In this paper, we consider the asymptotic behavior of solutions to stochastic strongly damped wave equations with variable delays on unbounded domains, which is driven by both additive noise and deterministic non-autonomous forcing. We first establish a continuous cocycle for the equations. Then we prove asymptotic compactness of the cocycle by tail-estimates and a decomposition technique of solutions. Finally, we obtain the existence of a tempered pullback random attractor.
Citation: Li Yang. Pullback random attractors of stochastic strongly damped wave equations with variable delays on unbounded domains[J]. AIMS Mathematics, 2021, 6(12): 13634-13664. doi: 10.3934/math.2021793
[1] | Ruonan Liu, Tomás Caraballo . Random dynamics for a stochastic nonlocal reaction-diffusion equation with an energy functional. AIMS Mathematics, 2024, 9(4): 8020-8042. doi: 10.3934/math.2024390 |
[2] | Chunting Ji, Hui Liu, Jie Xin . Random attractors of the stochastic extended Brusselator system with a multiplicative noise. AIMS Mathematics, 2020, 5(4): 3584-3611. doi: 10.3934/math.2020233 |
[3] | Xin Liu . Stability of random attractors for non-autonomous stochastic $ p $-Laplacian lattice equations with random viscosity. AIMS Mathematics, 2025, 10(3): 7396-7413. doi: 10.3934/math.2025339 |
[4] | Xiaoxia Wang, Jinping Jiang . The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay. AIMS Mathematics, 2023, 8(11): 26650-26664. doi: 10.3934/math.20231363 |
[5] | Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040 |
[6] | Joseph L. Shomberg . On the upper semicontinuity of global attractors for damped wave equations. AIMS Mathematics, 2017, 2(3): 557-561. doi: 10.3934/Math.2017.2.557 |
[7] | Xiao Bin Yao, Chan Yue . Asymptotic behavior of plate equations with memory driven by colored noise on unbounded domains. AIMS Mathematics, 2022, 7(10): 18497-18531. doi: 10.3934/math.20221017 |
[8] | Ranran Liu, Hui Liu, Jie Xin . Random attractors for stochastic discrete long wave-short wave resonance equations driven by fractional Brownian motions. AIMS Mathematics, 2021, 6(3): 2900-2911. doi: 10.3934/math.2021175 |
[9] | Xiaobin Yao . Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping. AIMS Mathematics, 2020, 5(3): 2577-2607. doi: 10.3934/math.2020169 |
[10] | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Maher Nour, Mostafa Zahri . Stabilization of a viscoelastic wave equation with boundary damping and variable exponents: Theoretical and numerical study. AIMS Mathematics, 2022, 7(8): 15370-15401. doi: 10.3934/math.2022842 |
In this paper, we consider the asymptotic behavior of solutions to stochastic strongly damped wave equations with variable delays on unbounded domains, which is driven by both additive noise and deterministic non-autonomous forcing. We first establish a continuous cocycle for the equations. Then we prove asymptotic compactness of the cocycle by tail-estimates and a decomposition technique of solutions. Finally, we obtain the existence of a tempered pullback random attractor.
The aim of this paper is to establish the existence of pullback random attractors of the following stochastic non-autonomous strongly damped wave equation with variable delays and with additive noise in Rd:
utt−αΔut−Δu+ut+λu=f(x,u(t−ρ(t)))+g(t,x)+m∑j=1hj(x)dWjdt, | (1.1) |
with initial conditions
u(s+τ,x)=ϕ(s,x),ut(s+τ,x)=ψ(s,x),s∈[−h,0] | (1.2) |
where x∈Rd, t⩾τ,τ∈R; α>0 is the strong damping coefficient, λ is a positive constant; g∈L2loc(R,L2(Rd)) and hj∈H2(Rd); f is a nonlinear function satisfying some conditions, ρ is a given delay function; {Wj}mj=1 are independent real-valued two-sided Wiener process on a complete probability space (Ω,F,P), which will be specified later.
As we know, the concept of random attractor, as an extension of the global attractor for the deterministic systems, was first introduced in [8], which has been studied in many papers, see [2,3,9,10,11,12,20,21,23,28,30,31,39] and references therein.
Time delay differential equations arise from some evolution phenomena in physics, biology and life science, which depend not only on the current states but also on their past history. There have been many works on the asymptotic behavior of delay differential equations, see [6,13,19] in the deterministic case and [4,7,16,17,29,35,36] in the stochastic case and references therein.
The asymptotic behavior of solutions of stochastic wave equation have been studied extensively in [15,22,25,37] in the autonomous case. For the non-autonomous stochastic wave equation, the existence of random attractors was obtained in [33] on bounded domains and in [5,18,27,32,34] on unbounded domains. Wave equations with delays are widely used in biology, physics, engineering and chemistry. Therefore, it is important for us to study the asymptotic behavior of stochastic delay wave equation. In [14,38], stochastic wave equations with delays on bounded domains are considered. However, the results for the stochastic delay wave equation on unbounded domains are very few.
In this work, we study the pullback random attractors of stochastic non-autonomous strongly damped wave equations with variable delays on unbounded domains. To prove the existence of pullback random attractors, we need to derive some kind compactness. The main difficulty in this paper is to establish the asymptotic compactness since the Sobolev embedding is no longer compact on unbounded domains. We here overcome the difficulty by showing that the uniform tail-estimates of solutions are sufficiently small (see Lemma 2.3). On bounded domains, we decompose the solutions into a sum of two parts. One part decays exponentially and the other part has higher regularity. For the higher regularity part, we first give some uniform estimates (see Lemma 2.4) and obtain the Hölder continuity of solutions in time (see Lemma 2.5). Then we apply Arzela-Ascoli theorem to prove the precompactness (see Lemma 3.2) and hence establish our main result (see Theorem 3.3). In addition, the strongly damped term αΔut and the delay term f(x,u(t−ρ(t))) introduce an additional difficulty in deriving the uniform estimates, which needs some nontrivial arguments.
The paper is organized as follows. In the next section, we establish a continuous cocycle for problem (1.1) and (1.2) and some uniform estimates of solutions are derived. Then we prove the existence and uniqueness of the tempered pullback attractors for (1.1) and (1.2) in Section 3. In Section 4, we make conclusion as well as some comments on our results.
Notations: Let (Ω,F,P) be the standard probability space with Ω={ω=(ω1,ω2,⋯,ωm)∈C(R,Rm):ω(0)=0}, F is the Bore σ−algebra generated by the compact open topology of Ω and P is the Wiener measure on (Ω,F). Define the shift operator {θt}t∈R by θtω(⋅)=ω(⋅+t)−ω(t),t∈R,ω∈Ω. Then (Ω,F,P,{θt}t∈R) is a metric dynamical system.
Throughout this paper, we use (⋅) and ‖⋅‖ to denote the inner product and norm of L2(Rd), respectively, and use ‖⋅‖X to denote the norm of a general Banach space X. For h>0, let Ch be the Banach space C([−h,0];L2(Rd)) endowed with the norm ‖φ‖Ch=sups∈[−h,0]‖φ(s)‖ and ut be the function defined by ut=u(t+s),s∈[−h,0]. Let C be a positive constant whose value may be different from line to line or even in the same line.
Let E=H1(Rd)×L2(Rd), endowed with the following norm
‖(u,v)‖2E=(σ2+λ−σ)‖u‖2+(1−ασ)‖∇u‖2+‖v‖2,(u,v)∈E | (1.3) |
where σ>0 is a fixed constant such that
1−σ>0, |
1−ασ>0, |
σ2+λ−σ>0. |
Let E={(u,v):u∈Ch,‖∇u‖∈Ch,v∈Ch}, with the norm
‖(u,v)‖2E=(σ2+λ−σ)‖u‖2Ch+(1−ασ)‖∇u‖2Ch+‖v‖2Ch. | (1.4) |
In this subsection, we first show that the system (1.1) and (1.2) generates a continuous cocycle. Then, we recall some results for the existence of pullback random attractors for non-autonomous random dynamical systems.
For our purpose, we transform the system (1.1) and (1.2) into a deterministic system with random parameters but without white noise, and then show that it generates a continuous cocycle on E over R and (Ω,F,P,{θt}t∈R).
For j=1,2,⋯,m, consider the one-dimensional Ornstein-Uhlenbeck equation:
dzj+zjdt=dWj, | (2.1) |
whose solution is given by
zj(t)=zj(θtωj)≡−∫0−∞es(θtωj)(s)ds,t∈R. | (2.2) |
It is known that the random variable |zj(ωj)| is tempered and there exists a θt−invariant subset ˜Ω⊂Ω of full measure such that zj(θtωj) is continuous in t for each ω∈˜Ω. From now on, we will not distinguish ˜Ω and Ω, and write the space ˜Ω as Ω.
Set
z(θtω)=m∑j=1hj(x)zj(θtωj), |
then from (2.1) we have that
dz+zdt=m∑j=1hjdWj. | (2.3) |
It follows from [1,Proposition 4.3.3] that, there exists a tempered function r(ω)>0 such that
m∑j=1|zj(ωj)|2⩽r(ω), | (2.4) |
where r(ω)>0 satisfies for each ω∈Ω,
r(θtω)⩽eσ′|t|2r(ω),t∈R, | (2.5) |
here σ′ is a positive constant which will be fixed later. Then by (2.4) and (2.5), we obtain, for each ω∈Ω,
m∑j=1|zj(θtωj)|2⩽eσ′|t|2r(ω),t∈R. | (2.6) |
In the rest of this subsection, we show that there is a continuous cocycle generated by the system (1.1) and (1.2). Firstly we give the following assumptions on f and g:
(A1) There exist a function k1(x)∈L2(Rd) and a positive constant k2 such that the functions f∈C(Rd×R,R),ρ∈C(R,[0,h]) satisfy
|f(x,u)|2⩽|k1(x)|2+k22|u|2,∀x∈Rd,u∈R; |
and
|ρ′(t)|⩽ρ∗<1,∀t∈R; |
(A2) There exists a constant L>0, such that
|f(x,u)−f(x,v)|⩽L|u−v|,∀x∈Rd,u,v,∈R; |
(A3) The deterministic forcing g(t,x)∈L2loc(R,L2(Rd)), and
∫τ−∞eλr‖g(r,⋅)‖2dr<∞,∀τ∈R, |
which implies
limk→∞∫τ−∞∫|x|⩾keλr|g(r,⋅)|2dxdr=0,∀τ∈R. |
Let v=ut+σu−z(θtω), where σ is given in (1.3), then (1.1) and (1.2) can be rewritten as the following equivalent form:
{dudt=v−σu+z(θtω),dvdt=αΔv−(1−σ)v+(1−ασ)Δu−(σ2+λ−σ)u+f(x,u(t−ρ(t)))+g(t,x)+σz(θtω)+αΔz(θtω), | (2.7) |
with the initial conditions
u(τ+s,x)=uτ(x)≡ϕ(s,x),v(τ+s,x)=vτ(x),s∈[−h,0],x∈Rd, | (2.8) |
where vτ(x)≡ψ(s,x)+σϕ(s,x)−z(θτ+sω). Put φ(τ+t,τ,θτ,φτ)=(u(τ+t,τ,θτ,uτ),v(τ+t,τ,θτ,vτ))⊤, where φτ=(uτ,vτ)⊤. By the classical theory in [24], we may show the following existence results of solutions of (2.7) and (2.8).
Assume that g∈L2loc(R,L2(Rd)) and the assumption (A1) holds. Then for each ω∈Ω,τ∈R,φτ∈E, there exists a solution φ(⋅,τ,ω,φτ) to the problem (2.7) and (2.8), which satisfies φ(⋅,τ,ω,φτ)∈C([τ−h,T];E), for any T>τ, and for any t∈[τ,T], φt(⋅,τ,ω,φτ)∈C([−h,T];E).
Assume moreover (A2) holds. Then the solutions to the problem (2.7) and (2.8) are unique, and the solutions depend continuously on the initial data φτ∈E, for any ω∈Ω,t⩾τ.
Now, we define a mapping: Φ:R+×R×Ω×E→E by
Φ(t,τ,ω,φτ)=φt+τ(⋅,τ,θ−τω,φτ), |
where φt+τ(s,τ,θ−τω,φτ)=φ(t+τ+s,τ,θ−τω,φτ) for s∈[−h,0]. Then Φ is a continuous cocycle on E over R and (Ω,F,P,{θt}t∈R).
In the following, let D(X) be the collection of all tempered families of nonempty bounded subsets of X. Recall that D={D(τ,ω):τ∈R,ω∈Ω}∈D(X) is said to be tempered in X if for each γ>0,
limt→−∞eγt‖D(τ+t,θtω)‖X=0, | (2.9) |
where ‖D‖X=supx∈D‖x‖X. The cocycle Φ is said to be D(X)-pullback asymptotically compact in X if for all τ∈R,ω∈Ω, the sequence
{Φ(tn,τ−tn,θ−tnω,xn)}∞n=1hasaconvergentsubsequenceinX, | (2.10) |
whenever tn→∞, and xn∈D(τ−tn,θ−tnω) with D={D(τ,ω):τ∈R,ω∈Ω}∈D(X).
Next, we provide the following result for non-autonomous random dynamical systems from [26].
Proposition 2.1. Let Φ be a continuous cocycle on X over R and (Ω,F,P,{θt}t∈R). Suppose Φ is D(X)-pullback asymptotically compact in X and has a closed measurable D(X)-pullback absorbing set K in D(X). Then Φ has an unique D(X) pullback attractor A in D(X). For each τ∈R and ω∈Ω, A is given by,
A(τ,ω)=⋂τ⩾0¯⋃t⩾τΦ(t,τ−t,θ−tω,K(τ−t,θtω)). |
In the rest of this paper, we will use Proposition 2.1 to prove the existence and uniqueness of a pullback random attractor for the continuous cocycle Φ in E.
In this subsection, we derive some uniform tail-estimates of solutions of problem (2.7) and (2.8). Hereafter we suppose that D is the collection of all tempered families of nonempty bounded subsets of X.
Lemma 2.2. In addition to the assumptions (A1)–(A3), suppose that there exists σ′>0 such that
1−σ>σ′, | (2.11) |
σ>σ′, | (2.12) |
and
(2σ−σ′)(σ2+λ−σ)−3k22eσ′h(1−σ)(1−ρ∗)>0. | (2.13) |
Then for each τ∈R,ω∈Ω, and D={D(τ,ω):τ∈R,ω∈Ω}∈D, there exists T=T(τ,ω,D)>0, such that for all t⩾T, −h⩽s⩽0, the solution φ of (2.7) and (2.8) satisfies
‖φτ(s,τ−t,θ−τω,φτ−t)‖2E+C∫ττ−teσ′r‖φr(s,τ−t,θ−τω,φτ−t)‖2Edr+2α∫ττ−teσ′(r−τ−s)‖∇v(r,τ−t,θ−τω,vτ−t)‖2dr⩽r1(τ,ω), | (2.14) |
where
r1(τ,ω)=C+Cr(ω)+Ce−σ′τ∫τ−∞eσ′r‖g(r,x)‖2dr, | (2.15) |
φτ−t=(uτ−t,vτ−t)∈D(τ−t,θ−tω),r(ω) is the tempered function satisfying (2.4), C is a constant independent of τ,ω and D.
Proof. Taking the inner product of the second equation of (2.7) by v in L2(Rd), we have
ddt‖v‖2=−2α‖∇v‖2−2(1−σ)‖v‖2+2(1−ασ)(Δu,v)−2(σ2+λ−σ)(u,v)+2(f(x,u(t−ρ(t))),v)+2(g(t,x),v)+2σ(z(θtω),v)+2α(Δz(θtω),v). | (2.16) |
Note that
dudt=v−σu+z(θtω). | (2.17) |
Then by (2.17), we derive that
(Δu,v)=(Δu,dudt+σu−z(θtω))=−12ddt‖∇u‖2−σ‖∇u‖2+(Δz(θtω),u) | (2.18) |
and
(u,v)=(u,dudt+σu−z(θtω))=12ddt‖u‖2+σ‖u‖2−(z(θtω),u). | (2.19) |
It follows from (2.16)–(2.19) that
ddt(‖v‖2+(1−ασ)‖∇u‖2+(σ2+λ−σ)‖u‖2)+2α‖∇v‖2=−2(1−σ)‖v‖2−2σ(1−ασ)‖∇u‖2−2σ(σ2+λ−σ)‖u‖2+[2(σ2+λ−σ)(z(θtω),u)+2(1−ασ)(Δz(θtω),u)]+[2σ(z(θtω),v)+2α(Δz(θtω),v)]+2(f(x,u(t−ρ(t))),v)+2(g(t,x),v)=:−2(1−σ)‖v‖2−2σ(1−ασ)‖∇u‖2−2σ(σ2+λ−σ)‖u‖2+4∑i=1Ii. | (2.20) |
Now we estimate the terms on the right-hand of (2.20). By Young's inequality, Cauchy-Schwarz inequality and (A1), we have
I1⩽(σ2+λ−σ)2ε1‖z(θtω)‖2+(1−ασ)2ε1‖Δz(θtω)‖2+2ε1‖u‖2, |
I2⩽σ2ε2‖z(θtω)‖2+α2ε2‖Δz(θtω)‖2+2ε2‖v‖2, |
I3⩽12ε3‖f(x,u(t−ρ(t)))‖2+2ε3‖v‖2⩽12ε3‖k1‖2+k222ε3‖u(t−ρ(t))‖2+2ε3‖v‖2 |
and
I4⩽2‖g(t,x)‖2‖v‖2⩽12ε4‖g(t,x)‖2+2ε4‖v‖2, |
where ε1,ε2,ε3,ε4 are fixed positive constants which will be chosen later. Combining these estimates with (2.20), we have
ddt(‖v‖2+(1−ασ)‖∇u‖2+(σ2+λ−σ)‖u‖2)+2α‖∇v‖2⩽−2((1−σ)−ε2−ε3−ε4)‖v‖2−2σ(1−ασ)‖∇u‖2−2(σ(σ2+λ−σ)−ε1)‖u‖2+12ε3‖k1‖2+k222ε3‖u(t−ρ(t))‖2+12ε4‖g(t,x)‖2+((σ2+λ−σ)2ε1+σ2ε2)‖z(θtω)‖2+((1−ασ)2ε1+α2ε2)‖Δz(θtω)‖2. | (2.21) |
Recalling the definition of norm ‖⋅‖E, from (2.21), we get
ddteσ′t‖(u,v)‖2E+2αeσ′t‖∇v‖2⩽−(2((1−σ)−ε2−ε3−ε4)−σ′)‖v‖2eσ′t−(2σ−σ′)(1−ασ)‖∇u‖2eσ′t−((2σ−σ′)(σ2+λ−σ)−2ε1)‖u‖2eσ′t+12ε3‖k1‖2eσ′t+k222ε3‖u(t−ρ(t))‖2eσ′t+12ε4‖g(t,x)‖2eσ′t+((σ2+λ−σ)2ε1+σ2ε2)‖z(θtω)‖2eσ′t+((1−ασ)2ε1+α2ε2)‖Δz(θtω)‖2eσ′t. | (2.22) |
Integrating (2.22) from τ−t to τ+s, where s∈[−h,0], we obtain
eσ′(τ+s)‖φ(τ+s,τ−t,ω,φτ−t)‖2E+2α∫τ+sτ−teσ′r‖∇v(r,τ−t,ω,vτ−t)‖2dr⩽eσ′(τ−t)‖φ(τ−t,τ−t,ω,φτ−t‖2E−(2((1−σ)−ε2−ε3−ε4)−σ′)∫τ+sτ−teσ′r‖v(r,τ−t,ω,vτ−t)‖2dr−(2σ−σ′)(1−ασ)∫τ+sτ−teσ′r‖∇u(r,τ−t,ω,uτ−t)‖2dr−((2σ−σ′)(σ2+λ−σ)−2ε1)∫τ+sτ−teσ′r‖u(r,τ−t,ω,uτ−t‖2dr+‖k1‖22ε3σ′eσ′(τ+s)+k222ε3∫τ+sτ−teσ′r‖u(r−ρ(r),τ−t,ω,uτ−t)‖2dr+12ε4∫τ+sτ−teσ′r‖g(r,x)‖2dr+((σ2+λ−σ)2ε1+σ2ε2)∫τ+sτ−teσ′r‖z(θrω)‖2dr+((1−ασ)2ε1+α2ε2)∫τ+sτ−teσ′r‖Δz(θrω)‖2dr. | (2.23) |
Set r′=r−ρ(r). Combining ρ(r)∈[0,h] and the fact 11−ρ′(r)⩽11−ρ∗ for all r∈R, we infer that
k222ε3∫τ+sτ−teσ′r‖u(r−ρ(r),τ−t,ω,uτ−t)‖2dr⩽k22eσ′h2ε3(1−ρ∗)∫τ+sτ−t−heσ′r‖u(r,τ−t,ω,uτ−t‖2dr=k22eσ′h2ε3(1−ρ∗)(∫τ−tτ−t−heσ′r‖u(r,τ−t,ω,uτ−t‖2dr+∫τ+sτ−teσ′r‖u(r,τ−t,ω,uτ−t‖2dr)⩽k22heσ′heσ′(τ−t)2ε3(1−ρ∗)‖uτ−t‖2Ch+k22eσ′h2ε3(1−ρ∗)∫τ+sτ−teσ′r‖u(r,τ−t,ω,uτ−t‖2dr. | (2.24) |
It follows from (2.23) and (2.24) that
eσ′(τ+s)‖φ(τ+s,τ−t,ω,φτ−t)‖2E+2α∫τ+sτ−teσ′r‖∇v(r,τ−t,ω,vτ−t)‖2dr⩽eσ′(τ−t)‖φ(τ−t,τ−t,ω,φτ−t‖2E−(2((1−σ)−ε2−ε3−ε4)−σ′)∫τ+sτ−teσ′r‖v(r,τ−t,ω,vτ−t)‖2dr−(2σ−σ′)(1−ασ)∫τ+sτ−teσ′r‖∇u(r,τ−t,ω,uτ−t)‖2dr−((2σ−σ′)(σ2+λ−σ)−k22eσ′h2ε3(1−ρ∗)−2ε1)∫τ+sτ−teσ′r‖u(r,τ−t,ω,uτ−t‖2dr+‖k1‖22ε3σ′eσ′(τ+s)+k22heσ′heσ′(τ−t)2ε3(1−ρ∗)‖uτ−t‖2Ch+12ε4∫τ+sτ−teσ′r‖g(r,x)‖2dr+((σ2+λ−σ)2ε1+σ2ε2)∫τ+sτ−teσ′r‖z(θrω)‖2dr+((1−ασ)2ε1+α2ε2)∫τ+sτ−teσ′r‖Δz(θrω)‖2dr. | (2.25) |
Let ε2=ε3=ε4=1−σ6. By (2.11)–(2.13), we can choose ε1 small enough such that
1−σ−σ′>0, | (2.26) |
2σ−σ′>0 | (2.27) |
and
(2σ−σ′)(σ2+λ−σ)−3k22eσ′h(1−σ)(1−ρ∗)−2ε1>0 | (2.28) |
Replacing ω with θ−τω and by (2.25)–(2.28), we get
‖φ(τ+s,τ−t,θ−τω,φτ−t)‖2E+Ce−σ′(τ+s)∫τ+sτ−teσ′r‖φ(r,τ−t,θ−τω,φτ−t)‖2Edr+2αe−σ′(τ+s)∫τ+sτ−teσ′r‖∇v(r,τ−t,θ−τω,vτ−t)‖2dr⩽eσ′he−σ′t‖φτ−t‖2E+C‖uτ−t‖2Ch+C+Ce−σ′τ∫τ+sτ−teσ′r‖g(r,x)‖2dr+Ce−σ′τ∫τ+sτ−teσ′r‖z(θr−τω)‖2dr+Ce−σ′τ∫τ+sτ−teσ′r‖Δz(θr−τω)‖2dr⩽Ce−σ′t‖φτ−t‖2E+C+Ce−σ′τ∫τ−∞eσ′r‖g(r,x)‖2dr+Ce−σ′τ∫ττ−teσ′r‖z(θr−τω)‖2dr+Ce−σ′τ∫ττ−teσ′r‖Δz(θr−τω)‖2dr. | (2.29) |
Note that z(θtω)=m∑j=1hjz(θtωj) and hj∈H2(Rd), we deduce that for each ω∈Ω,
e−σ′τ∫ττ−teσ′r(‖z(θr−τω)‖2+‖Δz(θr−τω)‖2)dr=e−σ′τ∫0−teσ′r(‖z(θrω)‖2+‖Δz(θrω)‖2)dr⩽e−σ′τ∫0−teσ′r(m∑j=1|hjz(θrωj)|2+m∑j=1|Δhjz(θrωj)|2)dr⩽e−σ′τ∫0−∞eσ′rm∑j=1|z(θrωj)|2dr⩽Cr(ω). | (2.30) |
Since φτ−t=(uτ−t,vτ−t)∈D(τ−t,θ−tω), then
lim supt→∞Ce−σ′t‖φτ−t‖2E⩽lim supt→∞Ce−σ′t‖D(τ−t,θ−tω)‖2E=0. | (2.31) |
By (2.31), there exists T=T(τ,ω,D)>0, such that for all t⩾T,
Ce−σ′t‖φτ−t‖2E⩽1. | (2.32) |
Combining (2.32), (2.30) and (2.29), we obtain for all t⩾T
‖φ(τ+s,τ−t,θ−τω,φτ−t)‖2E+C∫ττ−teσ′r‖φr(s,τ−t,θ−τω,φτ−t)‖2Edr+2α∫ττ−teσ′(r−τ−s)‖∇v(r,τ−t,θ−τω,vτ−t)‖2dr⩽C+Cr(ω)+Ce−σ′τ∫τ−∞eσ′r‖g(r,x)‖2dr≡r1(τ,ω). | (2.33) |
Thus, we complete the proof of Lemma 2.2.
Now we establish the following estimates on the exterior of a ball.
Lemma 2.3. Suppose the hypotheses in Lemma 2.2 hold, and let τ∈R,ω∈Ω and D∈D. Then for each ϵ>0. there exists T=T(τ,ω,ϵ,D)>0, and K=K(τ,ω,ϵ)⩾1, such that for all t⩾T,k⩾K and −h⩽s⩽0,
‖φτ(s,τ−t,θ−tω,φτ−t)‖2E(Rd∖Ωk)⩽ϵ, |
where Ωk={x∈Rd:|x|⩽k} and φτ−t=(uτ−t,vτ−t)∈D(τ−t,θ−tω).
Proof. Choose a smooth function ξ(⋅) as follows:
ξ(s)={0,0⩽s⩽1,1,s⩾2, | (2.34) |
where 0⩽ξ(s)⩽1,s∈R+, and with the constants μ1,μ2 satisfying |ξ′(s)|⩽μ1,|ξ′′(s)|⩽μ2 for s∈R+. Taking the inner product of the second equation of (2.7) with ξ2(|x|2k2)v in L2(Rd), we have
ddt∫Rdξ2(|x|2k2)|v|2dx=−2(1−σ)∫Rdξ2(|x|2k2)|v|2dx+2α∫Rd(Δv)ξ2(|x|2k2)vdx+2(1−ασ)∫Rd(Δu)ξ2(|x|2k2)vdx−2(σ2+λ−σ)∫Rduξ2(|x|2k2)vdx+2∫Rdf(x,u(t−ρ(t)))ξ2(|x|2k2)vdx+2∫Rdg(t,x)ξ2(|x|2k2)vdx+2∫Rd(σz(θtω)+αΔz(θtω))ξ2(|x|2k2)vdx=:−2(1−σ)∫Rdξ2(|x|2k2)|v|2dx+6∑i=1Ji. | (2.35) |
Now we estimate each term on the right hand of (2.35). By Young's inequality, Cauchy-Schwarz inequality and (A1), we infer that
J1=−8αk2∫Rd(∇v)ξ(|x|2k2)ξ′(|x|2k2)xvdx−2α∫Rdξ2(|x|2k2)|∇v|2dx⩽8√2αμ1k∫k⩽|x|⩽√2k|∇v||v|dx−2α∫Rdξ2(|x|2k2)|∇v|2dx⩽4√2αμ1k(‖∇v‖2+‖v‖2)−2α∫Rdξ2(|x|2k2)|∇v|2dx. | (2.36) |
J2=−8(1−ασ)k2∫Rd(∇u)ξ(|x|2k2)ξ′(|x|2k2)xvdx−2(1−ασ)∫Rd(∇u)ξ2(|x|2k2)∇vdx, | (2.37) |
where
−8(1−ασ)k2∫Rd(∇u)ξ(|x|2k2)ξ′(|x|2k2)xvdx⩽8√2(1−ασ)μ1k∫k⩽|x|⩽√2k|∇u||v|dx⩽4√2(1−ασ)μ1k(‖∇u‖2+‖v‖2), | (2.38) |
and
−2(1−ασ)∫Rd(∇u)ξ2(|x|2k2)∇vdx=−2(1−ασ)∫Rd(∇u)ξ2(|x|2k2)∇(dudt+σu−z(θtω))dx=−(1−ασ)ddt∫Rdξ2(|x|2k2)|∇u|2dx−2σ(1−ασ)∫Rdξ2(|x|2k2)|∇u|2dx−2(1−ασ)∫Rdξ2(|x|2k2)|u||Δz(θtω)|dx⩽−(1−ασ)ddt∫Rdξ2(|x|2k2)|∇u|2dx−2σ(1−ασ)∫Rdξ2(|x|2k2)|∇u|2dx+(1−ασ)2ε1∫Rdξ2(|x|2k2)|Δz(θtω)|2dx+ε1∫Rdξ2(|x|2k2)|u|2dx. | (2.39) |
J3=−2(σ2+λ−σ)∫Rduξ2(|x|2k2(dudt+σu−z(θtω))dx=−(σ2+λ−σ)ddt∫Rdξ2(|x|2k2)|u|2dx−2σ(σ2+λ−σ)∫Rdξ2(|x|2k2)|u|2dx+2(σ2+λ−σ)∫Rdξ2(|x|2k2)|u||z(θtω)|dx⩽−(σ2+λ−σ)ddt∫Rdξ2(|x|2k2)|u|2dx−2σ(σ2+λ−σ)∫Rdξ2(|x|2k2)|u|2dx+(σ2+λ−σ)2ε1∫Rdξ2(|x|2k2)|z(θtω)|2dx+ε1∫Rdξ2(|x|2k2)|u|2dx, | (2.40) |
J4⩽12ε3∫Rdξ2(|x|2k2)|k1(x)|2dx+k222ε3∫Rdξ2(|x|2k2)|u(t−ρ(t))|2dx+2ε3∫Rdξ2(|x|2k2)|v|2dx, | (2.41) |
J5⩽12ε4∫Rdξ2(|x|2k2)|g(t,x)|2dx+2ε4∫Rdξ2(|x|2k2)|v|2dx, | (2.42) |
J6⩽σ2ε2∫Rdξ2(|x|2k2)|z(θtω)|2dx+α2ε2∫Rdξ2(|x|2k2)|Δz(θtω)|2dx+2ε2∫Rdξ2(|x|2k2)|v|2dx, | (2.43) |
where ε1,ε2,ε3,ε4 are positive constants which will be given later. It follows from (2.35)–(2.42) that
ddt∫Rdξ2(|x|2k2)(|v|2+(1−ασ)|∇u|2+(σ2+λ−σ)|u|2)dx+2α∫Rdξ2(|x|2k2)|∇v|2dx⩽−2((1−σ)−ε2−ε3−ε4)∫Rdξ2(|x|2k2)|v|2dx−(2σ(σ2+λ−σ)−2ε1)∫Rdξ2(|x|2k2)|u|2dx−2σ(1−ασ)∫Rdξ2(|x|2k2)|∇u|2dx+4√2αμ1k(‖∇v‖2+‖v‖2)+4√2(1−ασ)μ1k(‖∇u‖2+‖v‖2)+12ε3∫Rdξ2(|x|2k2)|k1(x)|2dx+k222ε3∫Rdξ2(|x|2k2)|u(t−ρ(t))|2dx+12ε4∫Rdξ2(|x|2k2)|g(t,x)|2dx+((1−ασ)2ε1+α2ε2)∫Rdξ2(|x|2k2)|Δz(θtω)|2dx+((σ2+λ−σ)2ε1+σ2ε2)∫Rdξ2(|x|2k2)|z(θtω)|2dx. | (2.44) |
Let Y=|v|2+(1−ασ)|∇u|2+(σ2+λ−σ)|u|2. Multiplying (2.44) by eσ′t and integrating over (τ−t,τ+s), where s∈[−h,0],σ′ is a fixed constant choosen as in Lemma 2.2, we obtain for each ω∈Ω
eσ′(τ+s)∫Rdξ2(|x|2k2)Y(τ+s,τ−t,ω,Yτ−t)dx+2α∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|∇v(τ+s,τ−t,ω,vτ−t)|2dxdr⩽eσ′(τ−t)∫Rdξ2(|x|2k2)Y(τ−t,τ−t,ω,Yτ−t)dx−(2((1−σ)−ε2−ε3−ε4)−σ′)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|v(r,τ−t,ω,vτ−t)|2dxdr−((2σ−σ′)(σ2+λ−σ)−2ε1)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|u(r,τ−t,ω,uτ−t)|2dxdr−(2σ−σ′)(1−ασ)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|∇u(r,τ−t,ω,uτ−t)|2dxdr+Ck∫τ+sτ−teσ′r(‖∇u(r,τ−t,ω,uτ−t)‖2+‖v(r,τ−t,ω,vτ−t)‖2)dr+Ck∫τ+sτ−teσ′r‖∇v(r,τ−t,ω,vτ−t)‖2dr+12ε3∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|k1(x)|2dxdr+k222ε3∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|u(r−ρ(r),τ−t,ω,uτ−t)|2dxdr+12ε4∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|g(r,x)|2dxdr+((1−ασ)2ε1+α2ε2)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|Δz(θrω)|2dxdr+((σ2+λ−σ)2ε1+σ2ε2)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|z(θrω)|2dxdr. | (2.45) |
Set r′=r−ρ(r). By using the similar arguments in (2.24), we obtain
k222ε3∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)‖u(r−ρ(r),τ−t,ω,uτ−t)‖2dxdr⩽k22eσ′h2ε3(1−ρ∗)∫τ+sτ−t−heσ′r∫Rdξ2(|x|2k2)‖u(r,τ−t,ω,uτ−t‖2dxdr=k22eσ′h2ε3(1−ρ∗)∫τ−tτ−t−heσ′r∫Rdξ2(|x|2k2)‖u(r,τ−t,ω,uτ−t‖2dxdr+k22eσ′h2ε3(1−ρ∗)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)‖u(r,τ−t,ω,uτ−t‖2dxdr⩽k22heσ′heσ′(τ−t)2ε3(1−ρ∗)‖uτ−t‖2Ch+k22eσ′h2ε3(1−ρ∗)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)‖u(r,τ−t,ω,uτ−t‖2dxdr. | (2.46) |
Combining (2.45) and (2.46), we have for ε2=ε3=ε4=1−σ6
∫Rdξ2(|x|2k2)Y(τ+s,τ−t,ω,Yτ−t)dx+2αe−σ′(τ+s)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|∇v(τ+s,τ−t,ω,vτ−t)|2dxdr⩽eσ′he−σ′t∫Rdξ2(|x|2k2)Y(τ−t,τ−t,ω,Yτ−t)dx+3k22he2σ′he−σ′t(1−σ)(1−ρ∗)‖uτ−t‖2Ch−((1−σ)−σ′)e−σ′(τ+s)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|v(r,τ−t,ω,vτ−t)|2dxdr−((2σ−σ′)(σ2+λ−σ)−3k22eσ′h(1−σ)(1−ρ∗)−2ε1)e−σ′(τ+s)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|u(r,τ−t,ω,uτ−t)|2dxdr−(2σ−σ′)(1−ασ)e−σ′(τ+s)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|∇u(r,τ−t,ω,uτ−t)|2dxdr+Cke−σ′(τ+s)∫τ+sτ−teσ′r(‖∇u(r,τ−t,ω,uτ−t)‖2+‖v(r,τ−t,ω,vτ−t)‖2)dr+Cke−σ′(τ+s)∫τ+sτ−teσ′r‖∇v(r,τ−t,ω,vτ−t)‖2dr+31−σe−σ′(τ+s)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|k1(x)|2dxdr+31−σe−σ′(τ+s)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|g(r,x)|2dxdr+((1−ασ)2ε1+3α21−σ)e−σ′(τ+s)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|Δz(θrω)|2dxdr+((σ2+λ−σ)2ε1+3σ21−σ)e−σ′(τ+s)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|z(θrω)|2dxdr. | (2.47) |
Choosing ε1 sufficiently small, together with (2.26)–(2.28), and replacing ω by θ−τω, we have
∫Rdξ2(|x|2k2)Y(τ+s,τ−t,θ−τω,Yτ−t)dx+2αe−σ′(τ+s)∫τ+sτ−teσ′r∫Rdξ2(|x|2k2)|∇v(τ+s,τ−t,θ−τω,vτ−t)|2dxdr⩽Ce−σ′t∫Rdξ2(|x|2k2)Yτ−tdx+Ce−σ′t‖uτ−t‖2Ch+Cke−σ′τ∫ττ−teσ′r(‖∇u(r,τ−t,θ−τω,uτ−t)‖2+‖v(r,τ−t,θ−τω,vτ−t)‖2)dr+Cke−σ′τ∫ττ−teσ′r‖∇v(r,τ−t,θ−τω,vτ−t)‖2dr+Ce−σ′τ∫ττ−teσ′r∫Rdξ2(|x|2k2)|k1(x)|2dxdr+Ce−σ′τ∫ττ−teσ′r∫Rdξ2(|x|2k2)|g(r,x)|2dxdr+Ce−σ′τ∫ττ−teσ′r∫Rdξ2(|x|2k2)|Δz(θr−τω)|2dxdr+Ce−σ′τ∫ττ−teσ′r∫Rdξ2(|x|2k2)|z(θr−τω)|2dxdr. | (2.48) |
We now estimate the terms on the right-hand side of (2.48). Since \varphi^{\tau-t} = (u^{\tau-t}, v^{\tau-t})\in D(\tau-t, \theta_{-t}\omega), given \epsilon > 0, there exists T_1 = T_1(\tau, \omega, D, \epsilon) > 0, K_1 = K_1(\tau, \omega, \epsilon){\geqslant}1, such that for all t > T_1, k > K_1,
\begin{align} & Ce^{-\sigma't}\int_{\mathbb{R}^d}\xi^2(\frac{\vert x\vert^2}{k^2})Y^{\tau-t}dx+ Ce^{-\sigma' t}\Vert u^{\tau-t}\Vert_{C_h}^2{\leqslant} Ce^{-\sigma' t}\Vert \varphi^{\tau-t}\Vert_{\mathscr{E}}^2{\leqslant} C\epsilon. \end{align} | (2.49) |
Due to (A3) and k_1\in L^2(\mathbb{R}^d), there exists K_2 = K_2(\tau, \omega, \epsilon){\geqslant}1, such that for all k > K_2
\begin{align} & Ce^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma' r}\int_{\mathbb{R}^d}\xi^2(\frac{\vert x\vert^2}{k^2})\vert k_1(x)\vert^2dxdr {\leqslant} Ce^{-\sigma' \tau}\int_{\tau-t}^{\tau}e^{\sigma' r}\int_{\vert x\vert{\geqslant} k}\vert k_1(x)\vert^2dxdr{\leqslant} C\epsilon, \end{align} | (2.50) |
and
\begin{align} Ce^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma' r}\int_{\mathbb{R}^d}\xi^2(\frac{\vert x\vert^2}{k^2})\vert g(r, x)\vert^2dxdr &{\leqslant} Ce^{-\sigma'\tau}\int_{-\infty}^{\tau}e^{\sigma' r}\int_{\vert x\vert{\geqslant} k}\vert g(r, x)\vert^2dxdr{}\\ &{\leqslant} Ce^{-\sigma'\tau}\int_{-\infty}^{\tau}e^{\sigma' r}\Vert g(r, x)\Vert^2dxdr{\leqslant} C\epsilon. \end{align} | (2.51) |
Note that z(\theta_t\omega) = \sum\limits_{j = 1}^mh_jz(\theta_t\omega_j) and h_j\in H^2(\mathbb{R}^d), there exists K_3 = K_3(\omega, \epsilon) such that for all k{\geqslant} K_3 and j = 1, 2, \cdots, m,
\begin{align} \int_{\vert x\vert{\geqslant} k}(\vert h_j(x)\vert^2+\vert \nabla h_j(x)\vert^2+\vert \Delta h_j(x)\vert^2)dx{\leqslant}\frac{\epsilon}{r(\omega)}, \end{align} | (2.52) |
where r(\omega) is tempered satisfying (2.4) and (2.5).
By (2.52), we have
\begin{align} & Ce^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma' r}\int_{\mathbb{R}^d}\xi^2(\frac{\vert x\vert^2}{k^2})(\vert\Delta z(\theta_{r-\tau}\omega)\vert^2+\vert z(\theta_{r-\tau}\omega)\vert^2)dxdr{}\\ &{\leqslant} C\int_{\tau-t}^{\tau}e^{\sigma' (r-\tau)}\sum\limits_{j = 1}^m\int_{\vert x\vert{\geqslant} k}(\vert\Delta h_i\vert^2\vert z_j(\theta_{r-\tau}\omega_j)\vert^2+\vert h_j\vert^2\vert z_j(\theta_{r-\tau}\omega_j)\vert^2)dxdr{}\\ &{\leqslant} C\int_{-\infty}^{0}e^{\sigma' r}\sum\limits_{j = 1}^m\int_{\vert x\vert{\geqslant} k}(\vert\Delta h_i\vert^2\vert z_j(\theta_r\omega_j)\vert^2+\vert h_j\vert^2\vert z_j(\theta_r\omega_j)\vert^2)dxdr{}\\ &{\leqslant} \frac{\epsilon}{r(\omega)}\int_{-\infty}^{0}e^{\sigma' r}\sum\limits_{j = 1}^m\vert z_j(\theta_r\omega_j)\vert^2dr{\leqslant} C\epsilon. \end{align} | (2.53) |
In view of Lemma 2.2, (2.4) and (A3), there exists T_2 = T_2(\tau, \omega, D, \epsilon), K_4 = K_4(\epsilon){\geqslant} 1 such that
\begin{align} & \frac{C}{k}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma' r}(\Vert \nabla u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Vert^2+\Vert v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2)dr{}\\ &+ \frac{C}{k}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma' r}\Vert \nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2dr{}\\ &{\leqslant} \frac{C}{k}e^{-\sigma' \tau} \int_{-\infty}^{\tau}e^{\sigma' r}\Vert g(r, x)\Vert^2dr+\frac{C}{k} \int_{-\infty}^0e^{\sigma' r}\sum\limits_{j = 1}^m\vert z_j(\theta_r\omega_j)\vert^2dr+\frac{C}{k} {\leqslant} C\epsilon. \end{align} | (2.54) |
Let T = \rm{max}\{T_1, T_2\} > 0, K = max \{K_1, K_2, K_3, K_4\}{\geqslant} 1. From (2.48)–(2.54) we have for all t > T, k > K,
\int_{\mathbb{R}^d}\xi^2(\frac{\vert x\vert^2}{k^2})Y(\tau+s, \tau-t, \theta_{-\tau}\omega, Y^{\tau-t})dx{\leqslant} C\epsilon, |
which implies
\Vert\varphi^{\tau}(s, \tau-t, \theta_{-t}\omega, \varphi^{\tau-t})\Vert_{\mathscr{E}(\mathbb{R}^d\setminus\Omega_k)}^2{\leqslant} C\epsilon. |
Then the proof of Lemma 2.3 is finished.
We now decompose the solutions of (2.7) and (2.8) in bounded domains and derive some uniform estimates.
Let \Omega_k = \{x\in\mathbb{R}^d:\vert x\vert{\leqslant} k\} , given k{\geqslant} 1 and set
\begin{equation} \left\{ \begin{aligned} &\tilde u(t, \tau, \omega, \tilde u^{\tau}) = (1-\xi^2(\frac{\vert x\vert^2}{k^2})u(t, \tau, \omega, u^{\tau}), \\ &\tilde v(t, \tau, \omega, \tilde v^{\tau}) = (1-\xi^2(\frac{\vert x\vert^2}{k^2})v(t, \tau, \omega, v^{\tau}), \end{aligned} \right. \end{equation} | (2.55) |
where \xi is the cutoff function defined in (2.34).
Multiplying (2.7) by 1-\xi^2(\frac{\vert x\vert^2}{k^2}), we have
\begin{equation} \left\{ \begin{aligned} &\frac{d\tilde u}{dt} = \tilde v-\sigma \tilde u+(1-\xi^2(\frac{\vert x\vert^2}{k^2}))z(\theta_t\omega), \\ &\frac{d\tilde v}{dt} = \alpha\Delta \tilde v+2\alpha\nabla v\nabla\xi^2(\frac{\vert x\vert^2}{k^2})+\alpha v \Delta\xi^2(\frac{\vert x\vert^2}{k^2})-(1-\sigma)\tilde v +(1-\alpha\sigma)\Delta \tilde u\\ &\qquad+2(1-\alpha\sigma)\nabla u\nabla\xi^2(\frac{\vert x\vert^2}{k^2})+(1-\alpha\sigma)\Delta\xi^2(\frac{\vert x\vert^2}{k^2})-(\sigma^2+\lambda-\sigma)\tilde u\\ &\qquad+(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(f(x, u(t-\rho (t)))+g(t, x)+\sigma z(\theta_t\omega)+\alpha\Delta z(\theta_t\omega)), \end{aligned} \right. \end{equation} | (2.56) |
with the initial conditions
\begin{align} \tilde u(\tau+s, x) = \tilde u^{\tau}(x)\equiv(1-\xi^2(\frac{\vert x\vert^2}{k^2}))\phi(s, x), \tilde v(\tau+s, x) = \tilde v^{\tau}(x), \;\; s\in[-h, 0], x\in\mathbb{R}^d, \end{align} | (2.57) |
where \tilde v^{\tau}(x)\equiv(1-\xi^2(\frac{\vert x\vert^2}{k^2}))\psi(s, x)+\sigma(1-\xi^2(\frac{\vert x\vert^2}{k^2}))\phi(s, x)-(1-\xi^2(\frac{\vert x\vert^2}{k^2}))z(\theta_{\tau+s}\omega). Now we decompose (2.56) into two parts. Set \tilde u = u_1+u_2, \tilde v = v_1+v_2, we have two new systems:
\begin{equation} \left\{ \begin{aligned} &\frac{du_2}{dt} = v_2-\sigma u_2, \\ &\frac{dv_2}{dt} = \alpha\Delta v_2-(1-\sigma) v_2 +(1-\alpha\sigma)\Delta u_2 -(\sigma^2+\lambda-\sigma) u_2, \end{aligned} \right. \end{equation} | (2.58) |
with the initial conditions
\begin{align} & u_2^{\tau}(x) = \tilde u(\tau+s, x), v_2^{\tau}(x) = \tilde v(\tau+s, x), \;\; s\in[-h, 0], x\in\Omega_{2k}, \end{align} | (2.59) |
and boundary conditions
\begin{align} u_2(t, x) = 0, v_2(t, x) = 0, \;\; t\in[-h, +\infty), \vert x\vert = 2k, \end{align} | (2.60) |
and
\begin{equation} \left\{ \begin{aligned} &\frac{du_1}{dt} = v_1-\sigma u_1+(1-\xi^2(\frac{\vert x\vert^2}{k^2}))z(\theta_t\omega), \\ &\frac{dv_1}{dt} = \alpha\Delta v_1+2\alpha\nabla v\nabla\xi^2(\frac{\vert x\vert^2}{k^2})+\alpha v \Delta\xi^2(\frac{\vert x\vert^2}{k^2})-(1-\sigma)v_1 +(1-\alpha\sigma)\Delta u_1\\ &\qquad+2(1-\alpha\sigma)\nabla u\nabla\xi^2(\frac{\vert x\vert^2}{k^2})+(1-\alpha\sigma)u\Delta\xi^2(\frac{\vert x\vert^2}{k^2})-(\sigma^2+\lambda-\sigma)u_1\\ &\qquad+(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(f(x, u(t-\rho (t)))+g(t, x)+\sigma z(\theta_t\omega)+\alpha\Delta z(\theta_t\omega)), \end{aligned} \right. \end{equation} | (2.61) |
with the initial conditions
\begin{align} u_1^{\tau}(x) = 0, v_1^{\tau}(x) = 0, \;\; s\in[-h, 0], x\in\Omega_{2k}, \end{align} | (2.62) |
and boundary conditions
\begin{align} u_1(t, x) = 0, v_1(t, x) = 0, \;\; t\in[-h, +\infty), \vert x\vert = 2k. \end{align} | (2.63) |
Using the similar arguments in Lemma 2.2, we derive the following estimate of solutions of (2.56) and (2.57),
\begin{align} &\Vert (\tilde u(\tau+s, \tau-t, \theta_{-\tau}\omega, \tilde u^{\tau-t}), \tilde v(\tau+s, \tau-t, \theta_{-\tau}\omega, \tilde v^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2{}\\ &+C \int_{\tau-t}^{\tau} e^{\sigma' r}\Vert (\tilde u(r+s, \tau-t, \theta_{-\tau}\omega, \tilde u^{\tau-t}), \tilde v(r+s, \tau-t, \theta_{-\tau}\omega, \tilde v^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2dr{}\\ &+2\alpha \int_{\tau-t}^{\tau} e^{\sigma' (r-\tau-s)}\Vert\nabla \tilde v(r, \tau-t, \theta_{-\tau}\omega, \tilde v^{\tau-t})\Vert^2dr{}\\ &{\leqslant} Ce^{-\sigma' t}\Vert\tilde\varphi^{\tau-t}\Vert_{\mathscr{E}(\Omega_{2k})}^2 +Ce^{-\sigma'\tau} \int_{-\infty}^{\tau}e^{\sigma' r}\Vert g(r, x)\Vert^2dr+Cr(\omega)+C. \end{align} | (2.64) |
It follows from (2.64), we obtain the estimate of (u_2, v_2)
\begin{align} &\Vert (u_2(\tau+s, \tau-t, \theta_{-\tau}\omega, u_2^{\tau-t}), v_2(\tau+s, \tau-t, \theta_{-\tau}\omega, v_2^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2{}\\ &+C \int_{\tau-t}^{\tau} e^{\sigma' r}\Vert (u_2(r+s, \tau-t, \theta_{-\tau}\omega , u_2^{\tau-t}), v_2(r+s, \tau-t, \theta_{-\tau}\omega, v_2^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2dr{}\\ &+2\alpha \int_{\tau-t}^{\tau} e^{\sigma' (r-\tau-s)}\Vert\nabla v_2(r, \tau-t, \theta_{-\tau}\omega, v_2^{\tau-t})\Vert^2dr{}\\ &{\leqslant} Ce^{-\sigma' t}\Vert\varphi_2^{\tau-t}\Vert_{\mathscr{E}(\Omega_{2k})}^2 = Ce^{-\sigma' t}\Vert\tilde\varphi^{\tau-t}\Vert_{\mathscr{E}(\Omega_{2k})}^2. \end{align} | (2.65) |
It follows from (2.64) and (2.65) that
\begin{align*} \label{} &\Vert (u_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0), v_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0)\Vert_{\mathscr{E}(\Omega_{2k})}^2\\ &+C \int_{\tau-t}^{\tau} e^{\sigma' r}\Vert (u_1(r+s, \tau-t, \theta_{-\tau}\omega, 0), v_1(r+s, \tau-t, \theta_{-\tau}\omega, 0))\Vert_{\mathscr{E}(\Omega_{2k})}^2dr{\nonumber}\\ &+2\alpha \int_{\tau-t}^{\tau} e^{\sigma' (r-\tau-s)}\Vert\nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2dr\\ &{\leqslant}2\Vert (\tilde u(\tau+s, \tau-t, \theta_{-\tau}\omega, \tilde u^{\tau-t}), \tilde v(\tau+s, \tau-t, \theta_{-\tau}\omega, \tilde v^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2\\ &+2\Vert (u_2(\tau+s, \tau-t, \theta_{-\tau}\omega, u_2^{\tau-t}), v_2(\tau+s, \tau-t, \theta_{-\tau}\omega, v_2^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2\\ &+2C \int_{\tau-t}^{\tau} e^{\sigma' r}\Vert (\tilde u(r+s, \tau-t, \theta_{-\tau}\omega, \tilde u^{\tau-t}), \tilde v(r+s, \tau-t, \theta_{-\tau}\omega, \tilde v^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2dr\\ &+2C \int_{\tau-t}^{\tau} e^{\sigma' r}\Vert (u_2(r+s, \tau-t, \theta_{-\tau}\omega, u_2^{\tau-t}), v_2(r+s, \tau-t, \theta_{-\tau}\omega, v_2^{\tau-t}))\Vert_{\mathscr{E}(\Omega_{2k})}^2dr{\nonumber}\\ &+4\alpha \int_{\tau-t}^{\tau} e^{\sigma' (r-\tau-s)}\Vert\nabla \tilde v(r, \tau-t, \theta_{-\tau}\omega, \tilde v^{\tau-t})\Vert^2dr\\ &+4\alpha \int_{\tau-t}^{\tau} e^{\sigma' (r-\tau-s)}\Vert\nabla v_2(r, \tau-t, \theta_{-\tau}\omega, v_2^{\tau-t})\Vert^2dr\\ &{\leqslant} Ce^{-\sigma' t}\Vert\tilde\varphi^{\tau-t}\Vert_{\mathscr{E}(\Omega_{2k})}^2 +Ce^{-\sigma'\tau} \int_{-\infty}^{\tau}e^{\sigma' r}\Vert g(r, x)\Vert^2dr+C r(\omega)+C, \end{align*} |
Since \tilde\varphi^{\tau-t} = (\tilde u^{\tau-t}, \tilde v^{\tau-t})\in D(\tau-t, \theta_{-t}\omega)\in\mathcal{D}({\mathscr{E}(\Omega_{2k})}), we have
\lim\sup\limits_{t\rightarrow \infty}Ce^{-\sigma' t}\Vert\tilde\varphi^{\tau-t}\Vert_{\mathscr{E}(\Omega_{2k})}^2{\leqslant}\lim\sup\limits_{t\rightarrow \infty}Ce^{-\sigma' t}\Vert D(\tau-t, \theta_{-t}\omega)\Vert_{\mathscr{E}(\Omega_{2k})}^2 = 0, |
Therefore, there exists T = T(\tau, \omega, D) > 0 such that for all t{\geqslant} T,
Ce^{-\sigma' t}\Vert\tilde\varphi^{\tau-t}\Vert_{\mathscr{E}(\Omega_{2k})}^2{\leqslant}1. |
Thus, for all t{\geqslant} T, we have
\begin{align} &\Vert (u_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0), v_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0)\Vert_{\mathscr{E}(\Omega_{2k})}^2{}\\ &+C \int_{\tau-t}^{\tau} e^{\sigma' r}\Vert (u_1(r+s, \tau-t, \theta_{-\tau}\omega, 0), v_1(r+s, \tau-t, \theta_{-\tau}\omega, 0))\Vert_{\mathscr{E}(\Omega_{2k})}^2dr{}\\ &+2\alpha \int_{\tau-t}^{\tau} e^{\sigma' (r-\tau-s)}\Vert\nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2dr{}\\ &{\leqslant} C++Cr(\omega)+Ce^{-\sigma'\tau} \int_{-\infty}^{\tau}e^{\sigma' r}\Vert g(r, x)\Vert^2dr{\leqslant} Cr_1(\tau, \omega), \end{align} | (2.66) |
where r_1(\tau, \omega) is defined in Lemma 2.2.
Furthermore, we can give the uniform estimates of (\Delta u_1, \Delta v_1), which imply the higher regularity of (u_1, v_1).
Lemma 2.4. Assume the hypotheses in Lemma 2.2 hold, and let \tau\in\mathbb{R}, \omega\in\Omega and D\in\mathcal{D}({\mathscr{E}(\Omega_{2k})}). Then for given \epsilon > 0, there exist random variables r_2(\tau, \omega), and T = T(\tau, \omega, D) > 0, such that for all t{\geqslant} T, k{\geqslant} 1 and -h{\leqslant} s{\leqslant} 0,
\begin{align*} & (1-\alpha\sigma)\Vert\Delta u_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2+\Vert \nabla v_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2\\ &+ \alpha \int_{\tau-t}^{\tau}e^{\sigma'(r-\tau-s)}\Vert \Delta v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2dr{\leqslant} r_2(\tau, \omega), \end{align*} |
where r_2(\tau, \omega) = Cr_1(\tau, \omega), r_1(\tau, \omega) is defined as in Lemma 2.2.
Proof. From the first equation in (2.61), we have
\begin{align} \frac{d}{dt}\Delta u_1 = \Delta v_1-\sigma \Delta u_1+(1-\xi^2(\frac{\vert x\vert^2}{k^2}))\Delta z(\theta_t\omega). \end{align} | (2.67) |
Taking the inner product of the second equation in (2.61) and (2.67) with -\Delta v_1 and \Delta u_1 respectively, we have
\begin{align} & \frac{d}{dt}\Vert v_1\Vert^2{}\\ & = -2\alpha\Vert v_1\Vert^2-2(1-\sigma)\Vert \nabla v_1\Vert^2-2(1-\alpha\sigma)(\Delta u_1, \Delta v_1)+2(\sigma^2+\lambda-\sigma)(u_1, \Delta v_1){}\\ & -4\alpha(\nabla v\nabla\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1)-2\alpha (v \Delta\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1){}\\ & -4(1-\alpha\sigma)(\nabla u\nabla\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1)-2(1-\alpha\sigma)(u\Delta\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1){}\\ & -2(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(f(x, u(t-\rho (t)))+g(t, x)+\sigma z(\theta_t\omega)+\alpha\Delta z(\theta_t\omega), \Delta v_1), \end{align} | (2.68) |
and
\begin{align} \frac{d}{dt}\Vert\Delta u_1\Vert^2 = 2(\Delta v_1, \Delta u_1)-2\sigma \Vert\Delta u_1\Vert^2+2(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(\Delta z(\theta_t\omega), \Delta u_1). \end{align} | (2.69) |
Adding up (2.69) \times (1-\alpha\sigma) and (2.68), we obtain
\begin{align} & \frac{d}{dt}((1-\alpha\sigma)\Vert\Delta u_1\Vert^2+\Vert \nabla v_1\Vert^2){}\\ & = -2\sigma(1-\alpha\sigma) \Vert\Delta u_1\Vert^2-2\alpha\Vert \Delta v_1\Vert^2-2(1-\sigma)\Vert \nabla v_1\Vert^2+2(\sigma^2+\lambda-\sigma)(u_1, \Delta v_1){}\\ & -2(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(f(x, u(t-\rho (t)))+g(t, x), \Delta v_1){}\\& -2(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(\sigma z(\theta_t\omega)+\alpha\Delta z(\theta_t\omega), \Delta v_1)+2(1-\alpha\sigma)(1-\xi^2(\frac{\vert x\vert^2}{k^2}))(\Delta z(\theta_t\omega), \Delta u_1){}\\ & -\big[4\alpha(\nabla v\nabla\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1)+2\alpha (v \Delta\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1)\big]{}\\ & -\big[4(1-\alpha\sigma)(\nabla u\nabla\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1)+2(1-\alpha\sigma)(u\Delta\xi^2(\frac{\vert x\vert^2}{k^2}), \Delta v_1)\big]{}\\ & = -2\sigma(1-\alpha\sigma) \Vert\Delta u_1\Vert^2-2\alpha\Vert \Delta v_1\Vert^2-2(1-\sigma)\Vert \nabla v_1\Vert^2+\sum\limits_{i = 1}^6{{\mathscr T}}_i. . \end{align} | (2.70) |
Next, we give the estimates of the terms on the right-hand of (2.70). It follows from Cauchy-Schwarz inequality and Young's inequality that
\begin{align*} {{\mathscr T}}_1{\leqslant}\frac{\alpha}{9}\Vert \Delta v_1\Vert^2+\frac{9(\sigma^2+\lambda-\sigma)^2}{\alpha}\Vert u_1\Vert^2, \end{align*} |
\begin{align*} {{\mathscr T}}_2{\leqslant}\frac{2\alpha}{9}\Vert \Delta v_1\Vert^2+\frac{9}{\alpha}\Vert k_1\Vert^2++\frac{9k_2^2}{\alpha}\Vert u^t\Vert_{C_h}^2+\frac{9}{\alpha}\Vert g(t, x)\Vert^2, \end{align*} |
\begin{align*} {{\mathscr T}}_3{\leqslant}\frac{2\alpha}{9}\Vert \Delta v_1\Vert^2+\frac{9\sigma^2}{\alpha}\Vert z(\theta_t\omega)\Vert^2+\frac{9}{\alpha}\Vert \Delta z(\theta_t\omega)\Vert^2, \end{align*} |
and
\begin{align*} {{\mathscr T}}_4{\leqslant}\sigma(1-\alpha\sigma)\Vert \Delta u_1\Vert^2+\sigma(1-\alpha\sigma)\Vert \Delta z(\theta_t\omega)\Vert^2. \end{align*} |
Using the properties of the cutoff function \xi , we infer that
\begin{align*} &{{\mathscr T}}_5 = -4\alpha(\frac{4x}{k^2}\nabla v\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2}), \Delta v_1){\nonumber}\\ &\;\;\; -2\alpha (v (\frac{4}{k^2}\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2})+\frac{8x^2}{k^4}(\xi^{\prime}(\frac{\vert x\vert^2}{k^2}))^2+\frac{8x^2}{k^4}\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime\prime}(\frac{\vert x\vert^2}{k^2})), \Delta v_1), \end{align*} |
where
\begin{align*} -4\alpha(\frac{4x}{k^2}\nabla v\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2}), \Delta v_1)& = -\frac{16\alpha}{k^2}\int_{\Omega_{2k}}x\nabla v\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2})\Delta v_1dx{\nonumber}\\ &{\leqslant} \frac{16\sqrt{2}\alpha\mu_1}{k}\int_{k{\leqslant}\vert x\vert{\leqslant}\sqrt{2}k}\vert\nabla v\vert\vert\Delta v_1\vert dx{\nonumber}\\ &{\leqslant} \frac{16\sqrt{2}\alpha\mu_1}{k}\int_{\Omega_{2k}}\vert\nabla v\vert\vert\Delta v_1\vert dx{\nonumber}\\ &{\leqslant} \frac{\alpha}{9}\Vert \Delta v_1\Vert^2+\frac{2^73^2\mu_1^2\alpha}{k^2}\Vert \nabla v\Vert^2, \end{align*} |
and similarly,
\begin{align*} & -2\alpha (v (\frac{4}{k^2}\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2})+\frac{8x^2}{k^4}(\xi^{\prime}(\frac{\vert x\vert^2}{k^2}))^2+\frac{8x^2}{k^4}\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime\prime}(\frac{\vert x\vert^2}{k^2})), \Delta v_1){\nonumber}\\ &{\leqslant} \frac{\alpha}{9}\Vert \Delta v_1\Vert^2+(\frac{2^43^3\mu_1^2\alpha}{k^4}+\frac{2^83^3\mu_1^4\alpha}{k^4}+\frac{2^83^3\mu_2^2\alpha}{k^4})\Vert v\Vert^2. \end{align*} |
Thus we have
\begin{align*} &{{\mathscr T}}_5{\leqslant} \frac{2\alpha}{9}\Vert \Delta v_1\Vert^2+\frac{2^73^2\mu_1^2\alpha}{k^2}\Vert \nabla v\Vert^2+(\frac{2^43^3\mu_1^2\alpha}{k^4}+\frac{2^83^3\mu_1^4\alpha}{k^4}+\frac{2^83^3\mu_2^2\alpha}{k^4})\Vert v\Vert^2. \end{align*} |
In the same way we obtain
\begin{align*} {{\mathscr T}}_6&{\leqslant} \frac{2\alpha}{9}\Vert \Delta v_1\Vert^2+\frac{2^73^2\mu_1^2\alpha}{k^2}\Vert \nabla u\Vert^2{\nonumber}\\ &\quad+(\frac{2^43^3\mu_1^2(1-\alpha\sigma)}{k^4\alpha}+\frac{2^83^3\mu_1^4(1-\alpha\sigma)}{k^4\alpha}+\frac{2^83^3\mu_2^2(1-\alpha\sigma)}{k^4\alpha})\Vert u\Vert^2. \end{align*} |
Combining these estimates with (2.70), we get
\begin{align} & \frac{d}{dt}((1-\alpha\sigma)\Vert\Delta u_1\Vert^2+\Vert \nabla v_1\Vert^2)+\alpha\Vert \Delta v_1\Vert^2{}\\ & {\leqslant}-\sigma(1-\alpha\sigma) \Vert\Delta u_1\Vert^2-2(1-\sigma)\Vert \nabla v_1\Vert^2+\frac{9(\sigma^2+\lambda-\sigma)^2}{\alpha}\Vert u_1\Vert^2{}\\ &\quad+\frac{C}{k^2}(\Vert \nabla u\Vert^2+\Vert \nabla v\Vert^2)+\frac{C}{k^4}(\Vert u\Vert^2+\Vert v\Vert^2){}\\ &\quad+ \frac{9}{\alpha}\Vert k_1\Vert^2++\frac{9k_2^2}{\alpha}\Vert u^t\Vert_{C_h}^2+\frac{9}{\alpha}\Vert g(t, x)\Vert^2{}\\ &\quad+\frac{9\sigma^2}{\alpha}\Vert z(\theta_t\omega)\Vert^2+(\sigma(1-\alpha\sigma)+\frac{9}{\alpha})\Vert \Delta z(\theta_t\omega)\Vert^2. \end{align} | (2.71) |
Let \sigma' > 0 be a constant satisfying (2.11)–(2.13). Multiplying e^{\sigma' t} on both sides of (2.71) and integrating over (\tau-t, \tau+s) , where s\in[-h, 0], we obtain
\begin{align} & (1-\alpha\sigma)\Vert\Delta u_1(\tau+s, \tau-t, \omega, 0)\Vert^2+\Vert \nabla v_1(\tau+s, \tau-t, \omega, 0)\Vert^2{}\\ &+ \alpha e^{-\sigma'(\tau+s)}\int_{\tau-t}^{\tau+s}e^{\sigma'r}\Vert \Delta v_1(r, \tau-t, \omega, 0)\Vert^2dr{}\\ & {\leqslant}-(\sigma-\sigma')(1-\alpha\sigma)e^{-\sigma'(\tau+s)}\int_{\tau-t}^{\tau+s}e^{\sigma'r} \Vert\Delta u_1(r, \tau-t, \omega, 0)\Vert^2dr{}\\ & -(2(1-\sigma)-\sigma')e^{-\sigma'(\tau+s)}\int_{\tau-t}^{\tau+s}e^{\sigma'r}\Vert \nabla v_1(r, \tau-t, \omega, 0)\Vert^2dr{}\\ &+ \frac{9(\sigma^2+\lambda-\sigma)^2}{\alpha}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}\Vert u_1(r, \tau-t, \omega, 0)\Vert^2dr{}\\ & +\frac{C}{k^2}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}(\Vert \nabla u(r, \tau-t, \omega, u^{\tau-t})\Vert^2+\Vert \nabla v(r, \tau-t, \omega, v^{\tau-t})\Vert^2)dr{}\\ & +\frac{C}{k^4}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}(\Vert u(r, \tau-t, \omega, u^{\tau-t})\Vert^2+\Vert v(r, \tau-t, \omega, v^{\tau-t})\Vert^2)dr{}\\ &+ C+\frac{9k_2^2}{\alpha}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}\Vert u^r(s, \tau-t, \omega, u^{\tau-t})\Vert_{C_h}^2dr{}\\ & +Ce^{-\sigma'\tau}\int_{-\infty}^{\tau}e^{\sigma'r}\Vert g(r, x)\Vert^2dr+Ce^{-\sigma'\tau}\int_{-\infty}^{0}e^{\sigma'r}(\Vert \Delta z(\theta_r\omega)\Vert^2+\Vert z(\theta_r\omega)\Vert^2)dr. \end{align} | (2.72) |
Now we replace \omega by \theta_{-\tau}\omega and estimate the terms on the right-hand of (2.72).
By Lemma 2.2, there exists T_1 = T_1(\tau, \omega, D) > 0, such that for all t{\geqslant} T_1,
\begin{align} & \frac{C}{k^2}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}(\Vert \nabla u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Vert^2+\Vert \nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2)dr{}\\ & +\frac{C}{k^4}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}(\Vert u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Vert^2+\Vert v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2)dr{}\\ & {\leqslant} C r_1(\tau, \omega), \end{align} | (2.73) |
and
\begin{align} \frac{9k_2^2}{\alpha}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}\Vert u^r(s, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Vert_{C_h}^2dr{\leqslant} C r_1(\tau, \omega). \end{align} | (2.74) |
From (2.66), there exists T_2 = T_2(\tau, \omega, D) > 0, such that for all t{\geqslant} T_2,
\begin{align} \frac{9(\sigma^2+\lambda-\sigma)^2}{\alpha}e^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}\Vert u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2dr{\leqslant} C r_1(\tau, \omega). \end{align} | (2.75) |
By (2.30), we obtain
\begin{align} Ce^{-\sigma'\tau}\int_{-\infty}^{\tau}e^{\sigma'r}\Vert g(r, x)\Vert^2dr+Ce^{-\sigma'\tau}\int_{\tau-t}^{\tau}e^{\sigma'r}(\Vert \Delta z(\theta_{r-\tau}\omega)\Vert^2+\Vert z(\theta_{r-\tau}\omega)\Vert^2)dr{\leqslant} Cr_1(\tau, \omega). \end{align} | (2.76) |
Let T = max \{T_1, T_2\} . It follows from (2.72)–(2.76) that for all t{\geqslant} T,
\begin{align*} & (1-\alpha\sigma)\Vert\Delta u_1(\tau+s, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2+\Vert \nabla v_1(\tau+s, \tau-t, \theta_{-\tau}\theta_{-\tau}\omega, 0)\Vert^2\\ &+ \alpha \int_{\tau-t}^{\tau}e^{\sigma'(r-\tau-s)}\Vert \Delta v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2dr{\leqslant} Cr_1(\tau, \omega) \equiv r_2(\tau, \omega). \end{align*} |
Thus we complete the proof of Lemma 2.4. Next, we establish the Hölder continuity of \varphi_1 in time, which will be useful to show the equicontinuity of solutions in C([-h, 0], E(\Omega_{2k})) based on the Arzela-Ascoli theorem.
Lemma 2.5. Assume the hypotheses in Lemma 2.2 hold, and let \tau\in\mathbb{R}, \omega\in\Omega and D\in\mathcal{D}({\mathscr{E}(\Omega_{2k})}). Then there exist random variables r_3(\tau, \omega) and T = T(\tau, \omega, D) > 0, such that for all t{\geqslant} T, k{\geqslant} 1 and -h{\leqslant} \eta_1 < \eta_2{\leqslant} 0,
\begin{array}{rrll} &\Vert \varphi_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-\varphi_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert_{E(\Omega_{2k})}^2{\leqslant} r_3(\tau, \omega)\vert\eta_2-\eta_1\vert^{\frac{1}{2}} \end{array} |
where \varphi_1^{\tau}(\eta_i, \tau-t, \theta_{-\tau}\omega, 0) = (u_1^{\tau}(\eta_i, \tau-t, \theta_{-\tau}\omega, 0), v_1^{\tau}(\eta_i, \tau-t, \theta_{-\tau}\omega, 0)), i = 1, 2 .
Proof. By the definition of the norm \Vert\cdot\Vert_E, we have
\begin{align} &\Vert \varphi_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-\varphi_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert_{E(\Omega_{2k})}^2{}\\ & = (\sigma^2+\lambda-\sigma)\Vert u_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-u_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert^2{}\\ &+(1-\alpha\sigma)\Vert \nabla u_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-\nabla u_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert^2{}\\ &+\Vert v_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-v_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert^2)^{\frac{1}{2}}{}\\ &{\leqslant}(\sigma^2+\lambda-\sigma)\Vert u_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-u_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert{}\\ &+(1-\alpha\sigma)\Vert \nabla u_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-\nabla u_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert{}\\ &+\Vert v_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-v_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert{}\\ & {\leqslant}(\sigma^2+\lambda-\sigma)\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \frac{d}{dr}u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & +(1-\alpha\sigma)\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla\frac{d}{dr}u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ &+ \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \frac{d}{dr}v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr. \end{align} | (2.77) |
From (2.61), we have
\frac{du_1}{dt} = v_1-\sigma u_1+(1-\xi^2(\frac{\vert x\vert^2}{k^2}))z(\theta_t\omega), |
together with (2.66), we know that
there exists T_1 = T_1(\tau, \omega, D) > 0 such that for all t{\geqslant} T_1,
\begin{align} & \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \frac{d}{dr}u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & {\leqslant}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr+\sigma\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & +\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert z(\theta_{r-\tau}\omega)\Vert dr{}\\ & {\leqslant}\bigg\{\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr\right)^{\frac{1}{2}}+\sigma\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr\right)^{\frac{1}{2}}{}\\ & +\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert z(\theta_{r-\tau}\omega)\Vert^2 dr\right)^{\frac{1}{2}}\bigg\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\Bigg\{\left(1+\frac{\sigma}{\sqrt{\sigma^2+\lambda-\sigma}}\right)\left(\int_{\tau+\eta_1}^{\tau+\eta_2} r_1(\tau, \theta_{r-\tau}\omega) dr\right)^{\frac{1}{2}}{}\\ & +\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert z(\theta_{r-\tau}\omega)\Vert^2 dr\right)^{\frac{1}{2}}\Bigg\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & = \left\{\left(1+\frac{\sigma}{\sqrt{\sigma^2+\lambda-\sigma}}\right)\left(\int_{\eta_1}^{\eta_2}r_1(\tau, \theta_{r}\omega) dr\right)^{\frac{1}{2}} +\left(\int_{\eta_1}^{\eta_2}\Vert z(\theta_{r}\omega)\Vert^2 dr\right)^{\frac{1}{2}}\right\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left\{\left(1+\frac{\sigma} {\sqrt{\sigma^2+\lambda-\sigma}}\right)h^{\frac{1}{2}} \left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}} +e^{\frac{\sigma'h}{4}}h^{\frac{1}{2}} r^{\frac{1}{2}}(\omega)\right\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}} \end{align} | (2.78) |
Since
\begin{align} e^{-\sigma'h}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr&{\leqslant} \int_{\tau+\eta_1}^{\tau+\eta_2}e^{\sigma'(r-\tau-\eta_2)}\Vert \nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr{}\\ &{\leqslant} \int_{\tau-t}^{\tau+\eta_2}e^{\sigma'(r-\tau-\eta_2)}\Vert \nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr, \end{align} | (2.79) |
by (2.66) and (2.79), we get for t{\geqslant} T_1,
\begin{align} \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr{\leqslant} Ce^{\sigma'h}r_1(\tau, \omega). \end{align} | (2.80) |
Using the similar computation in (2.78), we obtain for t{\geqslant} T_1,
\begin{align} & \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \frac{d}{dr}\nabla u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & {\leqslant}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr+\sigma\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & +\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla z(\theta_{r-\tau}\omega)\Vert dr{}\\ & {\leqslant}\bigg\{\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr\right)^{\frac{1}{2}}+\sigma\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr\right)^{\frac{1}{2}}{}\\ & +\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla z(\theta_{r-\tau}\omega)\Vert^2 dr\right)^{\frac{1}{2}}\bigg\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\Bigg\{C^\frac{1}{2}\sqrt{r_1(\tau, \omega)}+\frac{C^\frac{1}{2}\sigma}{\sqrt{1-\alpha\sigma}}\left(\int_{\tau+\eta_1}^{\tau+\eta_2} r_1(\tau, \theta_{r-\tau}\omega) dr\right)^{\frac{1}{2}}{}\\ & +\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert z(\theta_{r-\tau}\omega)\Vert^2 dr\right)^{\frac{1}{2}}\Bigg\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & = \left\{C^\frac{1}{2}\sqrt{r_1(\tau, \omega)}+\frac{C^\frac{1}{2}\sigma}{\sqrt{1-\alpha\sigma}}\left(\int_{\eta_1}^{\eta_2}r_1(\tau, \theta_{r}\omega) dr\right)^{\frac{1}{2}} +\left(\int_{\eta_1}^{\eta_2}\Vert z(\theta_{r}\omega)\Vert^2 dr\right)^{\frac{1}{2}}\right\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left\{C^\frac{1}{2}\sqrt{r_1(\tau, \omega)}+\frac{C^\frac{1}{2}\sigma}{\sqrt{1-\alpha\sigma}}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}} +e^{\frac{\sigma'h}{4}}h^{\frac{1}{2}}r^{\frac{1}{2}}(\omega)\right\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}} \end{align} | (2.81) |
By (2.61), we get
\begin{align} & \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \frac{d}{dr}v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ &{\leqslant}\alpha \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\Delta v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr+(1-\alpha\sigma) \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\Delta u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & +(1-\sigma) \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr+(\sigma^2+\lambda-\sigma) \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ & +2\alpha\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\nabla\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & +\alpha\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t}) \Delta\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & +2(1-\alpha\sigma)\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\nabla u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\nabla\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & +(1-\alpha\sigma)\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Delta\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & +\int_{\tau+\eta_1}^{\tau+\eta_2}(\Vert f(x, u(r-\rho (r)))\Vert+\Vert g(r, x)\Vert)dr + \int_{\tau+\eta_1}^{\tau+\eta_2}(\sigma\Vert z(\theta_r\omega)\Vert +\alpha\Vert \Delta z(\theta_r\omega)\Vert)dr. \end{align} | (2.82) |
By (2.66), we have for t{\geqslant} T_1,
\begin{align} & (1-\sigma) \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr+(\sigma^2+\lambda-\sigma) \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ &{\leqslant} C\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert (u_1(r+s, \tau-t, \theta_{-\tau}\omega, 0), v_1(r+s, \tau-t, \theta_{-\tau}\omega, 0))\Vert_{\mathscr{E}(\Omega_{2k})}^2 dr\right)^{\frac{1}{2}}\vert \eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ &{\leqslant} C\left(\int_{\tau+\eta_1}^{\tau+\eta_2} r_1(\tau, \theta_{r-\tau}\omega)dr\right)^{\frac{1}{2}}\vert \eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ &{\leqslant} Ch^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\vert \eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align} | (2.83) |
By Lemma 2.4, we know that there exists T_2 = T_2(\tau, \omega, D) such that for t > T_2,
\begin{align} &\alpha \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\Delta v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr+(1-\alpha\sigma) \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\Delta u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert dr{}\\ &{\leqslant}\Bigg\{\alpha \left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\Delta v_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr\right)^{\frac{1}{2}}{}\\ &+(1-\alpha\sigma) \left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\Delta u_1(r, \tau-t, \theta_{-\tau}\omega, 0)\Vert^2 dr\right)^{\frac{1}{2}}\Bigg\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ &{\leqslant}\left\{\alpha \sqrt {r_2(\tau, \omega)}+(1-\alpha\sigma)\left(\sup\limits_{r\in[-h, 0]}r_2(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\right\}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align} | (2.84) |
From Lemma 2.2, we find that there exists T_3 = T_3(\tau, \omega, D) such that for t > T_3,
\begin{align} & 2\alpha\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\nabla\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & = \frac{8\alpha}{k^2}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert x\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2})\nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert dr{}\\ & {\leqslant}\frac{8\sqrt{2}\alpha\mu_1}{k}\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\frac{8\sqrt{\alpha}\mu_1e^{\frac{\sigma'h}{2}}}{k}\left(\int_{\tau-t}^{\tau+\eta_2}e^{r-\tau-\eta_2}\Vert \nabla v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\frac{8\sqrt{\alpha}\mu_1e^{\frac{\sigma'h}{2}}}{k}\sqrt{r_1(\tau, \omega)}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}, \end{align} | (2.85) |
and
\begin{align} & \alpha\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t}) \Delta\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & = \frac{4\alpha}{k^2}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert xv(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t}) \left((\xi^{\prime}(\frac{\vert x\vert^2}{k^2}))^2+\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime\prime}(\frac{\vert x\vert^2}{k^2})\right)\Vert dr{}\\ &+ \frac{4\alpha}{k^2}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & {\leqslant}\frac{4\sqrt{2}k\alpha(\mu_1^2+\mu_2)+4\alpha\mu_1}{k^2}\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert v(r, \tau-t, \theta_{-\tau}\omega, v^{\tau-t})\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\frac{4\sqrt{2}k\alpha(\mu_1^2+\mu_2)+4\alpha\mu_1}{k^2}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align} | (2.86) |
Similarly, we have for t > T_3,
\begin{align} & (1-\alpha\sigma)\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t}) \Delta\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & {\leqslant}\frac{4\sqrt{2}k(1-\alpha\sigma)(\mu_1^2+\mu_2)+4(1-\alpha\sigma)\mu_1}{k^2}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}, \end{align} | (2.87) |
and
\begin{align} & 2(1-\alpha\sigma)\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert\nabla u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\nabla\xi^2(\frac{\vert x\vert^2}{k^2})\Vert dr{}\\ & = \frac{8(1-\alpha\sigma)}{k^2}\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert x\xi(\frac{\vert x\vert^2}{k^2})\xi^{\prime}(\frac{\vert x\vert^2}{k^2})\nabla u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Vert dr{}\\ & {\leqslant}\frac{8\sqrt{2}(1-\alpha\sigma)\mu_1}{k}\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert \nabla u(r, \tau-t, \theta_{-\tau}\omega, u^{\tau-t})\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\frac{8\sqrt{2}(1-\alpha\sigma)\mu_1}{k}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align} | (2.88) |
By (A1) and Lemma 2.2, we obtain for t > T_3,
\begin{align} & \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert f(x, u(r-\rho (r)))\Vert dr{}\\ & {\leqslant}\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert f(x, u(r-\rho (r)))\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left(\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert k_1\Vert^2+k_2^2\Vert u(r-\rho (r))\Vert dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left(h\Vert k_1\Vert^2+k_2^2\int_{\tau+\eta_1}^{\tau+\eta_2}\Vert u^r\Vert_{C_h} dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left(h\Vert k_1\Vert^2+k_2^2h^{\frac{1}{2}}\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}, \end{align} | (2.89) |
and
\begin{align} & \int_{\tau+\eta_1}^{\tau+\eta_2}\Vert g(r, x)\Vert dr{\leqslant}\left(\int_{\tau+\eta_1}^{\tau}\Vert g(r, x)\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left(\int_{-\infty}^{\tau}e^{\sigma'(r-\tau)}\Vert g(r, x)\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}{}\\ & {\leqslant}\left(\int_{-\infty}^{\tau}e^{\sigma'(r-\tau)}\Vert g(r, x)\Vert^2 dr\right)^{\frac{1}{2}}\vert\eta_2-\eta_1\vert^{\frac{1}{2}} {\leqslant} C^{\frac{1}{2}}\sqrt{r_1(\tau, \omega)}\vert\eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align} | (2.90) |
Noting that h_j\in H^2(\mathbb{R}^d) and by (2.6), we have
\begin{align} \int_{\tau+\eta_1}^{\tau+\eta_2}(\sigma\Vert z(\theta_r\omega)\Vert +\alpha\Vert \Delta z(\theta_r\omega)\Vert)dr {\leqslant} (\sigma+\alpha)C^{\frac{1}{2}}h^{\frac{1}{2}}e^{\frac{\sigma'h}{4}}r^{\frac{1}{2}}(\omega)\vert\eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align} | (2.91) |
Set T = max \{T_1, T_2, T_3\},
\begin{align} & r_3(\tau, \omega)\equiv(\sigma^2+\lambda-\sigma)\left\{\left(1+\frac{\sigma}{\sqrt{\sigma^2+\lambda-\sigma}}\right)h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}} +e^{\frac{\sigma'h}{4}}h^{\frac{1}{2}}r^{\frac{1}{2}}(\omega)\right\}{}\\ &\qquad\quad\;\;+ (1-\alpha\sigma)\left\{C^\frac{1}{2}\sqrt{r_1(\tau, \omega)}+\frac{C^\frac{1}{2}\sigma}{\sqrt{1-\alpha\sigma}}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}} +e^{\frac{\sigma'h}{4}}h^{\frac{1}{2}}r^{\frac{1}{2}}(\omega)\right\}{}\\ &\qquad\quad\;\; +Ch^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}+\left\{\alpha \sqrt {r_2(\tau, \omega)}+(1-\alpha\sigma)\left(\sup\limits_{r\in[-h, 0]}r_2(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}\right\}{}\\ &\qquad\quad\;\; +\frac{8\sqrt{\alpha}\mu_1e^{\frac{\sigma'h}{2}}}{k}\sqrt{r_1(\tau, \omega)}+\frac{4\sqrt{2}k\alpha(\mu_1^2+\mu_2)+4\alpha\mu_1}{k^2}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}{}\\ &\qquad\quad\;\; +\frac{4\sqrt{2}k(1-\alpha\sigma)(\mu_1^2+\mu_2)+4(1-\alpha\sigma)\mu_1}{k^2}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}{}\\ &\qquad\quad\;\; +\frac{8\sqrt{2}(1-\alpha\sigma)\mu_1}{k}h^{\frac{1}{2}}\left(\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}+C^{\frac{1}{2}}\sqrt{r_1(\tau, \omega)}{}\\ &\qquad\quad\;\; +\left(h\Vert k_1\Vert^2+k_2^2h^{\frac{1}{2}}\sup\limits_{r\in[-h, 0]}r_1(\tau, \theta_{r}\omega)\right)^{\frac{1}{2}}+(\sigma+\alpha)C^{\frac{1}{2}}h^{\frac{1}{2}}e^{\frac{\sigma'h}{4}}r^{\frac{1}{2}}(\omega). \end{align} | (2.92) |
It follows from (2.77)–(2.92) that, for t > T,
\begin{align*} &\Vert \varphi_1^{\tau}(\eta_2, \tau-t, \theta_{-\tau}\omega, 0)-\varphi_1^{\tau}(\eta_1, \tau-t, \theta_{-\tau}\omega, 0))\Vert_{E(\Omega_{2k})}^2{\leqslant} r_3(\tau, \omega)\vert\eta_2-\eta_1\vert^{\frac{1}{2}}. \end{align*} |
This completes the proof of Lemma 2.5.
In this section, we aim to prove the existence of tempered pullback random attractors for the system (1.1) and (1.2) in \mathscr{E}. Firstly we show the existence of the pullback absorbing set as follows.
Lemma 3.1. Suppose the hypotheses in Lemma 2.2 hold. Then the continuous cocycle \Phi has a closed measurable \mathcal{D} -pullback absorbing set K = \{K(\tau, \omega):\tau\in{{\mathbb R}}, \omega\in\Omega\}\in\mathcal{D}.
Proof. Set
K(\tau, \omega) = \{\varphi\in\mathscr{E}:\Vert\varphi\Vert_{\mathscr{E}}^2{\leqslant} r_1(\tau, \omega)\}, |
where r_1(\tau, \omega) is given by (2.15). It is evident that, for each \tau\in\mathbb{R}, r_1(\tau, \cdot):\Omega\rightarrow \mathbb{R} is (\mathscr{F}, \mathscr{B}(\mathbb{R})) -measurable.
Note that
r_1(\tau, \omega) = C+Cr(\omega)+Ce^{-\sigma' \tau} \int_{-\infty}^{\tau}e^{\sigma' r}\Vert g(r, x)\Vert^2dr. |
By simple calculations, we have for each \gamma > 0,
\lim\limits_{t\rightarrow -\infty}e^{\gamma t}\Vert K(\tau+t, \theta_t\omega)\Vert_{\mathscr{E}}^2 = \lim\limits_{t\rightarrow -\infty}e^{\gamma t}r_1(\tau+t, \theta_t\omega) = 0. |
In addition, for each \tau\in\mathbb{R}, \omega\in\Omega , and D\in\mathcal{D} , by Lemma 2.2, there exists T = T(\tau, \omega, D) > 0, such that for all t{\geqslant} T,
\Phi(t, \tau-t, \theta_{-t}\omega, D(\tau-t, \theta_{-t}\omega))\subseteq K(\tau, \omega), |
that is, K = \{K(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} is a closed measurable \mathcal{D} -pullback absorbing set for \Phi.
Next, we will prove that the continuous cocycle \Phi is asymptotically compact in \mathscr{E}.
Lemma 3.2. Suppose the hypotheses in Lemma 2.2 hold. Then the continuous cocycle \Phi is \mathcal{D} -pullback asymptotically compact in \mathscr{E}. That is, if for all \tau\in\mathbb{R}, \omega\in\Omega, the sequence \{\Phi(t_m, \tau-t_m, \theta_{-t_m}\omega, x_m)\}_{m = 1}^{\infty} has a convergent subsequence in \mathscr{E}.
Proof. Let t_m\rightarrow \infty, D\in\mathcal{D}(\mathscr{E}(\Omega_{2k})) and \tilde\varphi^{\tau-t_m} = (\tilde u^{\tau-t_m}, \tilde v^{\tau-t_m})\in D(\tau-t_m, \theta_{-t_m}\omega). We firstly show that \tilde\varphi^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde\varphi^{\tau-t_m}) is precompact in \mathscr{E}(\Omega_{2k}), where \tilde\varphi^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde\varphi^{\tau-t_m}) = (\tilde u^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde u^{\tau-t_m}), \tilde v^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde v^{\tau-t_m})). It follows from Lemma 2.4 that, for M_1 = M_1(\tau, \omega, D) large enough, m > M_1 and r\in[-h, 0],
\Vert u_1(r, \tau-t_m, \theta_{-\tau}\omega, 0)\Vert_{H^2(\Omega_{2k})}^2+\Vert v_1(r, \tau-t_m, \theta_{-\tau}\omega, 0)\Vert_{H^1(\Omega_{2k})}^2{\leqslant} Cr_1(\tau, \omega). |
We know that H^1(\Omega_{2k})\hookrightarrow L^2(\Omega_{2k}) and H^2(\Omega_{2k})\hookrightarrow H^1(\Omega_{2k}) are compact. Therefore, for m > M_1 and r\in[-h, 0], \{u_1(r, \tau-t_m, \theta_{-\tau}\omega, 0), v_1(r, \tau-t_m, \theta_{-\tau}\omega, 0)\} is precompact in E(\Omega_{2k}). From Lemma 2.5, for m > M_1 , \{u_1(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0), v_1(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0)\} is equi-continuous in C([-h, 0], E(\Omega_{2k})). Then by Arzela-Ascoli theorem, \{u_1(r, \tau-t_m, \theta_{-\tau}\omega, 0), v_1(r, \tau-t_m, \theta_{-\tau}\omega, 0)\} is precompact in C([-h, 0], E(\Omega_{2k})). Hence, there exists a subsequence {t_{m_k}} , still denote as {t_m}, such that
(u_1^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0), v_1^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0))\rightarrow (\zeta(\cdot), \xi(\cdot)), \;\; in\;C([-h, 0], E(\Omega_{2k})). |
In other words, for any \epsilon > 0, there exists M_2 = M_2(\tau, \omega, \epsilon, D), such that for m > M_2 and r\in[-h, 0],
\begin{align} \Vert (u_1^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0) -\zeta(\cdot), v_1^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0)-\xi(\cdot)) \Vert_{\mathscr{E}(\Omega_{2k})} < \epsilon. \end{align} | (3.1) |
For any (u_2^{\tau-t_m}, v_2^{\tau-t_m}) = (\tilde u^{\tau-t_m}, \tilde v^{\tau-t_m})\in D, D\in\mathcal{D}(\mathscr{E}(\Omega_{2k})) , by (2.65), there exists M_3 = M_3(\tau, \omega, \epsilon, D), such that for m > M_3,
\begin{align} \Vert (u_2^{\tau}(\cdot, \tau-t_m, \theta_{-\tau} \omega, u_2^{\tau-t_m}), v_2^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, v_2^{\tau-t_m}))\Vert_{\mathscr{E}(\Omega_{2k})} < \epsilon. \end{align} | (3.2) |
By (3.1) and (3.2), we derive for m > \tilde M = max \{M_1, M_2, M_3\},
\begin{align} &\Vert (\tilde u^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde u^{\tau-t_m})-\zeta(\cdot), \tilde v^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde v^{\tau-t_m})-\xi(\cdot))\Vert_{\mathscr{E}(\Omega_{2k})}{}\\ &{\leqslant} 2\Vert (u_1^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0)-\zeta(\cdot), v_1^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, 0)-\xi(\cdot))\Vert_{\mathscr{E}(\Omega_{2k})}{}\\ &+2\Vert (u_2^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, u_2^{\tau-t_m}), v_2^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, v_2^{\tau-t_m}))\Vert_{\mathscr{E}(\Omega_{2k})}{\leqslant} 4\epsilon. \end{align} | (3.3) |
Thus, \tilde\varphi^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde\varphi^{\tau-t_m}) = (\tilde u^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde u^{\tau-t_m}), \tilde v^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde v^{\tau-t_m})) is precompact in \mathscr{E}(\Omega_{2k}). By Lemma 2.3, there exist k_1 = k_1(\tau, \omega, \epsilon) and M_4 = M_4(\tau, \omega, \epsilon, D), such that for each m > M_4,
\begin{align} \Vert\varphi^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \varphi^{\tau-t_m}) \Vert_{\mathscr{E}(\mathbb{R}^d\setminus\Omega_{k_1})}{\leqslant}\epsilon. \end{align} | (3.4) |
By (3.3), there exists k_2 = k_2(\tau, \omega, \epsilon){\geqslant} k_1 such that \tilde\varphi^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \tilde\varphi^{\tau-t_m}) is precompact in E(\Omega_{2k_2}). Recalling (2.55) and the fact 1-\xi^2(\frac{\vert x\vert^2}{k_2^2}) = 1 for \vert x\vert{\leqslant} k_2, we know that \varphi^{\tau}(\cdot, \tau-t_m, \theta_{-\tau}\omega, \varphi^{\tau-t_m}) is precompact in \mathscr{E}(\Omega_{k_2}). Along with (3.4), we have that the continuous cocycle \Phi is asymptotically compact in \mathscr{E}.
We are now to give our main result.
Theorem 3.3. Suppose the hypotheses in Lemma 2.2 hold. Then the continuous cocycle \Phi has a unique \mathcal{D} -pullback random attractor in \mathscr{E}.
Proof. By Proposition 2.1, Lemma 3.1 and Lemma 3.2, we can obtain the existence and uniqueness of \mathcal{D} -pullback random attractor of \Phi in \mathscr{E} immediately.
Since the Sobolev embedding is no longer compact on unbounded domains, we obtained the existence of random attractor for the problem (1.1) and (1.2) by using the uniform tail-estimates of solutions and the decomposition technique as well as the compactness argument. In addition, to derive the uniform estimates, we make some nontrivial arguments due to the presence of strongly damped term \alpha\Delta u_t and the delay term f(x, u(t-\rho (t))) in (1.1).
The author declares that there is no conflict of interest.
[1] | L. Arnold, Random Dynamical Systems, Berlin: Springer-Verlag, 1998. |
[2] |
P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equations, 246 (2009), 845–869. doi: 10.1016/j.jde.2008.05.017
![]() |
[3] |
Z. Brzézniak, Y. Li, Asymptotic compactness and absorbing sets for 2D stochastic navier-stokes equations on some unbounded domains, Trans. Amer. Math. Soc., 358 (2006), 5587–5629. doi: 10.1090/S0002-9947-06-03923-7
![]() |
[4] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss, J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Cont. Dyn-A., 21 (2008), 415. doi: 10.3934/dcds.2008.21.415
![]() |
[5] | T. Caraballo, B. Guo, N. H. Tuan, R. Wang, Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains, Proc. Roy. Soc. Edinb. Sect. A, (2020), 1–31. |
[6] |
T. Caraballo, J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differ. Equations, 205 (2004), 271–297. doi: 10.1016/j.jde.2004.04.012
![]() |
[7] | P. Chen, X. Zhang, Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay, Discrete Cont. Dyn-B., 26 (2021), 4325. |
[8] |
H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Theory Rel., 100 (1994), 365–393. doi: 10.1007/BF01193705
![]() |
[9] | F. Flandoli, B. Gess, M. Scheutzow, Synchronization by noise, Probab. Theory Rel., 168 (2017), 511–556. |
[10] | B. Gess, Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise. Ann. Probab., 42 (2014), 818–864. |
[11] |
B. Gess, W. Liu, A. Schenke, Random attractors for locally monotone stochastic partial differential equations, J. Differ. Equations, 269 (2020), 3414–3455. doi: 10.1016/j.jde.2020.03.002
![]() |
[12] | A. Gu, B. Wang, Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise, Discrete Cont. Dyn-B., 23 (2018), 1689–1720. |
[13] |
J. U. Jeong, J. Park, Pullback attractors for a 2D-non-autonomous incompressible non-Newtonian fluid with variable delays, Discrete Cont. Dyn-B., 21 (2016), 2687–2702. doi: 10.3934/dcdsb.2016068
![]() |
[14] |
X. Jia, X. Ding, Random attractors for stochastic retarded strongly damped wave equations with additive noise on bounded domains, Open Math., 17 (2019), 472–486. doi: 10.1515/math-2019-0038
![]() |
[15] |
R. Jones, B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal-Real., 14 (2013), 1308–1322. doi: 10.1016/j.nonrwa.2012.09.019
![]() |
[16] |
D. Li, K. Lu, B. Wang, X. Wang, Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains, Discrete Cont. Dyn-A., 39 (2019), 3717–3747. doi: 10.3934/dcds.2019151
![]() |
[17] |
D. Li, L. Shi, Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay, J. Math. Phys., 59 (2018), 032703. doi: 10.1063/1.4994869
![]() |
[18] |
H. Li, Y. You, J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differ. Equations, 258 (2015), 148–190. doi: 10.1016/j.jde.2014.09.007
![]() |
[19] |
L. Liu, T. Caraballo, P. Marín-Rubio, Stability results for 2D Navier-Stokes equations with unbounded delay, J. Differ. Equations, 265 (2018), 5685–5708. doi: 10.1016/j.jde.2018.07.008
![]() |
[20] |
H. Lu, J. Qi, B. Wang, M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Cont. Dyn-A., 39 (2019), 683–706. doi: 10.3934/dcds.2019028
![]() |
[21] |
K. Lu, B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Differ. Equ., 31 (2019), 1341–1371. doi: 10.1007/s10884-017-9626-y
![]() |
[22] |
Y. Lv, W. Wang, Limiting dynamics for stochastic wave equations, J. Differ. Equations, 244 (2008), 1–23. doi: 10.1016/j.jde.2007.10.009
![]() |
[23] |
L. Shi, R. Wang, K. Lu, B. Wang, Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differ. Equations, 267 (2019), 4373–4409. doi: 10.1016/j.jde.2019.05.002
![]() |
[24] | R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, New York: Springer-Verlag, 1997. |
[25] |
B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on \mathbb{R}^3, T. Am. Math. Soc., 363 (2011), 3639–3663. doi: 10.1090/S0002-9947-2011-05247-5
![]() |
[26] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equations, 253 (2012), 1544–1583. doi: 10.1016/j.jde.2012.05.015
![]() |
[27] |
B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Cont. Dyn-A., 34 (2014), 269–300. doi: 10.3934/dcds.2014.34.269
![]() |
[28] |
B. Wang, Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differ. Equations, 268 (2019), 1–59. doi: 10.1016/j.jde.2019.08.007
![]() |
[29] |
X. Wang, K. Lu, B. Wang, Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst., 14 (2015), 1018–1047. doi: 10.1137/140991819
![]() |
[30] |
R. Wang, L. Shi, B. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on {{\mathbb R}}^N, Nonlinearity, 32 (2019), 4524–4556. doi: 10.1088/1361-6544/ab32d7
![]() |
[31] |
R. Wang, B. Wang, Asymptotic behavior of non-autonomous fractional stochastic p-Laplacian equations, Comput. Math. Appl., 78 (2019), 3527–3543. doi: 10.1016/j.camwa.2019.05.024
![]() |
[32] | Z. Wang, S. Zhou, Random attractor for non-autonomous stochastic strongly damped wave equation on unbounded domains, J. Appl. Anal. Comput., 5 (2015), 363–387. |
[33] |
Z. Wang, S. Zhou, Random attractor for stochastic non-autonomous damped wave equation with critical exponent, Discrete Cont. Dyn-A., 37 (2017), 545–573. doi: 10.3934/dcds.2017022
![]() |
[34] |
Z. Wang, S. Zhou, A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal-Real., 12 (2011), 3468–3482. doi: 10.1016/j.nonrwa.2011.06.008
![]() |
[35] | F. Wu, P. E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay, Discrete Cont. Dyn-B., 18 (2013), 1715. |
[36] |
Y. Yan, X. Li, Long time behavior for the stochastic parabolic-wave systems with delay on infinite lattice, Nonlinear Anal., 197 (2020), 111866. doi: 10.1016/j.na.2020.111866
![]() |
[37] |
M. Yang, J. Duan, P. E. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal-Real., 12 (2011), 464–478. doi: 10.1016/j.nonrwa.2010.06.032
![]() |
[38] |
S. Zhou, M. Zhao, Random attractors for damped non-autonomous wave equations with memory and white noise, Nonlinear Anal., 120 (2015), 202–226. doi: 10.1016/j.na.2015.03.009
![]() |
[39] |
R. Zhu, X. Zhu, Random attractor associated with the quasi-geostrophic equation, J. Dyn. Differ. Equ., 29 (2017), 289–322. doi: 10.1007/s10884-016-9537-3
![]() |