Processing math: 51%
Research article

Pullback random attractors of stochastic strongly damped wave equations with variable delays on unbounded domains

  • Received: 11 August 2021 Accepted: 23 September 2021 Published: 26 September 2021
  • MSC : 37L55, 35B41, 35B40

  • In this paper, we consider the asymptotic behavior of solutions to stochastic strongly damped wave equations with variable delays on unbounded domains, which is driven by both additive noise and deterministic non-autonomous forcing. We first establish a continuous cocycle for the equations. Then we prove asymptotic compactness of the cocycle by tail-estimates and a decomposition technique of solutions. Finally, we obtain the existence of a tempered pullback random attractor.

    Citation: Li Yang. Pullback random attractors of stochastic strongly damped wave equations with variable delays on unbounded domains[J]. AIMS Mathematics, 2021, 6(12): 13634-13664. doi: 10.3934/math.2021793

    Related Papers:

    [1] Ruonan Liu, Tomás Caraballo . Random dynamics for a stochastic nonlocal reaction-diffusion equation with an energy functional. AIMS Mathematics, 2024, 9(4): 8020-8042. doi: 10.3934/math.2024390
    [2] Chunting Ji, Hui Liu, Jie Xin . Random attractors of the stochastic extended Brusselator system with a multiplicative noise. AIMS Mathematics, 2020, 5(4): 3584-3611. doi: 10.3934/math.2020233
    [3] Xin Liu . Stability of random attractors for non-autonomous stochastic $ p $-Laplacian lattice equations with random viscosity. AIMS Mathematics, 2025, 10(3): 7396-7413. doi: 10.3934/math.2025339
    [4] Xiaoxia Wang, Jinping Jiang . The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay. AIMS Mathematics, 2023, 8(11): 26650-26664. doi: 10.3934/math.20231363
    [5] Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040
    [6] Joseph L. Shomberg . On the upper semicontinuity of global attractors for damped wave equations. AIMS Mathematics, 2017, 2(3): 557-561. doi: 10.3934/Math.2017.2.557
    [7] Xiao Bin Yao, Chan Yue . Asymptotic behavior of plate equations with memory driven by colored noise on unbounded domains. AIMS Mathematics, 2022, 7(10): 18497-18531. doi: 10.3934/math.20221017
    [8] Ranran Liu, Hui Liu, Jie Xin . Random attractors for stochastic discrete long wave-short wave resonance equations driven by fractional Brownian motions. AIMS Mathematics, 2021, 6(3): 2900-2911. doi: 10.3934/math.2021175
    [9] Xiaobin Yao . Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping. AIMS Mathematics, 2020, 5(3): 2577-2607. doi: 10.3934/math.2020169
    [10] Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Maher Nour, Mostafa Zahri . Stabilization of a viscoelastic wave equation with boundary damping and variable exponents: Theoretical and numerical study. AIMS Mathematics, 2022, 7(8): 15370-15401. doi: 10.3934/math.2022842
  • In this paper, we consider the asymptotic behavior of solutions to stochastic strongly damped wave equations with variable delays on unbounded domains, which is driven by both additive noise and deterministic non-autonomous forcing. We first establish a continuous cocycle for the equations. Then we prove asymptotic compactness of the cocycle by tail-estimates and a decomposition technique of solutions. Finally, we obtain the existence of a tempered pullback random attractor.



    The aim of this paper is to establish the existence of pullback random attractors of the following stochastic non-autonomous strongly damped wave equation with variable delays and with additive noise in Rd:

    uttαΔutΔu+ut+λu=f(x,u(tρ(t)))+g(t,x)+mj=1hj(x)dWjdt, (1.1)

    with initial conditions

    u(s+τ,x)=ϕ(s,x),ut(s+τ,x)=ψ(s,x),s[h,0] (1.2)

    where xRd, tτ,τR; α>0 is the strong damping coefficient, λ is a positive constant; gL2loc(R,L2(Rd)) and hjH2(Rd); f is a nonlinear function satisfying some conditions, ρ is a given delay function; {Wj}mj=1 are independent real-valued two-sided Wiener process on a complete probability space (Ω,F,P), which will be specified later.

    As we know, the concept of random attractor, as an extension of the global attractor for the deterministic systems, was first introduced in [8], which has been studied in many papers, see [2,3,9,10,11,12,20,21,23,28,30,31,39] and references therein.

    Time delay differential equations arise from some evolution phenomena in physics, biology and life science, which depend not only on the current states but also on their past history. There have been many works on the asymptotic behavior of delay differential equations, see [6,13,19] in the deterministic case and [4,7,16,17,29,35,36] in the stochastic case and references therein.

    The asymptotic behavior of solutions of stochastic wave equation have been studied extensively in [15,22,25,37] in the autonomous case. For the non-autonomous stochastic wave equation, the existence of random attractors was obtained in [33] on bounded domains and in [5,18,27,32,34] on unbounded domains. Wave equations with delays are widely used in biology, physics, engineering and chemistry. Therefore, it is important for us to study the asymptotic behavior of stochastic delay wave equation. In [14,38], stochastic wave equations with delays on bounded domains are considered. However, the results for the stochastic delay wave equation on unbounded domains are very few.

    In this work, we study the pullback random attractors of stochastic non-autonomous strongly damped wave equations with variable delays on unbounded domains. To prove the existence of pullback random attractors, we need to derive some kind compactness. The main difficulty in this paper is to establish the asymptotic compactness since the Sobolev embedding is no longer compact on unbounded domains. We here overcome the difficulty by showing that the uniform tail-estimates of solutions are sufficiently small (see Lemma 2.3). On bounded domains, we decompose the solutions into a sum of two parts. One part decays exponentially and the other part has higher regularity. For the higher regularity part, we first give some uniform estimates (see Lemma 2.4) and obtain the Hölder continuity of solutions in time (see Lemma 2.5). Then we apply Arzela-Ascoli theorem to prove the precompactness (see Lemma 3.2) and hence establish our main result (see Theorem 3.3). In addition, the strongly damped term αΔut and the delay term f(x,u(tρ(t))) introduce an additional difficulty in deriving the uniform estimates, which needs some nontrivial arguments.

    The paper is organized as follows. In the next section, we establish a continuous cocycle for problem (1.1) and (1.2) and some uniform estimates of solutions are derived. Then we prove the existence and uniqueness of the tempered pullback attractors for (1.1) and (1.2) in Section 3. In Section 4, we make conclusion as well as some comments on our results.

    Notations: Let (Ω,F,P) be the standard probability space with Ω={ω=(ω1,ω2,,ωm)C(R,Rm):ω(0)=0}, F is the Bore σalgebra generated by the compact open topology of Ω and P is the Wiener measure on (Ω,F). Define the shift operator {θt}tR by θtω()=ω(+t)ω(t),tR,ωΩ. Then (Ω,F,P,{θt}tR) is a metric dynamical system.

    Throughout this paper, we use () and to denote the inner product and norm of L2(Rd), respectively, and use X to denote the norm of a general Banach space X. For h>0, let Ch be the Banach space C([h,0];L2(Rd)) endowed with the norm φCh=sups[h,0]φ(s) and ut be the function defined by ut=u(t+s),s[h,0]. Let C be a positive constant whose value may be different from line to line or even in the same line.

    Let E=H1(Rd)×L2(Rd), endowed with the following norm

    (u,v)2E=(σ2+λσ)u2+(1ασ)u2+v2,(u,v)E (1.3)

    where σ>0 is a fixed constant such that

    1σ>0,
    1ασ>0,
    σ2+λσ>0.

    Let E={(u,v):uCh,uCh,vCh}, with the norm

    (u,v)2E=(σ2+λσ)u2Ch+(1ασ)u2Ch+v2Ch. (1.4)

    In this subsection, we first show that the system (1.1) and (1.2) generates a continuous cocycle. Then, we recall some results for the existence of pullback random attractors for non-autonomous random dynamical systems.

    For our purpose, we transform the system (1.1) and (1.2) into a deterministic system with random parameters but without white noise, and then show that it generates a continuous cocycle on E over R and (Ω,F,P,{θt}tR).

    For j=1,2,,m, consider the one-dimensional Ornstein-Uhlenbeck equation:

    dzj+zjdt=dWj, (2.1)

    whose solution is given by

    zj(t)=zj(θtωj)0es(θtωj)(s)ds,tR. (2.2)

    It is known that the random variable |zj(ωj)| is tempered and there exists a θtinvariant subset ˜ΩΩ of full measure such that zj(θtωj) is continuous in t for each ω˜Ω. From now on, we will not distinguish ˜Ω and Ω, and write the space ˜Ω as Ω.

    Set

    z(θtω)=mj=1hj(x)zj(θtωj),

    then from (2.1) we have that

    dz+zdt=mj=1hjdWj. (2.3)

    It follows from [1,Proposition 4.3.3] that, there exists a tempered function r(ω)>0 such that

    mj=1|zj(ωj)|2r(ω), (2.4)

    where r(ω)>0 satisfies for each ωΩ,

    r(θtω)eσ|t|2r(ω),tR, (2.5)

    here σ is a positive constant which will be fixed later. Then by (2.4) and (2.5), we obtain, for each ωΩ,

    mj=1|zj(θtωj)|2eσ|t|2r(ω),tR. (2.6)

    In the rest of this subsection, we show that there is a continuous cocycle generated by the system (1.1) and (1.2). Firstly we give the following assumptions on f and g:

    (A1) There exist a function k1(x)L2(Rd) and a positive constant k2 such that the functions fC(Rd×R,R),ρC(R,[0,h]) satisfy

    |f(x,u)|2|k1(x)|2+k22|u|2,xRd,uR;

    and

    |ρ(t)|ρ<1,tR;

    (A2) There exists a constant L>0, such that

    |f(x,u)f(x,v)|L|uv|,xRd,u,v,R;

    (A3) The deterministic forcing g(t,x)L2loc(R,L2(Rd)), and

    τeλrg(r,)2dr<,τR,

    which implies

    limkτ|x|keλr|g(r,)|2dxdr=0,τR.

    Let v=ut+σuz(θtω), where σ is given in (1.3), then (1.1) and (1.2) can be rewritten as the following equivalent form:

    {dudt=vσu+z(θtω),dvdt=αΔv(1σ)v+(1ασ)Δu(σ2+λσ)u+f(x,u(tρ(t)))+g(t,x)+σz(θtω)+αΔz(θtω), (2.7)

    with the initial conditions

    u(τ+s,x)=uτ(x)ϕ(s,x),v(τ+s,x)=vτ(x),s[h,0],xRd, (2.8)

    where vτ(x)ψ(s,x)+σϕ(s,x)z(θτ+sω). Put φ(τ+t,τ,θτ,φτ)=(u(τ+t,τ,θτ,uτ),v(τ+t,τ,θτ,vτ)), where φτ=(uτ,vτ). By the classical theory in [24], we may show the following existence results of solutions of (2.7) and (2.8).

    Assume that gL2loc(R,L2(Rd)) and the assumption (A1) holds. Then for each ωΩ,τR,φτE, there exists a solution φ(,τ,ω,φτ) to the problem (2.7) and (2.8), which satisfies φ(,τ,ω,φτ)C([τh,T];E), for any T>τ, and for any t[τ,T], φt(,τ,ω,φτ)C([h,T];E).

    Assume moreover (A2) holds. Then the solutions to the problem (2.7) and (2.8) are unique, and the solutions depend continuously on the initial data φτE, for any ωΩ,tτ.

    Now, we define a mapping: Φ:R+×R×Ω×EE by

    Φ(t,τ,ω,φτ)=φt+τ(,τ,θτω,φτ),

    where φt+τ(s,τ,θτω,φτ)=φ(t+τ+s,τ,θτω,φτ) for s[h,0]. Then Φ is a continuous cocycle on E over R and (Ω,F,P,{θt}tR).

    In the following, let D(X) be the collection of all tempered families of nonempty bounded subsets of X. Recall that D={D(τ,ω):τR,ωΩ}D(X) is said to be tempered in X if for each γ>0,

    limteγtD(τ+t,θtω)X=0, (2.9)

    where DX=supxDxX. The cocycle Φ is said to be D(X)-pullback asymptotically compact in X if for all τR,ωΩ, the sequence

    {Φ(tn,τtn,θtnω,xn)}n=1hasaconvergentsubsequenceinX, (2.10)

    whenever tn, and xnD(τtn,θtnω) with D={D(τ,ω):τR,ωΩ}D(X).

    Next, we provide the following result for non-autonomous random dynamical systems from [26].

    Proposition 2.1. Let Φ be a continuous cocycle on X over R and (Ω,F,P,{θt}tR). Suppose Φ is D(X)-pullback asymptotically compact in X and has a closed measurable D(X)-pullback absorbing set K in D(X). Then Φ has an unique D(X) pullback attractor A in D(X). For each τR and ωΩ, A is given by,

    A(τ,ω)=τ0¯tτΦ(t,τt,θtω,K(τt,θtω)).

    In the rest of this paper, we will use Proposition 2.1 to prove the existence and uniqueness of a pullback random attractor for the continuous cocycle Φ in E.

    In this subsection, we derive some uniform tail-estimates of solutions of problem (2.7) and (2.8). Hereafter we suppose that D is the collection of all tempered families of nonempty bounded subsets of X.

    Lemma 2.2. In addition to the assumptions (A1)–(A3), suppose that there exists σ>0 such that

    1σ>σ, (2.11)
    σ>σ, (2.12)

    and

    (2σσ)(σ2+λσ)3k22eσh(1σ)(1ρ)>0. (2.13)

    Then for each τR,ωΩ, and D={D(τ,ω):τR,ωΩ}D, there exists T=T(τ,ω,D)>0, such that for all tT, hs0, the solution φ of (2.7) and (2.8) satisfies

    φτ(s,τt,θτω,φτt)2E+Cττteσrφr(s,τt,θτω,φτt)2Edr+2αττteσ(rτs)v(r,τt,θτω,vτt)2drr1(τ,ω), (2.14)

    where

    r1(τ,ω)=C+Cr(ω)+Ceσττeσrg(r,x)2dr, (2.15)

    φτt=(uτt,vτt)D(τt,θtω),r(ω) is the tempered function satisfying (2.4), C is a constant independent of τ,ω and D.

    Proof. Taking the inner product of the second equation of (2.7) by v in L2(Rd), we have

    ddtv2=2αv22(1σ)v2+2(1ασ)(Δu,v)2(σ2+λσ)(u,v)+2(f(x,u(tρ(t))),v)+2(g(t,x),v)+2σ(z(θtω),v)+2α(Δz(θtω),v). (2.16)

    Note that

    dudt=vσu+z(θtω). (2.17)

    Then by (2.17), we derive that

    (Δu,v)=(Δu,dudt+σuz(θtω))=12ddtu2σu2+(Δz(θtω),u) (2.18)

    and

    (u,v)=(u,dudt+σuz(θtω))=12ddtu2+σu2(z(θtω),u). (2.19)

    It follows from (2.16)–(2.19) that

    ddt(v2+(1ασ)u2+(σ2+λσ)u2)+2αv2=2(1σ)v22σ(1ασ)u22σ(σ2+λσ)u2+[2(σ2+λσ)(z(θtω),u)+2(1ασ)(Δz(θtω),u)]+[2σ(z(θtω),v)+2α(Δz(θtω),v)]+2(f(x,u(tρ(t))),v)+2(g(t,x),v)=:2(1σ)v22σ(1ασ)u22σ(σ2+λσ)u2+4i=1Ii. (2.20)

    Now we estimate the terms on the right-hand of (2.20). By Young's inequality, Cauchy-Schwarz inequality and (A1), we have

    I1(σ2+λσ)2ε1z(θtω)2+(1ασ)2ε1Δz(θtω)2+2ε1u2,
    I2σ2ε2z(θtω)2+α2ε2Δz(θtω)2+2ε2v2,
    I312ε3f(x,u(tρ(t)))2+2ε3v212ε3k12+k222ε3u(tρ(t))2+2ε3v2

    and

    I42g(t,x)2v212ε4g(t,x)2+2ε4v2,

    where ε1,ε2,ε3,ε4 are fixed positive constants which will be chosen later. Combining these estimates with (2.20), we have

    ddt(v2+(1ασ)u2+(σ2+λσ)u2)+2αv22((1σ)ε2ε3ε4)v22σ(1ασ)u22(σ(σ2+λσ)ε1)u2+12ε3k12+k222ε3u(tρ(t))2+12ε4g(t,x)2+((σ2+λσ)2ε1+σ2ε2)z(θtω)2+((1ασ)2ε1+α2ε2)Δz(θtω)2. (2.21)

    Recalling the definition of norm E, from (2.21), we get

    ddteσt(u,v)2E+2αeσtv2(2((1σ)ε2ε3ε4)σ)v2eσt(2σσ)(1ασ)u2eσt((2σσ)(σ2+λσ)2ε1)u2eσt+12ε3k12eσt+k222ε3u(tρ(t))2eσt+12ε4g(t,x)2eσt+((σ2+λσ)2ε1+σ2ε2)z(θtω)2eσt+((1ασ)2ε1+α2ε2)Δz(θtω)2eσt. (2.22)

    Integrating (2.22) from τt to τ+s, where s[h,0], we obtain

    eσ(τ+s)φ(τ+s,τt,ω,φτt)2E+2ατ+sτteσrv(r,τt,ω,vτt)2dreσ(τt)φ(τt,τt,ω,φτt2E(2((1σ)ε2ε3ε4)σ)τ+sτteσrv(r,τt,ω,vτt)2dr(2σσ)(1ασ)τ+sτteσru(r,τt,ω,uτt)2dr((2σσ)(σ2+λσ)2ε1)τ+sτteσru(r,τt,ω,uτt2dr+k122ε3σeσ(τ+s)+k222ε3τ+sτteσru(rρ(r),τt,ω,uτt)2dr+12ε4τ+sτteσrg(r,x)2dr+((σ2+λσ)2ε1+σ2ε2)τ+sτteσrz(θrω)2dr+((1ασ)2ε1+α2ε2)τ+sτteσrΔz(θrω)2dr. (2.23)

    Set r=rρ(r). Combining ρ(r)[0,h] and the fact 11ρ(r)11ρ for all rR, we infer that

    k222ε3τ+sτteσru(rρ(r),τt,ω,uτt)2drk22eσh2ε3(1ρ)τ+sτtheσru(r,τt,ω,uτt2dr=k22eσh2ε3(1ρ)(τtτtheσru(r,τt,ω,uτt2dr+τ+sτteσru(r,τt,ω,uτt2dr)k22heσheσ(τt)2ε3(1ρ)uτt2Ch+k22eσh2ε3(1ρ)τ+sτteσru(r,τt,ω,uτt2dr. (2.24)

    It follows from (2.23) and (2.24) that

    eσ(τ+s)φ(τ+s,τt,ω,φτt)2E+2ατ+sτteσrv(r,τt,ω,vτt)2dreσ(τt)φ(τt,τt,ω,φτt2E(2((1σ)ε2ε3ε4)σ)τ+sτteσrv(r,τt,ω,vτt)2dr(2σσ)(1ασ)τ+sτteσru(r,τt,ω,uτt)2dr((2σσ)(σ2+λσ)k22eσh2ε3(1ρ)2ε1)τ+sτteσru(r,τt,ω,uτt2dr+k122ε3σeσ(τ+s)+k22heσheσ(τt)2ε3(1ρ)uτt2Ch+12ε4τ+sτteσrg(r,x)2dr+((σ2+λσ)2ε1+σ2ε2)τ+sτteσrz(θrω)2dr+((1ασ)2ε1+α2ε2)τ+sτteσrΔz(θrω)2dr. (2.25)

    Let ε2=ε3=ε4=1σ6. By (2.11)–(2.13), we can choose ε1 small enough such that

    1σσ>0, (2.26)
    2σσ>0 (2.27)

    and

    (2σσ)(σ2+λσ)3k22eσh(1σ)(1ρ)2ε1>0 (2.28)

    Replacing ω with θτω and by (2.25)–(2.28), we get

    φ(τ+s,τt,θτω,φτt)2E+Ceσ(τ+s)τ+sτteσrφ(r,τt,θτω,φτt)2Edr+2αeσ(τ+s)τ+sτteσrv(r,τt,θτω,vτt)2dreσheσtφτt2E+Cuτt2Ch+C+Ceσττ+sτteσrg(r,x)2dr+Ceσττ+sτteσrz(θrτω)2dr+Ceσττ+sτteσrΔz(θrτω)2drCeσtφτt2E+C+Ceσττeσrg(r,x)2dr+Ceστττteσrz(θrτω)2dr+CeστττteσrΔz(θrτω)2dr. (2.29)

    Note that z(θtω)=mj=1hjz(θtωj) and hjH2(Rd), we deduce that for each ωΩ,

    eστττteσr(z(θrτω)2+Δz(θrτω)2)dr=eστ0teσr(z(θrω)2+Δz(θrω)2)dreστ0teσr(mj=1|hjz(θrωj)|2+mj=1|Δhjz(θrωj)|2)dreστ0eσrmj=1|z(θrωj)|2drCr(ω). (2.30)

    Since φτt=(uτt,vτt)D(τt,θtω), then

    lim suptCeσtφτt2Elim suptCeσtD(τt,θtω)2E=0. (2.31)

    By (2.31), there exists T=T(τ,ω,D)>0, such that for all tT,

    Ceσtφτt2E1. (2.32)

    Combining (2.32), (2.30) and (2.29), we obtain for all tT

    φ(τ+s,τt,θτω,φτt)2E+Cττteσrφr(s,τt,θτω,φτt)2Edr+2αττteσ(rτs)v(r,τt,θτω,vτt)2drC+Cr(ω)+Ceσττeσrg(r,x)2drr1(τ,ω). (2.33)

    Thus, we complete the proof of Lemma 2.2.

    Now we establish the following estimates on the exterior of a ball.

    Lemma 2.3. Suppose the hypotheses in Lemma 2.2 hold, and let τR,ωΩ and DD. Then for each ϵ>0. there exists T=T(τ,ω,ϵ,D)>0, and K=K(τ,ω,ϵ)1, such that for all tT,kK and hs0,

    φτ(s,τt,θtω,φτt)2E(RdΩk)ϵ,

    where Ωk={xRd:|x|k} and φτt=(uτt,vτt)D(τt,θtω).

    Proof. Choose a smooth function ξ() as follows:

    ξ(s)={0,0s1,1,s2, (2.34)

    where 0ξ(s)1,sR+, and with the constants μ1,μ2 satisfying |ξ(s)|μ1,|ξ(s)|μ2 for sR+. Taking the inner product of the second equation of (2.7) with ξ2(|x|2k2)v in L2(Rd), we have

    ddtRdξ2(|x|2k2)|v|2dx=2(1σ)Rdξ2(|x|2k2)|v|2dx+2αRd(Δv)ξ2(|x|2k2)vdx+2(1ασ)Rd(Δu)ξ2(|x|2k2)vdx2(σ2+λσ)Rduξ2(|x|2k2)vdx+2Rdf(x,u(tρ(t)))ξ2(|x|2k2)vdx+2Rdg(t,x)ξ2(|x|2k2)vdx+2Rd(σz(θtω)+αΔz(θtω))ξ2(|x|2k2)vdx=:2(1σ)Rdξ2(|x|2k2)|v|2dx+6i=1Ji. (2.35)

    Now we estimate each term on the right hand of (2.35). By Young's inequality, Cauchy-Schwarz inequality and (A1), we infer that

    J1=8αk2Rd(v)ξ(|x|2k2)ξ(|x|2k2)xvdx2αRdξ2(|x|2k2)|v|2dx82αμ1kk|x|2k|v||v|dx2αRdξ2(|x|2k2)|v|2dx42αμ1k(v2+v2)2αRdξ2(|x|2k2)|v|2dx. (2.36)
    J2=8(1ασ)k2Rd(u)ξ(|x|2k2)ξ(|x|2k2)xvdx2(1ασ)Rd(u)ξ2(|x|2k2)vdx, (2.37)

    where

    8(1ασ)k2Rd(u)ξ(|x|2k2)ξ(|x|2k2)xvdx82(1ασ)μ1kk|x|2k|u||v|dx42(1ασ)μ1k(u2+v2), (2.38)

    and

    2(1ασ)Rd(u)ξ2(|x|2k2)vdx=2(1ασ)Rd(u)ξ2(|x|2k2)(dudt+σuz(θtω))dx=(1ασ)ddtRdξ2(|x|2k2)|u|2dx2σ(1ασ)Rdξ2(|x|2k2)|u|2dx2(1ασ)Rdξ2(|x|2k2)|u||Δz(θtω)|dx(1ασ)ddtRdξ2(|x|2k2)|u|2dx2σ(1ασ)Rdξ2(|x|2k2)|u|2dx+(1ασ)2ε1Rdξ2(|x|2k2)|Δz(θtω)|2dx+ε1Rdξ2(|x|2k2)|u|2dx. (2.39)
    J3=2(σ2+λσ)Rduξ2(|x|2k2(dudt+σuz(θtω))dx=(σ2+λσ)ddtRdξ2(|x|2k2)|u|2dx2σ(σ2+λσ)Rdξ2(|x|2k2)|u|2dx+2(σ2+λσ)Rdξ2(|x|2k2)|u||z(θtω)|dx(σ2+λσ)ddtRdξ2(|x|2k2)|u|2dx2σ(σ2+λσ)Rdξ2(|x|2k2)|u|2dx+(σ2+λσ)2ε1Rdξ2(|x|2k2)|z(θtω)|2dx+ε1Rdξ2(|x|2k2)|u|2dx, (2.40)
    J412ε3Rdξ2(|x|2k2)|k1(x)|2dx+k222ε3Rdξ2(|x|2k2)|u(tρ(t))|2dx+2ε3Rdξ2(|x|2k2)|v|2dx, (2.41)
    J512ε4Rdξ2(|x|2k2)|g(t,x)|2dx+2ε4Rdξ2(|x|2k2)|v|2dx, (2.42)
    J6σ2ε2Rdξ2(|x|2k2)|z(θtω)|2dx+α2ε2Rdξ2(|x|2k2)|Δz(θtω)|2dx+2ε2Rdξ2(|x|2k2)|v|2dx, (2.43)

    where ε1,ε2,ε3,ε4 are positive constants which will be given later. It follows from (2.35)–(2.42) that

    ddtRdξ2(|x|2k2)(|v|2+(1ασ)|u|2+(σ2+λσ)|u|2)dx+2αRdξ2(|x|2k2)|v|2dx2((1σ)ε2ε3ε4)Rdξ2(|x|2k2)|v|2dx(2σ(σ2+λσ)2ε1)Rdξ2(|x|2k2)|u|2dx2σ(1ασ)Rdξ2(|x|2k2)|u|2dx+42αμ1k(v2+v2)+42(1ασ)μ1k(u2+v2)+12ε3Rdξ2(|x|2k2)|k1(x)|2dx+k222ε3Rdξ2(|x|2k2)|u(tρ(t))|2dx+12ε4Rdξ2(|x|2k2)|g(t,x)|2dx+((1ασ)2ε1+α2ε2)Rdξ2(|x|2k2)|Δz(θtω)|2dx+((σ2+λσ)2ε1+σ2ε2)Rdξ2(|x|2k2)|z(θtω)|2dx. (2.44)

    Let Y=|v|2+(1ασ)|u|2+(σ2+λσ)|u|2. Multiplying (2.44) by eσt and integrating over (τt,τ+s), where s[h,0],σ is a fixed constant choosen as in Lemma 2.2, we obtain for each ωΩ

    eσ(τ+s)Rdξ2(|x|2k2)Y(τ+s,τt,ω,Yτt)dx+2ατ+sτteσrRdξ2(|x|2k2)|v(τ+s,τt,ω,vτt)|2dxdreσ(τt)Rdξ2(|x|2k2)Y(τt,τt,ω,Yτt)dx(2((1σ)ε2ε3ε4)σ)τ+sτteσrRdξ2(|x|2k2)|v(r,τt,ω,vτt)|2dxdr((2σσ)(σ2+λσ)2ε1)τ+sτteσrRdξ2(|x|2k2)|u(r,τt,ω,uτt)|2dxdr(2σσ)(1ασ)τ+sτteσrRdξ2(|x|2k2)|u(r,τt,ω,uτt)|2dxdr+Ckτ+sτteσr(u(r,τt,ω,uτt)2+v(r,τt,ω,vτt)2)dr+Ckτ+sτteσrv(r,τt,ω,vτt)2dr+12ε3τ+sτteσrRdξ2(|x|2k2)|k1(x)|2dxdr+k222ε3τ+sτteσrRdξ2(|x|2k2)|u(rρ(r),τt,ω,uτt)|2dxdr+12ε4τ+sτteσrRdξ2(|x|2k2)|g(r,x)|2dxdr+((1ασ)2ε1+α2ε2)τ+sτteσrRdξ2(|x|2k2)|Δz(θrω)|2dxdr+((σ2+λσ)2ε1+σ2ε2)τ+sτteσrRdξ2(|x|2k2)|z(θrω)|2dxdr. (2.45)

    Set r=rρ(r). By using the similar arguments in (2.24), we obtain

    k222ε3τ+sτteσrRdξ2(|x|2k2)u(rρ(r),τt,ω,uτt)2dxdrk22eσh2ε3(1ρ)τ+sτtheσrRdξ2(|x|2k2)u(r,τt,ω,uτt2dxdr=k22eσh2ε3(1ρ)τtτtheσrRdξ2(|x|2k2)u(r,τt,ω,uτt2dxdr+k22eσh2ε3(1ρ)τ+sτteσrRdξ2(|x|2k2)u(r,τt,ω,uτt2dxdrk22heσheσ(τt)2ε3(1ρ)uτt2Ch+k22eσh2ε3(1ρ)τ+sτteσrRdξ2(|x|2k2)u(r,τt,ω,uτt2dxdr. (2.46)

    Combining (2.45) and (2.46), we have for ε2=ε3=ε4=1σ6

    Rdξ2(|x|2k2)Y(τ+s,τt,ω,Yτt)dx+2αeσ(τ+s)τ+sτteσrRdξ2(|x|2k2)|v(τ+s,τt,ω,vτt)|2dxdreσheσtRdξ2(|x|2k2)Y(τt,τt,ω,Yτt)dx+3k22he2σheσt(1σ)(1ρ)uτt2Ch((1σ)σ)eσ(τ+s)τ+sτteσrRdξ2(|x|2k2)|v(r,τt,ω,vτt)|2dxdr((2σσ)(σ2+λσ)3k22eσh(1σ)(1ρ)2ε1)eσ(τ+s)τ+sτteσrRdξ2(|x|2k2)|u(r,τt,ω,uτt)|2dxdr(2σσ)(1ασ)eσ(τ+s)τ+sτteσrRdξ2(|x|2k2)|u(r,τt,ω,uτt)|2dxdr+Ckeσ(τ+s)τ+sτteσr(u(r,τt,ω,uτt)2+v(r,τt,ω,vτt)2)dr+Ckeσ(τ+s)τ+sτteσrv(r,τt,ω,vτt)2dr+31σeσ(τ+s)τ+sτteσrRdξ2(|x|2k2)|k1(x)|2dxdr+31σeσ(τ+s)τ+sτteσrRdξ2(|x|2k2)|g(r,x)|2dxdr+((1ασ)2ε1+3α21σ)eσ(τ+s)τ+sτteσrRdξ2(|x|2k2)|Δz(θrω)|2dxdr+((σ2+λσ)2ε1+3σ21σ)eσ(τ+s)τ+sτteσrRdξ2(|x|2k2)|z(θrω)|2dxdr. (2.47)

    Choosing ε1 sufficiently small, together with (2.26)–(2.28), and replacing ω by θτω, we have

    Rdξ2(|x|2k2)Y(τ+s,τt,θτω,Yτt)dx+2αeσ(τ+s)τ+sτteσrRdξ2(|x|2k2)|v(τ+s,τt,θτω,vτt)|2dxdrCeσtRdξ2(|x|2k2)Yτtdx+Ceσtuτt2Ch+Ckeστττteσr(u(r,τt,θτω,uτt)2+v(r,τt,θτω,vτt)2)dr+Ckeστττteσrv(r,τt,θτω,vτt)2dr+CeστττteσrRdξ2(|x|2k2)|k1(x)|2dxdr+CeστττteσrRdξ2(|x|2k2)|g(r,x)|2dxdr+CeστττteσrRdξ2(|x|2k2)|Δz(θrτω)|2dxdr+CeστττteσrRdξ2(|x|2k2)|z(θrτω)|2dxdr. (2.48)

    We now estimate the terms on the right-hand side of (2.48). Since \varphi^{\tau-t} = (u^{\tau-t}, v^{\tau-t})\in D(\tau-t, \theta_{-t}\omega), given \epsilon > 0, there exists T_1 = T_1(\tau, \omega, D, \epsilon) > 0, K_1 = K_1(\tau, \omega, \epsilon){\geqslant}1, such that for all t > T_1, k > K_1,

    \begin{align} & Ce^{-\sigma't}\int_{\mathbb{R}^d}\xi^2(\frac{\vert x\vert^2}{k^2})Y^{\tau-t}dx+ Ce^{-\sigma' t}\Vert u^{\tau-t}\Vert_{C_h}^2{\leqslant} Ce^{-\sigma' t}\Vert \varphi^{\tau-t}\Vert_{\mathscr{E}}^2{\leqslant} C\epsilon. \end{align} (2.49)

    Due to (A3) and k_1\in L^2(\mathbb{R}^d), there exists K_2 = K_2(\tau, \omega, \epsilon){\geqslant}1, such that for all k > K_2

    \begin{align} & Ce^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma' r}\int_{\mathbb{R}^d}\xi^2(\frac{\vert x\vert^2}{k^2})\vert k_1(x)\vert^2dxdr {\leqslant} Ce^{-\sigma' \tau}\int_{\tau-t}^{\tau}e^{\sigma' r}\int_{\vert x\vert{\geqslant} k}\vert k_1(x)\vert^2dxdr{\leqslant} C\epsilon, \end{align} (2.50)

    and

    \begin{align} Ce^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma' r}\int_{\mathbb{R}^d}\xi^2(\frac{\vert x\vert^2}{k^2})\vert g(r, x)\vert^2dxdr &{\leqslant} Ce^{-\sigma'\tau}\int_{-\infty}^{\tau}e^{\sigma' r}\int_{\vert x\vert{\geqslant} k}\vert g(r, x)\vert^2dxdr{}\\ &{\leqslant} Ce^{-\sigma'\tau}\int_{-\infty}^{\tau}e^{\sigma' r}\Vert g(r, x)\Vert^2dxdr{\leqslant} C\epsilon. \end{align} (2.51)

    Note that z(\theta_t\omega) = \sum\limits_{j = 1}^mh_jz(\theta_t\omega_j) and h_j\in H^2(\mathbb{R}^d), there exists K_3 = K_3(\omega, \epsilon) such that for all k{\geqslant} K_3 and j = 1, 2, \cdots, m,

    \begin{align} \int_{\vert x\vert{\geqslant} k}(\vert h_j(x)\vert^2+\vert \nabla h_j(x)\vert^2+\vert \Delta h_j(x)\vert^2)dx{\leqslant}\frac{\epsilon}{r(\omega)}, \end{align} (2.52)

    where r(\omega) is tempered satisfying (2.4) and (2.5).

    By (2.52), we have

    \begin{align} & Ce^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma' r}\int_{\mathbb{R}^d}\xi^2(\frac{\vert x\vert^2}{k^2})(\vert\Delta z(\theta_{r-\tau}\omega)\vert^2+\vert z(\theta_{r-\tau}\omega)\vert^2)dxdr{}\\ &{\leqslant} C\int_{\tau-t}^{\tau}e^{\sigma' (r-\tau)}\sum\limits_{j = 1}^m\int_{\vert x\vert{\geqslant} k}(\vert\Delta h_i\vert^2\vert z_j(\theta_{r-\tau}\omega_j)\vert^2+\vert h_j\vert^2\vert z_j(\theta_{r-\tau}\omega_j)\vert^2)dxdr{}\\ &{\leqslant} C\int_{-\infty}^{0}e^{\sigma' r}\sum\limits_{j = 1}^m\int_{\vert x\vert{\geqslant} k}(\vert\Delta h_i\vert^2\vert z_j(\theta_r\omega_j)\vert^2+\vert h_j\vert^2\vert z_j(\theta_r\omega_j)\vert^2)dxdr{}\\ &{\leqslant} \frac{\epsilon}{r(\omega)}\int_{-\infty}^{0}e^{\sigma' r}\sum\limits_{j = 1}^m\vert z_j(\theta_r\omega_j)\vert^2dr{\leqslant} C\epsilon. \end{align} (2.53)

    In view of Lemma 2.2, (2.4) and (A3), there exists T_2 = T_2(\tau, \omega, D, \epsilon), K_4 = K_4(\epsilon){\geqslant} 1 such that

    \begin{align} & \frac{C}{k}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma' r}(\Vert \nabla u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Vert^2+\Vert v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2)dr{}\\ &+ \frac{C}{k}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma' r}\Vert \nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2dr{}\\ &{\leqslant} \frac{C}{k}e^{-\sigma' \tau} \int_{-\infty}^{\tau}e^{\sigma' r}\Vert g(r, x)\Vert^2dr+\frac{C}{k} \int_{-\infty}^0e^{\sigma' r}\sum\limits_{j = 1}^m\vert z_j(\theta_r\omega_j)\vert^2dr+\frac{C}{k} {\leqslant} C\epsilon. \end{align} (2.54)

    Let T = \rm{max}\{T_1, T_2\} > 0, K = max \{K_1, K_2, K_3, K_4\}{\geqslant} 1. From (2.48)–(2.54) we have for all t > T, k > K,

    \int_{\mathbb{R}^d}\xi^2(\frac{\vert x\vert^2}{k^2})Y(\tau+s, \tau-t, \theta_{-\tau}\omega, Y^{\tau-t})dx{\leqslant} C\epsilon,

    which implies

    \Vert\varphi^{\tau}(s, \tau-t, \theta_{-t}\omega, \varphi^{\tau-t})\Vert_{\mathscr{E}(\mathbb{R}^d\setminus\Omega_k)}^2{\leqslant} C\epsilon.

    Then the proof of Lemma 2.3 is finished.

    We now decompose the solutions of (2.7) and (2.8) in bounded domains and derive some uniform estimates.

    Let \Omega_k = \{x\in\mathbb{R}^d:\vert x\vert{\leqslant} k\} , given k{\geqslant} 1 and set

    \begin{equation} \left\{ \begin{aligned} &\tilde u(t, \tau, \omega, \tilde u^{\tau}) = (1-\xi^2(\frac{\vert x\vert^2}{k^2})u(t, \tau, \omega, u^{\tau}), \\ &\tilde v(t, \tau, \omega, \tilde v^{\tau}) = (1-\xi^2(\frac{\vert x\vert^2}{k^2})v(t, \tau, \omega, v^{\tau}), \end{aligned} \right. \end{equation} (2.55)

    where \xi is the cutoff function defined in (2.34).

    Multiplying (2.7) by 1-\xi^2(\frac{\vert x\vert^2}{k^2}), we have

    \begin{equation} \left\{ \begin{aligned} &\frac{d\tilde u}{dt} = \tilde v-\sigma \tilde u+(1-\xi^2(\frac{\vert x\vert^2}{k^2}))z(\theta_t\omega), \\ &\frac{d\tilde v}{dt} = \alpha\Delta \tilde v+2\alpha\nabla v\nabla\xi^2(\frac{\vert x\vert^2}{k^2})+\alpha v \Delta\xi^2(\frac{\vert x\vert^2}{k^2})-(1-\sigma)\tilde v +(1-\alpha\sigma)\Delta \tilde u\\ &\qquad+2(1-\alpha\sigma)\nabla u\nabla\xi^2(\frac{\vert x\vert^2}{k^2})+(1-\alpha\sigma)\Delta\xi^2(\frac{\vert x\vert^2}{k^2})-(\sigma^2+\lambda-\sigma)\tilde u\\ &\qquad+(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(f(x, u(t-\rho (t)))+g(t, x)+\sigma z(\theta_t\omega)+\alpha\Delta z(\theta_t\omega)), \end{aligned} \right. \end{equation} (2.56)

    with the initial conditions

    \begin{align} \tilde u(\tau+s, x) = \tilde u^{\tau}(x)\equiv(1-\xi^2(\frac{\vert x\vert^2}{k^2}))\phi(s, x), \tilde v(\tau+s, x) = \tilde v^{\tau}(x), \;\; s\in[-h, 0], x\in\mathbb{R}^d, \end{align} (2.57)

    where \tilde v^{\tau}(x)\equiv(1-\xi^2(\frac{\vert x\vert^2}{k^2}))\psi(s, x)+\sigma(1-\xi^2(\frac{\vert x\vert^2}{k^2}))\phi(s, x)-(1-\xi^2(\frac{\vert x\vert^2}{k^2}))z(\theta_{\tau+s}\omega). Now we decompose (2.56) into two parts. Set \tilde u = u_1+u_2, \tilde v = v_1+v_2, we have two new systems:

    \begin{equation} \left\{ \begin{aligned} &\frac{du_2}{dt} = v_2-\sigma u_2, \\ &\frac{dv_2}{dt} = \alpha\Delta v_2-(1-\sigma) v_2 +(1-\alpha\sigma)\Delta u_2 -(\sigma^2+\lambda-\sigma) u_2, \end{aligned} \right. \end{equation} (2.58)

    with the initial conditions

    \begin{align} & u_2^{\tau}(x) = \tilde u(\tau+s, x), v_2^{\tau}(x) = \tilde v(\tau+s, x), \;\; s\in[-h, 0], x\in\Omega_{2k}, \end{align} (2.59)

    and boundary conditions

    \begin{align} u_2(t, x) = 0, v_2(t, x) = 0, \;\; t\in[-h, +\infty), \vert x\vert = 2k, \end{align} (2.60)

    and

    \begin{equation} \left\{ \begin{aligned} &\frac{du_1}{dt} = v_1-\sigma u_1+(1-\xi^2(\frac{\vert x\vert^2}{k^2}))z(\theta_t\omega), \\ &\frac{dv_1}{dt} = \alpha\Delta v_1+2\alpha\nabla v\nabla\xi^2(\frac{\vert x\vert^2}{k^2})+\alpha v \Delta\xi^2(\frac{\vert x\vert^2}{k^2})-(1-\sigma)v_1 +(1-\alpha\sigma)\Delta u_1\\ &\qquad+2(1-\alpha\sigma)\nabla u\nabla\xi^2(\frac{\vert x\vert^2}{k^2})+(1-\alpha\sigma)u\Delta\xi^2(\frac{\vert x\vert^2}{k^2})-(\sigma^2+\lambda-\sigma)u_1\\ &\qquad+(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(f(x, u(t-\rho (t)))+g(t, x)+\sigma z(\theta_t\omega)+\alpha\Delta z(\theta_t\omega)), \end{aligned} \right. \end{equation} (2.61)

    with the initial conditions

    \begin{align} u_1^{\tau}(x) = 0, v_1^{\tau}(x) = 0, \;\; s\in[-h, 0], x\in\Omega_{2k}, \end{align} (2.62)

    and boundary conditions

    \begin{align} u_1(t, x) = 0, v_1(t, x) = 0, \;\; t\in[-h, +\infty), \vert x\vert = 2k. \end{align} (2.63)

    Using the similar arguments in Lemma 2.2, we derive the following estimate of solutions of (2.56) and (2.57),

    \begin{align} &\Vert (\tilde u(\tau+s, \tau-t, \theta_{-\tau}\omega, \tilde u^{\tau-t}), \tilde v(\tau+s, \tau-t, \theta_{-\tau}\omega, \tilde v^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2{}\\ &+C \int_{\tau-t}^{\tau} e^{\sigma' r}\Vert (\tilde u(r+s, \tau-t, \theta_{-\tau}\omega, \tilde u^{\tau-t}), \tilde v(r+s, \tau-t, \theta_{-\tau}\omega, \tilde v^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2dr{}\\ &+2\alpha \int_{\tau-t}^{\tau} e^{\sigma' (r-\tau-s)}\Vert\nabla \tilde v(r, \tau-t, \theta_{-\tau}\omega, \tilde v^{\tau-t})\Vert^2dr{}\\ &{\leqslant} Ce^{-\sigma' t}\Vert\tilde\varphi^{\tau-t}\Vert_{\mathscr{E}(\Omega_{2k})}^2 +Ce^{-\sigma'\tau} \int_{-\infty}^{\tau}e^{\sigma' r}\Vert g(r, x)\Vert^2dr+Cr(\omega)+C. \end{align} (2.64)

    It follows from (2.64), we obtain the estimate of (u_2, v_2)

    \begin{align} &\Vert (u_2(\tau+s, \tau-t, \theta_{-\tau}\omega, u_2^{\tau-t}), v_2(\tau+s, \tau-t, \theta_{-\tau}\omega, v_2^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2{}\\ &+C \int_{\tau-t}^{\tau} e^{\sigma' r}\Vert (u_2(r+s, \tau-t, \theta_{-\tau}\omega , u_2^{\tau-t}), v_2(r+s, \tau-t, \theta_{-\tau}\omega, v_2^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2dr{}\\ &+2\alpha \int_{\tau-t}^{\tau} e^{\sigma' (r-\tau-s)}\Vert\nabla v_2(r, \tau-t, \theta_{-\tau}\omega, v_2^{\tau-t})\Vert^2dr{}\\ &{\leqslant} Ce^{-\sigma' t}\Vert\varphi_2^{\tau-t}\Vert_{\mathscr{E}(\Omega_{2k})}^2 = Ce^{-\sigma' t}\Vert\tilde\varphi^{\tau-t}\Vert_{\mathscr{E}(\Omega_{2k})}^2. \end{align} (2.65)

    It follows from (2.64) and (2.65) that

    \begin{align*} \label{} &\Vert (u_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0), v_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0)\Vert_{\mathscr{E}(\Omega_{2k})}^2\\ &+C \int_{\tau-t}^{\tau} e^{\sigma' r}\Vert (u_1(r+s, \tau-t, \theta_{-\tau}\omega, 0), v_1(r+s, \tau-t, \theta_{-\tau}\omega, 0))\Vert_{\mathscr{E}(\Omega_{2k})}^2dr{\nonumber}\\ &+2\alpha \int_{\tau-t}^{\tau} e^{\sigma' (r-\tau-s)}\Vert\nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2dr\\ &{\leqslant}2\Vert (\tilde u(\tau+s, \tau-t, \theta_{-\tau}\omega, \tilde u^{\tau-t}), \tilde v(\tau+s, \tau-t, \theta_{-\tau}\omega, \tilde v^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2\\ &+2\Vert (u_2(\tau+s, \tau-t, \theta_{-\tau}\omega, u_2^{\tau-t}), v_2(\tau+s, \tau-t, \theta_{-\tau}\omega, v_2^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2\\ &+2C \int_{\tau-t}^{\tau} e^{\sigma' r}\Vert (\tilde u(r+s, \tau-t, \theta_{-\tau}\omega, \tilde u^{\tau-t}), \tilde v(r+s, \tau-t, \theta_{-\tau}\omega, \tilde v^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2dr\\ &+2C \int_{\tau-t}^{\tau} e^{\sigma' r}\Vert (u_2(r+s, \tau-t, \theta_{-\tau}\omega, u_2^{\tau-t}), v_2(r+s, \tau-t, \theta_{-\tau}\omega, v_2^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2dr{\nonumber}\\ &+4\alpha \int_{\tau-t}^{\tau} e^{\sigma' (r-\tau-s)}\Vert\nabla \tilde v(r, \tau-t, \theta_{-\tau}\omega, \tilde v^{\tau-t})\Vert^2dr\\ &+4\alpha \int_{\tau-t}^{\tau} e^{\sigma' (r-\tau-s)}\Vert\nabla v_2(r, \tau-t, \theta_{-\tau}\omega, v_2^{\tau-t})\Vert^2dr\\ &{\leqslant} Ce^{-\sigma' t}\Vert\tilde\varphi^{\tau-t}\Vert_{\mathscr{E}(\Omega_{2k})}^2 +Ce^{-\sigma'\tau} \int_{-\infty}^{\tau}e^{\sigma' r}\Vert g(r, x)\Vert^2dr+C r(\omega)+C, \end{align*}

    Since \tilde\varphi^{\tau-t} = (\tilde u^{\tau-t}, \tilde v^{\tau-t})\in D(\tau-t, \theta_{-t}\omega)\in\mathcal{D}({\mathscr{E}(\Omega_{2k})}), we have

    \lim\sup\limits_{t\rightarrow \infty}Ce^{-\sigma' t}\Vert\tilde\varphi^{\tau-t}\Vert_{\mathscr{E}(\Omega_{2k})}^2{\leqslant}\lim\sup\limits_{t\rightarrow \infty}Ce^{-\sigma' t}\Vert D(\tau-t, \theta_{-t}\omega)\Vert_{\mathscr{E}(\Omega_{2k})}^2 = 0,

    Therefore, there exists T = T(\tau, \omega, D) > 0 such that for all t{\geqslant} T,

    Ce^{-\sigma' t}\Vert\tilde\varphi^{\tau-t}\Vert_{\mathscr{E}(\Omega_{2k})}^2{\leqslant}1.

    Thus, for all t{\geqslant} T, we have

    \begin{align} &\Vert (u_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0), v_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0)\Vert_{\mathscr{E}(\Omega_{2k})}^2{}\\ &+C \int_{\tau-t}^{\tau} e^{\sigma' r}\Vert (u_1(r+s, \tau-t, \theta_{-\tau}\omega, 0), v_1(r+s, \tau-t, \theta_{-\tau}\omega, 0))\Vert_{\mathscr{E}(\Omega_{2k})}^2dr{}\\ &+2\alpha \int_{\tau-t}^{\tau} e^{\sigma' (r-\tau-s)}\Vert\nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2dr{}\\ &{\leqslant} C++Cr(\omega)+Ce^{-\sigma'\tau} \int_{-\infty}^{\tau}e^{\sigma' r}\Vert g(r, x)\Vert^2dr{\leqslant} Cr_1(\tau, \omega), \end{align} (2.66)

    where r_1(\tau, \omega) is defined in Lemma 2.2.

    Furthermore, we can give the uniform estimates of (\Delta u_1, \Delta v_1), which imply the higher regularity of (u_1, v_1).

    Lemma 2.4. Assume the hypotheses in Lemma 2.2 hold, and let \tau\in\mathbb{R}, \omega\in\Omega and D\in\mathcal{D}({\mathscr{E}(\Omega_{2k})}). Then for given \epsilon > 0, there exist random variables r_2(\tau, \omega), and T = T(\tau, \omega, D) > 0, such that for all t{\geqslant} T, k{\geqslant} 1 and -h{\leqslant} s{\leqslant} 0,

    \begin{align*} & (1-\alpha\sigma)\Vert\Delta u_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2+\Vert \nabla v_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2\\ &+ \alpha \int_{\tau-t}^{\tau}e^{\sigma'(r-\tau-s)}\Vert \Delta v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2dr{\leqslant} r_2(\tau, \omega), \end{align*}

    where r_2(\tau, \omega) = Cr_1(\tau, \omega), r_1(\tau, \omega) is defined as in Lemma 2.2.

    Proof. From the first equation in (2.61), we have

    \begin{align} \frac{d}{dt}\Delta u_1 = \Delta v_1-\sigma \Delta u_1+(1-\xi^2(\frac{\vert x\vert^2}{k^2}))\Delta z(\theta_t\omega). \end{align} (2.67)

    Taking the inner product of the second equation in (2.61) and (2.67) with -\Delta v_1 and \Delta u_1 respectively, we have

    \begin{align} & \frac{d}{dt}\Vert v_1\Vert^2{}\\ & = -2\alpha\Vert v_1\Vert^2-2(1-\sigma)\Vert \nabla v_1\Vert^2-2(1-\alpha\sigma)(\Delta u_1, \Delta v_1)+2(\sigma^2+\lambda-\sigma)(u_1, \Delta v_1){}\\ & -4\alpha(\nabla v\nabla\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1)-2\alpha (v \Delta\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1){}\\ & -4(1-\alpha\sigma)(\nabla u\nabla\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1)-2(1-\alpha\sigma)(u\Delta\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1){}\\ & -2(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(f(x, u(t-\rho (t)))+g(t, x)+\sigma z(\theta_t\omega)+\alpha\Delta z(\theta_t\omega), \Delta v_1), \end{align} (2.68)

    and

    \begin{align} \frac{d}{dt}\Vert\Delta u_1\Vert^2 = 2(\Delta v_1, \Delta u_1)-2\sigma \Vert\Delta u_1\Vert^2+2(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(\Delta z(\theta_t\omega), \Delta u_1). \end{align} (2.69)

    Adding up (2.69) \times (1-\alpha\sigma) and (2.68), we obtain

    \begin{align} & \frac{d}{dt}((1-\alpha\sigma)\Vert\Delta u_1\Vert^2+\Vert \nabla v_1\Vert^2){}\\ & = -2\sigma(1-\alpha\sigma) \Vert\Delta u_1\Vert^2-2\alpha\Vert \Delta v_1\Vert^2-2(1-\sigma)\Vert \nabla v_1\Vert^2+2(\sigma^2+\lambda-\sigma)(u_1, \Delta v_1){}\\ & -2(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(f(x, u(t-\rho (t)))+g(t, x), \Delta v_1){}\\& -2(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(\sigma z(\theta_t\omega)+\alpha\Delta z(\theta_t\omega), \Delta v_1)+2(1-\alpha\sigma)(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(\Delta z(\theta_t\omega), \Delta u_1){}\\ & -\big[4\alpha(\nabla v\nabla\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1)+2\alpha (v \Delta\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1)\big]{}\\ & -\big[4(1-\alpha\sigma)(\nabla u\nabla\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1)+2(1-\alpha\sigma)(u\Delta\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1)\big]{}\\ & = -2\sigma(1-\alpha\sigma) \Vert\Delta u_1\Vert^2-2\alpha\Vert \Delta v_1\Vert^2-2(1-\sigma)\Vert \nabla v_1\Vert^2+\sum\limits_{i = 1}^6{{\mathscr T}}_i. . \end{align} (2.70)

    Next, we give the estimates of the terms on the right-hand of (2.70). It follows from Cauchy-Schwarz inequality and Young's inequality that

    \begin{align*} {{\mathscr T}}_1{\leqslant}\frac{\alpha}{9}\Vert \Delta v_1\Vert^2+\frac{9(\sigma^2+\lambda-\sigma)^2}{\alpha}\Vert u_1\Vert^2, \end{align*}
    \begin{align*} {{\mathscr T}}_2{\leqslant}\frac{2\alpha}{9}\Vert \Delta v_1\Vert^2+\frac{9}{\alpha}\Vert k_1\Vert^2++\frac{9k_2^2}{\alpha}\Vert u^t\Vert_{C_h}^2+\frac{9}{\alpha}\Vert g(t, x)\Vert^2, \end{align*}
    \begin{align*} {{\mathscr T}}_3{\leqslant}\frac{2\alpha}{9}\Vert \Delta v_1\Vert^2+\frac{9\sigma^2}{\alpha}\Vert z(\theta_t\omega)\Vert^2+\frac{9}{\alpha}\Vert \Delta z(\theta_t\omega)\Vert^2, \end{align*}

    and

    \begin{align*} {{\mathscr T}}_4{\leqslant}\sigma(1-\alpha\sigma)\Vert \Delta u_1\Vert^2+\sigma(1-\alpha\sigma)\Vert \Delta z(\theta_t\omega)\Vert^2. \end{align*}

    Using the properties of the cutoff function \xi , we infer that

    \begin{align*} &{{\mathscr T}}_5 = -4\alpha(\frac{4x}{k^2}\nabla v\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2}), \Delta v_1){\nonumber}\\ &\;\;\; -2\alpha (v (\frac{4}{k^2}\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2})+\frac{8x^2}{k^4}(\xi^{\prime}(\frac{\vert x\vert^2}{k^2}))^2+\frac{8x^2}{k^4}\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime\prime}(\frac{\vert x\vert^2}{k^2})), \Delta v_1), \end{align*}

    where

    \begin{align*} -4\alpha(\frac{4x}{k^2}\nabla v\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2}), \Delta v_1)& = -\frac{16\alpha}{k^2}\int_{\Omega_{2k}}x\nabla v\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2})\Delta v_1dx{\nonumber}\\ &{\leqslant} \frac{16\sqrt{2}\alpha\mu_1}{k}\int_{k{\leqslant}\vert x\vert{\leqslant}\sqrt{2}k}\vert\nabla v\vert\vert\Delta v_1\vert dx{\nonumber}\\ &{\leqslant} \frac{16\sqrt{2}\alpha\mu_1}{k}\int_{\Omega_{2k}}\vert\nabla v\vert\vert\Delta v_1\vert dx{\nonumber}\\ &{\leqslant} \frac{\alpha}{9}\Vert \Delta v_1\Vert^2+\frac{2^73^2\mu_1^2\alpha}{k^2}\Vert \nabla v\Vert^2, \end{align*}

    and similarly,

    \begin{align*} & -2\alpha (v (\frac{4}{k^2}\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2})+\frac{8x^2}{k^4}(\xi^{\prime}(\frac{\vert x\vert^2}{k^2}))^2+\frac{8x^2}{k^4}\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime\prime}(\frac{\vert x\vert^2}{k^2})), \Delta v_1){\nonumber}\\ &{\leqslant} \frac{\alpha}{9}\Vert \Delta v_1\Vert^2+(\frac{2^43^3\mu_1^2\alpha}{k^4}+\frac{2^83^3\mu_1^4\alpha}{k^4}+\frac{2^83^3\mu_2^2\alpha}{k^4})\Vert v\Vert^2. \end{align*}

    Thus we have

    \begin{align*} &{{\mathscr T}}_5{\leqslant} \frac{2\alpha}{9}\Vert \Delta v_1\Vert^2+\frac{2^73^2\mu_1^2\alpha}{k^2}\Vert \nabla v\Vert^2+(\frac{2^43^3\mu_1^2\alpha}{k^4}+\frac{2^83^3\mu_1^4\alpha}{k^4}+\frac{2^83^3\mu_2^2\alpha}{k^4})\Vert v\Vert^2. \end{align*}

    In the same way we obtain

    \begin{align*} {{\mathscr T}}_6&{\leqslant} \frac{2\alpha}{9}\Vert \Delta v_1\Vert^2+\frac{2^73^2\mu_1^2\alpha}{k^2}\Vert \nabla u\Vert^2{\nonumber}\\ &\quad+(\frac{2^43^3\mu_1^2(1-\alpha\sigma)}{k^4\alpha}+\frac{2^83^3\mu_1^4(1-\alpha\sigma)}{k^4\alpha}+\frac{2^83^3\mu_2^2(1-\alpha\sigma)}{k^4\alpha})\Vert u\Vert^2. \end{align*}

    Combining these estimates with (2.70), we get

    \begin{align} & \frac{d}{dt}((1-\alpha\sigma)\Vert\Delta u_1\Vert^2+\Vert \nabla v_1\Vert^2)+\alpha\Vert \Delta v_1\Vert^2{}\\ & {\leqslant}-\sigma(1-\alpha\sigma) \Vert\Delta u_1\Vert^2-2(1-\sigma)\Vert \nabla v_1\Vert^2+\frac{9(\sigma^2+\lambda-\sigma)^2}{\alpha}\Vert u_1\Vert^2{}\\ &\quad+\frac{C}{k^2}(\Vert \nabla u\Vert^2+\Vert \nabla v\Vert^2)+\frac{C}{k^4}(\Vert u\Vert^2+\Vert v\Vert^2){}\\ &\quad+ \frac{9}{\alpha}\Vert k_1\Vert^2++\frac{9k_2^2}{\alpha}\Vert u^t\Vert_{C_h}^2+\frac{9}{\alpha}\Vert g(t, x)\Vert^2{}\\ &\quad+\frac{9\sigma^2}{\alpha}\Vert z(\theta_t\omega)\Vert^2+(\sigma(1-\alpha\sigma)+\frac{9}{\alpha})\Vert \Delta z(\theta_t\omega)\Vert^2. \end{align} (2.71)

    Let \sigma' > 0 be a constant satisfying (2.11)–(2.13). Multiplying e^{\sigma' t} on both sides of (2.71) and integrating over (\tau-t, \tau+s) , where s\in[-h, 0], we obtain

    \begin{align} & (1-\alpha\sigma)\Vert\Delta u_1(\tau+s, \tau-t, \omega, 0)\Vert^2+\Vert \nabla v_1(\tau+s, \tau-t, \omega, 0)\Vert^2{}\\ &+ \alpha e^{-\sigma'(\tau+s)}\int_{\tau-t}^{\tau+s}e^{\sigma'r}\Vert \Delta v_1(r, \tau-t, \omega, 0)\Vert^2dr{}\\ & {\leqslant}-(\sigma-\sigma')(1-\alpha\sigma)e^{-\sigma'(\tau+s)}\int_{\tau-t}^{\tau+s}e^{\sigma'r} \Vert\Delta u_1(r, \tau-t, \omega, 0)\Vert^2dr{}\\ & -(2(1-\sigma)-\sigma')e^{-\sigma'(\tau+s)}\int_{\tau-t}^{\tau+s}e^{\sigma'r}\Vert \nabla v_1(r, \tau-t, \omega, 0)\Vert^2dr{}\\ &+ \frac{9(\sigma^2+\lambda-\sigma)^2}{\alpha}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}\Vert u_1(r, \tau-t, \omega, 0)\Vert^2dr{}\\ & +\frac{C}{k^2}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}(\Vert \nabla u(r, \tau-t, \omega, u^{\tau-t})\Vert^2+\Vert \nabla v(r, \tau-t, \omega, v^{\tau-t})\Vert^2)dr{}\\ & +\frac{C}{k^4}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}(\Vert u(r, \tau-t, \omega, u^{\tau-t})\Vert^2+\Vert v(r, \tau-t, \omega, v^{\tau-t})\Vert^2)dr{}\\ &+ C+\frac{9k_2^2}{\alpha}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}\Vert u^r(s, \tau-t, \omega, u^{\tau-t})\Vert_{C_h}^2dr{}\\ & +Ce^{-\sigma'\tau}\int_{-\infty}^{\tau}e^{\sigma'r}\Vert g(r, x)\Vert^2dr+Ce^{-\sigma'\tau}\int_{-\infty}^{0}e^{\sigma'r}(\Vert \Delta z(\theta_r\omega)\Vert^2+\Vert z(\theta_r\omega)\Vert^2)dr. \end{align} (2.72)

    Now we replace \omega by \theta_{-\tau}\omega and estimate the terms on the right-hand of (2.72).

    By Lemma 2.2, there exists T_1 = T_1(\tau, \omega, D) > 0, such that for all t{\geqslant} T_1,

    \begin{align} & \frac{C}{k^2}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}(\Vert \nabla u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Vert^2+\Vert \nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2)dr{}\\ & +\frac{C}{k^4}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}(\Vert u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Vert^2+\Vert v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2)dr{}\\ & {\leqslant} C r_1(\tau, \omega), \end{align} (2.73)

    and

    \begin{align} \frac{9k_2^2}{\alpha}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}\Vert u^r(s, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Vert_{C_h}^2dr{\leqslant} C r_1(\tau, \omega). \end{align} (2.74)

    From (2.66), there exists T_2 = T_2(\tau, \omega, D) > 0, such that for all t{\geqslant} T_2,

    \begin{align} \frac{9(\sigma^2+\lambda-\sigma)^2}{\alpha}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}\Vert u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2dr{\leqslant} C r_1(\tau, \omega). \end{align} (2.75)

    By (2.30), we obtain

    \begin{align} Ce^{-\sigma'\tau}\int_{-\infty}^{\tau}e^{\sigma'r}\Vert g(r, x)\Vert^2dr+Ce^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}(\Vert \Delta z(\theta_{r-\tau}\omega)\Vert^2+\Vert z(\theta_{r-\tau}\omega)\Vert^2)dr{\leqslant} Cr_1(\tau, \omega). \end{align} (2.76)

    Let T = max \{T_1, T_2\} . It follows from (2.72)–(2.76) that for all t{\geqslant} T,

    \begin{align*} & (1-\alpha\sigma)\Vert\Delta u_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2+\Vert \nabla v_1(\tau+s, \tau-t, \theta_{-\tau}\theta_{-\tau}\omega, 0)\Vert^2\\ &+ \alpha \int_{\tau-t}^{\tau}e^{\sigma'(r-\tau-s)}\Vert \Delta v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2dr{\leqslant} Cr_1(\tau, \omega) \equiv r_2(\tau, \omega). \end{align*}

    Thus we complete the proof of Lemma 2.4. Next, we establish the Hölder continuity of \varphi_1 in time, which will be useful to show the equicontinuity of solutions in C([-h, 0], E(\Omega_{2k})) based on the Arzela-Ascoli theorem.

    Lemma 2.5. Assume the hypotheses in Lemma 2.2 hold, and let \tau\in\mathbb{R}, \omega\in\Omega and D\in\mathcal{D}({\mathscr{E}(\Omega_{2k})}). Then there exist random variables r_3(\tau, \omega) and T = T(\tau, \omega, D) > 0, such that for all t{\geqslant} T, k{\geqslant} 1 and -h{\leqslant} \eta_1 < \eta_2{\leqslant} 0,

    \begin{array}{rrll} &\Vert \varphi_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-\varphi_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert_{E(\Omega_{2k})}^2{\leqslant} r_3(\tau, \omega)\vert\eta_2-\eta_1\vert^{\frac{1}{2}} \end{array}

    where \varphi_1^{\tau}(\eta_i, \tau-t, \theta_{-\tau}\omega, 0) = (u_1^{\tau}(\eta_i, \tau-t, \theta_{-\tau}\omega, 0), v_1^{\tau}(\eta_i, \tau-t, \theta_{-\tau}\omega, 0)), i = 1, 2 .

    Proof. By the definition of the norm \Vert\cdot\Vert_E, we have

    \begin{align} &\Vert \varphi_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-\varphi_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert_{E(\Omega_{2k})}^2{}\\ & = (\sigma^2+\lambda-\sigma)\Vert u_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-u_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert^2{}\\ &+(1-\alpha\sigma)\Vert \nabla u_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-\nabla u_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert^2{}\\ &+\Vert v_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-v_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert^2)^{\frac{1}{2}}{}\\ &{\leqslant}(\sigma^2+\lambda-\sigma)\Vert u_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-u_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert{}\\ &+(1-\alpha\sigma)\Vert \nabla u_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-\nabla u_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert{}\\ &+\Vert v_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-v_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert{}\\ & {\leqslant}(\sigma^2+\lambda-\sigma)\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \frac{d}{dr}u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & +(1-\alpha\sigma)\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla\frac{d}{dr}u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ &+ \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \frac{d}{dr}v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr. \end{align} (2.77)

    From (2.61), we have

    \frac{du_1}{dt} = v_1-\sigma u_1+(1-\xi^2(\frac{\vert x\vert^2}{k^2}))z(\theta_t\omega),

    together with (2.66), we know that

    there exists T_1 = T_1(\tau, \omega, D) > 0 such that for all t{\geqslant} T_1,

    \begin{align} & \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \frac{d}{dr}u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & {\leqslant}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr+\sigma\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & +\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert z(\theta_{r-\tau}\omega)\Vert dr{}\\ & {\leqslant}\bigg\{\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr\right)^{\frac{1}{2}}+\sigma\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr\right)^{\frac{1}{2}}{}\\ & +\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert z(\theta_{r-\tau}\omega)\Vert^2 dr\right)^{\frac{1}{2}}\bigg\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\Bigg\{\left(1+\frac{\sigma}{\sqrt{\sigma^2+\lambda-\sigma}}\right)\left(\int_{\tau+\eta_1}^{\tau+\eta_2} r_1(\tau, \theta_{r-\tau}\omega) dr\right)^{\frac{1}{2}}{}\\ & +\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert z(\theta_{r-\tau}\omega)\Vert^2 dr\right)^{\frac{1}{2}}\Bigg\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & = \left\{\left(1+\frac{\sigma}{\sqrt{\sigma^2+\lambda-\sigma}}\right)\left(\int_{\eta_1}^{\eta_2}r_1(\tau, \theta_{r}\omega) dr\right)^{\frac{1}{2}} +\left(\int_{\eta_1}^{\eta_2}\Vert z(\theta_{r}\omega)\Vert^2 dr\right)^{\frac{1}{2}}\right\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left\{\left(1+\frac{\sigma} {\sqrt{\sigma^2+\lambda-\sigma}}\right)h^{\frac{1}{2}} \left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}} +e^{\frac{\sigma'h}{4}}h^{\frac{1}{2}} r^{\frac{1}{2}}(\omega)\right\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}} \end{align} (2.78)

    Since

    \begin{align} e^{-\sigma'h}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr&{\leqslant} \int_{\tau+\eta_1}^{\tau+\eta_2}e^{\sigma'(r-\tau-\eta_2)}\Vert \nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr{}\\ &{\leqslant} \int_{\tau-t}^{\tau+\eta_2}e^{\sigma'(r-\tau-\eta_2)}\Vert \nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr, \end{align} (2.79)

    by (2.66) and (2.79), we get for t{\geqslant} T_1,

    \begin{align} \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr{\leqslant} Ce^{\sigma'h}r_1(\tau, \omega). \end{align} (2.80)

    Using the similar computation in (2.78), we obtain for t{\geqslant} T_1,

    \begin{align} & \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \frac{d}{dr}\nabla u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & {\leqslant}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr+\sigma\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & +\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla z(\theta_{r-\tau}\omega)\Vert dr{}\\ & {\leqslant}\bigg\{\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr\right)^{\frac{1}{2}}+\sigma\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr\right)^{\frac{1}{2}}{}\\ & +\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla z(\theta_{r-\tau}\omega)\Vert^2 dr\right)^{\frac{1}{2}}\bigg\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\Bigg\{C^\frac{1}{2}\sqrt{r_1(\tau, \omega)}+\frac{C^\frac{1}{2}\sigma}{\sqrt{1-\alpha\sigma}}\left(\int_{\tau+\eta_1}^{\tau+\eta_2} r_1(\tau, \theta_{r-\tau}\omega) dr\right)^{\frac{1}{2}}{}\\ & +\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert z(\theta_{r-\tau}\omega)\Vert^2 dr\right)^{\frac{1}{2}}\Bigg\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & = \left\{C^\frac{1}{2}\sqrt{r_1(\tau, \omega)}+\frac{C^\frac{1}{2}\sigma}{\sqrt{1-\alpha\sigma}}\left(\int_{\eta_1}^{\eta_2}r_1(\tau, \theta_{r}\omega) dr\right)^{\frac{1}{2}} +\left(\int_{\eta_1}^{\eta_2}\Vert z(\theta_{r}\omega)\Vert^2 dr\right)^{\frac{1}{2}}\right\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left\{C^\frac{1}{2}\sqrt{r_1(\tau, \omega)}+\frac{C^\frac{1}{2}\sigma}{\sqrt{1-\alpha\sigma}}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}} +e^{\frac{\sigma'h}{4}}h^{\frac{1}{2}}r^{\frac{1}{2}}(\omega)\right\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}} \end{align} (2.81)

    By (2.61), we get

    \begin{align} & \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \frac{d}{dr}v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ &{\leqslant}\alpha \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\Delta v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr+(1-\alpha\sigma) \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\Delta u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & +(1-\sigma) \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr+(\sigma^2+\lambda-\sigma) \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & +2\alpha\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\nabla\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & +\alpha\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t}) \Delta\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & +2(1-\alpha\sigma)\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\nabla u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\nabla\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & +(1-\alpha\sigma)\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Delta\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & +\int_{\tau+\eta_1}^{\tau+\eta_2}(\Vert f(x, u(r-\rho (r)))\Vert+\Vert g(r, x)\Vert)dr + \int_{\tau+\eta_1}^{\tau+\eta_2}(\sigma\Vert z(\theta_r\omega)\Vert +\alpha\Vert \Delta z(\theta_r\omega)\Vert)dr. \end{align} (2.82)

    By (2.66), we have for t{\geqslant} T_1,

    \begin{align} & (1-\sigma) \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr+(\sigma^2+\lambda-\sigma) \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ &{\leqslant} C\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert (u_1(r+s, \tau-t, \theta_{-\tau}\omega, 0), v_1(r+s, \tau-t, \theta_{-\tau}\omega, 0))\Vert_{\mathscr{E}(\Omega_{2k})}^2 dr\right)^{\frac{1}{2}}\vert \eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ &{\leqslant} C\left(\int_{\tau+\eta_1}^{\tau+\eta_2} r_1(\tau, \theta_{r-\tau}\omega)dr\right)^{\frac{1}{2}}\vert \eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ &{\leqslant} Ch^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\vert \eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align} (2.83)

    By Lemma 2.4, we know that there exists T_2 = T_2(\tau, \omega, D) such that for t > T_2,

    \begin{align} &\alpha \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\Delta v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr+(1-\alpha\sigma) \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\Delta u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ &{\leqslant}\Bigg\{\alpha \left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\Delta v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr\right)^{\frac{1}{2}}{}\\ &+(1-\alpha\sigma) \left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\Delta u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr\right)^{\frac{1}{2}}\Bigg\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ &{\leqslant}\left\{\alpha \sqrt {r_2(\tau, \omega)}+(1-\alpha\sigma)\left(\sup\limits_{r\in[-h, 0]}r_2(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\right\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align} (2.84)

    From Lemma 2.2, we find that there exists T_3 = T_3(\tau, \omega, D) such that for t > T_3,

    \begin{align} & 2\alpha\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\nabla\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & = \frac{8\alpha}{k^2}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert x\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2})\nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert dr{}\\ & {\leqslant}\frac{8\sqrt{2}\alpha\mu_1}{k}\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\frac{8\sqrt{\alpha}\mu_1e^{\frac{\sigma'h}{2}}}{k}\left(\int_{\tau-t}^{\tau+\eta_2}e^{r-\tau-\eta_2}\Vert \nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\frac{8\sqrt{\alpha}\mu_1e^{\frac{\sigma'h}{2}}}{k}\sqrt{r_1(\tau, \omega)}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}, \end{align} (2.85)

    and

    \begin{align} & \alpha\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t}) \Delta\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & = \frac{4\alpha}{k^2}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert xv(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t}) \left((\xi^{\prime}(\frac{\vert x\vert^2}{k^2}))^2+\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime\prime}(\frac{\vert x\vert^2}{k^2})\right)\Vert dr{}\\ &+ \frac{4\alpha}{k^2}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & {\leqslant}\frac{4\sqrt{2}k\alpha(\mu_1^2+\mu_2)+4\alpha\mu_1}{k^2}\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\frac{4\sqrt{2}k\alpha(\mu_1^2+\mu_2)+4\alpha\mu_1}{k^2}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align} (2.86)

    Similarly, we have for t > T_3,

    \begin{align} & (1-\alpha\sigma)\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t}) \Delta\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & {\leqslant}\frac{4\sqrt{2}k(1-\alpha\sigma)(\mu_1^2+\mu_2)+4(1-\alpha\sigma)\mu_1}{k^2}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}, \end{align} (2.87)

    and

    \begin{align} & 2(1-\alpha\sigma)\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\nabla u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\nabla\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & = \frac{8(1-\alpha\sigma)}{k^2}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert x\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2})\nabla u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Vert dr{}\\ & {\leqslant}\frac{8\sqrt{2}(1-\alpha\sigma)\mu_1}{k}\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\frac{8\sqrt{2}(1-\alpha\sigma)\mu_1}{k}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align} (2.88)

    By (A1) and Lemma 2.2, we obtain for t > T_3,

    \begin{align} & \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert f(x, u(r-\rho (r)))\Vert dr{}\\ & {\leqslant}\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert f(x, u(r-\rho (r)))\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert k_1\Vert^2+k_2^2\Vert u(r-\rho (r))\Vert dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left(h\Vert k_1\Vert^2+k_2^2\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u^r\Vert_{C_h} dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left(h\Vert k_1\Vert^2+k_2^2h^{\frac{1}{2}}\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}, \end{align} (2.89)

    and

    \begin{align} & \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert g(r, x)\Vert dr{\leqslant}\left(\int_{\tau+\eta_1}^{\tau}\Vert g(r, x)\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left(\int_{-\infty}^{\tau}e^{\sigma'(r-\tau)}\Vert g(r, x)\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left(\int_{-\infty}^{\tau}e^{\sigma'(r-\tau)}\Vert g(r, x)\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}} {\leqslant} C^{\frac{1}{2}}\sqrt{r_1(\tau, \omega)}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align} (2.90)

    Noting that h_j\in H^2(\mathbb{R}^d) and by (2.6), we have

    \begin{align} \int_{\tau+\eta_1}^{\tau+\eta_2}(\sigma\Vert z(\theta_r\omega)\Vert +\alpha\Vert \Delta z(\theta_r\omega)\Vert)dr {\leqslant} (\sigma+\alpha)C^{\frac{1}{2}}h^{\frac{1}{2}}e^{\frac{\sigma'h}{4}}r^{\frac{1}{2}}(\omega)\vert\eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align} (2.91)

    Set T = max \{T_1, T_2, T_3\},

    \begin{align} & r_3(\tau, \omega)\equiv(\sigma^2+\lambda-\sigma)\left\{\left(1+\frac{\sigma}{\sqrt{\sigma^2+\lambda-\sigma}}\right)h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}} +e^{\frac{\sigma'h}{4}}h^{\frac{1}{2}}r^{\frac{1}{2}}(\omega)\right\}{}\\ &\qquad\quad\;\;+ (1-\alpha\sigma)\left\{C^\frac{1}{2}\sqrt{r_1(\tau, \omega)}+\frac{C^\frac{1}{2}\sigma}{\sqrt{1-\alpha\sigma}}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}} +e^{\frac{\sigma'h}{4}}h^{\frac{1}{2}}r^{\frac{1}{2}}(\omega)\right\}{}\\ &\qquad\quad\;\; +Ch^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}+\left\{\alpha \sqrt {r_2(\tau, \omega)}+(1-\alpha\sigma)\left(\sup\limits_{r\in[-h, 0]}r_2(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\right\}{}\\ &\qquad\quad\;\; +\frac{8\sqrt{\alpha}\mu_1e^{\frac{\sigma'h}{2}}}{k}\sqrt{r_1(\tau, \omega)}+\frac{4\sqrt{2}k\alpha(\mu_1^2+\mu_2)+4\alpha\mu_1}{k^2}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}{}\\ &\qquad\quad\;\; +\frac{4\sqrt{2}k(1-\alpha\sigma)(\mu_1^2+\mu_2)+4(1-\alpha\sigma)\mu_1}{k^2}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}{}\\ &\qquad\quad\;\; +\frac{8\sqrt{2}(1-\alpha\sigma)\mu_1}{k}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}+C^{\frac{1}{2}}\sqrt{r_1(\tau, \omega)}{}\\ &\qquad\quad\;\; +\left(h\Vert k_1\Vert^2+k_2^2h^{\frac{1}{2}}\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}+(\sigma+\alpha)C^{\frac{1}{2}}h^{\frac{1}{2}}e^{\frac{\sigma'h}{4}}r^{\frac{1}{2}}(\omega). \end{align} (2.92)

    It follows from (2.77)–(2.92) that, for t > T,

    \begin{align*} &\Vert \varphi_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-\varphi_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert_{E(\Omega_{2k})}^2{\leqslant} r_3(\tau, \omega)\vert\eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align*}

    This completes the proof of Lemma 2.5.

    In this section, we aim to prove the existence of tempered pullback random attractors for the system (1.1) and (1.2) in \mathscr{E}. Firstly we show the existence of the pullback absorbing set as follows.

    Lemma 3.1. Suppose the hypotheses in Lemma 2.2 hold. Then the continuous cocycle \Phi has a closed measurable \mathcal{D} -pullback absorbing set K = \{K(\tau, \omega):\tau\in{{\mathbb R}}, \omega\in\Omega\}\in\mathcal{D}.

    Proof. Set

    K(\tau, \omega) = \{\varphi\in\mathscr{E}:\Vert\varphi\Vert_{\mathscr{E}}^2{\leqslant} r_1(\tau, \omega)\},

    where r_1(\tau, \omega) is given by (2.15). It is evident that, for each \tau\in\mathbb{R}, r_1(\tau, \cdot):\Omega\rightarrow \mathbb{R} is (\mathscr{F}, \mathscr{B}(\mathbb{R})) -measurable.

    Note that

    r_1(\tau, \omega) = C+Cr(\omega)+Ce^{-\sigma' \tau} \int_{-\infty}^{\tau}e^{\sigma' r}\Vert g(r, x)\Vert^2dr.

    By simple calculations, we have for each \gamma > 0,

    \lim\limits_{t\rightarrow -\infty}e^{\gamma t}\Vert K(\tau+t, \theta_t\omega)\Vert_{\mathscr{E}}^2 = \lim\limits_{t\rightarrow -\infty}e^{\gamma t}r_1(\tau+t, \theta_t\omega) = 0.

    In addition, for each \tau\in\mathbb{R}, \omega\in\Omega , and D\in\mathcal{D} , by Lemma 2.2, there exists T = T(\tau, \omega, D) > 0, such that for all t{\geqslant} T,

    \Phi(t, \tau-t, \theta_{-t}\omega, D(\tau-t, \theta_{-t}\omega))\subseteq K(\tau, \omega),

    that is, K = \{K(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} is a closed measurable \mathcal{D} -pullback absorbing set for \Phi.

    Next, we will prove that the continuous cocycle \Phi is asymptotically compact in \mathscr{E}.

    Lemma 3.2. Suppose the hypotheses in Lemma 2.2 hold. Then the continuous cocycle \Phi is \mathcal{D} -pullback asymptotically compact in \mathscr{E}. That is, if for all \tau\in\mathbb{R}, \omega\in\Omega, the sequence \{\Phi(t_m, \tau-t_m, \theta_{-t_m}\omega, x_m)\}_{m = 1}^{\infty} has a convergent subsequence in \mathscr{E}.

    Proof. Let t_m\rightarrow \infty, D\in\mathcal{D}(\mathscr{E}(\Omega_{2k})) and \tilde\varphi^{\tau-t_m} = (\tilde u^{\tau-t_m}, \tilde v^{\tau-t_m})\in D(\tau-t_m, \theta_{-t_m}\omega). We firstly show that \tilde\varphi^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde\varphi^{\tau-t_m}) is precompact in \mathscr{E}(\Omega_{2k}), where \tilde\varphi^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde\varphi^{\tau-t_m}) = (\tilde u^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde u^{\tau-t_m}), \tilde v^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde v^{\tau-t_m})). It follows from Lemma 2.4 that, for M_1 = M_1(\tau, \omega, D) large enough, m > M_1 and r\in[-h, 0],

    \Vert u_1(r, \tau-t_m, \theta_{-\tau}\omega, 0)\Vert_{H^2(\Omega_{2k})}^2+\Vert v_1(r, \tau-t_m, \theta_{-\tau}\omega, 0)\Vert_{H^1(\Omega_{2k})}^2{\leqslant} Cr_1(\tau, \omega).

    We know that H^1(\Omega_{2k})\hookrightarrow L^2(\Omega_{2k}) and H^2(\Omega_{2k})\hookrightarrow H^1(\Omega_{2k}) are compact. Therefore, for m > M_1 and r\in[-h, 0], \{u_1(r, \tau-t_m, \theta_{-\tau}\omega, 0), v_1(r, \tau-t_m, \theta_{-\tau}\omega, 0)\} is precompact in E(\Omega_{2k}). From Lemma 2.5, for m > M_1 , \{u_1(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0), v_1(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0)\} is equi-continuous in C([-h, 0], E(\Omega_{2k})). Then by Arzela-Ascoli theorem, \{u_1(r, \tau-t_m, \theta_{-\tau}\omega, 0), v_1(r, \tau-t_m, \theta_{-\tau}\omega, 0)\} is precompact in C([-h, 0], E(\Omega_{2k})). Hence, there exists a subsequence {t_{m_k}} , still denote as {t_m}, such that

    (u_1^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0), v_1^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0))\rightarrow (\zeta(\cdot), \xi(\cdot)), \;\; in\;C([-h, 0], E(\Omega_{2k})).

    In other words, for any \epsilon > 0, there exists M_2 = M_2(\tau, \omega, \epsilon, D), such that for m > M_2 and r\in[-h, 0],

    \begin{align} \Vert (u_1^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0) -\zeta(\cdot), v_1^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0)-\xi(\cdot)) \Vert_{\mathscr{E}(\Omega_{2k})} < \epsilon. \end{align} (3.1)

    For any (u_2^{\tau-t_m}, v_2^{\tau-t_m}) = (\tilde u^{\tau-t_m}, \tilde v^{\tau-t_m})\in D, D\in\mathcal{D}(\mathscr{E}(\Omega_{2k})) , by (2.65), there exists M_3 = M_3(\tau, \omega, \epsilon, D), such that for m > M_3,

    \begin{align} \Vert (u_2^{\tau}(\cdot, \tau-t_m, \theta_{-\tau} \omega, u_2^{\tau-t_m}), v_2^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, v_2^{\tau-t_m}))\Vert_{\mathscr{E}(\Omega_{2k})} < \epsilon. \end{align} (3.2)

    By (3.1) and (3.2), we derive for m > \tilde M = max \{M_1, M_2, M_3\},

    \begin{align} &\Vert (\tilde u^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde u^{\tau-t_m})-\zeta(\cdot), \tilde v^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde v^{\tau-t_m})-\xi(\cdot))\Vert_{\mathscr{E}(\Omega_{2k})}{}\\ &{\leqslant} 2\Vert (u_1^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0)-\zeta(\cdot), v_1^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0)-\xi(\cdot))\Vert_{\mathscr{E}(\Omega_{2k})}{}\\ &+2\Vert (u_2^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, u_2^{\tau-t_m}), v_2^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, v_2^{\tau-t_m}))\Vert_{\mathscr{E}(\Omega_{2k})}{\leqslant} 4\epsilon. \end{align} (3.3)

    Thus, \tilde\varphi^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde\varphi^{\tau-t_m}) = (\tilde u^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde u^{\tau-t_m}), \tilde v^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde v^{\tau-t_m})) is precompact in \mathscr{E}(\Omega_{2k}). By Lemma 2.3, there exist k_1 = k_1(\tau, \omega, \epsilon) and M_4 = M_4(\tau, \omega, \epsilon, D), such that for each m > M_4,

    \begin{align} \Vert\varphi^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \varphi^{\tau-t_m}) \Vert_{\mathscr{E}(\mathbb{R}^d\setminus\Omega_{k_1})}{\leqslant}\epsilon. \end{align} (3.4)

    By (3.3), there exists k_2 = k_2(\tau, \omega, \epsilon){\geqslant} k_1 such that \tilde\varphi^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde\varphi^{\tau-t_m}) is precompact in E(\Omega_{2k_2}). Recalling (2.55) and the fact 1-\xi^2(\frac{\vert x\vert^2}{k_2^2}) = 1 for \vert x\vert{\leqslant} k_2, we know that \varphi^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \varphi^{\tau-t_m}) is precompact in \mathscr{E}(\Omega_{k_2}). Along with (3.4), we have that the continuous cocycle \Phi is asymptotically compact in \mathscr{E}.

    We are now to give our main result.

    Theorem 3.3. Suppose the hypotheses in Lemma 2.2 hold. Then the continuous cocycle \Phi has a unique \mathcal{D} -pullback random attractor in \mathscr{E}.

    Proof. By Proposition 2.1, Lemma 3.1 and Lemma 3.2, we can obtain the existence and uniqueness of \mathcal{D} -pullback random attractor of \Phi in \mathscr{E} immediately.

    Since the Sobolev embedding is no longer compact on unbounded domains, we obtained the existence of random attractor for the problem (1.1) and (1.2) by using the uniform tail-estimates of solutions and the decomposition technique as well as the compactness argument. In addition, to derive the uniform estimates, we make some nontrivial arguments due to the presence of strongly damped term \alpha\Delta u_t and the delay term f(x, u(t-\rho (t))) in (1.1).

    The author declares that there is no conflict of interest.



    [1] L. Arnold, Random Dynamical Systems, Berlin: Springer-Verlag, 1998.
    [2] P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equations, 246 (2009), 845–869. doi: 10.1016/j.jde.2008.05.017
    [3] Z. Brzézniak, Y. Li, Asymptotic compactness and absorbing sets for 2D stochastic navier-stokes equations on some unbounded domains, Trans. Amer. Math. Soc., 358 (2006), 5587–5629. doi: 10.1090/S0002-9947-06-03923-7
    [4] T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss, J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Cont. Dyn-A., 21 (2008), 415. doi: 10.3934/dcds.2008.21.415
    [5] T. Caraballo, B. Guo, N. H. Tuan, R. Wang, Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains, Proc. Roy. Soc. Edinb. Sect. A, (2020), 1–31.
    [6] T. Caraballo, J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differ. Equations, 205 (2004), 271–297. doi: 10.1016/j.jde.2004.04.012
    [7] P. Chen, X. Zhang, Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay, Discrete Cont. Dyn-B., 26 (2021), 4325.
    [8] H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Theory Rel., 100 (1994), 365–393. doi: 10.1007/BF01193705
    [9] F. Flandoli, B. Gess, M. Scheutzow, Synchronization by noise, Probab. Theory Rel., 168 (2017), 511–556.
    [10] B. Gess, Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise. Ann. Probab., 42 (2014), 818–864.
    [11] B. Gess, W. Liu, A. Schenke, Random attractors for locally monotone stochastic partial differential equations, J. Differ. Equations, 269 (2020), 3414–3455. doi: 10.1016/j.jde.2020.03.002
    [12] A. Gu, B. Wang, Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise, Discrete Cont. Dyn-B., 23 (2018), 1689–1720.
    [13] J. U. Jeong, J. Park, Pullback attractors for a 2D-non-autonomous incompressible non-Newtonian fluid with variable delays, Discrete Cont. Dyn-B., 21 (2016), 2687–2702. doi: 10.3934/dcdsb.2016068
    [14] X. Jia, X. Ding, Random attractors for stochastic retarded strongly damped wave equations with additive noise on bounded domains, Open Math., 17 (2019), 472–486. doi: 10.1515/math-2019-0038
    [15] R. Jones, B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal-Real., 14 (2013), 1308–1322. doi: 10.1016/j.nonrwa.2012.09.019
    [16] D. Li, K. Lu, B. Wang, X. Wang, Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains, Discrete Cont. Dyn-A., 39 (2019), 3717–3747. doi: 10.3934/dcds.2019151
    [17] D. Li, L. Shi, Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay, J. Math. Phys., 59 (2018), 032703. doi: 10.1063/1.4994869
    [18] H. Li, Y. You, J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differ. Equations, 258 (2015), 148–190. doi: 10.1016/j.jde.2014.09.007
    [19] L. Liu, T. Caraballo, P. Marín-Rubio, Stability results for 2D Navier-Stokes equations with unbounded delay, J. Differ. Equations, 265 (2018), 5685–5708. doi: 10.1016/j.jde.2018.07.008
    [20] H. Lu, J. Qi, B. Wang, M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Cont. Dyn-A., 39 (2019), 683–706. doi: 10.3934/dcds.2019028
    [21] K. Lu, B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Differ. Equ., 31 (2019), 1341–1371. doi: 10.1007/s10884-017-9626-y
    [22] Y. Lv, W. Wang, Limiting dynamics for stochastic wave equations, J. Differ. Equations, 244 (2008), 1–23. doi: 10.1016/j.jde.2007.10.009
    [23] L. Shi, R. Wang, K. Lu, B. Wang, Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differ. Equations, 267 (2019), 4373–4409. doi: 10.1016/j.jde.2019.05.002
    [24] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, New York: Springer-Verlag, 1997.
    [25] B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on \mathbb{R}^3, T. Am. Math. Soc., 363 (2011), 3639–3663. doi: 10.1090/S0002-9947-2011-05247-5
    [26] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equations, 253 (2012), 1544–1583. doi: 10.1016/j.jde.2012.05.015
    [27] B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Cont. Dyn-A., 34 (2014), 269–300. doi: 10.3934/dcds.2014.34.269
    [28] B. Wang, Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differ. Equations, 268 (2019), 1–59. doi: 10.1016/j.jde.2019.08.007
    [29] X. Wang, K. Lu, B. Wang, Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst., 14 (2015), 1018–1047. doi: 10.1137/140991819
    [30] R. Wang, L. Shi, B. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on {{\mathbb R}}^N, Nonlinearity, 32 (2019), 4524–4556. doi: 10.1088/1361-6544/ab32d7
    [31] R. Wang, B. Wang, Asymptotic behavior of non-autonomous fractional stochastic p-Laplacian equations, Comput. Math. Appl., 78 (2019), 3527–3543. doi: 10.1016/j.camwa.2019.05.024
    [32] Z. Wang, S. Zhou, Random attractor for non-autonomous stochastic strongly damped wave equation on unbounded domains, J. Appl. Anal. Comput., 5 (2015), 363–387.
    [33] Z. Wang, S. Zhou, Random attractor for stochastic non-autonomous damped wave equation with critical exponent, Discrete Cont. Dyn-A., 37 (2017), 545–573. doi: 10.3934/dcds.2017022
    [34] Z. Wang, S. Zhou, A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal-Real., 12 (2011), 3468–3482. doi: 10.1016/j.nonrwa.2011.06.008
    [35] F. Wu, P. E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay, Discrete Cont. Dyn-B., 18 (2013), 1715.
    [36] Y. Yan, X. Li, Long time behavior for the stochastic parabolic-wave systems with delay on infinite lattice, Nonlinear Anal., 197 (2020), 111866. doi: 10.1016/j.na.2020.111866
    [37] M. Yang, J. Duan, P. E. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal-Real., 12 (2011), 464–478. doi: 10.1016/j.nonrwa.2010.06.032
    [38] S. Zhou, M. Zhao, Random attractors for damped non-autonomous wave equations with memory and white noise, Nonlinear Anal., 120 (2015), 202–226. doi: 10.1016/j.na.2015.03.009
    [39] R. Zhu, X. Zhu, Random attractor associated with the quasi-geostrophic equation, J. Dyn. Differ. Equ., 29 (2017), 289–322. doi: 10.1007/s10884-016-9537-3
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2264) PDF downloads(92) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog