In this paper, we study the Cauchy problem of the isothermal system in a general nozzle with space-dependent friction . First, by using the maximum principle, we obtain the uniform bound , , independent of the time, of the viscosity-flux approximation solutions; Second, by using the compensated compactness method coupled with the convergence framework given in [
Citation: Yun-guang Lu, Xian-ting Wang, Richard De la cruz. Cauchy problem for isothermal system in a general nozzle with space-dependent friction[J]. AIMS Mathematics, 2021, 6(6): 6482-6489. doi: 10.3934/math.2021381
[1] | Mengshi Shu, Rui Fu, Wendi Wang . A bacteriophage model based on CRISPR/Cas immune system in a chemostat. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1361-1377. doi: 10.3934/mbe.2017070 |
[2] | Miller Cerón Gómez, Eduardo Ibarguen Mondragon, Eddy Lopez Molano, Arsenio Hidalgo-Troya, Maria A. Mármol-Martínez, Deisy Lorena Guerrero-Ceballos, Mario A. Pantoja, Camilo Paz-García, Jenny Gómez-Arrieta, Mariela Burbano-Rosero . Mathematical model of interaction Escherichia coli and Coliphages. Mathematical Biosciences and Engineering, 2023, 20(6): 9712-9727. doi: 10.3934/mbe.2023426 |
[3] | Frédéric Mazenc, Gonzalo Robledo, Daniel Sepúlveda . A stability analysis of a time-varying chemostat with pointwise delay. Mathematical Biosciences and Engineering, 2024, 21(2): 2691-2728. doi: 10.3934/mbe.2024119 |
[4] | Gonzalo Robledo . Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences and Engineering, 2009, 6(3): 629-647. doi: 10.3934/mbe.2009.6.629 |
[5] | Harry J. Dudley, Zhiyong Jason Ren, David M. Bortz . Competitive exclusion in a DAE model for microbial electrolysis cells. Mathematical Biosciences and Engineering, 2020, 17(5): 6217-6239. doi: 10.3934/mbe.2020329 |
[6] | Xiaomeng Ma, Zhanbing Bai, Sujing Sun . Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020 |
[7] | Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer . On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences and Engineering, 2007, 4(2): 319-338. doi: 10.3934/mbe.2007.4.319 |
[8] | Manel Dali Youcef, Alain Rapaport, Tewfik Sari . Study of performance criteria of serial configuration of two chemostats. Mathematical Biosciences and Engineering, 2020, 17(6): 6278-6309. doi: 10.3934/mbe.2020332 |
[9] | Alain Rapaport, Jérôme Harmand . Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences and Engineering, 2008, 5(3): 539-547. doi: 10.3934/mbe.2008.5.539 |
[10] | Alexis Erich S. Almocera, Sze-Bi Hsu, Polly W. Sy . Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi. Mathematical Biosciences and Engineering, 2019, 16(1): 516-537. doi: 10.3934/mbe.2019024 |
In this paper, we study the Cauchy problem of the isothermal system in a general nozzle with space-dependent friction . First, by using the maximum principle, we obtain the uniform bound , , independent of the time, of the viscosity-flux approximation solutions; Second, by using the compensated compactness method coupled with the convergence framework given in [
[1] |
W. T. Cao, F. M. Huang, D. F. Yuan, Global entropy solutions to the gas flow in general nozzle, SIAM J. Math. Anal., 51 (2019), 3276–3297. doi: 10.1137/19M1249436
![]() |
[2] |
P. Embid, J. Goodman, A. Majda, Multiple steady states for 1-D transsonic flow, SIAM J. Sci. Stat. Comput., 5 (1984), 21–41. doi: 10.1137/0905002
![]() |
[3] |
J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure Appl. Math., 18 (1965), 697–715. doi: 10.1002/cpa.3160180408
![]() |
[4] |
J. Glimm, G. Marshall, B. Plohr, A generalized Riemann problem for quasi-one-dimensional gas flows, Adv. Appl. Math., 5 (1984), 1–30. doi: 10.1016/0196-8858(84)90002-2
![]() |
[5] |
F. M. Huang, Z. Wang, Convergence of viscosity solutions for isothermal gas dynamics, SIAM J. Math. Anal., 34 (2002), 595–610. doi: 10.1137/S0036141002405819
![]() |
[6] |
E. Isaacson, B. Temple, Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math., 52 (1992), 1260–1278. doi: 10.1137/0152055
![]() |
[7] |
T. P. Liu, Resonance for a quasilinear hyperbolic equation, Bull. Am. Math. Soc., 6 (1982), 463–465. doi: 10.1090/S0273-0979-1982-15018-2
![]() |
[8] |
Y. G. Lu, Global existence of solutions to system of polytropic gas dynamics with friction, Nonlinear Anal.: Real World Appl., 39 (2018), 418–423. doi: 10.1016/j.nonrwa.2017.07.010
![]() |
[9] |
Y. G. Lu, Resonance for the isothermal system of isentropic gas dynamics, Proc. Am. Math. Soc., 139 (2011), 2821–2826. doi: 10.1090/S0002-9939-2011-10733-0
![]() |
[10] |
Y. G. Lu, Global solutions to isothermal system in a divergent nozzle with friction, Appl. Math. Lett., 84 (2018), 176–180. doi: 10.1016/j.aml.2018.05.006
![]() |
[11] |
Y. G. Lu, Global existence of resonant isentropic gas dynamics, Nonlinear Anal.: Real World Appl., 12 (2011), 2802–2810. doi: 10.1016/j.nonrwa.2011.04.005
![]() |
[12] | T. Makino, K. Mizohata, S. Ukai, The global weak solutions of the compressible Euler equation with spherical symmetry, Japan J. Ind. Appl. Math., 785 (1992), 1–28. |
[13] |
T. Makino, K. Mizohata, S. Ukai, Global weak solutions of the compressible Euler equation with spherical symmetry (II), Japan J. Ind. Appl. Math., 11 (1994), 417–426. doi: 10.1007/BF03167230
![]() |
[14] | F. Murat, Compacité par compensation, Ann. Sc. Norm. Super. Pisa, 5 (1978), 489–507. |
[15] | T. Nishida, Global solution for an initial-boundary-value problem of a quasilinear hyperbolic system, Proc. Japan Acad., 44 (1968), 642–646. |
[16] | A. H. Shapino, The Dynamics and Thermodynamics of Compressible Fluid Flow, John Wiley & Sons, 1953. |
[17] |
Q. Y. Sun, Y. G. Lu, C. Klingenberg, Global weak solutions for a nonlinear hyperbolic system, Acta Math. Sci., 40 (2020), 1185–1194. doi: 10.1007/s10473-020-0502-1
![]() |
[18] | T. Tartar, Compensated compactness and applications to partial differential equations, In: R. J. Knops, Research Notes in Mathematics, Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Vol. 4, London: Pitman Press, 1979. |
[19] |
N. Tsuge, Existence of global solutions for isentropic gas flow in a divergent nozzle with friction, J. Math. Anal. Appl., 426 (2015), 971–977. doi: 10.1016/j.jmaa.2015.01.031
![]() |
[20] | N. Tsuge, Global solutions of the compressible Euler equations with spherical symmetry, J. Math. Kyoto Univ., 46 (2006), 457–524. |
[21] | N. Tsuge, The compressible Euler equations for an isothermal gas with spherical symmetry, J. Math. Kyoto Univ., 43 (2004), 737–754. |
1. | Xinzhi Ren, Xianning Liu, A competition un-stirred chemostat model with virus in an aquatic system, 2019, 98, 0003-6811, 2329, 10.1080/00036811.2018.1460811 | |
2. | Wendi Wang, Rui Fu, Mengshi Shu, A bacteriophage model based on CRISPR/Cas immune system in a chemostat, 2017, 14, 1551-0018, 1361, 10.3934/mbe.2017070 | |
3. | Saptarshi Sinha, Rajdeep K. Grewal, Soumen Roy, 2018, 103, 9780128151839, 103, 10.1016/bs.aambs.2018.01.005 | |
4. | Saptarshi Sinha, Rajdeep Kaur Grewal, Soumen Roy, 2020, Chapter 18, 978-1-0716-0388-8, 309, 10.1007/978-1-0716-0389-5_18 | |
5. | Sukhitha W. Vidurupola, Analysis of deterministic and stochastic mathematical models with resistant bacteria and bacteria debris for bacteriophage dynamics, 2018, 316, 00963003, 215, 10.1016/j.amc.2017.08.022 | |
6. | Daniel A. Korytowski, Hal L. Smith, How nested and monogamous infection networks in host-phage communities come to be, 2015, 8, 1874-1738, 111, 10.1007/s12080-014-0236-6 | |
7. | Saroj Kumar Sahani, Sunita Gakkhar, A Mathematical Model for Phage Therapy with Impulsive Phage Dose, 2020, 28, 0971-3514, 75, 10.1007/s12591-016-0303-0 | |
8. | Sukhitha W. Vidurupola, Linda J. S. Allen, Impact of Variability in Stochastic Models of Bacteria-Phage Dynamics Applicable to Phage Therapy, 2014, 32, 0736-2994, 427, 10.1080/07362994.2014.889922 | |
9. | WENDI WANG, DYNAMICS OF BACTERIA-PHAGE INTERACTIONS WITH IMMUNE RESPONSE IN A CHEMOSTAT, 2017, 25, 0218-3390, 697, 10.1142/S0218339017400010 | |
10. | Hayriye Gulbudak, Paul L. Salceanu, Gail S. K. Wolkowicz, A delay model for persistent viral infections in replicating cells, 2021, 82, 0303-6812, 10.1007/s00285-021-01612-3 | |
11. | Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Htoo Kyaw Hlaing, Stability analysis and persistence of a phage therapy model, 2021, 18, 1551-0018, 5552, 10.3934/mbe.2021280 | |
12. | Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Stability and Hopf Bifurcation Analysis for a Phage Therapy Model with and without Time Delay, 2023, 12, 2075-1680, 772, 10.3390/axioms12080772 | |
13. | Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Hopf bifurcation analysis of a phage therapy model, 2023, 18, 2157-5452, 87, 10.2140/camcos.2023.18.87 | |
14. | Zainab Dere, N.G. Cogan, Bhargav R. Karamched, Optimal control strategies for mitigating antibiotic resistance: Integrating virus dynamics for enhanced intervention design, 2025, 00255564, 109464, 10.1016/j.mbs.2025.109464 | |
15. | Carli Peterson, Darsh Gandhi, Austin Carlson, Aaron Lubkemann, Emma Richardson, John Serralta, Michael S. Allen, Souvik Roy, Christopher M. Kribs, Hristo V. Kojouharov, A SIMPL Model of Phage-Bacteria Interactions Accounting for Mutation and Competition, 2025, 87, 0092-8240, 10.1007/s11538-025-01478-2 |