Research article

Stability of random attractors for non-autonomous stochastic $ p $-Laplacian lattice equations with random viscosity

  • Received: 19 December 2024 Revised: 17 March 2025 Accepted: 19 March 2025 Published: 31 March 2025
  • MSC : 35B40, 35B41, 37L55

  • In this paper, we investigate the stability of pullback random attractors for non-autonomous stochastic $ p $-Laplacian lattice systems, which are influenced by random viscosity and multiplicative white noise. Under appropriate conditions, we first prove the existence and uniqueness of these pullback random attractors and then establish their backward compactness. To ensure their measurability, we demonstrate the equivalence of two different classes of attractors across two distinct universes. Finally, we examine the asymptotic stability of these pullback random attractors by assuming that the time-dependent external forcing term converges to a time-independent external force as time approaches negative infinity.

    Citation: Xin Liu. Stability of random attractors for non-autonomous stochastic $ p $-Laplacian lattice equations with random viscosity[J]. AIMS Mathematics, 2025, 10(3): 7396-7413. doi: 10.3934/math.2025339

    Related Papers:

  • In this paper, we investigate the stability of pullback random attractors for non-autonomous stochastic $ p $-Laplacian lattice systems, which are influenced by random viscosity and multiplicative white noise. Under appropriate conditions, we first prove the existence and uniqueness of these pullback random attractors and then establish their backward compactness. To ensure their measurability, we demonstrate the equivalence of two different classes of attractors across two distinct universes. Finally, we examine the asymptotic stability of these pullback random attractors by assuming that the time-dependent external forcing term converges to a time-independent external force as time approaches negative infinity.



    加载中


    [1] L. Arnold, Random dynamical systems, Berlin: Springer-Verlag, 1998. https://doi.org/10.1007/978-3-662-12878-7
    [2] T. Caraballo, B. Guo, N. Tuan, R. Wang, Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains, Proc. Roy. Soc. Edinb. A, 151 (2021), 1700–1730. https://doi.org/10.1017/prm.2020.77 doi: 10.1017/prm.2020.77
    [3] P. Chen, R. Wang, X. Zhang, Asymptotically autonomous robustness of random attractors for 3D BBM equations driven by nonlinear colored noise, SIAM J. Math. Anal., 56 (2024), 254–274. https://doi.org/10.1137/22M1529129 doi: 10.1137/22M1529129
    [4] P. Chen, X. Zhang, Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay, Discrete Cont. Dyn.-B, 26 (2021), 4325–4357. https://doi.org/10.3934/dcdsb.2020290 doi: 10.3934/dcdsb.2020290
    [5] A. Gu, P. E. Kloeden, Asymptotic behavior of a nonautonomous $p$-Laplacian lattice system, Int. J. Bifurcat. Chaos, 26 (2016), 1650174. https://doi.org/10.1142/S0218127416501741 doi: 10.1142/S0218127416501741
    [6] P. G. Geredeli, On the existence of regular global atractor for $p$-Laplacian evolution equations, Appl. Math. Optim., 71 (2015), 517–532. https://doi.org/10.1007/s00245-014-9268-y doi: 10.1007/s00245-014-9268-y
    [7] B. Gess, Random attractors for singular stochastic evolution equations, J. Differ. Equations, 255 (2013), 524–559. https://doi.org/10.1016/j.jde.2013.04.023 doi: 10.1016/j.jde.2013.04.023
    [8] K. Kinra, M. T. Mohan, R. Wang, Asymptotically autonomous robustness in probability of non-autonomous random attractors for stochastic convective Brinkman-Forchheimer equations on $\mathbb{R}^3$, Int. Math. Res. Notices, 7 (2024), 5850–5893. https://doi.org/10.1093/imrn/rnad279 doi: 10.1093/imrn/rnad279
    [9] P. E. Kloeden, T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259–268. http://dx.doi.org/10.1090/proc/12735 doi: 10.1090/proc/12735
    [10] P. E. Kloeden, J. Simsen, M. S. Simsen, Asymptotically autonomous multivalued Cauchy problems with spatially variable exponebnts, J. Math. Anal. Appl., 445 (2017), 513–531. https://doi.org/10.1016/j.jmaa.2016.08.004 doi: 10.1016/j.jmaa.2016.08.004
    [11] P. E. Kloeden, M. Rasmussen, Nonautonomous dynamical systems, Providence: American Mathematical Society, 2011.
    [12] J. L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires (French), Paris: Dunod, 1969.
    [13] Y. Li, J. Yin, Existence, regularity and approximation of global attractors for weaky dissipative $p$-Laplacian quations, Discrete Cont. Dyn.-S, 9 (2016), 1939–1957. https://doi.org/10.3934/dcdss.2016079 doi: 10.3934/dcdss.2016079
    [14] Y. Li, R. Wang, J. Yin, Backward compact attractors for non-autonomous Benjamin Bona-Mahony equations on unbounded channels, Discrete Cont. Dyn.-B, 22 (2017), 2569–2586. https://doi.org/10.3934/dcdsb.2017092 doi: 10.3934/dcdsb.2017092
    [15] Y. Li, L. She, J. Yin, Longtime robustness and semi-uniform conpactness of a pullback attractor via nonautonomous PDE, Discrete Cont. Dyn.-B, 23 (2018), 1535–1557. https://doi.org/10.3934/dcdsb.2018058 doi: 10.3934/dcdsb.2018058
    [16] J. L. Vázquez, The porous medium equation: mathematical theory, Oxford: Oxford University Press, 2007. https://doi.org/10.1093/acprof: oso/9780198569039.001.0001
    [17] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for noncompact random dynamical systems, J. Differ. Equations, 253 (2012), 1544–1583. https://doi.org/10.1016/j.jde.2012.05.015 doi: 10.1016/j.jde.2012.05.015
    [18] B. Wang, B. Guo, Asymptotic behavior of non-autonomous stochastic parabolic equations with nonlinear Laplacian principal part, Electron. J. Differ. Eq., 2013 (2013), 1–25.
    [19] R. Wang, K. Kinra, M. T. Mohan, Asymptotically autonomous robustness in probability of random attractors for stochastic Navier-Stokes equations on unbounded Poincar$\acute{e}$ domains, SIAM J. Math. Anal., 55 (2023), 2644–2676. https://doi.org/10.1137/22M1517111 doi: 10.1137/22M1517111
    [20] R. Wang, Y. Li, Asymptotic autonomy of kernel section for Newton-Boussinesq equations on unbounded zonary domains, Dynam. Part. Differ. Eq., 16 (2019), 295–316. https://doi.org/10.4310/dpde.2019.v16.n3.a4 doi: 10.4310/dpde.2019.v16.n3.a4
    [21] M. Yang, C. Sun, C. Zhong, Existence of a global attractor for a $p$-Laplacian equation in $\mathbb{R}^N$, Nonlinear Anal.-Theor., 66 (2007), 1–13. https://doi.org/10.1016/j.na.2005.11.004 doi: 10.1016/j.na.2005.11.004
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(624) PDF downloads(21) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog