H | 0.6 | 0.7 | 0.75 | 0.85 |
alpha | 0.45 | 0.4 | 0.375 | 0.325 |
gamma | 0.1 | 0.2 | 0.25 | 0.25 |
XEerrsup | 14.5509 | 5.8126 | 4.07903 | 2.36231 |
Comega | 25.3346 | 17.6205 | 16.3161 | 9.44923 |
In this paper, we establish a non-autonomous Hassell-Varley-Holling type predator-prey system with mutual interference. We construct some sufficient conditions for the permanence, extinction and globally asymptotic stability of system by use of the comparison theorem and an appropriate Liapunov function. Then the sufficient and necessary conditions for a periodic solution of the system are obtained via coincidence degree theorem. Finally, the correctness of the previous conclusions are demonstrated by some numerical cases.
Citation: Luoyi Wu, Hang Zheng, Songchuan Zhang. Dynamics of a non-autonomous predator-prey system with Hassell-Varley-Holling Ⅱ function response and mutual interference[J]. AIMS Mathematics, 2021, 6(6): 6033-6049. doi: 10.3934/math.2021355
[1] | Xueqi Wen, Zhi Li . pth moment exponential stability and convergence analysis of semilinear stochastic evolution equations driven by Riemann-Liouville fractional Brownian motion. AIMS Mathematics, 2022, 7(8): 14652-14671. doi: 10.3934/math.2022806 |
[2] | Kung-Chi Chen, Kuo-Shing Chen . Pricing green financial options under the mixed fractal Brownian motions with jump diffusion environment. AIMS Mathematics, 2024, 9(8): 21496-21523. doi: 10.3934/math.20241044 |
[3] | Kinda Abuasbeh, Ramsha Shafqat, Azmat Ullah Khan Niazi, Muath Awadalla . Nonlocal fuzzy fractional stochastic evolution equations with fractional Brownian motion of order (1,2). AIMS Mathematics, 2022, 7(10): 19344-19358. doi: 10.3934/math.20221062 |
[4] | Huantian Xie, Nenghui Kuang . Least squares type estimations for discretely observed nonergodic Gaussian Ornstein-Uhlenbeck processes of the second kind. AIMS Mathematics, 2022, 7(1): 1095-1114. doi: 10.3934/math.2022065 |
[5] | Weiwei Shen, Yan Zhang . Strong convergence of the Euler-Maruyama method for the stochastic volatility jump-diffusion model and financial applications. AIMS Mathematics, 2025, 10(5): 12032-12054. doi: 10.3934/math.2025545 |
[6] | Fawaz K. Alalhareth, Seham M. Al-Mekhlafi, Ahmed Boudaoui, Noura Laksaci, Mohammed H. Alharbi . Numerical treatment for a novel crossover mathematical model of the COVID-19 epidemic. AIMS Mathematics, 2024, 9(3): 5376-5393. doi: 10.3934/math.2024259 |
[7] | Xinyi Wang, Jingshen Wang, Zhidong Guo . Pricing equity warrants under the sub-mixed fractional Brownian motion regime with stochastic interest rate. AIMS Mathematics, 2022, 7(9): 16612-16631. doi: 10.3934/math.2022910 |
[8] | Yifei Wang, Haibo Gu, Ruya An . Averaging principle for space-fractional stochastic partial differential equations driven by Lévy white noise and fractional Brownian motion. AIMS Mathematics, 2025, 10(4): 9013-9033. doi: 10.3934/math.2025414 |
[9] | Mounir Zili, Eya Zougar, Mohamed Rhaima . Fractional stochastic heat equation with mixed operator and driven by fractional-type noise. AIMS Mathematics, 2024, 9(10): 28970-29000. doi: 10.3934/math.20241406 |
[10] | Fan Yang, Xiaohui Ai . Exponential stability of stochastic complex networks with multi-weights driven by second-order process based on graph theory. AIMS Mathematics, 2024, 9(4): 9847-9866. doi: 10.3934/math.2024482 |
In this paper, we establish a non-autonomous Hassell-Varley-Holling type predator-prey system with mutual interference. We construct some sufficient conditions for the permanence, extinction and globally asymptotic stability of system by use of the comparison theorem and an appropriate Liapunov function. Then the sufficient and necessary conditions for a periodic solution of the system are obtained via coincidence degree theorem. Finally, the correctness of the previous conclusions are demonstrated by some numerical cases.
In this paper, we consider the following time-dependent mixed stochastic differential equations(SDEs) involving independent Brownian motions and fractional Brownian motions(fBms) with Hurst parameter H∈(12,1), defined on the complete probability space (Ω,F,{Ft}t∈[0,T],P),
Xt=X0+∫t0a(s,Xs)ds+∫t0b(s,Xs)dWs+∫t0c(s,Xs)dBHs,t∈[0,T], | (1.1) |
where X0 is F0-measurable random variable, the stochastic integral with respect to Brownian motion W={Wt:t∈[0,T]} and fBm BH={BHt:t∈[0,T]} are interpreted as Itô and pathwise Riemann-Stieltjes integral respectively. a,b,c:Ω×[0,T]×R→R are measurable functions such that all integrals on the right hand side of (1.1) are well defined.
On one hand, SDEs driven only by Brownian motions has long history. We can refer to the monograph [1]. On the other hand, the increasing interest of SDEs driven only by fBms is motivated by their applications in various fields of science such as physics, chemistry, computational mathematics, financial markets e.t. (see [2,3,4]). In particular, for H>12 the increments of fBm are positively correlated and moreover the generalized spectral density behaves like λ−2H+1. The two properties have recently led to applications of them in various fields, which include the noise simulation in electronic circuits [5], the modelling of the subdiffusion of a protein molecule [6], the pricing of weather derivatives [7] and so on.
Recently, mixed stochastic models containing both Brownian motions and fBms gained a lot of attention, e.g. [8,9,10,11,12]. They allow us to model systems driven by a combination of random noises, one of which is white and another has a long memory. The motivation to consider such equations comes from some financial applications, where Brownian motion as a model is inappropriate because of the lack of memory, and fBm with H>12 is too smooth. A model driven by both processes is free of such drawbacks. For example, in financial mathematics, the underlying random noise includes a "fundamental" part, describing the economical background for a stock market, and a "trading" part, coming from the randomness inherent for the stock market. In this case, the fundamental part of the noise should have a long memory, while the second part is likely to be a white noise.
The existence and uniqueness for the solutions of mixed SDEs is discussed by an extensive literature (see [9,13,14]). However, the solution of (1.1) is rarely analytically tractable, so it is important to consider certain numerical methods to solve it. Euler approximation used in this paper usually is most popular and probably simplest among all methods of approximation of SDEs. There have been several works devoted to Euler approximation of mixed SDEs (see [13,15,16]). Guerra and Nualart [13] established the global existence and uniqueness for the solutions of multidimensional time-dependent mixed SDEs under the assumption that W and BH are independent. The proof relied on an estimate for Euler approximation of them, which was obtained by using fractional calculus and Itô integration. Mishura and Shevchenko [16] considered the following mixed SDEs involving both standard Brownian motions and fBms with Hurst parameter H>12,
Xt=X0+∫t0a(s,Xs)ds+∫t0b(s,Xs)dWs+∫t0c(Xs)dBHs,t∈[0,T]. | (1.2) |
Under the boundedness of a(t,x),b(t,x),c(x)(c(x)>0) together with their partial derivatives in x, and (2H−1)-Hölder continuity of a(t,x) and b(t,x) in t, they showed that the mean-square rate of convergence for Euler approximation of (1.2) was O(δ12∧(2H−1)), where δ is the mesh of the partition of [0,T]. We can also find that a faster convergent rate O(δ12) can be deduced if we apply the modified Euler method (see [15]).
However, there is an obstacle to discuss mixed SDEs because of the different machinery behind Itô integral with respect to W and Riemann-Stieltjes integral with respect to BH, particularly in the multidimensional and time-dependent cases. Exactly, the former integral is treated usually in a mean-square sense, while the latter is understood in a pathwise sense and all estimates are pathwise with random constants. Therefore, it is very hard to analyze with standard tools of stochastic analysis. This forces us to consider very smooth coefficients and to make delicate estimates on a suitable space. For example, the measurable space Wα,∞0([0,T]) with the following norm was introduced in [17],
‖Xt‖α,∞:=supt∈[0,T]‖Xt‖α=supt∈[0,T](|Xt|+∫t0|Xt−Xs|(t−s)α+1)<∞a.s.α∈(1−H,1/2). | (1.3) |
The method of dealing with mixed SDEs in Wα,∞0([0,T]) does solve a lot of questions (see [9,11,13,14,18,19]).
The aim of this paper is to prove that the rate of convergence of Euler approximation of (1.1) is O(δ12∧(2H−1)) in probability in the space of Wα,∞0([0,T]) (see Remark 7). Meanwhile, we also get that, for any fixed ε>0, there exist a positive constant Cε and a subset Ωε of Ω with P(Ωε)>1−ε such that
E[supt∈[0,T]‖Xt−Xδt‖2αIΩε]≤Cεδ1∧(4H−2) and E[supt∈[0,T]‖Xt−Xδt‖2αIΩ/Ωε]≤Cε1/2, |
where C is a general positive constant independent of δ and ε (see Corollary 3). Unsurprisingly, the rate of convergence appears to be equal to the worst of the rates for corresponding "pure" equations (see [18,20]). Our approach is different from [18,20] in the sense that we combine pathwise approach with Itô integration in order to handle both types of integrals by using the Garsia-Rademich-Rumsey inequality. The proof of our result combines the techniques of Malliavin calculus with classical fractional calculus. The main ideas are to estimate the pathwise Riemann-Stieltjes integral by a random constant with moments of any order (see (2.3) and (2.5) and to express it as the sum of a Skorohod integral plus a correction term which involves the trace of the Malliavin derivative (see (2.11) and (2.13).) One can read Remark 10 for details. To the best of our knowledge, up to now, there is no paper which investigates the rate of convergence of Euler approximation of (1.1). We here make a first attempt to research such problem.
The rest of this paper is organized as follows. Several important functional space and some elements of fractional calculus and Malliavin calculus on an interval are give in Section 2. Section 3 contains the results concerning the rate of convergence for Euler scheme associated to (1.1). We first give our assumptions and some priori estimates, and then prove the rate of convergence is O(δ12∧(2H−1)) in probability. In Section 4, we give a numerical example and in Section 5, we summarize the work done in this paper and look forward to the next stage of our work. Finally, in Section 6, we prove the bounded estimation (3.5) and recall a couple of technical results.
Let (Ω,F,{Ft}0≤t≤T,P) be a complete probability space equipped with a filtration {Ft}0≤t≤T satisfying standard assumptions, i.e., it is increasing and right-continuous while F0 contains all P-null sets. Denote by W={Wt:t∈[0,T]} Brownian motions and BH={BHt:t∈[0,T]} fractional Brownian motions (fBms) with Hurst parameter H∈(1/2,1). Both are defined on (Ω,F,{Ft}0≤t≤T,P), where Ft=σ{X0,Ws,BHs|s∈[0,t]}. As we know, they are mean zero centered Gaussian processes with covariance kernels R(s,t)=min{s,t} and RH(s,t)=12(s2H+t2H−|t−s|2H) for any s,t∈[0,T] respectively. fBm is different from Brownian motion, it is neither a semimartingale nor a Markov process. Moreover, it holds (E|Bt−Bs|2)1/2=|t−s|H,s,t∈[0,T], and almost all sample paths of BH are Hölder continuous of any order μ∈(0,H). Now, let us briefly recall the Malliavin calculus, fractional calculus and three important functional spaces.
1. The space of β-Hölder continuous functions: Cβ([0,T]).
Let β∈(0,1). For a function f:[0,T]→R,‖f‖0,T,β denotes the β-Hölder norm of f on [0,T], that is,
‖f‖0,T,β:=sup0≤s<t≤T|ft−fs|(t−s)β. |
If ‖f‖0,T,β<∞, then we say f∈Cβ([0,T]).
2. The functional space: Wα,1([0,T]). (see [11])
Consider the fixed interval [0,T] and α∈(1−H,1/2). We denote by Wα,1([0,T]) the space of measurable functions f on [0,T] such that
‖f‖α,0,T:=∫T0|fs|sαds+∫T0∫s0|fs−fr|(s−r)α+1drds<∞. |
It is useful for us to estimate the pathwise Riemann-Stieltjes integral with respect to fBm. (see (2.3) and (2.5)
3. The functional space: Wα,∞0([0,T]). (see [13])
Definition 2.1. Let α∈(0,1/2). For any measurable function f:[0,T]→R, define
‖f‖α,∞:=supt∈[0,T]‖ft‖α=supt∈[0,T]{|ft|+∫t0|ft−fs|(t−s)1+αds}. |
If ‖f‖α,∞<∞, then we say f∈Wα,∞0([0,T]).
Remark 2.1. Wα,∞0([0,T]) is called Besov space (see [11], [18]). Moreover, given any ε such that 0<ε<α, there exists the following inclusions (see [13]):
Cα+ε∞([0,T])⊂Wα,∞0([0,T])⊂Cα−ε∞([0,T]), |
where Cα∞([0,T]) denotes the space of sup and α-Hölder continuous functions f:[0,T]→R, equipped with the norm ‖f‖∞,0,T,α:=sup0≤t≤T|ft|+sup0≤s<t≤T|ft−fs||t−s|α. In particular, both the fractional Brownian motion BH with H>1/2, and the standard Brownian motion W, have their trajectories in Wα,∞0([0,T]).
Due to the fact that fBm is neither a semi-martingale nor a Markov process, Itô's stochastic calculus is not fit for it. In this subsection, we show the definitions of the generalized fractional integrals and derivative operators (see [21]) before introducing the pathwise Riemann-Stieltjes integral with respect to fBm.
For p≥1 and a,b∈R with a<b, we denote by Lp(a,b) the space of Lebesgue measurable functions f:[a,b]→R satisfying
‖f‖Lp(a,b):=(∫ba|fx|pdx)1/p<∞. |
If f∈L1(a,b) and 0<α<1, the left-sided and right-sided fractional Riemann-Liouville integrals with respect to f of order α are defined by, for almost all t∈(a,b),
Iαa+ft=1Γ(α)∫ta(t−s)α−1fsds |
and
Iαb−ft=eiπαΓ(α)∫bt(s−t)α−1fsds, |
where Γ(α)=∫∞0rα−1e−rdr is the Gamma function. Let Iαa+(Lp) (resp. I1−αb−(Lq)) be the image of Lp(a,b) by the operator Ia+ (resp. I1−αb−). Suppose that limε↓0f(a+ε) and limε↓0g(b−ε) exist, moreover,
fa+∈Iαa+(Lp(a,b)),gb−∈I1−αb−(Lq(a,b)), |
where p≥1,q≥1,1p+1q≤1,0<α<1,fa+(t)=ft−limε↓0f(a+ε) and gb−(t)=limε↓0g(b−ε)−gt, then the fractional (Weyl) derivatives are defined by, for almost all s∈(a,b),
(Dαa+fa+)(s)=1Γ(1−α)(fs−fa(s−a)α+α∫safs−fτ(s−τ)1+αdτ)1(a,b)(s) |
and
(D1−αb−gb−)(s)=exp(−iπα)Γ(α)(gb−gs(b−s)1−α+(1−α)∫bsgτ−gs(τ−s)2−αdτ)1(a,b)(s). |
Remark 2.2. From [13], we can see Iαa+(Dαa+fa+)=fa+ for any fa+∈Iαa+(Lp(a,b)) and I1−αb−(D1−αb−gb−)=gb− for any gb−∈I1−αb−(Lq(a,b)). Moreover, from [11], we also see Dαa+fa+∈Lp(a,b) and D1−αb−gb−∈Lq(a,b).
Now we can construct the pathwise Riemann-Stieltjes integral with respect to fBm. If f∈Cλ([a,b]) and g∈Cμ([a,b]) with λ+μ>1, then, from the classical paper [22] by Young, the Riemann-Stieltjes integral ∫bafdg exists. Furthermore, Zähle [23] provided an explicit expression for it in terms of fractional derivatives as follows.
Proposition 2.1. Suppose that f∈Cλ([a,b]) and g∈Cμ([a,b]) with λ+μ>1. Let λ>α and μ>1−α. Then the pathwise Riemann-Stieltjes integral ∫bafsdgs exists and it can be expressed as
∫bafsdgs=eiπα∫baDαa+fa+(s)D1−αb−gb−(s)ds. | (2.1) |
We know that the fBm BH is ν-Hölder continuous for ∀ν∈(0,H). Therefore, for f∈Cβ([a,b]) and 1−H<α<β<1, we can express the pathwise Riemann-Stieltjes integral with respect to fBm according to (2.1) as
∫bafsdBHs=eiπα∫baDαa+fa+(s)D1−αb−BHb−(s)ds, | (2.2) |
where BHb−(s)=BH(b)−BH(s).
Remark 2.3. (see [24]) For any α∈(1−H,1), it follows from [21] that D1−αb−BHb−(x)∈L∞(a,b). Therefore, for any f∈Iαa+(L1(a,b)), (2.2) still holds.
The stochastic integral (2.2) admits the following estimate (see [11]): for α∈(1−H,1/2) and t∈[0,T], there exists a random variable ψ(ω,α,t) with finite moments of any order such that, for any determination or random function f∈Wα,1([0,T]),
|∫t0fsdBHs|≤ψ(ω,α,t)(∫t0|fs|sαds+∫t0∫s0|fs−fr|(s−r)α+1drds)=:ψ(ω,α,t)‖f‖α,0,t. | (2.3) |
Moreover, from the classical Garsia-Rodemich-Rumsey inequality (see (1.2) of [25]), we can choose ψ(ω,α,t) as
ψ(ω,α,t)=sup0≤u<v≤t|(D1−αv−BHv−)(u)|≤Cα,H,θξ0,t(BH):=Cα,H,θ(∫t0∫t0|BHx−BHy|2/θ|x−y|2H/θdxdy)θ/2<∞a.s., | (2.4) |
where Cα,H,θ is a constant depending on the underlying arguments, θ<α+H−1. Without loss of generality we can assume that θ=(α+H−1)/2 (see, for example, [17]). It is easily obtained from (2.4) that ψ(ω,α,t) is continuous in t and ψ(ω,α,t)≤ψ(ω,α,T) for all ω,α and t∈[0,T].
Also we need the following inequality from Proposition 4.1 in [17]: for any α∈(1−H,1/2),0≤s≤t≤T and f∈Wα,1([0,T]), we have
|∫tsfsdBHs|≤ψ(ω,α,t)(∫ts|fr|(r−s)αds+∫ts∫rs|fr−fv|(r−v)α+1dvdr). | (2.5) |
Particularly, for any η∈(0,H), there exists some constant Cη depending on η such that
|BHt−BHs|≤Cηψ(ω,α,t)|t−s|H−η holds . | (2.6) |
Again applying the Garsia-Rademich-Rumsey inequality to Wt and ∫tsb(u,Xu)dWu, for any η∈(0,1/2), one can deduce
|Wt−Ws|≤ϕ(ω,η,t)|t−s|1/2−η | (2.7) |
and
|∫tsb(u,Xu)dWu|≤ϕb(ω,η,t)|t−s|1/2−η | (2.8) |
where
ϕ(ω,η,t)=Cη(∫t0∫t0|Wx−Wy|2/η|x−y|1/ηdxdy)η/2 |
and
ϕb(ω,η,t)=Kη(∫t0∫t0|∫yxb(u,Xu)dWu|2/η|x−y|1/ηdxdy)η/2 |
respectively, Cη,Kη are both constants depending on η.
Let ℑ be the set of step functions on [0,T] and consider the Hilbert space H defined as the closure of ℑ with respect to the scalar product ⟨1[0,t],1[0,s]⟩H=RH(s,t) for s,t∈[0,T]. The mapping 1[0,t]↦BHt can be extended to an isometry between H and its associated Gaussian space. This isometry will be denoted by ϕ↦BH(ϕ). Note that
⟨ϕ,ψ⟩H=∫T0(K∗Hϕ)(s)(K∗Hψ)(s)ds for ϕ,ψ∈ℑ, |
where
(K∗Hϕ)(s)=∫Tsϕ(u)∂KH∂u(u,s)du,s∈[0,T] |
and
KH(t,s)=cHs12−H∫ts(u−s)H−32uH−12du1[0,t)(s), |
here cH=(H(2H−1)B(2−2H,H−12))12 and B denotes the Beta function. Moreover, we have L1/H([0,T])⊂H and in particular
⟨φ,ψ⟩H=H(2H−1)∫T0∫T0φ(r)ψ(u)|r−u|2H−2drdu |
for φ,ψ∈L1/H(0,T)
For n≥1, let F=f(Bt1,⋯,Btn) be smooth and cylindrical random variables with ti∈[0,T] for i=1,⋯,n and f being bounded and smooth. Then, the derivative operator D in the Sobolev space D1,2 is defined by
DsF=n∑i=1∂F∂xi(Bt1,⋯,Btn)1[0,ti](s),s∈[0,T]. | (2.9) |
In particular DsBHt=1[0,t](s). As usual, D1,2 is the closure of the set of smooth random variables with respect to the norm‖F‖21,2=E|F|2+E‖D.F‖2H
If F1,F2∈D1,2 such that F1 and ‖DF1‖H are bounded, then F1F2∈D1,2 and
D(F1F2)=F2DF1+F1DF2. |
Moreover, recall also the following chain rule: For F∈D1,2 and g∈C1(R) with bounded derivative we have g(F)∈D1,2 and
Dg(F)=g′(F)DF. | (2.10) |
The divergence operator, or Skorohod integral operator δ, is the adjoint of the derivative operator and we have the duality relationship E[Fδ(u)]=E⟨DF,u⟩H for every F∈D1,2 and u∈Dom(δ). We should also note that, for 1/2<H<1,
D1,2⊆L2(Ω,H)⊆L1H(Ω,H)⊆Dom(δ), |
Here, Lp(Ω,H) denotes the space of stochastic functions with finite p−order moment.
If (ut)t∈[0,T] is a stochastic process with Hölder continuous sample paths of order β>1−H, then the Riemann-Stieltjes integral with respect to BH is well defined. If u moreover satisfies ut∈D1,2 for all t∈[0,T] and
sups∈[0,T]E|us|2+supr,s∈[0,T]E|Drus|2<∞, |
then the relation
∫T0utdBHt=∫T0utδBHt+αH∫T0∫T0Dsut|s−t|2H−2dsdt | (2.11) |
holds, here αH=H(2H−1). Set p>1H, from Remark 5 of [26], for the Skorohod integral of the process {ut:t∈[0,T]}, we have the inequality
E[supz∈[0,t]|∫z0usδBHs|p]≤C[∫t0|Eus|pds+E∫t0(∫t0|Dsur|1Hds)pHdr]. | (2.12) |
Remark 2.4. Due to Hölder inequality, it can be obtained from (2.12) that
E[supz∈[0,t]|∫z0usδBHs|p]≤C[∫t0E|us|pds+E∫t0∫t0|Dsur|pdsdr]. | (2.13) |
For any n∈N, consider the isometric partition of [0,T]: {0=t0<t1<⋯<tn=T,δ=Tn},tk=kδ,k=0,1,…,n. Define τt:=max{tk:tk<t} and nt:=max{k:tk<t}. The Euler approximation of (1.1) is expressed as
Xδt=Xtk+a(tk,Xδtk)(t−tk)+b(tk,Xδtk)(Wt−Wtk)+c(tk,Xδtk)(BHt−BHtk),t∈(tk,tk+1], |
or, in the integral form,
Xδt=X0+∫t0a(τs,Xδτs)ds+∫t0b(τs,Xδτs)dWs+∫t0c(τs,Xδτs)dBHs,t∈[0,T]. | (3.1) |
Throughout this paper, we denote by C the generic positive constants independent of δ and ω. Their values are not important for us and maybe different from line to line. The mixture of Itô integral and pathwise Riemann-Stieltjes integral makes things a lot harder, forcing us to consider very smooth coefficients. Specifically, in this paper, besides the independence of W and BH, we suppose the coefficients of (1.1) satisfy the following hypotheses almost surely.
(Hab): The coefficients a(t,x),b(t,x) together with their partial derivatives in x are bounded. Moreover, a(t,x) and b(t,x) are β-Hölder continuous in t. That is, there exist two constants C>0 and β∈(12∨(2H−1),1] such that
(1). |a(t,x)|+|b(t,x)|≤C;
(2). |ax(t,x)|+|bx(t,x)|≤C;
(3). |a(t,x)−a(s,x)|+|b(t,x)−b(s,x)|≤C|t−s|β.
(Hc): The coefficient c(t,x) is continuously differentiable in x. Moreover, there exist two constants C>0 and β∈(12∨(2H−1),1] such that
(1). |c(t,x)|+|cx(t,x)|≤C;
(2). |c(t,x)−c(s,x)|+|cx(t,x)−cx(s,x)|≤C|t−s|β;
(3). |cx(t,x)−cx(t,y)|≤C|x−y|.
Note that the above assumptions (2) of (Hab) and (1) of (Hc) imply the Lipschitz continuity, that is, there exists some constant C>0 such that, for any t∈[0,T] and x,y∈R,
|a(t,x)−a(t,y)|+|b(t,x)−b(t,y)|+|c(t,x)−c(t,y)|≤C|x−y|. |
Remark 3.1.
1. As was stated in [13], under the assumptions (Hab) and (Hc), the main SDEs (1) has a unique solution {X(t),t∈[0,T]} in the space of Wα,∞0([0,T]) with α∈(1−H,1/2).
2. Even if, instead of the boundedness of a(t,x), we assume that the coefficient a(t,x) is linear growth, all results in this paper are still true.
Now, we are going to formulate some useful properties of the Euler approximation {Xδt,t∈[0,T]}. For this, we need some additional notations. Denote ψt:=ψ(ω,α,t)∨1,ϕt:=ϕ(ω,η,t)∨ϕb(ω,η,t)∨1 and ξt:=ψt∨ϕt. Obviously, ξt is non-deceasing in t, that is, for any t∈[0,T], ξt≤ξT=ψT∨ϕT holds almost surely. Moreover, ξt has finite moments of any order. For any R>1, define a stopping time πR:=inf{t:ξt≥R}∧T. Let ΩR={ω:πR=T}. By Lemma 4.4 in [11], P(πR<T) tends to 0 as R→∞ if assumptions (Hab) and (Hc) hold.
Our first result is Hölder continuity for the processes {Xt}t∈[0,T] and {Xδt}t∈[0,T] defined in (1.1) and (3.1) respectively.
Lemma 3.1. If the coefficients of (1.1) satisfy the conditions (Hab)(1)(2) and (Hc), then, for any 1−H<α<12, it has a unique solution X such that {Xt}t∈[0,T]∈Wα,∞0([0,T],R) almost surely. Moreover, for any 0<η<12 and 0≤s≤t≤T, there exists some constant C>0 such that
|Xt−Xs|≤Cξ2TeCψ11−αT⋅|t−s|12−η. | (3.2) |
Proof. It follows from [13] that, for any 1−H<α<12, there exists a unique solution {Xt}t∈[0,T] of (1.1) belonging to Wα,∞0([0,T]) almost surely. Now, we estimate (3.2). From (2.8) and the condition (1) of (Hab) we immediately get
|Xt−Xs|≤|∫tsa(u,Xu)du|+|∫tsb(u,Xu)dWu|+|∫tsc(u,Xu)dBHu|≤C(|t−s|+ϕt|t−s|12−η+Q(s,t)). |
Using the estimation (2.5) and for s,t∈[0,T], we have
Q(s,t)≤ψt(∫tsc(u,Xu)(u−s)αdu+∫ts∫us|c(u,Xu)−c(r,Xr)|(u−r)α+1drdu)≤Cψt(|t−s|1−α+∫ts∫us(u−r)β+|Xu−Xr|(u−r)α+1drdu)≤Cψt(|t−s|1−α+∫ts∫us|Xu−Xr|(u−r)α+1drdu). |
By exchanging the order of integration and choosing 0<η<12−α, for s,u∈[0,T], we have
ζ(s,u):=∫us|Xu−Xr|(u−r)α+1dr≤C∫us1(u−r)α+1[|u−r|+ϕu|u−r|12−η+ψu(|u−r|1−α+∫ur∫qr|Xq−Xz|(q−z)α+1dzdq)]dr≤Cξu|u−s|12−η−α+Cψu∫usζ(s,q)(u−q)αdq. |
Consequently, Lemma 6.3 implies that
ζ(s,u)≤CξueCψ11−αu⋅|u−s|12−η−α. |
Therefore,
|Xt−Xs|≤Cξ2teCψ11−αt⋅|t−s|12−η |
which completes the proof.
Remark 3.2. A similar proof to Lemma 3.1, we also have
|Xδt−Xδs|≤Cξ2TeCψ11−αT⋅|t−s|12−η. |
Then, we prove the boundedness of the processes {Xt}t∈[0,T] and {Xδt}t∈[0,T].
Lemma 3.2. Let E|X0|p<∞ for p≥1. If the assumptions (Hab) and (Hc) hold, then, for any 1−H<α<12, there exists a constant C>0 such that E[supt∈[0,T]‖Xt‖pα]≤C and E[supt∈[0,T]‖Xδt‖pα]≤C, where {Xt}t∈[0,T] and {Xδt}t∈[0,T] are the solutions of (1.1) and Euler (3.1) respectively.
Proof. It can be directly derived from Theorem 4.2 of [11] that E[supt∈[0,T]‖Xt‖pα]≤C. Hence we just need to show E[supt∈[0,T]‖Xδt‖pα]≤C. Write
‖Xδt‖α=|Xδt|+∫t0|Xδt−Xδs|(t−s)α+1ds≤|X0|+3∑k=1Jk(t), |
where
J1(t)=|∫t0a(τs,Xδτs)ds|+∫t0|∫tsa(τr,Xδτr)dr|(t−s)α+1ds,J2(t)=|∫t0b(τs,Xδτs)dWs|+∫t0|∫tsb(τr,Xδτr)dWr|(t−s)α+1ds≤supt∈[0,T]|∫t0b(τs,Xδτs)dWs|+supt∈[0,T]∫t0|∫tsb(τr,Xδτr)dWr|(t−s)α+1ds=:J21+J22,J3(t)=|∫t0c(τs,Xδτs)dBHs|+∫t0|∫tsc(τr,Xδτr)dBHr|(t−s)α+1ds=:J31(t)+J32(t). |
It follows easily from (1) of (Hab) and 1−H<α<12 that J1(t)≤C.
We estimate J31(t) by using (2.3). From the definition of τt and Euler equation (3.1), we have
J31(t)≤ψt(∫t0|c(τs,Xδτs)|sαds+∫t0∫s0|c(τs,Xδτs)−c(τr,Xδτr)|(s−r)α+1drds)≤Cψt[1+∫t0∫τs0(|Xδs−Xδτs|(s−r)α+1+|Xδr−Xδτr|(s−r)α+1+|Xδs−Xδr|(s−r)α+1)drds]=:Cψt(1+J311(t)+J312(t)+J313(t)). |
In order to estimate J311(t) and J312(t), we need the following difference
|Xδt−Xδτt|≤C[(t−τt)+ϕt(t−τt)12−η+ψt(t−τt)H−η]≤Cξt(t−τt)12−η. | (3.3) |
In fact, (3.3) can be easily derived from (2.6) and (2.7).
If one takes η∈(0,12−α), it is obviously that J311(t)≤Cξt.
Note that the area of {0≤s≤t;0≤r≤τs} is equivalent to the area of {0≤r≤τt;τr+δ≤s≤t}. So, by exchanging the order of integration of J312, we have
J312(t)=∫τt0∫tτr+δ1(s−r)α+1ds|Xδr−Xδτr|dr≤1αnt−1∑k=0∫tk+1tk1(tk+1−r)α|Xδr−Xδτr|dr≤Cξt, |
where we use the difference (3.3) and the following inequality (see (4.15) of [17])
\begin{equation} \int_{t_k}^{t_{k+1}}(r-t_k)^\beta(t_{k+1}-r)^{-\alpha}dr\leq \delta^{\beta-\alpha+1}\textbf B(1-\alpha, 1+\beta). \end{equation} | (3.4) |
Evidently, J_{313}(t)\leq \int_0^t\|X_s^\delta\|_\alpha ds.
Now, we estimate J_{32}(t) by using (2.5) and the following estimation
\begin{equation} \int_0^t\int_0^{\tau_r}\frac{(\tau_r-\tau_q)^\beta}{(t-q)^\alpha(r-q)^{\alpha+1}}dqdr\leq C\text{ (see Lemma 6.1)}. \end{equation} | (3.5) |
From the definition of \tau_t and Euler equation (3.1), we have
\begin{eqnarray*} &J_{32}(t)\!\!\!\!\!&\leq\psi_t\int_0^t\frac{\int_s^t\frac{|c(\tau_r, X_{\tau_r}^\delta)|}{(r-s)^\alpha}dr +\int_s^t\int_s^r\frac{|c(\tau_r, X_{\tau_r}^\delta)-c(\tau_q, X_{\tau_q}^\delta)|}{(r-q)^{\alpha+1}} dqdr}{(t-s)^{\alpha+1}}ds\\ &&\leq C\psi_t\left(1+\int_0^t\int_0^r\int_0^q\frac{1}{(t-s)^{\alpha+1}}ds \frac{|c(\tau_r, X_{\tau_r}^\delta)-c(\tau_q, X_{\tau_q}^\delta)|}{(r-q)^{\alpha+1}} dqdr\right)\\ &&\leq C\psi_t\left(1+\int_0^t\int_0^{\tau_r}\frac{|X_r^\delta-X_{\tau_r}^\delta| +|X_q^\delta-X_{\tau_q}^\delta|+|X_r^\delta-X_q^\delta|}{(r-q)^{\alpha+1}(t-q)^\alpha}dqdr\right)\\ && = : C\psi_t(1+J_{321}(t)+J_{322}(t)+J_{323}(t)). \end{eqnarray*} |
It is obvious that
J_{323}(t)\leq \int_0^t\|X_s^\delta\|_\alpha(t-s)^{-\alpha}ds. |
From (3.3) and 0 < \eta < \frac{1}{2}-\alpha , we estimate J_{321}(t) and J_{322}(t) .
J_{321}(t)\leq C\int_0^t\int_0^{\tau_r}(r-q)^{-\alpha-1}dq\frac{|X_r^\delta-X_{\tau_r}^\delta|}{(t-r)^{\alpha}}dr\leq C\xi_{_{t}}. |
Exchanging the order of integration of J_{322}(t) , we have
J_{322}(t) = \int_0^{\tau_t}\int_{\tau_q+\delta}^t(r-q)^{-\alpha-1}dr \frac{|X_q^\delta-X_{\tau_q}^\delta|}{(t-q)^{\alpha}}dq\leq \int_0^{\tau_t}\frac{|X_q^\delta-X_{\tau_q}^\delta|}{(\tau_q+\delta-q)^{\alpha}(t-q)^{\alpha}}dq. |
Further, noting that 0 < \alpha < \frac{1}{2} and then using (3.4), we have
\begin{eqnarray*} &J_{322}(t)\!\!\!\!&\leq C\xi_t\int_0^{\tau_t}(\tau_q+\delta-q)^{-\alpha}(t-q)^{-\alpha}(q-\tau_q)^{\frac{1}{2}-\eta}dq\\ &&\leq C\xi_t\left\{\sum\limits_{k = 0}^{n_t-2}\frac{1}{(t-t_{k+1})^{\alpha}}\int_{t_k}^{t_{k+1}} \frac{(q-t_k)^{\frac{1}{2}-\eta}}{(t_{k+1}-q)^{\alpha}}dq+\delta^{\frac{1}{2}-\eta} \int_{t_{n_t-1}}^{t_{n_t}}\frac{1}{(t_{n_t}-q)^{\alpha}(t-q)^{\alpha}}dq\right\}\\ &&\leq C\xi_t\left\{\sum\limits_{k = 0}^{n_t-2}(t-t_{k+1})^{-\alpha}\delta^{\frac{3}{2}-\eta-\alpha} +\delta^{\frac{1}{2}-\eta}(t_{n_t}-t_{n_t-1})^{1-2\alpha}\right\}\\ &&\leq C\xi_t\left\{\sum\limits_{k = 0}^{n_t-2}(t-t_{k+1})^{-\alpha}\delta^{\frac{3}{2}-\eta-\alpha} +\delta^{\frac{3}{2}-\eta-2\alpha}\right\}\\ &&\leq C\xi_t\left(\int_0^t(t-s)^{-\alpha}ds+1\right)\\ &&\leq C\xi_t. \end{eqnarray*} |
Summing up all the above estimations, we obtain
\|X_t^\delta\|_\alpha\leq |X_0|+J_{21}+J_{22}+C\xi_{_{t}}^2 +C\psi_t\int_0^t\|X_s^\delta\|_\alpha(t-s)^{-\alpha}ds. |
So, it follows from Lemma 6.3 that
\|X_t^\delta\|_\alpha\leq C\left(|X_0|+J_{21}+J_{22}+\xi_{_t}^2\right)e^{C\psi_t^{\frac{1}{1-\alpha}}} \leq C\left(|X_0|+J_{21}+J_{22}+\xi_{_T}^2\right)e^{C\psi_{_T}^{\frac{1}{1-\alpha}}}. |
For each p\geq1, \omega\in \Omega, \text{ and } \alpha\in(1-H, \frac{1}{2}) , we take into account that the right-hand side of the above inequality does not depend on t and arrive at
\sup\limits_{t\in[0, T]}\|X_t^\delta\|_\alpha^p\leq C\left(|X_0|^p+J_{21}^p+J_{22}^p+\xi_{_T}^{2p}\right)e^{C\psi_{{_T}}^{\frac{1}{1-\alpha}}}. |
Therefore,
\mathbb E[\sup\limits_{t\in[0, T]}\|X_t^\delta\|_\alpha^p]\leq C(\mathbb E|X_0|^{2p}+\mathbb EJ_{21}^{2p}+\mathbb EJ_{22}^{2p}+\mathbb E\xi_{_{T}}^{4p})^{\frac{1}{2}}\left\{\mathbb E [e^{C\psi_{_T}^{\frac{1}{1-\alpha}}}]\right\}^{\frac{1}{2}}. |
Taking into account that 1 < \frac{1}{1-\alpha} < 2 , we apply Fernique theorem (see (24) in [11]) and obtain that
\mathbb E[e^{C\psi_{_T}^{\frac{1}{1-\alpha}}}]\leq C. |
Our next step is to estimate \mathbb E[J_{21}^{2p}] with the help of the Doob martingale inequality.
\mathbb E[J_{21}^{2p}]\leq\mathbb E[\sup\limits_{t\in[0, T]}|\int_0^tb(\tau_s, X_{\tau_s}^\delta) dW_s|^{2p}]\leq \mathbb E[\sup\limits_{t\in[0, T]}\int_0^t|b(\tau_s, X_{\tau_s}^\delta)|^{2p}ds]\leq C. |
Applying (2.8) to J_{22}^{2p} and noting that 0 < \eta < \frac{1}{2}-\alpha , one can easily obtain
\mathbb E[J_{22}^{2p}]\leq C\mathbb E[|\phi_{t}|^{2p}]. |
Finally, because \phi_t and \psi_t have bounded moments of p -order, we get
\mathbb E[\sup\limits_{t\in[0, T]}\|X_t^\delta\|_\alpha^{p}]\leq C, |
where the constant C depends on \alpha and p , but is independent of \delta and \omega .
As a result of Lemma 3.2, one can easily get the following corollary.
Corollary 3.1. Let \mathbb E|X_0|^{p} < \infty for p\geq 1 . If assumptions (Hab) and (Hc) hold, then there exists a constant C > 0 such that
\begin{equation*} \mathbb E[\sup\limits_{t\in[0, T]}|X_t^\delta-X_{\tau_t}^\delta|^p]\leq C\delta^{p/2} \end{equation*} |
where \{X_t\}_{t\in[0, T]} and \{X_t^\delta\}_{t\in[0, T]} are the solutions of (1.1) and Euler (3.1) respectively.
Thirdly, we are ready to prove that the moments of the Malliavin derivative of Euler approximation (3.1) is bounded. We refer the reader to Nualart and Saussereau [27] for results on Malliavin regularity of the solutions of stochastic differential equations.
Lemma 3.3. Let t\in(t_k, t_{k+1}] , i.e., \tau_t = t_k , X_{\tau_t}^\delta be the solution of Euler (3.1) at the point t_k, \; k = 0, 1, \cdots, n . If the assumptions (Hab) and (Hc) hold and X_0 is independent of B^H with \mathbb E[|X_0|^{p}] < \infty for p\geq 1 , then, there exist some positive constant C such that \mathbb E[\sup\limits_{t\in[0, T]}|D_sX_t^\delta|^{p}]\leq C for any s > \tau_t and some constant M_{_{p, R}} dependent on p and R such that \mathbb E[\sup\limits_{t\in[0, T]}|D_sX_{\tau_t\wedge\pi_{_R}}^\delta|^{p}]\leq M_{_{p, R}} for any s\in[0, \tau_t] , here, for any fixed R > 1 , the stopping time \pi_{_R} = \inf\left\{t:\xi_{t}\geq R\right\}\wedge T.
Proof. If s > t then it is clear that D_sX_t^\delta = 0 .
Thanks to (2.9), (2.10) and the independence of W and B^H , if \tau_t < s\leq t then we have
\begin{eqnarray*} &D_sX_t^\delta\!\!\!\!\!& = D_s[X_{\tau_t}^\delta+a(\tau_t, X_{\tau_t}^\delta)(t-\tau_t) +b(\tau_t, X_{\tau_t}^\delta)(W_t-W_{\tau_t})+c(\tau_t, X_{\tau_t}^\delta)(B_t^H-B_{\tau_t}^H)]\\ && = c(\tau_t, X_{\tau_t}^\delta). \end{eqnarray*} |
By the boundedness of c(t, x) , we have \mathbb E[\sup\limits_{t\in[0, T]}|D_sX_t^\delta|^{p}]\leq C for any s > \tau_t .
If s\in[0, \tau_t] then we have
\begin{eqnarray*} &D_sX_{\tau_t\wedge\pi_{_R}}^\delta\!\!\!\!\!& = D_s\left(X_0+\int_0^{\tau_t\wedge\pi_{_R}}a(\tau_u, X_{\tau_u}^\delta)du +\int_0^{\tau_t\wedge\pi_{_R}}b(\tau_u, X_{\tau_u}^\delta)dW_u\right.\\ &&\quad\left.+\int_0^{\tau_t\wedge\pi_{_R}}c(\tau_u, X_{\tau_u}^\delta)dB_u^H\right)\\ && = c(\tau_s, X_{\tau_s}^\delta)+\int_{\tau_s+\delta}^{\tau_t\wedge\pi_{_R}}a_x(\tau_u, X_{\tau_u}^\delta)D_sX_{\tau_u}^\delta du+\int_{\tau_s+\delta}^{\tau_t\wedge\pi_{_R}}b_x(\tau_u, X_{\tau_u}^\delta)D_sX_{\tau_u}^\delta dW_u\\ &&\quad+\int_{\tau_s+\delta}^{\tau_t\wedge\pi_{_R}}c_x(\tau_u, X_{\tau_u}^\delta)D_sX_{\tau_u}^\delta dB_u^H. \end{eqnarray*} |
From Lemma 2.3 of [14] and the boundedness of a_x(t, x) , b_x(t, x) and c_x(t, x) , for any s belonging to the interval [0, T] , we obtain
\mathbb E[\sup\limits_{t\in[0, T]}|D_sX_{\tau_t\wedge\pi_{_R}}^\delta|^{p}]\leq M_{_{p, R}} \text{ for any } s\leq\tau_t. |
For any s\in[0, \tau_t] , note that the equation
\begin{equation*} D_s(X_t^\delta-X_{\tau_t}^\delta) = D_sX_{\tau_t}^\delta\left(a_x(\tau_t, X_{\tau_t}^\delta)(t-\tau_t)+b_x(\tau_t, X_{\tau_t}^\delta)(W_t-W_{\tau_t}), +c_x(\tau_t, X_{\tau_t}^\delta)(B_t^H-B_{\tau_t}^H)\right) \end{equation*} |
is true. Therefore, we have the following corollary by Lemma 3.3 and Cauchy-Schwarz type inequality.
Corollary 3.2. If the conditions of Lemma 3.3 are satisfied, then, for any s\in[0, \tau_t] , we have
\mathbb E[\sup\limits_{t\in[0, T]}|D_s(X_{t\wedge\pi_{_R}}^\delta-X_{\tau_t\wedge\pi_{_R}}^\delta)|^p]\leq C\delta^{p/2}. |
and
\mathbb E[\sup\limits_{t\in[0, T]}|D_sX_{t\wedge\pi_{_R}}^\delta|^p]\leq M_{_{p, R}} \mathit{\text{for any}}s\leq t. |
The aim of this subsection is to estimate the rate of convergence of Euler (3.1) to the solution of (1.1).
Theorem 3.1. Suppose that X_0 is a random variable independent of W and B^H with \mathbb E|X_0|^4 < \infty . If assumptions (Hab) and (Hc) are satisfied then we have
\lim\limits_{n\rightarrow\infty}P(n^\gamma\sup\limits_{t\in[0, T]}\|X_t-X_t^\delta\|_\alpha \gt \varepsilon) = 0 \mathit{\text{in}} \mathcal W_0^{\alpha, \infty}([0, T]) |
for any \gamma < \min\{\frac{1}{2}, 2H-1\} , \varepsilon > 0 and \alpha \in\left(1-H, \frac{1}{2}\right) . Here, \{X_t\}_{t\in[0, T]} and \{X_t^\delta\}_{t\in[0, T]} are the solutions of (1.1) and Euler (3.1) respectively and n = \frac{T}{\delta} .
Remark 3.3. Theorem 3.1 shows that the rate of convergence for Euler (3.1) is equal to \gamma ( \gamma < \min\{\frac{1}{2}, 2H-1\} ) in probability with the norm \sup\|\cdot\|_\alpha , i.e. in the sense of probability, we can establish an estimate for the error of |X_t-X_t^\delta| with the norm \sup\|\cdot\|_\alpha in certain Besov space \mathcal W_0^{\alpha, \infty}([0, T]) (see Definition 2.1), exactly,
for any \varepsilon > 0 and any sufficiently small \rho > 0 , there exists \delta_0 > 0 and \Omega_{\varepsilon, \delta_0, \rho} such that P(\Omega_{\varepsilon, \delta_0, \rho}) > 1-\varepsilon and for any \omega\in\Omega_{\varepsilon, \delta_0, \rho}, \delta < \delta_0 ,
\begin{eqnarray*} &\sup\limits_{t\in[0, T]}\|X_t-X_t^\delta\|_\alpha\!\!\!\!& = \sup\limits_{t\in[0, T]}\left\{|X_t-X_t^\delta|+\int_0^t\frac{|X_t-X_t^\delta-(X_s-X_s^\delta)|}{(t-s)^{1+\alpha}}ds\right\}\\ && \lt C(\omega)\delta^{\min\{\frac{1}{2}, 2H-1\}-\rho}, \end{eqnarray*} |
here \alpha \in\left(1-H, \frac{1}{2}\right) , C(\omega) does not depend on \delta and \varepsilon (but depends on \rho ).
Proof. of Theroem 3.1. Fix an arbitrary \varepsilon > 0 and any R > 1 . As mentioned previously, \pi_{_R} = \inf\{t:\xi_{t}\geq R\}\wedge T . Consider
\begin{equation} P(n^\gamma\sup\limits_{t\in[0, T]}\|X_t-X_t^\delta\|_\alpha \gt \varepsilon)\leq P(\pi_{_R} \lt T)+P(n^\gamma\sup\limits_{t\in[0, T]}\|X_t-X_t^\delta\|_\alpha \gt \varepsilon, \pi_{_R} = T). \end{equation} | (3.6) |
For the second term on the right hand side of (3.6), applying Chebyshev's inequality, we have
\begin{eqnarray} &P(n^\gamma\sup\limits_{t\in[0, T]}\|X_t-X_t^\delta\|_\alpha \gt \varepsilon, \pi_{_R} = T)\!\!\!\!\!&\leq P(n^\gamma\sup\limits_{t\in[0, T]}\|X_{t\wedge\pi_{_R}}-X_{t\wedge\pi_{_R}}^\delta\|_\alpha \gt \varepsilon)\\ &&\leq\frac{n^{2\gamma}\mathbb E[(\sup\limits_{t\in[0, T]}\|X_{t\wedge\pi_{_R}}-X_{t\wedge\pi_{_R}}^\delta\|_\alpha)^2]}{\varepsilon^2}. \end{eqnarray} | (3.7) |
Now, we estimate (3.7). According to Definition 2.1, for any t\in[0, T] , we have
\begin{eqnarray} &\mathbb E\!\!\!\!\!&[(\sup\limits_{z\in[0, t]}\|X_{z\wedge\pi_{_R}}-X_{z\wedge\pi_{_R}}^\delta\|_\alpha)^2]\\ &&\leq 2\mathbb E[\sup\limits_{z\in[0, t]}|X_{z\wedge\pi_{_R}}-X_{z\wedge\pi_{_R}}^\delta|^2] +2\mathbb E\left[\left(\int_0^{t\wedge\pi_{_R}}\frac{|X_{t\wedge\pi_{_R}}-X_{t\wedge\pi_{_R}}^\delta-X_s+X_s^\delta|}{(t-s)^{ \alpha+1 }}ds\right)^2\right]\\ && = :2(I_1(t)+I_2(t)). \end{eqnarray} | (3.8) |
In turn, I_1(t) can be estimated as
\begin{eqnarray} &I_1(t)\!\!\!\!\!&\leq 3\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(a(s, X_s)-a(\tau_s, X_{\tau_s}^\delta)\big)ds\right|^2\\ &&\quad+3\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(b(s, X_s)-b(\tau_s, X_{\tau_s}^\delta)\big)dW_s\right|^2\\ &&\quad+3\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(c(s, X_s)-c(\tau_s, X_{\tau_s}^\delta)\big)dB_s^H\right|^2\\ && = :3\Big(I_{11}(t)+I_{12}(t)+I_{13}(t)\Big). \end{eqnarray} | (3.9) |
From Corollary 3.1, we have
\begin{eqnarray} &I_{11}(t)\!\!\!\!\!&\leq 3\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(a(s, X_s)-a(s, X_s^\delta)\big)ds\right|^2\\ &&\quad+3\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(a(s, X_s^\delta)-a(s, X_{\tau_s}^\delta)\big)ds\right|^2\\ &&\quad+3\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(a(s, X_{\tau_s}^\delta)-a(\tau_s , X_{\tau_s}^\delta)\big)ds\right|^2\\ &&\leq C\int_0^t\mathbb E\sup\limits_{z\in[0, s]}|X_{z\wedge\pi_{_R}}-X_{z\wedge\pi_{_R}}^\delta|^2ds+C\int_0^t\mathbb E|X_s^\delta-X_{\tau_s}^\delta|^2ds+C\delta^{2\beta}\\ &&\leq C\int_0^tI_1(s)ds+C\delta+C\delta^{2\beta}. \end{eqnarray} | (3.10) |
From Doob martingale inequality and Corollary 3.1, we have
\begin{eqnarray} &I_{12}(t)\!\!\!\!\!&\leq 3\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(b(s, X_s)-b(s, X_s^\delta)\big)dW_s\right|^2\\ &&\quad+3\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(b(s, X_s^\delta)-b(s, X_{\tau_s}^\delta)\big)dW_s\right|^2\\ &&\quad+3\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(b(s, X_{\tau_s}^\delta)-b(\tau_s , X_{\tau_s}^\delta)\big)dW_s\right|^2\\ &&\leq C\int_0^t\mathbb E\sup\limits_{z\in[0, s]}|X_{z\wedge\pi_{_R}}-X_{z\wedge\pi_{_R}}^\delta|^2ds+C\int_0^t\mathbb E|X_s^\delta-X_{\tau_s}^\delta|^2ds+C\delta^{2\beta}\\ &&\leq C\int_0^tI_1(s)ds+C\delta. \end{eqnarray} | (3.11) |
Estimate I_{13}(t) by dividing it into three parts.
\begin{eqnarray} &I_{13}(t)\!\!\!\!\!&\leq 3\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(c(s, X_s)-c(s, X_s^\delta)\big)dB_s^H\right|^2\\ &&\quad+3\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(c(s, X_s^\delta)-c(s, X_{\tau_s}^\delta)\big)dB_s^H\right|^2\\ &&\quad+3\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(c(s, X_{\tau_s}^\delta)-c(\tau_s , X_{\tau_s}^\delta)\big)dB_s^H\right|^2\\ && = :3\Big(I_{131}(t)+I_{132}(t)+I_{133}(t)\Big). \end{eqnarray} | (3.12) |
Taking into account the estimation (2.3) and the definition of stopping time \pi_{_R} , we have
\begin{eqnarray} \label{ineq-K1 = L1+L2} &I_{131}(t)\!\!\!\!\!&\leq 2R^2\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\frac{|c(s, X_s)-c(s, X_s^\delta)|}{s^\alpha}ds\right|^2\\ &&\quad+2R^2\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\int_0^s \frac{|c(s, X_s)-c(s, X_s^\delta)-c(q, X_q)+c(q, X_q^\delta)|}{(s-q)^{\alpha+1}}dqds\right|^2\\ && = :2R^2\Big(I_{1311}(t)+I_{1312}(t)\Big). \end{eqnarray} |
Noting that 1-H < \alpha < \frac{1}{2} and c(t, x) is Lipschitz continuous, we have
\begin{eqnarray} &I_{1311}(t)\!\!\!\!\!&\leq \mathbb E\int_0^{t\wedge\pi_{_R}}|c(s, X_s)-c(s, X_s^\delta)|^2ds\cdot\int_0^ts^{-2\alpha} ds\\ &&\leq \int_0^t\mathbb E\sup\limits_{z\in[0, s]}|X_{z\wedge\pi_{_R}}-X_{z\wedge\pi_{_R}}^\delta|^2ds\cdot\int_0^ts^{-2\alpha} ds\\ &&\leq C\int_0^tI_1(s)ds. \end{eqnarray} | (3.13) |
Using Lemma 6.2, Lemma 3.1 and 1-H < \alpha < \frac{1}{2} , we have
\begin{eqnarray} &I_{1312}(t)\!\!\!\!\!&\leq C\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\int_0^s\frac{|X_s-X_s^\delta-X_q+X_q^\delta|}{(s-q)^{ \alpha+1 }}dqds\right|^2\\ &&\quad+C\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\int_0^s\frac{|X_s-X_s^\delta|(s-q)^\beta}{(s-q)^{ \alpha+1 }}dqds\right|^2\\ &&\quad+C\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\int_0^s\frac{|X_s-X_s^\delta|\Big(|X_s-X_q|+|X_s^\delta-X_q^\delta|\Big)}{(s-q)^{ \alpha+1 }}dqds\right|^2\\ &&\leq C\int_0^t\mathbb E\left|\int_0^{s\wedge\pi_{_R}}\frac{|X_{s\wedge\pi_{_R}}-X_{s\wedge\pi_{_R}}^\delta-X_q+X_q^\delta|}{(s-q)^{ \alpha+1 }}dq\right|^2 ds\\ &&\quad+C\int_0^t\mathbb E\sup\limits_{z\in[0, s]}|X_{z\wedge\pi_{_R}}-X_{z\wedge\pi_{_R}}^\delta|^2ds\cdot\int_0^ts^{2(\beta-\alpha)}ds\\ &&\quad+C_R^{2}\int_0^t\mathbb E\sup\limits_{z\in[0, s]}|X_{z\wedge\pi_{_R}}-X_{z\wedge\pi_{_R}}^\delta|^2ds\cdot\int_0^ts^{2\gamma}ds\\ &&\leq C\int_0^tI_2(s)ds+C_{_R}^{2}\int_0^tI_1(s)ds, \end{eqnarray} | (3.14) |
where C_{_R} = CRe^{CR^{\frac{1}{1-\alpha}}} , \gamma = \frac{1}{2}-\eta-\alpha > 0 only if we take \eta\in(0, \frac{1}{2}-\alpha) .
Estimate I_{132}(t) and I_{133}(t) by the relation between the pathwise Riemann-Stieltjes integral and the Skorohod integral with respect to fBm. Firstly,
\begin{eqnarray} &I_{132}(t)\!\!\!\!\!&\leq \mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(c(s, X_s^\delta)-c(s, X_{\tau_s}^\delta)\big)d B_s^H\right|^2\\ && = 2\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(c(s, X_s^\delta)-c(s, X_{\tau_s}^\delta)\big)\delta B_s^H\right|^2\\ &&\quad+2\alpha_{_H}^2\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\int_0^{z\wedge\pi_{_R}}D_u\big(c(s, X_s^\delta)-c(s, X_{\tau_s}^\delta)\big)|s-u|^{2H-2}1_{[0, s]}(u)duds\right|^2\\ && = :2I_{1321}(t)+2\alpha_{_H}^2I_{1322}(t). \end{eqnarray} | (3.15) |
From the estimation (2.13), Lemma 3.2 and 3.3, Corollary 3.1 and 3.2, we have
\begin{eqnarray} &I_{1321}(t)\!\!\!\!\!&\leq C\left(\int_0^t\mathbb E\big|c(s, X_s^\delta)-c(s, X_{\tau_s}^\delta)\big|^2ds+\mathbb E\int_0^{t\wedge\pi_{_R}}\!\!\!\!\int_0^s\big|D_u(c(s, X_s^\delta)-c(s, X_{\tau_s}^\delta))\big|^2duds\right)\\ &&\leq C\int_0^t\mathbb E\big|X_s^\delta-X_{\tau_s}^\delta\big|^2ds+C\int_0^{t\wedge\pi_{_R}}\!\!\!\!\int_0^{\tau_s}\mathbb E\Big[| c_x(s, X_s^\delta)|^2\cdot|D_u(X_s^\delta-X_{\tau_s}^\delta)|^2\Big]duds\\ &&\quad+C\int_0^{t\wedge\pi_{_R}}\!\!\!\!\int_{\tau_s}^s\mathbb E\Big[|c_x(s, X_s^\delta)|^2\cdot|D_u(X_s^\delta-X_{\tau_s}^\delta)|^2\Big]duds\\ &&\quad+C\int_0^{t\wedge\pi_{_R}}\!\!\!\!\int_0^s\mathbb E\Big[|c_x(s, X_s^\delta)- c_x(s, X_{\tau_s}^\delta)|^2\cdot|D_uX_{\tau_s}^\delta|^2\Big]duds\\ &&\leq C\delta+C\int_0^t\int_0^{\tau_s}\Big[\mathbb E| c_x(s, X_s^\delta)|^4\Big]^{\frac{1}{2}}\cdot\Big[\mathbb E|D_u(X_{s\wedge\pi_{_R}}^\delta-X_{\tau_s\wedge\pi_{_R}}^\delta)|^4\Big]^{\frac{1}{2}}duds\\ &&\quad+C\int_0^t\int_{\tau_s}^s\Big[\mathbb E| c_x(s, X_s^\delta)|^4\Big]^{\frac{1}{2}}\cdot\Big[\mathbb E|D_uX_{s\wedge\pi_{_R}}^\delta|^4\Big]^{\frac{1}{2}}duds\\ &&\quad+C\int_0^t\int_0^s\Big[\mathbb E| c_x(s, X_s^\delta)- c_x(s, X_{\tau_s}^\delta)|^4\Big]^{1/2}\cdot\Big[\mathbb E|D_uX_{\tau_s\wedge\pi_{_R}}^\delta|^4\Big]^{1/2}duds\\ &&\leq C\delta. \end{eqnarray} | (3.16) |
Similarly to the estimation of I_{1321}(t) ,
\begin{eqnarray} &I_{1322}(t)\!\!\!\!\!&\leq 4\mathbb E\left|\int_0^t\int_0^{\tau_s} c_x(s, X_s^\delta)D_u(X_{s\wedge\pi_{_R}}^\delta-X_{\tau_s\wedge\pi_{_R}}^\delta)|s-u|^{2H-2}duds\right|^2\\ &&\quad+4\mathbb E\left|\int_0^t\int_{\tau_s}^s c_x(s, X_s^\delta)D_u(X_{s\wedge\pi_{_R}}^\delta-X_{\tau_s\wedge\pi_{_R}}^\delta)|s-u|^{2H-2}duds\right|^2\\ &&\quad+2\mathbb E\left|\int_0^t\int_0^s|D_uX_{\tau_s\wedge\pi_{_R}}^\delta|(c_x(s, X_s^\delta)- c_x(s, X_{\tau_s}^\delta))|s-u|^{2H-2}duds\right|^2\\ &&\leq C\int_0^t\int_0^{\tau_s}\mathbb E\left| c_x(s, X_s^\delta)D_u(X_{s\wedge\pi_{_R}}^\delta-X_{\tau_s\wedge\pi_{_R}}^\delta)\right|^2\cdot|s-u|^{2H-2}duds\\ &&\quad+C\delta^{2H-1}\int_0^t\int_{\tau_s}^s\mathbb E\left| c_x(s, X_s^\delta)D_u(X_{s\wedge\pi_{_R}}^\delta-X_{\tau_s\wedge\pi_{_R}}^\delta)\right|^2\cdot|s-u|^{2H-2}duds\\ &&\quad+C\int_0^t\int_0^s\mathbb E\Big[|X_s^\delta-X_{\tau_s}^\delta|^{2}\cdot|D_uX_{\tau_s\wedge\pi_{_R}}^\delta|^2\Big]\cdot|s-u|^{2H-2}duds\\ &&\leq C\int_0^t\int_0^{\tau_s}\Big[\mathbb E|D_u(X_{s\wedge\pi_{_R}}^\delta-X_{\tau_s\wedge\pi_{_R}}^\delta)|^4\Big]^{1/2}\cdot|s-u|^{2H-2}duds\\ &&\quad+C\delta^{2H-1}\int_0^t\int_{\tau_s}^s\Big[\mathbb E|D_uX_{s\wedge\pi_{_R}}^\delta|^4\Big]^{1/2}\cdot|s-u|^{2H-2}duds\\ &&\quad+C\int_0^t\int_0^s\Big[\mathbb E|X_s^\delta-X_{\tau_s}^\delta|^{4}\Big]^{1/2}\cdot\Big[\mathbb E|D_uX_{\tau_s\wedge\pi_{_R}}^\delta|^4\Big]^{1/2}\cdot|s-u|^{2H-2}duds\\ &&\leq C\big(\delta+\delta^{4H-2}\big). \end{eqnarray} | (3.17) |
Secondly,
\begin{eqnarray} &I_{133}(t)\!\!\!\!\!&\leq 2\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\big(c(s, X_{\tau_s}^\delta)-c(\tau_s, X_{\tau_s}^\delta)\big)\delta B_s^H\right|^2\\ &&\quad+2\alpha_H^2\mathbb E\sup\limits_{z\in[0, t]}\left|\int_0^{z\wedge\pi_{_R}}\int_0^{s\wedge\pi_{_R}} D_u\big(c(s, X_{\tau_s}^\delta)-c(\tau_s, X_{\tau_s}^\delta)\big)|s-u|^{2H-2}duds\right|^2\\ && = :2I_{1331}(t)+2\alpha_{_H}^2I_{1332}(t). \end{eqnarray} | (3.18) |
Further we apply (2.13) and Lemma 3.3 to I_{1331}(t) ,
\begin{eqnarray} &I_{1331}(t)\!\!\!\!\!&\leq C\int_0^t\mathbb E\big|c(s, X_{\tau_s}^\delta)-c(\tau_s, X_{\tau_s}^\delta)\big|^2ds\\ &&\quad+C\mathbb E\int_0^{t\wedge\pi_{_R}}\!\!\!\!\int_0^{s\wedge\pi_{_R}}\big|D_u(c(s, X_{\tau_s}^\delta)-c(\tau_s, X_{\tau_s}^\delta))\big|^2duds\\ &&\leq C\delta^{2\beta}+C\mathbb E\int_0^t\int_0^s| c_x(s, X_{\tau_s}^\delta)- c_x(\tau_s, X_{\tau_s}^\delta)|^2\cdot|D_uX_{\tau_s\wedge\pi_{_R}}^\delta|^2duds\\ &&\leq C\delta^{2\beta}+C\delta^{2\beta}\int_0^t\int_0^s\mathbb E|D_uX_{\tau_s\wedge\pi_{_R}}^\delta|^2duds\\ &&\leq C\delta^{2\beta}. \end{eqnarray} | (3.19) |
Similar to the estimation of I_{1331}(t) , we have
\begin{eqnarray} &I_{1332}(t)\!\!\!\!\!&\leq C\mathbb E\int_0^{t\wedge\pi_{_R}}\left(\int_0^{s\wedge\pi_{_R}}D_uX_{\tau_s}^\delta\big(c_x(s, X_{\tau_s}^\delta)-c_x(\tau_s, X_{\tau_s}^\delta)\big)|s-u|^{2H-2}du\right)^2ds\\ &&\leq C\delta^{2\beta}\int_0^t\int_0^s\mathbb E|D_uX_{\tau_s\wedge\pi_{_R}}^\delta|^2\cdot|s-u|^{2H-2}du\int_0^s|s-u|^{2H-2}duds\\ &&\leq C\delta^{2\beta}. \end{eqnarray} | (3.20) |
Summing up all the estimations (3.9)-(3.20), we obtain
\begin{equation} I_1(t)\leq C\big(\delta+\delta^{4H-2}\big)+R^2\cdot C_R^{2}\int_0^tI_1(s)ds+CR^2\int_0^tI_2(s)ds. \end{equation} | (3.21) |
Next step, we consider I_2(t) .
\begin{eqnarray} &I_2(t)\!\!\!\!\!&\leq 3\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}(a(q, X_q)-a(\tau_q, X_{\tau_q}^\delta))dq|}{(t-s)^{ \alpha+1}}ds\right)^2\\ &&\quad+3\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}(b(q, X_q)-b(\tau_q, X_{\tau_q}^\delta))dW_q|}{(t-s)^{ \alpha+1}}ds\right)^2\\ &&\quad+3\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}(c(q, X_q)-c(\tau_q, X_{\tau_q}^\delta))dB_q^H|}{(t-s)^{ \alpha+1}}ds\right)^2\\ && = :3\Big(I_{21}(t)+I_{22}(t)+I_{23}(t)\Big). \end{eqnarray} | (3.22) |
As regards I_{21}(t) , we estimate it in the following way:
\begin{eqnarray} &I_{21}(t)\!\!\!\!\!&\leq 3\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}(a(q, X_q)-a(q, X_q^\delta))dq|}{(t-s)^{ \alpha+1}}ds\right)^2\\ &&\quad+ 3\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}} (a(q, X_q^\delta)-a(q, X_{\tau_q}^\delta))dq|}{(t-s)^{\alpha+1}}ds\right)^2\\ &&\quad+3\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}} (a(q, X_{\tau_q}^\delta)-a(\tau_q, X_{\tau_q}^\delta))dq|}{(t-s)^{\alpha+1}}ds\right)^2\\ && = :3\Big(I_{211}(t)+I_{212}(t)+I_{213}(t)\Big). \end{eqnarray} | (3.23) |
Choosing \varrho such that \alpha < \varrho < \frac{1}{2} , by Hölder inequality, Lipschitz continuity of a(t, x) and exchanging the order of integration, we have
\begin{eqnarray} &I_{211}(t)\!\!\!\!\!&\leq C\mathbb E\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}\big(a(q, X_q)-a(q, X_q^\delta)\big)dq|^2}{(t-s)^{ 2\alpha+2-2\varrho}}ds\\ &&\leq C\mathbb E\int_0^{t\wedge\pi_{_R}}\frac{\int_s^{t\wedge\pi_{_R}}|a(q, X_q)-a(q, X_q^\delta)|^2dq}{(t-s)^{ 2\alpha+1-2\varrho}}ds\\ &&\leq C\int_0^t\frac{\int_s^t\mathbb E|X_{q\wedge\pi_{_R}}-X_{q\wedge\pi_{_R}}^\delta|^2dq}{(t-s)^{2\alpha+1-2\varrho}}ds\\ &&\leq C\int_0^tI_1(s)ds. \end{eqnarray} | (3.24) |
By a similar discussion to I_{211}(t) , one can easily get
\begin{equation} I_{212}(t)\leq C\delta, \end{equation} | (3.25) |
and
\begin{equation} I_{213}(t)\leq C\delta^{2\beta}. \end{equation} | (3.26) |
Similar to the estimation of I_{21}(t) , we estimate I_{22}(t) by dividing it into three parts as well,
\begin{eqnarray} &I_{22}(t)\!\!\!\!\!&\leq 3\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}(a(q, X_q)-a(q, X_q^\delta))dW_q|}{(t-s)^{ \alpha+1}}ds\right)^2\\ &&\quad+ 3\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}} (a(q, X_q^\delta)-a(q, X_{\tau_q}^\delta))dW_q|}{(t-s)^{\alpha+1}}ds\right)^2\\ &&\quad+3\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}} (a(q, X_{\tau_q}^\delta)-a(\tau_q, X_{\tau_q}^\delta))dW_q|}{(t-s)^{\alpha+1}}ds\right)^2\\ && = :3\Big(I_{221}(t)+I_{222}(t)+I_{223}(t)\Big). \end{eqnarray} | (3.27) |
From Hölder inequality, Burkhölder-Davis-Gundy inequality and then exchanging the order of integration, we get
\begin{eqnarray} &I_{221}(t)\!\!\!\!\!&\leq C\mathbb E\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}} (a(q, X_q)-a(q, X_q^\delta))dW_q|^2}{(t-s)^{\alpha+\frac{3}{2}}}ds\int_0^t(t-s)^{-\alpha-\frac{1}{2}}ds\\ &&\leq C\int_0^t\int_s^t\mathbb E\big|a(q\wedge\pi_{_R}, X_{q\wedge\pi_{_R}})-a(q\wedge\pi_{_R}, X_{q\wedge\pi_{_R}}^\delta)\big|^2(t-s)^{ -\alpha-\frac{3}{2} }dqds\\ &&\leq C\int_0^t\mathbb E\big|X_{q\wedge\pi_{_R}}-X_{q\wedge\pi_{_R}}^\delta\big|^2\int_0^q(t-s)^{ -\alpha-\frac{3}{2} }dsdq\\ &&\leq C\int_0^tI_1(s)(t-s)^{ -\alpha-\frac{1}{2} }ds. \end{eqnarray} | (3.28) |
A similar discussion to I_{221}(t) , one can easily get
\begin{equation} I_{222}(t)\leq C\delta, \end{equation} | (3.29) |
and
\begin{equation} I_{223}(t)\leq C\delta^{2\beta}. \end{equation} | (3.30) |
Now we go on with the term I_{23}(t) including fBm.
\begin{eqnarray} &I_{23}(t)\!\!\!\!\!&\leq 3\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}} (c(q, X_{q})-c(q, X_{q}^\delta))dB_q^H|}{(t-s)^{\alpha+1 }}ds\right)^2\\ &&\quad+3\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}} (c(q, X_{q}^\delta)-c(q, X_{\tau_q}^\delta))dB_q^H|}{(t-s)^{\alpha+1 }}ds\right)^2\\ &&\quad+3\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}} (c(q, X_{\tau_q}^\delta)-c(\tau_q, X_{\tau_q}^\delta))dB_q^H|}{(t-s)^{\alpha+1}}ds\right)^2\\ && = :3\big(I_{231}(t)+I_{232}(t)+I_{233}(t)\big). \end{eqnarray} | (3.31) |
With the help of the estimation (2.5) and the definition of stopping time \pi_{_R} , we have
\begin{eqnarray} &I_{231}(t)\!\!\!\!\!&\leq 2R^2\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}} (c(q, X_q)-c(q, X_q^\delta))(q-s)^{-\alpha}dq|}{(t-s)^{\alpha+1}}ds\right)^2\\ &&\quad+2R^2\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{\int_s^{t\wedge\pi_{_R}}\int_s^q \frac{|c(q, X_q)-c(q, X_q^\delta)-c(r, X_r)+c(r, X_r^\delta)|}{(q-r)^{\alpha+1}}drdq}{(t-s)^{ \alpha+1 }}ds\right)^2\\ && = :2R^2\Big(I_{2311}(t)+I_{2312}(t)\Big). \end{eqnarray} | (3.32) |
By exchanging the order of the integration we have
\begin{eqnarray} &I_{2311}(t)\!\!\!\!\!&\leq C\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\big|c(q, X_q)-c(q, X_q^\delta)\big|\int_0^q(q-s)^{-\alpha}(t-s)^{ -\alpha-1 }dsdq\right)^2\\ &&\leq C\int_0^t\mathbb E\big|X_{q\wedge\pi_{_R}}-X_{q\wedge\pi_{_R}}^\delta|^2\cdot(t-q)^{-2\alpha}dq\\ &&\leq C\int_0^tI_1(s)(t-s)^{-2\alpha}ds, \end{eqnarray} | (3.33) |
Here we use the following estimation (see (4.15) of [17]):
\begin{eqnarray*} & \int_0^q(q-s)^{-\alpha}(t-s)^{-\alpha-1}dsdq\!\!\!\!&\leq(t-q)^{-2\alpha} \int_{0}^{\frac{q}{t-q}}(1+s)^{-\alpha-1}s^{-\alpha}ds\\ &&\leq\textbf{B}(2\alpha, 1-\alpha)(t-q)^{-2\alpha}. \end{eqnarray*} |
According to Lemma 6.2, I_{2312}(t) admits the following estimation:
\begin{eqnarray} &I_{2312}(t)\!\!\!\!\!&\leq C\mathbb E\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}\int_s^q \frac{|c(q, X_q)-c(q, X_q^\delta)-c(r, X_r)+c(r, X_r^\delta)|}{(q-r)^{\alpha+1}}drdq|^2} {(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\leq C\mathbb E\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}\int_s^q \frac{|X_q-X_q^\delta-X_r+X_r^\delta|}{(q-r)^{\alpha+1}}drdq|^2}{(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\quad +C\mathbb E\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}\int_s^q |X_q-X_q^\delta|(q-r)^{\beta -\alpha-1 }drdq|^2}{(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\quad +C\mathbb E\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}\int_s^q \frac{|X_q-X_q^\delta|(|X_q-X_r|+|X_q^\delta-X_r^\delta|)} {(q-r)^{\alpha+1}}drdq|^2}{(t-s)^{2+2\alpha-2\varrho}}ds\\ && = :I_{23121}(t)+I_{23122}(t)+I_{23123}(t), \end{eqnarray} | (3.34) |
here \alpha < \varrho < \frac{1}{2} .
By Hölder inequality and exchanging the order of the integration, we have
\begin{eqnarray} &I_{23121}(t)\!\!\!\!\!&\leq C\mathbb E\int_0^t\frac{\int_s^t(\int_s^{q\wedge\pi_{_R}}\frac{|X_{q\wedge\pi_{_R}}-X_{q\wedge\pi_{_R}}^\delta-X_r+X_r^\delta|} {(q-r)^{\alpha+1}}dr)^2dq} {(t-s)^{1+2\alpha-2\varrho}}ds\\ &&\leq C\int_0^t\int_0^q\frac{\mathbb E(\int_0^{q\wedge\pi_{_R}} \frac{|X_{q\wedge\pi_{_R}}-X_{q\wedge\pi_{_R}}^\delta-X_r+X_r^\delta|}{(q-r)^{\alpha+1}}dr)^2} {(t-s)^{1+2\alpha-2\varrho}}dsdq\\ &&\leq C\int_0^tI_2(s)ds \end{eqnarray} | (3.35) |
and
\begin{eqnarray} &I_{23122}(t)\!\!\!\!\!& = \mathbb E\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}} |X_q-X_q^\delta|(q-s)^{\beta-\alpha}dq|^2}{(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\leq C\int_0^t\frac{\int_s^t\mathbb E|X_{q\wedge\pi_{_R}}-X_{q\wedge\pi_{_R}}^\delta|^2dq\int_s^t(q-s)^{2\beta-2\alpha}dq} {(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\leq C\int_0^t\mathbb E|X_{q\wedge\pi_{_R}}-X_{q\wedge\pi_{_R}}^\delta|^2\int_0^q(t-s)^{2\beta-4\alpha-1+2\varrho}dsdq\\ &&\leq C\int_0^tt^{2\beta-4\alpha+2\varrho}I_1(q)dq\\ &&\leq C\int_0^tI_1(s)ds. \end{eqnarray} | (3.36) |
According to Remark 3.2, similar to the above estimation, we have
\begin{eqnarray} &I_{23123}(t)\!\!\!\!\!&\leq C_R^{2}\mathbb E\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}\int_s^q |X_q-X_q^\delta|(q-r)^{\gamma-1}drdq|^2}{(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\leq C_R^{2}\mathbb E\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}} |X_q-X_q^\delta|(q-s)^{\gamma}dq|^2}{(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\leq C_R^{2}\mathbb E\int_0^t\frac{\int_s^t |X_{q\wedge\pi_{_R}}-X_{q\wedge\pi_{_R}}^\delta|^2dq \int_s^t(q-s)^{2\gamma} dq}{(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\leq C_R^{2}\int_0^t\int_s^t\mathbb E |X_{q\wedge\pi_{_R}}-X_{q\wedge\pi_{_R}}^\delta|^2 (t-s)^{2\gamma-2\alpha-1+2\varrho}dqds\\ &&\leq C_R^{2}\int_0^t\mathbb E |X_{q\wedge\pi_{_R}}-X_{q\wedge\pi_{_R}}^\delta|^2\int_0^q (t-s)^{2\gamma-2\alpha-1+2\varrho}ds dq\\ &&\leq C_{_R}^{2}\int_0^tI_1(s)ds, \end{eqnarray} | (3.37) |
where C_{_R} = CRe^{CR^{\frac{1}{1-\alpha}}} (see (3.14)), \alpha < \varrho < \frac{1}{2} , \gamma = \frac{1}{2}-\eta-\alpha > 0 only if we take \eta\in(0, \frac{1}{2}-\alpha) .
Then we estimate I_{232}(t) . (2.11) implies
\begin{eqnarray} &I_{232}(t)\!\!\!\!\!&\leq 2\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}\big(c(q, X_q^\delta)-c(q, X_{\tau_q}^\delta)\big)\delta B_q^H|}{(t-s)^{\alpha+1}}ds\right)^2\\ &&\quad+2\alpha_H^2\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{\left|\int_s^{t\wedge\pi_{_R}}\int_s^q D_r\big(c(q, X_q^\delta)-c(q, X_{\tau_q}^\delta)\big)|q-r|^{2H-2}drdq\right|}{(t-s)^{ \alpha+1 }}ds\right)^2\\ && = :2I_{2321}(t)+2\alpha_H^2I_{2322}(t). \end{eqnarray} | (3.38) |
According to (2.13), Corollary 3.1 and 3.2 as well as Lemma 3.3, we have
\begin{eqnarray} &I_{2321}(t)\!\!\!\!\!&\leq C\int_0^{t\wedge\pi_{_R}}\frac{\mathbb E|\int_s^{t\wedge\pi_{_R}}\big(c(q, X_q^\delta)-c(q, X_{\tau_q}^\delta)\big)\delta B_q^H|^2}{(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\leq C\int_0^t\int_s^t\frac{\mathbb E\big|c(q, X_q^\delta)-c(q, X_{\tau_q}^\delta)\big|^2}{(t-s)^{2+2\alpha-2\varrho}}dqds\\ &&\quad+C\int_0^{t\wedge\pi_{_R}}\!\!\!\!\int_s^{t\wedge\pi_{_R}}\!\!\!\!\int_s^q\frac{\mathbb E\big|D_r\big(c(q, X_q^\delta)-c(q, X_{\tau_q}^\delta)\big)\big|^2}{(t-s)^{2+2\alpha-2\varrho}}drdq ds\\ &&\leq C\int_0^t\int_s^t\frac{\mathbb E\big|X_q^\delta-X_{\tau_q}^\delta\big|^2}{(t-s)^{2+2\alpha-2\varrho}}dqds\\ &&\quad+C\int_0^t\int_s^t\int_{\tau_q}^q\frac{\mathbb E|c_x(q, X_q^\delta)[D_r(X_{q\wedge\pi_{_R}}^\delta-X_{\tau_q\wedge\pi_{_R}}^\delta)]|^2} {(t-s)^{2+2\alpha-2\varrho}}drdqds\\ &&\quad+C\int_0^t\int_s^t\int_s^{\tau_q}\frac{\mathbb E|c_x(q, X_q^\delta)[D_r(X_{q\wedge\pi_{_R}}^\delta-X_{\tau_q\wedge\pi_{_R}}^\delta)]|^2} {(t-s)^{2+2\alpha-2\varrho}}drdqds\\ &&\quad+C\int_0^t\int_s^t\int_s^q\frac{\mathbb E|(c_x(q, X_q^\delta)-c_x(q, X_{\tau_q}^\delta))D_rX_{\tau_q\wedge\pi_{_R}}^\delta|^2} {(t-s)^{2+2\alpha-2\varrho}}drdqds\\ &&\leq C\delta\int_0^t(t-s)^{-1-2\alpha+2\varrho}ds+C\int_0^t\int_s^t\int_{\tau_q}^q\frac{\mathbb E|D_rX_{q\wedge\pi_{_R}}^\delta|^2}{(t-s)^{2+2\alpha-2\varrho}}drdqds\\ &&\quad+C\int_0^t\int_s^t\int_s^{\tau_q}\frac{\mathbb E|D_r(X_{q\wedge\pi_{_R}}^\delta-X_{\tau_q\wedge\pi_{_R}}^\delta)|^2}{(t-s)^{2+2\alpha-2\varrho}}drdqds\\ &&\quad+C\int_0^t\int_s^t\int_s^q\frac{(\mathbb E|X_q^\delta-X_{\tau_q}^\delta|^{4})^{\frac{1}{2}}\cdot(\mathbb E|D_rX_{\tau_q\wedge\pi_{_R}}^\delta|^4)^{\frac{1}{2}}}{(t-s)^{2+2\alpha-2\varrho}}drdqds\\ &&\leq C\delta \end{eqnarray} | (3.39) |
and
\begin{eqnarray} &I_{2322}(t)\!\!\!\!\!&\leq C\mathbb E\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}\int_s^q D_r(c(q, X_q^\delta)-c(q, X_{\tau_q}^\delta))|q-r|^{2H-2}drdq|^2}{(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\leq C\mathbb E\int_0^{t\wedge\pi_{_R}}\frac{\int_s^{t\wedge\pi_{_R}}|\int_s^q D_r(c(q, X_q^\delta)-c(q, X_{\tau_q}^\delta))|q-r|^{2H-2}dr|^2 dq}{(t-s)^{1+2\alpha-2\varrho}}ds\\ &&\leq C\mathbb E\int_0^t\frac{\int_s^t|\int_s^q (c_x(q, X_q^\delta)D_r(X_{q\wedge\pi_{_R}}^\delta-X_{\tau_q\wedge\pi_{_R}}^\delta))|q-r|^{2H-2}dr|^2 dq}{(t-s)^{1+2\alpha-2\varrho}}ds\\ &&\quad+C\mathbb E\int_0^t\frac{\int_s^t|\int_s^q ((c_x(q, X_q^\delta)-c_x(q, X_{\tau_q}^\delta))D_rX_{\tau_q\wedge\pi_{_R}}^\delta)|q-r|^{2H-2}dr|^2 dq}{(t-s)^{1+2\alpha-2\varrho}}ds\\ &&\leq C\int_0^t\frac{\int_s^t\int_s^{\tau_q}\mathbb E|c_x(q, X_q^\delta)D_r(X_{q\wedge\pi_{_R}}^\delta-X_{\tau_q\wedge\pi_{_R}}^\delta)|^2 \cdot|q-r|^{2H-2}drdq}{(t-s)^{1+2\alpha-2\varrho}}ds\\ &&\quad+C\int_0^t\frac{\int_s^t\int_{\tau_q}^q\mathbb E|c_x(q, X_q^\delta)D_rX_{q\wedge\pi_{_R}}^\delta|^2\cdot|q-r|^{2H-2}dr(\int_{\tau_q}^q|q-r|^{2H-2}dr)dq} {(t-s)^{1+2\alpha-2\varrho}}ds\\ &&\quad+C\int_0^t\frac{\int_s^t\int_s^q\mathbb E|(c_x(q, X_q^\delta)-c_x(q, X_{\tau_q}^\delta))D_rX_{\tau_q\wedge\pi_{_R}}^\delta|^2\cdot|q-r|^{2H-2}drdq} {(t-s)^{1+2\alpha-2\varrho}}ds\\ &&\leq C\delta\int_0^t\frac{\int_s^t\int_s^{\tau_q}|q-r|^{2H-2}drdq} {(t-s)^{1+2\alpha-2\varrho}}ds+C\delta^{2H-1}\int_0^t\frac{\int_s^t\int_{\tau_q}^q|q-r|^{2H-2}drdq} {(t-s)^{1+2\alpha-2\varrho}}ds\\ &&\quad+C\delta\int_0^t\frac{\int_s^t\int_s^q|q-r|^{2H-2}drdq} {(t-s)^{1+2\alpha-2\varrho}}ds\\ &&\leq C\big(\delta+\delta^{4H-2}\big). \end{eqnarray} | (3.40) |
Finally, we estimate I_{233}(t) . (2.11) implies
\begin{eqnarray} &I_{233}(t)\!\!\!\!\!&\leq 2\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}} (c(q, X_{\tau_q}^\delta)-c(\tau_q, X_{\tau_q}^\delta))\delta B_q^H|}{(t-s)^{\alpha+1}}ds\right)^2\\ &&\quad+2\alpha_H^2\mathbb E\left(\int_0^{t\wedge\pi_{_R}}\frac{|\int_s^{t\wedge\pi_{_R}}\int_s^q D_r(c(q, X_{\tau_q}^\delta)-c(\tau_q, X_{\tau_q}^\delta))|q-r|^{2H-2}drdq|}{(t-s)^{ \alpha+1 }}ds\right)^2\\ && = :2I_{2331}(t)+2\alpha_{_H}^2I_{2332}(t). \end{eqnarray} | (3.41) |
From the estimation (2.13) and Lemma 3.3, we have
\begin{eqnarray} &I_{2331}(t)\!\!\!\!\!&\leq C\int_0^{t\wedge\pi_{_R}}\frac{\mathbb E|\int_s^{t\wedge\pi_{_R}}\big(c(q, X_{\tau_q}^\delta)-c(\tau_q, X_{\tau_q}^\delta)\big)\delta B_q^H|^2}{(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\leq C\int_0^t\frac{\int_s^t\mathbb E|c(q, X_{\tau_q}^\delta)-c(\tau_q, X_{\tau_q}^\delta)|^2dq}{(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\quad+C\int_0^{t\wedge\pi_{_R}}\frac{\int_s^{t\wedge\pi_{_R}}\int_s^q\mathbb E|D_r(c(q, X_{\tau_q}^\delta)-c(\tau_q, X_{\tau_q}^\delta)^\delta)|^2drdq}{(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\leq C\delta^{2\beta}+C\int_0^t\frac{\int_s^t\int_s^q\mathbb E|(c_x(q, X_{\tau_q}^\delta)-c_x(\tau_q, X_{\tau_q}^\delta))D_rX_{\tau_q\wedge\pi_{_R}}^\delta|^2drdq} {(t-s)^{2+2\alpha-2\varrho}}ds\\ &&\leq C\delta^{2\beta} \end{eqnarray} | (3.42) |
and
\begin{eqnarray} &I_{2332}(t)\!\!\!\!\!&\leq \mathbb E\left(\int_0^t\frac{\int_s^t\int_s^q|(c_x(q, X_{\tau_q}^\delta)-c_x(\tau_q, X_{\tau_q}^\delta)) D_rX_{\tau_q\wedge\pi_R}^\delta|\cdot|q-r|^{2H-2}drdq}{(t-s)^{\alpha+1}}ds\right)^2\\ &&\leq C\delta^{2\beta}\mathbb E\int_0^t\frac{\int_s^t(\int_s^q|D_rX_{\tau_q\wedge\pi_R}^\delta|\cdot|q-r|^{2H-2}dr)^2dq} {(t-s)^{1+2\alpha-2\varrho}}ds\\ &&\leq C\delta^{2\beta}\int_0^t\frac{\int_s^t\int_s^q\mathbb E|D_rX_{\tau_q\wedge\pi_R}^\delta|^2\cdot(q-r)^{2H-2}drdq}{(t-s)^{1+2\alpha-2\varrho}}ds\\ &&\leq C\delta^{2\beta}. \end{eqnarray} | (3.43) |
Summing up all estimations (3.22)-(3.43), we have
\begin{equation} I_2(t)\leq C\big(\delta+\delta^{4H-2}\big)+R^2\cdot C_R^{2}\int_0^t\frac{I_1(s)}{(t-s)^{\frac{1}{2}+\alpha}}ds+CR^2\int_0^tI_2(s)ds. \end{equation} | (3.44) |
Then, taking into account (3.21) and (3.44), we obtain
\begin{equation*} I_1(t)+I_2(t)\leq C(\delta+\delta^{4H-2})+R^2\cdot C_R^{2}\int_0^t\frac{I_1(s)}{(t-s)^{\frac{1}{2}+\alpha}}ds+CR^2\int_0^tI_2(s)ds. \end{equation*} |
Evidently, the above estimation can be written as
\begin{equation*} I_1(t)+I_2(t)\leq C(\delta+\delta^{4H-2})+R^2\cdot C_R^{2}\int_0^t\frac{I_1(s)+I_2(s)}{(t-s)^{\frac{1}{2}+\alpha}}ds. \end{equation*} |
Therefore, Lemma 6.3 yields
\begin{equation} \mathbb E\left[\sup\limits_{z\in[0, t]}\|X_{z\wedge\pi_{_R}}-X_{z\wedge\pi_{_R}}^\delta\|_\alpha\right]^2\leq2\big(I_1(t)+I_2(t)\big)\leq C(\delta+\delta^{4H-2})e^{(R^2\cdot C_R^{2})^{\frac{2}{1-2\alpha}}}. \end{equation} | (3.45) |
Plugging (3.45)) into (3.7), we arrive at
\begin{equation} P\left(n^\gamma\sup\limits_{t\in[0, T]}\|X_t-X_t^\delta\|_\alpha \gt \varepsilon, \pi_{_R} = T\right) \leq \frac{Cn^{2\gamma}(\delta+\delta^{4H-2})}{\varepsilon^2}e^{(R^2\cdot C_R^{2})^{\frac{2}{1-2\alpha}}}. \end{equation} | (3.46) |
Passing to the limit as n\rightarrow\infty , we prove that the right hand side of (3.6) approaches 0.
Then (3.6) gives
\begin{equation} \lim\limits_{n\rightarrow\infty}P(n^\gamma\sup\limits_{t\in[0, T]}\|X_t-X_t^\delta\|_\alpha \gt \varepsilon)\leq P(\pi_{_R} \lt T) \end{equation} | (3.47) |
Letting R\rightarrow\infty , by Lemma 4.4 of [11], we obtain
\lim\limits_{n\rightarrow\infty}P(n^\gamma\sup\limits_{t\in[0, T]}\|X_t-X_t^\delta\|_\alpha \gt \varepsilon) = 0. |
Corollary 3.3. If the conditions of Theorem 3.1 are satisfied, then, for any fixed \varepsilon > 0 , there exist a positive constant C_{\varepsilon} and a subset \Omega_{\varepsilon} of \Omega with P(\Omega_{\varepsilon}) > 1-\varepsilon such that
\begin{equation} \mathbb E[\sup\limits_{t\in[0, T]}\|X_t-X_t^\delta\|_\alpha^2I_{\Omega_{\varepsilon}}]\leq C_{\varepsilon}(\delta+\delta^{4H-2}) \end{equation} | (3.48) |
and
\begin{equation} \mathbb E[\sup\limits_{t\in[0, T]}\|X_t-X_t^\delta\|_\alpha^2I_{\Omega/\Omega_{\varepsilon}}]\leq C\varepsilon^{1/2} \end{equation} | (3.49) |
where C_\varepsilon = C\exp\left\{C\varepsilon^{\frac{8}{2\alpha-1}}\cdot\exp\left(C\varepsilon^{\frac{1}{2\alpha-1}}\right)\right\} and C is a general positive constant independent of \delta and \varepsilon .
Proof. For any fixed \varepsilon > 0 , let R = \frac{2\mathbb E\xi_{_T}}{\varepsilon} , \pi_\varepsilon = \inf\left\{t:\xi_t\geq \frac{2\mathbb E\xi_{_T}}{\varepsilon}\right\}\wedge T and \Omega_\varepsilon = \{\omega:\pi_\varepsilon = T\} . We have P(\Omega_\varepsilon) > 1-\varepsilon . In fact,
\begin{equation*} P(\Omega_\varepsilon) = P(\pi_\varepsilon = T) = 1-P(\pi_\varepsilon \lt T)\geq 1-P\left(\xi_{_T}\geq \frac{2\mathbb E\xi_{_T}}{\varepsilon}\right) \gt 1-\varepsilon. \end{equation*} |
(3.48) can be derived from (3.45) immediately, and (3.49) can be from Lemma 3.2 and P(\Omega/\Omega_\varepsilon) < \varepsilon .
Remark 3.4. In [28], it is proved that, for some equation with b(t, x) = 0 and c(t, x) = c(x) , the error n^{2H-1}(X_t-X_t^\delta) almost surely converges to some stochastic process, i.e., as n\rightarrow\infty ,
n^{2H-1}(X_t-X_t^\delta)\rightarrow-\frac{1}{2}\left|\int_0^tc'(X_s)D_sX_tds\right|, \quad a.s. |
In [29], it is shown that, for the Itô-SDEs with b(t, x) = b(x) and c(t, x) = 0 , the error n\mathbb E|X_t-X_t^\delta|^2 converges to some stochastic process, i.e., as n\rightarrow\infty ,
n\mathbb E|X_t-X_t^\delta|^2\rightarrow\frac{1}{2}\mathbb E\left|Y_t\int_0^tbb'(X_s^\delta)Y_s^{-1}dB_s\right|^2 |
with another Brownian motion B , which is independent of the Brownian motion W , and
Y_s = \exp\left(\int_0^sb'(X_u^\delta)-\frac{1}{2}bb'(X_u^\delta)du+\int_0^sb'(X_u^\delta)dW_u\right). |
The above facts mean that the estimation of the rate of convergence in Theorem 3.1 is sharp.
Remark 3.5. In this paper we have restricted ourselves to the case of a scalar SDEs. This is only to keep our notations and computations relatively simple but the theory developed above can certainly be generalized to the multidimensional case without any difficulty. Moreover, instead of fractional Brownian motion one can take any process, which is almost surely Hölder continuous with Hölder exponent \lambda > \frac{1}{2} .
Remark 3.6. The proof of our main result combines the techniques of Malliavin calculus with classical fractional calculus. The main idea is to estimate the path-wise Riemann Stieltjes \int_0^tc(s, X_s)dB_s^H flexibly by (2.3) or (2.11). Specifically,
(1) We estimate I_{131}(t)\; (\text{and } I_{231}(t)) by the properties of fractional calculus instead of Malliavin calculus, i.e., by (2.3)\; (\text{and } (2.5)) instead of (2.11)\; (and(2.13)) . It is because we can hardly establish the boundedness of the Malliavin derivative D_sX_t for any s\leq t , and the estimation for the second moment of the difference between D_sX_t and D_sX_t^\delta for any s\leq t . Indeed, for analyzing both of them, we need also the second Malliavin derivative and then the third Malliavin derivative etc., however, there is not closable formulas for them.
(2) However, we estimate I_{132}(t), I_{133}(t)\; (and I_{232}(t), I_{233}(t)) by (2.11)\; (and (2.13)) instead of (2.3)\; (and (2.5)) because we have little idea how to process the second term generated by (2.3) and (2.5) . For example, it is very difficult to estimate the upper bound of the following expression:
\begin{equation*} \int_0^t\mathbb E\left|\int_0^{s\wedge\pi_{_R}}\frac{|X_{s\wedge\pi_{_R}}^\delta-X_{\tau_s\wedge\pi_{_R}}^\delta-X_q^\delta+X_{\tau_q}^\delta|}{(s-q)^{ \alpha+1 }}dq\right|^2 ds. \end{equation*} |
Let us consider the following mixed SDE driven by both Brownian motion and fractional Brownian motion,
\begin{equation} X_t = X_0+\int_0^t\mu X_sds+\int_0^t\sigma X_sdW_s+\int_0^tX_s dB_s^H, \quad t\in[0, T], \end{equation} | (4.1) |
Here \mu, \sigma are nonzero constants. Mixed SDE (4.1) has the explicit solution (see [30])
\begin{equation} X_t = X_0\exp\left\{\left(\mu-\frac{\sigma^2}{2}\right)t+\sigma W_t+B_t^H\right\}, \quad t\in[0, T]. \end{equation} | (4.2) |
For any N\in\mathbb N , consider the isometric partition of [0, T] : \{0 = t_0 < t_1 < \cdots < t_N = T, \; \delta = \frac{T}{N}\} . Define \tau_t: = \max\{t_k:t_k < t\} . The Euler approximation of (4.1) is expressed as
\begin{equation} X_t^{\delta} = X_{t_k}+\mu X_{t_k}^\delta(t-t_k)+\sigma X_{t_k}^\delta(W_t-W_{t_k}) +X_{t_k}^\delta(B_t^H-B_{t_k}^H), \quad t\in(t_k, t_{k+1}]. \end{equation} | (4.3) |
or, in the integral form,
\begin{equation*} X_t^{\delta} = X_0+\int_0^ta(\tau_s, X_{\tau_s}^\delta)ds+\int_0^tb(\tau_s, X_{\tau_s}^\delta)dW_s +\int_0^tc(\tau_s, X_{\tau_s}^\delta)dB_s^{H}, \quad t\in[0, T]. \end{equation*} |
In the M-file EulerMSDE.m we set the initial state of the random number generator to be 100 with the command randn('state', 100) and consider (4.1) with \mu = 2, \sigma = 1, T = 1 and X_0 = 1 . We compute a discretized Brownian motion and fBm path over [0, T] with N = 2^8 and evaluate the solutions in (4.2) as Xtrue0 \_ T, and then apply Euler approximation using a stepsize \delta . The Euler solution is stored in the 1-by- (N+1) array XE0 \_ T. The \sup\|\cdot\|_\alpha -error and the constant C(\omega) in Remark 7 computed as XEerrsup and Comega respectively in the M-file EulerMSDE.m. In order to compare different convergent cases, we set H = 0.6, 0.7, 0.75, 0.85, \alpha = 0.75-0.5H and \rho = \gamma = \min\{0.5, 2H-1\}/2 . We get the following numerical results:
From the Table 1, we can see the larger H , the smaller XEerrsup and Comega, i.e. the larger H , the smaller error and dominated constant C(\omega) . From the Figure 1, we can see the larger H , the better the convergence, moreover, the two graphs of H = 0.75 and H = 0.85 are very similar. These are consistent with our conclusion because the rate of convergence is less than \min\{0.5, 2H-1\} . (see Theorem 3.1)
H | 0.6 | 0.7 | 0.75 | 0.85 |
alpha | 0.45 | 0.4 | 0.375 | 0.325 |
gamma | 0.1 | 0.2 | 0.25 | 0.25 |
XEerrsup | 14.5509 | 5.8126 | 4.07903 | 2.36231 |
Comega | 25.3346 | 17.6205 | 16.3161 | 9.44923 |
The following time-dependent mixed stochastic differential equation driven by both Brownian motion and fBm is considered in this paper.
\begin{equation*} X_t = X_0+\int_0^ta(s, X_s)ds+\int_0^tb(s, X_s)dW_s+\int_0^tc(s, X_s)dB_s^H, \quad t\in[0, T]. \end{equation*} |
We obtain that the Euler approximation has the convergent rate O(\delta^{\frac{1}{2}\wedge(2H-1)}) with the norm \|\cdot\|_\alpha (see Definition 2.1) in probability. We also show that it has the rate of convergence \delta^{1\wedge(4H-2)} in the sense of Besov type norm on some subsets of \Omega with probability close to one. Meanwhile, on the complement of above subsets, the error of Euler (3.1) can be small enough correspondingly in the same norm (see Corollary 3.3). We mention that it is also true for the result of Corollary 3.3 in the sense of mean-square norm if 1\wedge(4H-2) is replaced by \frac{1}{2}\wedge(2H-1) .
On one hand, as we known, the mean-square rate of convergence for 'pure' SDE driven by single Brownian motion is O(\delta^{\frac{1}{2}}) (see [20]) and by single fractional Brownian motion is O(\delta^{2H-1}) (see [18]). For the mixed SDEs, we can only obtain the worst convergent rate of those of 'pure' SDEs because their estimates for 'pure' equations are sharp (see [20,28]).
On the other hand, Mishura and Shevchenko [16] researched the Euler approximation of the following one-dimensional mixed SDEs,
\begin{equation} X_t = X_0+\int_0^ta(s, X_s)ds+\int_0^tb(s, X_s)dW_s+\int_0^tc(X_s)dB_s^H, \quad t\in[0, T]. \end{equation} | (5.1) |
They derived the mean-square rate of convergence O(\delta^{\frac{1}{2}\wedge(2H-1)}) . In [15] the authors also find that a faster rate of convergence O(\delta^{\frac{1}{2}}) to (5.1) can be obtained if one uses the modified Euler method. In a forthcoming paper we will study, whether the rate of convergence of (modified) Euler approximation to (1.1) is O(\delta^{\frac{1}{2}\wedge(2H-1)}) with P-a.s. ( O(\delta^{\frac{1}{2}}) with mean-square norm).
In this section, we prove the bounded estimation (3.5) and recall two results from [17].
Lemma 6.1. Given \alpha, \beta(1 > \beta > \alpha), T and any t\in[0, T], n\in\mathbb N , consider the isometric partition of [0, T] : \{0 = t_0 < t_1 < \cdots < t_n = T\}. Let \delta = \frac{T}{n} and \tau_t: = \max\{t_k:t_k < t\} (see Euler equation (3.1), then we have
\int_0^t\int_0^{\tau_r}\frac{(\tau_r-\tau_q)^\beta}{(t-q)^\alpha(r-q)^{\alpha+1}}dqdr\leq C, |
here the constant C is independent of n and \delta .
Proof. From the primary inequality (a+b+c)^\beta\leq C_0(a^\beta+b^\beta+c^\beta), \; a\geq 0, b\geq 0, c\geq 0, \beta > 0 , we have
\begin{eqnarray*} &\int_0^t\int_0^{\tau_r}\frac{(\tau_r-\tau_q)^\beta}{(t-q)^\alpha(r-q)^{\alpha+1}}dqdr&\leq C_0\int_0^t\int_0^{\tau_r}\frac{(r-\tau_r)^\beta+(r-q)^\beta+(q-\tau_q)^\beta}{(t-q)^\alpha(r-q)^{\alpha+1}}dqdr\\ &&: = C_0(Q_1+Q_2+Q_3). \end{eqnarray*} |
For \beta > \alpha , we have
\begin{eqnarray*} &Q_1\!\!\!\!\!& = \int_0^t\int_0^{\tau_r}\frac{(r-\tau_r)^\beta}{(t-q)^\alpha(r-q)^{\alpha+1}}dqdr\\ &&\leq\int_0^t\left(\int_0^{\tau_r}\frac{(r-\tau_r)^\beta}{(r-q)^{\alpha+1}}dq\right)\frac{1}{(t-r)^\alpha}dr\\ &&\leq\int_0^t\frac{(r-\tau_r)^{\beta-\alpha}}{(t-r)^\alpha}dr\\ &&\leq\frac{\delta^{\beta-\alpha}T^{1-\alpha}}{1-\alpha}\\ &&\leq C_1. \end{eqnarray*} |
Exchanging the order of integration, we have
Q_2 = \int_0^t\int_0^{\tau_r}\frac{(r-q)^\beta}{(t-q)^\alpha(r-q)^{\alpha+1}}dqdr = \int_0^{\tau_t}\int_{\tau_q+\delta}^{t}(r-q)^{\beta-\alpha-1} dr\frac{1}{(t-q)^\alpha}dq\leq C_2. |
\begin{eqnarray*} &Q_3\!\!\!\!\!& = \int_0^t\int_0^{\tau_r}\frac{(q-\tau_q)^\beta}{(t-q)^\alpha(r-q)^{\alpha+1}}dqdr\\ && = \int_0^{\tau_t}\left(\int_{\tau_q+\delta}^{t}(r-q)^{-\alpha-1} dr\right)\frac{(q-\tau_q)^\beta}{(t-q)^\alpha}dq\\ &&\leq \frac{1}{\alpha}\int_0^{\tau_t}\frac{(q-\tau_q)^\beta}{(\tau_q+\delta-q)^{\alpha}(t-q)^\alpha}dq\\ &&\leq \frac{1}{\alpha}\left(\sum\limits_{k = 0}^{n_t-2}\frac{1}{(t-t_{k+1})^{\alpha}}\int_{t_k}^{t_{k+1}} \frac{(q-t_k)^{\beta}}{(t_{k+1}-q)^{\alpha}}dq+\delta^{\beta}\int_{t_{n_t-1}}^{t_{n_t}}\frac{1}{(t_{n_t}-q)^{\alpha}(t-q)^{\alpha}}dq\right)\\ &&\leq \frac{1}{\alpha}\left(\frac{1}{\alpha}\sum\limits_{k = 0}^{n_t-2}\frac{\delta^{\beta+1-\alpha}}{(t-t_{k+1})^{\alpha}}+\delta^{\beta}\int_{t_{n_t-1}}^{t_{n_t}}\frac{1}{(t_{n_t}-q)^{2\alpha}}dq\right)\\ &&\leq \frac{1}{\alpha}\left(\frac{\delta^{\beta-\alpha}}{\alpha}\sum\limits_{k = 0}^{n_t-2}\int_{t_{k+1}}^{t_{k+2}}\frac{1}{(t-t_{k+1})^{\alpha}}ds +\delta^{\beta+1-2\alpha}\right)\\ &&\leq \frac{1}{\alpha}\left(\frac{\delta^{\beta-\alpha}}{\alpha}\int_0^t\frac{1}{(t-s)^{\alpha}}ds+\delta^{\beta+1-2\alpha}\right)\\ &&\leq \frac{1}{\alpha}\left(\frac{\delta^{\beta-\alpha}T^{1-\alpha}}{\alpha(1-\alpha)}+\delta^{\beta+1-2\alpha}\right)\\ &&\leq C_3. \end{eqnarray*} |
Let C = C_0(C_1+C_2+C_3) , we complete the proof.
Lemma 6.2. (The modification of Lemma 7.1 of [17]) Let c:[0, T]\times\mathbb R\rightarrow\mathbb R be a function such that c(t, x) satisfies the assumption (Hc), then, for all x_1, x_2, x_3, x_4\in\mathbb R , we have
\begin{eqnarray*} &&|c(t_1, x_1)-c(t_2, x_2)-c(t_1, x_3)+c(t_2, x_4)|\\ &&\!\!\!\!\leq C\cdot|x_1-x_2-x_3+x_4|+C\cdot|x_1-x_3|\cdot\big(|t_2-t_1|^\beta+|x_1-x_2|+|x_3-x_4|\big). \end{eqnarray*} |
The following lemma is a generalization of Gronwall lemma.
Lemma 6.3. (Lemma 7.6 of [17]) Fix 0\leq \theta < 1, a, b\geq 0 . Let x:[0, \infty)\rightarrow[0, \infty) be a continuous function such that for each t
x_t\leq a+bt^\theta\int_0^t(t-s)^{-\theta}s^{-\theta}x_sds. |
Then
x_t\leq ad_{_\theta} e^{c_{_\theta} t b^{1/(1-\theta)}}, |
where \Gamma is the Gamma function, c_{_\theta} and d_{_\theta} are positive constants depending only on \theta (as an example, one can set c_{_\theta} = 2(\Gamma(1-\theta))^{1/(1-\theta)} and d_{_\theta} = \frac{4\Gamma(1-\theta)}{1-\theta}e^2 ).
The authors are very grateful to Professor Guiwu Hu for his support and encouragement in making this work possible. We also would like to thank the referees for the careful reading of the manuscript and for their valuable suggestions. This work is supported by Project of Department of Education of Guangdong Province (No.2018KTSCX072) and Guangdong University of Finance & Economics, Big data and Educational Statistics Application Laboratory (No.2017WSYS001).
The authors declare that they have no conflict of interest.
[1] | C. Holling, The functional response of predator to prey density and its role in mimicy and population regulation, J. Men. Ent. Sec. Can., 45 (1965), 1–60. |
[2] |
F. Wei, Existence of multiple positive periodic solutions to a periodic predator-prey system with harvesting terms and Holling Ⅲ type functional response, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2130–2138. doi: 10.1016/j.cnsns.2010.08.028
![]() |
[3] |
F. Chen, Y. Chen, J. Shi, Stability of the boundary solution of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response, J. Math. Anal. Appl., 344 (2008), 1057–1067. doi: 10.1016/j.jmaa.2008.03.050
![]() |
[4] |
H. Alsakaji, S. Kundu, F. Rihan, Delay differential model of one-predator two-prey system with Monod-Haldane and holling type Ⅱ functional responses, Appl. Math. Comput., 397 (2021), 125919. doi: 10.1016/j.amc.2020.125919
![]() |
[5] |
Z. Du, Z. Feng, Periodic solutions of a neutral impulsive predator-prey model with Beddington-DeAngelis functional response with delays, J. Comput. Appl. Math., 258 (2014), 87–98. doi: 10.1016/j.cam.2013.09.008
![]() |
[6] |
H. Guo, X. Chen, Existence and global attractivity of positive periodic solution for a Volterra model with mutual interference and Beddington-DeAngelis functional response, Appl. Math. Comput., 217 (2011), 5830–5837. doi: 10.1016/j.amc.2010.12.065
![]() |
[7] | J. Song, Y. Xia, Y. Bai, Y. Cai, D. O'Regan, A non-autonomous Leslie-Gower model with Holling type Ⅳ functional response and harvesting complexity, Adv. Differ. Equations, 1 (2019), 1–12. |
[8] |
F. Wei, Q. Fu, Hopf bifurcation and stability for predator-prey systems with Beddington-DeAngelis type functional response and stage structure for prey incorporating refuge, Appl. Math. Model, 40 (2016), 126–134. doi: 10.1016/j.apm.2015.04.042
![]() |
[9] |
S. Yuan, Y. Song, Stability and Hopf bifurcations in a delayed Leslie-Gower predator-prey system, J. Math. Anal. Appl., 355 (2009), 82–100. doi: 10.1016/j.jmaa.2009.01.052
![]() |
[10] | F. Rihan, H. Alsakaji, C. Rajivganthi, Stability and hopf bifurcation of three-species prey-predator System with time delays and Allee Effect, Complexity, (2020), 7306412. |
[11] |
H. Qi, X. Meng, Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect, Appl. Math. Lett., 113 (2021), 106846. doi: 10.1016/j.aml.2020.106846
![]() |
[12] |
W. Lu, Y. Xia, Y. Bai, Periodic solution of a stage-structured predator-prey model incorporating prey refuge, Math. Biosci. Eng., 17 (2020), 3160–3174. doi: 10.3934/mbe.2020179
![]() |
[13] |
Y. Xia, J. Cao, S. Cheng, Multiple periodic solutious of prelayed stage-tructured predator-prey model with nonmonotone functional responses, Appl. Math. Model., 31 (2007), 1947–1959. doi: 10.1016/j.apm.2006.08.012
![]() |
[14] |
Z. Li, K. Zhao, Y. Li, Multiple positive periodic solutions for a non-autonomous stage-structured predator-prey system with harvesting terms, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 2140–2148. doi: 10.1016/j.cnsns.2009.08.019
![]() |
[15] |
Y. Chen, Multiple periodic solution of delayed predator-prey systems with type Ⅳ functional responses, Nonlinear Anal., 5 (2004), 45–53. doi: 10.1016/S1468-1218(03)00014-2
![]() |
[16] |
S. Yuan, F. Zhang, Stability and global Hopf bifurcation in a delayed predator-prey system, Nonlinear Anal. Real World Appl., 11 (2010), 959–977. doi: 10.1016/j.nonrwa.2009.01.038
![]() |
[17] |
L. Nie, Z. Teng, L. Hu, J. Peng, The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator, Biosystems, 98 (2009), 67–72. doi: 10.1016/j.biosystems.2009.06.001
![]() |
[18] | F. Chen, X. Chen, Y. Zhang, Positive periodic solution of a delayed predator-prey system with Holling type Ⅱ functional response and stage structure for predator, Acta Math. Sci., 26 (2006), 93–103. |
[19] |
Y. Song, X. Tang, Stability, Steady-State Bifurcations and Turing Patterns in a Predator-Prey Model with Herd Behavior and Prey-taxis, Stud. Appl. Math., 139 (2017), 371–404. doi: 10.1111/sapm.12165
![]() |
[20] | T. Ma, X. Meng, Z. Chang, Dynamics and optimal harvesting control for a stochastic one-predator-two-prey time delay system with jumps, Complexity, 2019 (2019), 5342031. |
[21] |
G. Liu, H. Qi, Z. Chang, X. Meng, Asymptotic stability of a stochastic may mutualism system, Comput. Math. Appl., 79 (2020), 735–745. doi: 10.1016/j.camwa.2019.07.022
![]() |
[22] |
M. Hassell, Density dependence in single-species population, J. Anim. Ecol., 44 (1975), 283–295. doi: 10.2307/3863
![]() |
[23] |
X. Chen, Z. Du, Existence of positive periodic solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse, Theory Dyn. Syst., 17 (2018), 67–80. doi: 10.1007/s12346-017-0223-6
![]() |
[24] | H. Liu, F. Meng, X. He, Existence of positive periodic solutions for a predator-prey system of Holling type Ⅳ function response with mutual interference and impulsive effects, Discrete Dyn. Nat. Soc., 2015 (2015), 1–12. |
[25] | J. Fu, L. Chen, Qualitative analysis of a class predator-prey model with mutual interference, J. Systems Sci. Math. Sci., 37 (2017), 1166–1178. |
[26] |
M. Hassell, G. Varley, New inductive population model for insect parasites and its bearing on biological control, Nature, 223 (1969), 1133–1137. doi: 10.1038/2231133a0
![]() |
[27] |
R. Arditi, H. Ackakaya, Underestimation of mutual interference of predators, Oeclogia., 83 (1990), 358–361. doi: 10.1007/BF00317560
![]() |
[28] |
W. Satherland, Aggregation and the idea free distribution, J. Anim. Ecol., 52 (1983), 821–828. doi: 10.2307/4456
![]() |
[29] | S. Hsu, T. Hwang, Y. Kuang, Global dynamics of a predator-prey model with Hassell-Varley type functional response, Discrete Contin. Dyn. Syst., 10 (2008), 857–871. |
[30] | R. Wu, L. Li, M. DelaSen, Permanence and Global Attractivity of the Discrete Predator-Prey System with Hassell-Varley-Holling Ⅲ Type Functional Response, Discrete Dyn. Nat. Soc., 2013 (2013), 295–321. |
[31] | M. Zhong, X. Liu, Dynamical analysis of a predator-prey system with Hassell-Varley-Holling function response, J. Math. Phys., 31 (2011), 1295–1310. |
[32] |
M. Fan, Q. Wang, X. Zou, Dynamics of a non-autonomous ratio-dependent predator-prey system, Proc. R. Soc. Edinburgh Sect. A: Math., 133 (2003), 97–118. doi: 10.1017/S0308210500002304
![]() |
[33] | M. Fan, K. Wang, Global existence of positive periodic solution of a Predator-Prey system with Holling Ⅱ function response, Acta Math. Sci. Ser. A Chin. Ed., 21 (2011), 492–497. |
[34] |
S. Zhang, X. Meng, T. Zhang, Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects, Nonlinear Anal. Hybri., 26 (2017), 19–37. doi: 10.1016/j.nahs.2017.04.003
![]() |
[35] | R. Gaines, T. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Berlin: Springer-Verlag, 1977. |
1. | Nasser H. Sweilam, Seham M. AL-Mekhlafi, Saleh M. Hassan, Nehaya R. Alsenaideh, Abdelaziz Elazab Radwan, New Coronavirus (2019-nCov) Mathematical Model Using Piecewise Hybrid Fractional Order Derivatives; Numerical Treatments, 2022, 10, 2227-7390, 4579, 10.3390/math10234579 | |
2. | Mohamed El-Beltagy, Ahmed Etman, Sroor Maged, Development of a fractional Wiener-Hermite expansion for analyzing the fractional stochastic models, 2022, 156, 09600779, 111847, 10.1016/j.chaos.2022.111847 | |
3. | Daniel Alpay, Palle Jorgensen, mu-Brownian Motion, Dualities, Diffusions, Transforms, and Reproducing Kernel Hilbert Spaces, 2022, 35, 0894-9840, 2757, 10.1007/s10959-021-01146-w | |
4. | N.H. Sweilam, S.M. AL-Mekhlafi, S.M. Hassan, N.R. Alsunaideh, A.E. Radwan, Crossover dynamics of climate change models: Numerical simulations, 2023, 75, 11100168, 447, 10.1016/j.aej.2023.05.093 | |
5. | Monir Chadad, Mohamed Erraoui, Reflected stochastic differential equations driven by standard and fractional Brownian motion, 2024, 24, 0219-4937, 10.1142/S0219493724500114 | |
6. | Kęstutis Kubilius, Approximation of the Fractional SDEs with Stochastic Forcing, 2024, 12, 2227-7390, 3875, 10.3390/math12243875 | |
7. | Zhaoqiang Yang, Chenglong Xu, Strong Convergence of a Modified Euler—Maruyama Method for Mixed Stochastic Fractional Integro—Differential Equations with Local Lipschitz Coefficients, 2025, 9, 2504-3110, 296, 10.3390/fractalfract9050296 |
H | 0.6 | 0.7 | 0.75 | 0.85 |
alpha | 0.45 | 0.4 | 0.375 | 0.325 |
gamma | 0.1 | 0.2 | 0.25 | 0.25 |
XEerrsup | 14.5509 | 5.8126 | 4.07903 | 2.36231 |
Comega | 25.3346 | 17.6205 | 16.3161 | 9.44923 |