We propose a new definition of continuous approximate solution to initial value problem for differential equations involving variable order Caputo fractional derivative based on the classical definition of solution of integer order (or constant fractional order) differential equation. Some examples are presented to illustrate these theoretical results.
Citation: Shuqin Zhang, Jie Wang, Lei Hu. On definition of solution of initial value problem for fractional differential equation of variable order[J]. AIMS Mathematics, 2021, 6(7): 6845-6867. doi: 10.3934/math.2021401
[1] | Marek Konieczny . Transformation superplasticity of laminated CuAl10Fe3Mn2 bronze-intermetallics composites. AIMS Materials Science, 2020, 7(3): 312-322. doi: 10.3934/matersci.2020.3.312 |
[2] | Mica Grujicic, S. Ramaswami, Jennifer Snipes . Nacre-like ceramic/polymer laminated composite for use in body-armor applications. AIMS Materials Science, 2016, 3(1): 83-113. doi: 10.3934/matersci.2016.1.83 |
[3] | Mohammad Na'aim Abd Rahim, Mohd Shukor Salleh, Saifudin Hafiz Yahaya, Sivarao Subramonian, Azrin Hani Abdul Rashid, Syarifah Nur Aqida Syed Ahmad, Salah Salman Al-Zubaidi . Microstructural investigation and mechanical properties of Al2O3-MWCNTs reinforced aluminium composite. AIMS Materials Science, 2025, 12(2): 318-335. doi: 10.3934/matersci.2025017 |
[4] | Marek Konieczny . Mechanical properties and failure analysis of laminated magnesium-intermetallic composites. AIMS Materials Science, 2022, 9(4): 572-583. doi: 10.3934/matersci.2022034 |
[5] | Marek Konieczny . Mechanical properties and wear characterization of Al-Mg composites synthesized at different temperatures. AIMS Materials Science, 2024, 11(2): 309-322. doi: 10.3934/matersci.2024017 |
[6] | Tomáš Meluš, Roman Koleňák, Jaromír Drápala, Paulína Babincová, Matej Pašák . Ultrasonic soldering of Al2O3 ceramics and Ni-SiC composite by use of Bi-based active solder. AIMS Materials Science, 2023, 10(2): 213-226. doi: 10.3934/matersci.2023012 |
[7] | Yernat Kozhakhmetov, Mazhyn Skakov, Wojciech Wieleba, Kurbanbekov Sherzod, Nuriya Mukhamedova . Evolution of intermetallic compounds in Ti-Al-Nb system by the action of mechanoactivation and spark plasma sintering. AIMS Materials Science, 2020, 7(2): 182-191. doi: 10.3934/matersci.2020.2.182 |
[8] | Ruaa Al-Mezrakchi, Ahmed Al-Ramthan, Shah Alam . Designing and modeling new generation of advanced hybrid composite sandwich structure armors for ballistic threats in defense applications. AIMS Materials Science, 2020, 7(5): 608-631. doi: 10.3934/matersci.2020.5.608 |
[9] | Elisa Padovano, Francesco Trevisan, Sara Biamino, Claudio Badini . Processing of hybrid laminates integrating ZrB2/SiC and SiC layers. AIMS Materials Science, 2020, 7(5): 552-564. doi: 10.3934/matersci.2020.5.552 |
[10] | Habibur Rahman, Altab Hossain, Mohammad Ali . Experimental investigation on cooling tower performance with Al2O3, ZnO and Ti2O3 based nanofluids. AIMS Materials Science, 2024, 11(5): 935-949. doi: 10.3934/matersci.2024045 |
We propose a new definition of continuous approximate solution to initial value problem for differential equations involving variable order Caputo fractional derivative based on the classical definition of solution of integer order (or constant fractional order) differential equation. Some examples are presented to illustrate these theoretical results.
[1] | D. Valério, J. Sá da Costa, Variable-order fractional derivative and their numerical approximations Signal Process., 91 (2011), 470–483. |
[2] |
D. Tavares, R. Almeida, D. F. M. Torres, Caputo derivatives of fractional variable order: Numerical approximations, Commun. Nonlinear Sci., 35 (2016), 69–87. doi: 10.1016/j.cnsns.2015.10.027
![]() |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[4] | K. B. Oldham, J. Spanier, The fractional calculus: Integrations and differentiations of arbitrary order, New York: Academic Press, 1974. |
[5] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[6] | K. Diethelm, The analysis of fractional differential equations, Springer Science & Business Media, 2010. |
[7] | A. Atangana, Fractional operators with constant and variable order with application to geo-hydrology, New York: Academic Press, 2017. |
[8] |
A. Razminia, A. F. Dizaji, V. J. Majd, Solution existence for non-autonomous variable-order fractional differential equations, Math. Comput. Model., 55 (2012), 1106–1117. doi: 10.1016/j.mcm.2011.09.034
![]() |
[9] | A. A. Alikhanov, Boundary value problems for the equation of the variable order in differential and difference settings, Appl. Math. Comput., 219 (2012), 3938–3946. |
[10] |
A. Babaei, H. Jafari, S. Banihashemi, Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method, J. Comput. Appl. Math., 377 (2020), 112908. doi: 10.1016/j.cam.2020.112908
![]() |
[11] |
C. J. Zúniga-Aguilar, H. M. Romero-Ugalde, J. F. Gómez-Aguilar, R. F. Escobar-Jiménez, Solving fractional differential equations of variable-order involving operator with Mittag-Leffler kernel using artificial neural networks, Chaos Soliton. Fract., 103 (2017), 382–403. doi: 10.1016/j.chaos.2017.06.030
![]() |
[12] |
C. M. Chen, F. Liu, V. Anh, I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32 (2010), 1740–1760. doi: 10.1137/090771715
![]() |
[13] |
D. Sierociuk, W. Malesza, M. Macias, Derivation, interpretation, and analog modelling of fractional variable order derivative definition, Appl. Math. Model., 39 (2015), 3876–3888. doi: 10.1016/j.apm.2014.12.009
![]() |
[14] |
H. Hassani, J. A. Tenreiro Machado, E. Naraghirad, An efficient numerical technique for variable order time fractional nonlinear Klein-Gordon equation, Appl. Numer. Math., 154 (2020), 260–272. doi: 10.1016/j.apnum.2020.04.001
![]() |
[15] |
H. Hassani, Z. Avazzadeh, J. A. Tenreiro Machado, Numerical approach for solving variable order space-time fractional telegraph equation using transcendental Bernstein series, Eng. Comput., 36 (2020), 867–878. doi: 10.1007/s00366-019-00736-x
![]() |
[16] |
J. Vanterler da C. Sousa, E. Capelas de Oliverira, Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation, Comput. Appl. Math., 37 (2018), 5375–5394. doi: 10.1007/s40314-018-0639-x
![]() |
[17] |
J. F. Gómez-Aguilar, Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Physica. A, 494 (2018), 52–57. doi: 10.1016/j.physa.2017.12.007
![]() |
[18] |
J. Yang, H. Yao, B. Wu, An efficient numerical method for variable order fractional functional differential equation, Appl. Math. Lett., 76 (2018), 221–226. doi: 10.1016/j.aml.2017.08.020
![]() |
[19] |
M. Hajipour, A. Jajarmi, D. Baleanu, H. Sun, On an accurate discretization of a variable-order fractional reaction-diffusion equation, Commun. Nonlinear Sci., 69 (2019), 119–133. doi: 10.1016/j.cnsns.2018.09.004
![]() |
[20] |
R. M. Ganji, H. Jafari, D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 130 (2020), 109405. doi: 10.1016/j.chaos.2019.109405
![]() |
[21] |
S. G. Samko, Fractional integration and differentiation of variable order, Anal. Math., 21 (1995), 213–236. doi: 10.1007/BF01911126
![]() |
[22] |
S. G. Samko, B. Boss, Integration and differentiation to a variable fractional order, Integr. Transf. Spec. F., 1 (1993), 277–300. doi: 10.1080/10652469308819027
![]() |
[23] | S. Zhang, S. Sun, L. Hu, Approximate solutions to initial value problem for differential equation of variable order, JFCA, 9 (2018), 93–112. |
[24] | S. Zhang, The uniqueness result of solutions to initial value problem of differential equations of variable-order, RACSAM Rev. R. Acad. A, 112 (2018), 407–423. |
[25] |
W. Malesza, M. Macias, D. Sierociuk, Analyitical solution of fractional variable order differential equations, J. Comput. Appl. Math., 348 (2019), 214–236. doi: 10.1016/j.cam.2018.08.035
![]() |
[26] |
Y. Kian, E. Soccorsi, M. Yamamoto, On time-fractional diffusion equations with space-dependent variable order, Ann. Henri Poincaré, 19 (2018), 3855–3881. doi: 10.1007/s00023-018-0734-y
![]() |
[27] |
J. Jiang, H. Chen, J. L. G. Guirao, D. Cao, Existence of the solution and stability for a class of variable fractional order differential systems, Chaos Soliton. Fract., 128 (2019), 269–274. doi: 10.1016/j.chaos.2019.07.052
![]() |
[28] | R. Almeida, D. Tavares, D. Torres, The variable-order fractional calculus of variations, Springer International Publishing, 2019. |
[29] |
H. G. Sun, A. Chang, Y. Zhang, W. Chen, A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications, Fract. Calc. Appl. Anal., 22 (2019), 27–59. doi: 10.1515/fca-2019-0003
![]() |
[30] |
X. Li, B. Wu, A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations, J. Comput. Appl. Math., 311 (2017), 387–393. doi: 10.1016/j.cam.2016.08.010
![]() |
[31] |
X. Li, B. Wu, A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43 (2015), 108–113. doi: 10.1016/j.aml.2014.12.012
![]() |
[32] |
J. Deng, Z. Deng, Existence of solutions of initial value problems for nonlinear fractional differential equations, Appl. Math. Lett., 32 (2014), 6–12. doi: 10.1016/j.aml.2014.02.001
![]() |
[33] | X. Dong, Z. Bai, S. Zhang, Positive solutions to boundary value problems of p-Laplacian with fractional derivative, Bound. Value Probl., 5 (2017), 1–15. |
[34] |
Z. Bai, S. Zhang, S. Sun, Y. Chun, Monotone iterative method for a class of fractional differential equations, Electron. J. Differ. Eq., 2016 (2016), 1–8. doi: 10.1186/s13662-015-0739-5
![]() |
[35] | T. T. Hartley, C. F. Lorenzo, Fractional system identification: An approach using continuous order distributions, NASA Glenn Research Center, 1999. |
1. | Adam Kurzawa, Dariusz Pyka, Krzysztof Jamroziak, Marcin Bajkowski, Miroslaw Bocian, Mariusz Magier, Jan Koch, Assessment of the Impact Resistance of a Composite Material with EN AW-7075 Matrix Reinforced with α-Al2O3 Particles Using a 7.62 × 39 mm Projectile, 2020, 13, 1996-1944, 769, 10.3390/ma13030769 | |
2. | S A Zelepugin, A S Zelepugin, A A Popov, D V Yanov, Failure of the laminate composites under impact loading, 2018, 1115, 1742-6588, 042018, 10.1088/1742-6596/1115/4/042018 | |
3. | Le Xin, Meini Yuan, Yuhang Yao, Leibin Yao, Fangzhou Han, Numerical study the effects of defects on the anti-penetration performance of Ti6Al4V–Al3Ti Laminated Composites, 2019, 6, 2053-1591, 0865f8, 10.1088/2053-1591/ab2695 | |
4. | Leonid Moiseevich Gurevich, Victor Georgievich Shmorgun, Dmitriy Vladimirovich Pronichev, Roman Evgenyevich Novikov, The Simulation of Titanium-Aluminium Composite with Intermetallic Inclusions Behavior under Compression, 2017, 743, 1662-9795, 176, 10.4028/www.scientific.net/KEM.743.176 | |
5. | Hailiang Yu, Cheng Lu, Kiet Tieu, Huijun Li, Ajit Godbole, Xiong Liu, Charlie Kong, Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding, 2017, 32, 0884-2914, 3761, 10.1557/jmr.2017.355 | |
6. | B. Blessto, Sarath Nair, K. Sivaprasad, D. Nagarajan, Replication of the Al/Ti Metal Intermetallic Laminates Using LS Dyna for Tungsten Alloy Penetrator Application, 2020, 2250-2122, 10.1007/s40033-020-00208-3 | |
7. | Jian Ma, Meini Yuan, Lirong Zheng, Zeyuan Wei, Kai Wang, Dynamic Mechanical Properties of Ti–Al3Ti–Al Laminated Composites: Experimental and Numerical Investigation, 2021, 11, 2075-4701, 1489, 10.3390/met11091489 | |
8. | Honglin Wang, Jian Ma, Meini Yuan, Guang Liang, Xin Pei, Yuzhong Miao, Maohua Li, Microstructure, deformation behaviors and GND density evolution of Ti-Al laminated composites under the incremental compression test, 2022, 33, 23524928, 104605, 10.1016/j.mtcomm.2022.104605 | |
9. | C. O. Ujah, A. P. I. Popoola, O. M. Popoola, Review on materials applied in electric transmission conductors, 2022, 57, 0022-2461, 1581, 10.1007/s10853-021-06681-9 | |
10. | Chika Oliver Ujah, Daramy Vandi Von Kallon, Victor Sunday Aigbodion, Overview of Electricity Transmission Conductors: Challenges and Remedies, 2022, 15, 1996-1944, 8094, 10.3390/ma15228094 | |
11. | G. Sukumar, K. Muralidharan, P. Ponguru Senthil, P. Prakasa Rao, G. Balaji, S. G. Savio, B. Bhav Singh, 2024, Chapter 28, 978-981-99-8806-8, 353, 10.1007/978-981-99-8807-5_28 | |
12. | Yu Wang, Xiangfei Peng, Ahmed M. Fallatah, Hongxin Qin, Wenjuan Zhao, Zaki I. Zaki, Hong Xu, Bin Liu, Hongkui Mao, Zeinhom M. El-Bahy, Hassan Algadi, Chao Wang, High-entropy CoCrFeMnNi alloy/aluminide-laminated composites with enhanced quasi-static bending and dynamic compression properties, 2023, 6, 2522-0128, 10.1007/s42114-023-00782-6 | |
13. | Chongyang Feng, Hua Hou, Zhiqiang Li, Muxi Li, Qingwei Guo, Yuhong Zhao, Anti-penetration performance of Ti/Al3Ti/Al laminated composites with graphene nanoplatelets, 2025, 22387854, 10.1016/j.jmrt.2025.03.280 | |
14. | Yang Wang, Meini Yuan, Pengfei Zhou, Xin Pei, Wei Yang, Zehui Tian, Effects of TC4 Thickness on the Penetration Resistance Behavior of Ti-Al3Ti Metal–Intermetallic Laminated Composites, 2025, 18, 1996-1944, 1846, 10.3390/ma18081846 |