Research article Special Issues

Brain tissue segmentation via non-local fuzzy c-means clustering combined with Markov random field

  • Received: 24 October 2021 Accepted: 14 December 2021 Published: 20 December 2021
  • The segmentation and extraction of brain tissue in magnetic resonance imaging (MRI) is a meaningful task because it provides a diagnosis and treatment basis for observing brain tissue development, delineating lesions, and planning surgery. However, MRI images are often damaged by factors such as noise, low contrast and intensity brightness, which seriously affect the accuracy of segmentation. A non-local fuzzy c-means clustering framework incorporating the Markov random field for brain tissue segmentation is proposed in this paper. Firstly, according to the statistical characteristics that MRF can effectively describe the local spatial correlation of an image, a new distance metric with neighborhood constraints is constructed by combining probabilistic statistical information. Secondly, a non-local regularization term is integrated into the objective function to utilize the global structure feature of the image, so that both the local and global information of the image can be taken into account. In addition, a linear model of inhomogeneous intensity is also built to estimate the bias field in brain MRI, which has achieved the goal of overcoming the intensity inhomogeneity. The proposed model fully considers the randomness and fuzziness in the image segmentation problem, and obtains the prior knowledge of the image reasonably, which reduces the influence of low contrast in the MRI images. Then the experimental results demonstrate that the proposed method can eliminate the noise and intensity inhomogeneity of the MRI image and effectively improve the image segmentation accuracy.

    Citation: Jianhua Song, Lei Yuan. Brain tissue segmentation via non-local fuzzy c-means clustering combined with Markov random field[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1891-1908. doi: 10.3934/mbe.2022089

    Related Papers:

    [1] Chentong Li, Jinyan Wang, Jinhu Xu, Yao Rong . The Global dynamics of a SIR model considering competitions among multiple strains in patchy environments. Mathematical Biosciences and Engineering, 2022, 19(5): 4690-4702. doi: 10.3934/mbe.2022218
    [2] Xue-Zhi Li, Ji-Xuan Liu, Maia Martcheva . An age-structured two-strain epidemic model with super-infection. Mathematical Biosciences and Engineering, 2010, 7(1): 123-147. doi: 10.3934/mbe.2010.7.123
    [3] Matthew D. Johnston, Bruce Pell, David A. Rubel . A two-strain model of infectious disease spread with asymmetric temporary immunity periods and partial cross-immunity. Mathematical Biosciences and Engineering, 2023, 20(9): 16083-16113. doi: 10.3934/mbe.2023718
    [4] Ali Mai, Guowei Sun, Lin Wang . The impacts of dispersal on the competition outcome of multi-patch competition models. Mathematical Biosciences and Engineering, 2019, 16(4): 2697-2716. doi: 10.3934/mbe.2019134
    [5] Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin . Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment. Mathematical Biosciences and Engineering, 2018, 15(6): 1479-1494. doi: 10.3934/mbe.2018068
    [6] Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679
    [7] Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283
    [8] Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135
    [9] Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048
    [10] Azmy S. Ackleh, Shuhua Hu . Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences and Engineering, 2007, 4(2): 133-157. doi: 10.3934/mbe.2007.4.133
  • The segmentation and extraction of brain tissue in magnetic resonance imaging (MRI) is a meaningful task because it provides a diagnosis and treatment basis for observing brain tissue development, delineating lesions, and planning surgery. However, MRI images are often damaged by factors such as noise, low contrast and intensity brightness, which seriously affect the accuracy of segmentation. A non-local fuzzy c-means clustering framework incorporating the Markov random field for brain tissue segmentation is proposed in this paper. Firstly, according to the statistical characteristics that MRF can effectively describe the local spatial correlation of an image, a new distance metric with neighborhood constraints is constructed by combining probabilistic statistical information. Secondly, a non-local regularization term is integrated into the objective function to utilize the global structure feature of the image, so that both the local and global information of the image can be taken into account. In addition, a linear model of inhomogeneous intensity is also built to estimate the bias field in brain MRI, which has achieved the goal of overcoming the intensity inhomogeneity. The proposed model fully considers the randomness and fuzziness in the image segmentation problem, and obtains the prior knowledge of the image reasonably, which reduces the influence of low contrast in the MRI images. Then the experimental results demonstrate that the proposed method can eliminate the noise and intensity inhomogeneity of the MRI image and effectively improve the image segmentation accuracy.





    [1] P. Moeskops, M. A.Viergever, A. M. Mendrik, L. S. De Vries, M. J. Benders, I. Isgum, Automatic segmentation of MR brain images with a Convolutional Neural Network, IEEE Trans. Med. Imaging, 35 (2016), 1252–1261. doi: 10.1109/TMI.2016.2548501. doi: 10.1109/TMI.2016.2548501
    [2] A. Makropoulos, S. J. Counsell, D. Rueckert, A review on automatic fetal and neonatal brain MRI segmentation, NeuroImage, 170 (2017), 231–248. doi: 10.1016/j.neuroimage.2017.06.074 doi: 10.1016/j.neuroimage.2017.06.074
    [3] Y. Yang, W. Jia, Y. Yang, Multi-atlas segmentation and correction model with level set formulation for 3D brain MR images, Pattern Recogn., 90 (2019), 450–463. doi: 10.1016/j.patcog.2019.01.031 doi: 10.1016/j.patcog.2019.01.031
    [4] J. Song, Z. Zhang, Magnetic resonance imaging segmentation via weighted level set model based on local kernel metric and spatial constraint, Entropy, 23 (2021), 1196. doi: 10.3390/e23091196 doi: 10.3390/e23091196
    [5] L. Sun, L. Zhang, D. Zhang, Multi-Atlas based methods in brain MR image segmentation, Chin. Med. Sci. J., 34 (2019), 110–119. doi: 10.24920/003576 doi: 10.24920/003576
    [6] J. Song, Z. Zhang, A modified robust FCM model with spatial constraints for brain MR image segmentation, Information, 10 (2019), 74. doi: 10.3390/info10020074 doi: 10.3390/info10020074
    [7] Z. Zhang, J. Song, An adaptive fuzzy level set Model with local spatial information for medical image segmentation and bias correction, IEEE Access, 7 (2019), 27322–27338. doi: 10.1109/ACCESS.2019.2900089 doi: 10.1109/ACCESS.2019.2900089
    [8] S. Roy, P. Maji, Medical image segmentation by partitioning spatially constrained fuzzy approximation spaces, IEEE Trans. Fuzzy Syst., 28 (2020), 965–977. doi: 10.1109/TFUZZ.2020.2965896 doi: 10.1109/TFUZZ.2020.2965896
    [9] D. L. Pham, Spatial models for fuzzy clustering, Comput. Vis. Image Und., 84 (2001), 285–297, doi: 10.1006/cviu.2001.0951. doi: 10.1006/cviu.2001.0951
    [10] W. Cui, Y. Wang, Y. Fan, Y. Feng, T. Lei, Localized FCM clustering with spatial information for medical image segmentation and bias field estimation, J. BiomMed. Imaging, 2013 (2013), 930301. doi: 10.1155/2013/930301 doi: 10.1155/2013/930301
    [11] A. Jaiswal, M. A. Williams, A. Bhalerao, M. K. Tiwari, J. M. Warnett, Markov random field segmentation for industrial computed tomography with metal artefacts, J. X-Ray Sci. Technol., 26 (2018), 573–591. doi: 10.3233/XST-17322 doi: 10.3233/XST-17322
    [12] H. Liu, G. Dai, F. Pu, Hip-Joint CT image segmentation based on hidden Markov model with gauss regression constraints, J. Med. Syst., 43 (2019), 309. doi: 10.1007/s10916-019-1439-6 doi: 10.1007/s10916-019-1439-6
    [13] X. Xu, Y. Guan, H. Gong, Z. Feng, Q. Luo, Automated brain region segmentation for single cell resolution histological images based on markov random Field, Neuroinformatics, 18 (2020), 181–197. doi: 10.1007/s12021-019-09432-z doi: 10.1007/s12021-019-09432-z
    [14] A. Chen, Y. Zhang, Image segmentation based on a robust fuzzy c means algorithm, J. Med. Imag. Health In., 9 (2019), 1464–1468. doi: 10.1166/jmihi.2019.2745 doi: 10.1166/jmihi.2019.2745
    [15] J. Besag, Spatial interaction and the statistical analysis of lattice systems, J. Royal Stat. Soc., 36 (1974), 192–236. https://www.jstor.org/stable/2984812
    [16] C. Sutton, A. Mccallum, An introduction to conditional random fields, Found. Trends, 4 (2012), 267–373. doi: 10.1561/2200000013 doi: 10.1561/2200000013
    [17] H. Rue, H. Tjelmeland, Fitting Gaussian Markov random fields to Gaussian fields, Scand. J. Stat., 29 (2002), 31–49. doi: 10.1111/1467-9469.00058 doi: 10.1111/1467-9469.00058
    [18] F. Wu, The Potts model, Rev. Mod. Phys., 54 (1982), 235–268. doi: 10.1103/RevModPhys.54.235 doi: 10.1103/RevModPhys.54.235
    [19] S. Ribes, D. Didierlaurent, N. Decoster, E. Gonneau, L. Risser, V. Feillel, Automatic segmentation of breast MR images through a Markov random field statistical model, IEEE Trans. Med. Imaging, 33 (2014), 1986–1996. doi: 10.1109/TMI.2014.2329019 doi: 10.1109/TMI.2014.2329019
    [20] R. C. Dubes, A. K. Jain, Clustering techniques: The user's dilemma, Pattern Recogn., 8 (1976), 247–260. doi: 10.1016/0031-3203(76)90045-5 doi: 10.1016/0031-3203(76)90045-5
    [21] J. C. Bezdek, Pattern recognition with fuzzy objective function Algorithms, Adv. Appl. Pattern Recogn., 22 (1981), 203–239. doi: 10.1007/978-1-4757-0450-1 doi: 10.1007/978-1-4757-0450-1
    [22] B. N. Subudhi, F. Bovolo, A. Ghosh, L. Bruzzone, Spatio-contextual fuzzy clustering with Markov random field model for change detection in remotely sensed images, Opt. Laser Technol., 57 (2014), 284–292. doi: 10.1016/j.optlastec.2013.10.003 doi: 10.1016/j.optlastec.2013.10.003
    [23] T. K. Palani, B. Parvathavarthini, K. Chitra, Segmentation of brain regions by integrating meta heuristic multilevel threshold with Markov random field, Current Med. Imaging Rev., 12 (2016), 4–12. doi: 10.2174/1573394711666150827203434 doi: 10.2174/1573394711666150827203434
    [24] O. Salih, S. Viriri, Skin lesion segmentation using Sto-chastic region-merging and pixel-based Markov random field, Symmetry, 12 (2020), 1224. doi: 10.3390/sym12081224 doi: 10.3390/sym12081224
    [25] M. Hao, M. Zhou, J. Jin, W. Shi, An advanced superpixel-based Markov random field model for unsupervised change detection, IEEE Geosci. Remote S., 17 (2020), 1401–1405. doi: 10.1109/LGRS.2019.2948660 doi: 10.1109/LGRS.2019.2948660
    [26] X. Li, J. Chen, L. Zhao, S. Guo, X. Zhao, Adaptive distance-weighted Voronoi tessellation for remote sensing image segmentation, Remote Sens., 12 (2020), 4115. doi: 10.3390/rs12244115 doi: 10.3390/rs12244115
    [27] J. Song, Z. Zhang, Brain tissue segmentation and bias field correction of MR image based on spatially coherent FCM with nonlocal constraints, Comput. Math. Method Med., 2019 (2019), 4762490. doi: 10.1155/2019/4762490 doi: 10.1155/2019/4762490
    [28] Y. Chen, J. Li, H. Zhang, Y. Zheng, B. Jeon, Q. J. Wu, Non-local-based spatially constrained hierarchical fuzzy C-means method for brain magnetic resonance imaging segmentation, Iet Image Process., 10 (2016), 865–876. doi: 10.1049/iet-ipr.2016.0271 doi: 10.1049/iet-ipr.2016.0271
    [29] BrainWeb: Simulated Brain Database, Available online: http://brainweb.bic.mni.mcgill.ca/brainweb/. (accessed on 28 August 2021).
    [30] IBSR: The Internet Brain Segmentation Repository, Available online: http://www.nitrc.org/projects/ibsr. (accessed on 29 August 2021)
    [31] C. Li, J. Gore, C. Davatzikos, Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation, Magn. Reson. Imaging, 32 (2014), 913–923. doi: 10.1016/j.mri.2014.03.010 doi: 10.1016/j.mri.2014.03.010
    [32] A. Elazab, C. Wang, F. Jia, Q. Hu, Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy c-means clustering, Comput. Math. Method. M., 2015 (2015), 485495. doi: 10.1155/2015/485495 doi: 10.1155/2015/485495
    [33] S. Zhan, X. Yang, MR image bias field harmonic approximation with histogram statistical analysis, Pattern Recogn. Lett., 83 (2016), 91–98. doi: 10.1016/j.patrec.2016.02.009 doi: 10.1016/j.patrec.2016.02.009
  • This article has been cited by:

    1. Yixiang Wu, Necibe Tuncer, Maia Martcheva, Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion, 2017, 22, 1553-524X, 1167, 10.3934/dcdsb.2017057
    2. Junping Shi, Yixiang Wu, Xingfu Zou, Coexistence of Competing Species for Intermediate Dispersal Rates in a Reaction–Diffusion Chemostat Model, 2020, 32, 1040-7294, 1085, 10.1007/s10884-019-09763-0
    3. Yixiang Wu, Xingfu Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, 2016, 261, 00220396, 4424, 10.1016/j.jde.2016.06.028
    4. Lin Zhao, Zhi-Cheng Wang, Shigui Ruan, Dynamics of a time-periodic two-strain SIS epidemic model with diffusion and latent period, 2020, 51, 14681218, 102966, 10.1016/j.nonrwa.2019.102966
    5. Jing Ge, Ling Lin, Lai Zhang, A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment, 2017, 22, 1553-524X, 2763, 10.3934/dcdsb.2017134
    6. Yuan Lou, Rachidi B. Salako, Control Strategies for a Multi-strain Epidemic Model, 2022, 84, 0092-8240, 10.1007/s11538-021-00957-6
    7. Jinsheng Guo, Shuang-Ming Wang, Threshold dynamics of a time-periodic two-strain SIRS epidemic model with distributed delay, 2022, 7, 2473-6988, 6331, 10.3934/math.2022352
    8. Rachidi B. Salako, Impact of population size and movement on the persistence of a two-strain infectious disease, 2023, 86, 0303-6812, 10.1007/s00285-022-01842-z
    9. Yuan Lou, Rachidi B. Salako, Mathematical analysis of the dynamics of some reaction-diffusion models for infectious diseases, 2023, 370, 00220396, 424, 10.1016/j.jde.2023.06.018
    10. Jonas T. Doumatè, Tahir B. Issa, Rachidi B. Salako, Competition-exclusion and coexistence in a two-strain SIS epidemic model in patchy environments, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023213
    11. Azmy S. Ackleh, Nicolas Saintier, Aijun Zhang, A multiple-strain pathogen model with diffusion on the space of Radon measures, 2025, 140, 10075704, 108402, 10.1016/j.cnsns.2024.108402
    12. Jamal Adetola, Keoni G. Castellano, Rachidi B. Salako, Dynamics of classical solutions of a multi-strain diffusive epidemic model with mass-action transmission mechanism, 2025, 90, 0303-6812, 10.1007/s00285-024-02167-9
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3096) PDF downloads(99) Cited by(10)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog