Figures 9–12, which demonstrate some interesting dynamics of the model. The results obtained by these methods are in a series form, and close agreement with those solutions is given by [44,45]. It is noted that there is a high rate of convergence between the series solutions obtained towards the solutions of integer order. Furthermore, the suggested methods are simple to use, and they may be used to solve additional fractional PDEs that arise in applied research.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding their research work through project number ISP-2024.
There is no competing interest among the authors regarding the publication of the article.
[1] | J. Banas, K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker, New York, 1980. |
[2] |
M. Cichoń, M. Metwali, On monotonic integrable solutions for quadratic functional integral equations, Mediterr. J. Math., 10 (2013), 909–926. https://doi.org/10.1007/s00009-012-0218-0 doi: 10.1007/s00009-012-0218-0
![]() |
[3] | S. Chandrasekhar, Radiative transfer, Oxford Univ. Press, London, 1950. |
[4] | C. Corduneanu, Integral equations and applications, Cambridge University Press, New York, 1990. |
[5] | A. Deep, Deepmala, J. R. Roshan, Solvability for generalized non-linear integral equations in Banach spaces with applications, J. Integral Equ. Appl., 33 (2021), 19–30. |
[6] | A. Deep, Deepmala, M. Rabbani, A numerical method for solvability of some non-linear functional integral equations, Appl. Math. Comput., 402 (2021), 125–637. |
[7] |
A. Deep, Deepmala, R. Ezzati, Application of Petryshyn's fixed point theorem to solvability for functional integral equations, Appl. Math. Comput., 395 (2021), 125878. https://doi.org/10.1016/j.amc.2020.125878 doi: 10.1016/j.amc.2020.125878
![]() |
[8] | A. Deep, D. Dhiman, S. Abbas, B. Hazarika, Solvability for two dimensional functional integral equations via Petryshyn's fixed point theorem, RACSAM Rev. R. Acad. A, 115 (2021). |
[9] |
A. Deep, Deepmala, B. Hazarika, An existence result for Hadamard type two dimensional fractional functional integral equations via measure of noncompactness, Chaos Soliton. Fract., 147 (2021), 110874. https://doi.org/10.1016/j.chaos.2021.110874 doi: 10.1016/j.chaos.2021.110874
![]() |
[10] | K. Deimling, Nonlinear functional analysis, Springer-Verlag, 1985. https://doi.org/10.1007/978-3-662-00547-7 |
[11] |
S. Deng, X. B. Shu, J. Mao, Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by fBm with noncompact semigroup via Mönch fixed point, J. Math. Anal. Appl., 467 (2018), 398–420. https://doi.org/10.1016/j.jmaa.2018.07.002 doi: 10.1016/j.jmaa.2018.07.002
![]() |
[12] | B. C. Dhage, On α-condensing mappings in Banach algebras, Math. Stud., 63 (1994), 146–152. |
[13] |
B. C. Dhage, V. Lakshmikantham, On global existence and attractivity results for nonlinear functional integral equations, Nonlinear Anal.-Theor., 70 (2010), 2219–2227. https://doi.org/10.1016/j.na.2009.10.021 doi: 10.1016/j.na.2009.10.021
![]() |
[14] |
Y. Guo, M. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2021). https://doi.org/10.1080/07362994.2020.1824677 doi: 10.1080/07362994.2020.1824677
![]() |
[15] | Y. Guo, X. B. Shu, Y. Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1<β<2, Bound. Value Probl., 2019 (2019). |
[16] |
B. Hazarika, H. M. Srivastava, R. Arab, M. Rabbani, Application of simulation function and measure of noncompactness for solvability of nonlinear functional integral equations and introduction to an iteration algorithm to find solution, Appl. Math. Comput., 360 (2019), 131–146. https://doi.org/10.1016/j.amc.2019.04.058 doi: 10.1016/j.amc.2019.04.058
![]() |
[17] |
B. Hazarika, R. Arab, H. K. Nashine, Applications of measure of noncompactness and modified simulation function for solvability of nonlinear functional integral equations, Filomat, 33 (2019), 5427–5439. https://doi.org/10.2298/FIL1917427H doi: 10.2298/FIL1917427H
![]() |
[18] | S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261–266. |
[19] | M. Kazemi, R. Ezzati, Existence of solutions for some nonlinear Volterra integral equations via Petryshyn's fixed point theorem, Int. J. Anal. Appl., 9 (2018). |
[20] | C. T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Equ., 4 (1982), 221–237. |
[21] |
K. Maleknejad, K. Nouri, R. Mollapourasl, Existence of solutions for some nonlinear integral equations, Commun. Nonlinear Sci., 14 (2009), 2559–2564. https://doi.org/10.1016/j.cnsns.2008.10.019 doi: 10.1016/j.cnsns.2008.10.019
![]() |
[22] | K. Maleknejad, K. Nouri, R. Mollapourasl, Investigation on the existence of solutions for some nonlinear functional-integral equations, Nonlinear Anal.-Theor., 71 (2009), 1575–1578. |
[23] |
M. Metwali, K. Cichoń, On solutions of some delay Volterra integral problems on a half line, Nonlinear Anal.-Model., 26 (2021), 661–677. https://doi.org/10.15388/namc.2021.26.24149 doi: 10.15388/namc.2021.26.24149
![]() |
[24] |
M. Metwali, On a class of quadratic Uryshon-Hammerstein integral equations of mixed-type and initial value problem of fractional order, Mediterr. J. Math., 13 (2016), 2691–2707. https://doi.org/10.1007/s00009-015-0647-7 doi: 10.1007/s00009-015-0647-7
![]() |
[25] | H. Nashine, R. Arab, R. Agarwal, Existence of solutions of system of functional-integral equations using measure of noncompactness, Int. J. Nonlinear Anal., 12 (2021), 583–595. |
[26] |
H. Nashine, R. Ibrahim, R. Agarwal, N. Can, Existence of local fractional integral equation via a measure of non-compactness with monotone property on Banach spaces, Adv. Differ. Equ., 2020 2020,697. https://doi.org/10.1186/s13662-020-03153-3 doi: 10.1186/s13662-020-03153-3
![]() |
[27] | R. D. Nussbaum, The fixed point index and fixed point theorem for k set contractions, Proquest LLC, Ann Arbor, MI, 1969. |
[28] | I. Ozdemir, U. Cakan, B. Iihan, On the existence of the solution for some noninear Volterra integral equations, Abstr. Appl. Anal., 5 (2013). |
[29] |
W. V. Petryshyn, Structure of the fixed points sets of k-set-contractions, Arch. Ration. Mech. An., 40 (1971), 312–328. https://doi.org/10.1007/BF00252680 doi: 10.1007/BF00252680
![]() |
[30] | M. Rabbani, A. Deep, Deepmala, On some generalized non-linear functional integral equations of two variables via measures of non-compactness and numerical method to solve it, Math. Sci., 2021. |
[31] |
S. Singh, B. Singh, K. S. Nisar, A. Hyder, M. Zakarya, Solvability for generalized nonlinear two dimensional functional integral equations via measure of noncompactness, Adv. Differ. Equ., 2021 (2021). https://doi.org/10.1186/s13662-021-03506-6 doi: 10.1186/s13662-021-03506-6
![]() |
1. | Hassan Eltayeb Gadain, Said Mesloub, Application of Triple- and Quadruple-Generalized Laplace Transform to (2+1)- and (3+1)-Dimensional Time-Fractional Navier–Stokes Equation, 2024, 13, 2075-1680, 780, 10.3390/axioms13110780 | |
2. | Manoj Singh, Fractional view analysis of coupled Whitham- Broer-Kaup and Jaulent-Miodek equations, 2024, 15, 20904479, 102830, 10.1016/j.asej.2024.102830 | |
3. | Manoj Singh, Mohammad Tamsir, Yasser Salah El Saman, Sarita Pundhir, Approximation of Two-Dimensional Time-Fractional Navier-Stokes Equations involving Atangana-Baleanu Derivative, 2024, 9, 2455-7749, 646, 10.33889/IJMEMS.2024.9.3.033 | |
4. | Elkhateeb Sobhy Aly, Manoj Singh, Mohammed Ali Aiyashi, Mohammed Daher Albalwi, Modeling monkeypox virus transmission: Stability analysis and comparison of analytical techniques, 2024, 22, 2391-5471, 10.1515/phys-2024-0056 | |
5. | Manoj Singh, Mukesh Pal Singh, Mohammad Tamsir, Mohammad Asif, Analysis of Fractional-Order Nonlinear Dynamical Systems by Using Different Techniques, 2025, 11, 2349-5103, 10.1007/s40819-025-01865-2 | |
6. | Rania Saadeh, Ahmad Qazza, Abdelilah Kamal H. Sedeeg, Ghassan Abufoudeh, Exploration of a New Approach Related to Atangana-Baleanu Derivatives for Solving Fractional Partial Differential Equations, 2025, 10, 2455-7749, 896, 10.33889/IJMEMS.2025.10.4.043 |