This paper investigates the problem for exponential stability of stochastic Hopfield neural networks involving multiple discrete time-varying delays and multiple distributed time-varying delays. The exponential stability of such neural systems has not been given much attention in the past literature because this type of neural systems cannot be transformed into the vector forms and it is difficult to derive the easily verified stability conditions expressed in terms of the linear matrix inequality. Therefore, this paper tries to establish the easily verified sufficient conditions of the linear matrix inequality forms to ensure the mean-square exponential stability and the almost sure exponential stability for this type of neural systems by constructing a suitable Lyapunov-Krasovskii functional and inequality techniques. Four examples are provided to demonstrate the effectiveness of the proposed theoretical results and compare the established stability conditions to the previous results.
Citation: Qinghua Zhou, Li Wan, Hongbo Fu, Qunjiao Zhang. Exponential stability of stochastic Hopfield neural network with mixed multiple delays[J]. AIMS Mathematics, 2021, 6(4): 4142-4155. doi: 10.3934/math.2021245
[1] | Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193 |
[2] | Mohamed Benyahia, Massimiliano D. Rosini . A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12(2): 297-317. doi: 10.3934/nhm.2017013 |
[3] | Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem . A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663 |
[4] | Alexandre M. Bayen, Hélène Frankowska, Jean-Patrick Lebacque, Benedetto Piccoli, H. Michael Zhang . Special issue on Mathematics of Traffic Flow Modeling, Estimation and Control. Networks and Heterogeneous Media, 2013, 8(3): i-ii. doi: 10.3934/nhm.2013.8.3i |
[5] | Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni . A distributed model of traffic flows on extended regions. Networks and Heterogeneous Media, 2010, 5(3): 525-544. doi: 10.3934/nhm.2010.5.525 |
[6] | Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030 |
[7] | Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel . Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8(3): 783-802. doi: 10.3934/nhm.2013.8.783 |
[8] | Alberto Bressan, Anders Nordli . The Riemann solver for traffic flow at an intersection with buffer of vanishing size. Networks and Heterogeneous Media, 2017, 12(2): 173-189. doi: 10.3934/nhm.2017007 |
[9] | F. A. Chiarello, J. Friedrich, S. Göttlich . A non-local traffic flow model for 1-to-1 junctions with buffer. Networks and Heterogeneous Media, 2024, 19(1): 405-429. doi: 10.3934/nhm.2024018 |
[10] | Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040 |
This paper investigates the problem for exponential stability of stochastic Hopfield neural networks involving multiple discrete time-varying delays and multiple distributed time-varying delays. The exponential stability of such neural systems has not been given much attention in the past literature because this type of neural systems cannot be transformed into the vector forms and it is difficult to derive the easily verified stability conditions expressed in terms of the linear matrix inequality. Therefore, this paper tries to establish the easily verified sufficient conditions of the linear matrix inequality forms to ensure the mean-square exponential stability and the almost sure exponential stability for this type of neural systems by constructing a suitable Lyapunov-Krasovskii functional and inequality techniques. Four examples are provided to demonstrate the effectiveness of the proposed theoretical results and compare the established stability conditions to the previous results.
[1] | J. J. Hopfield, Neural networks and physical systems with emergent collect computational abilities, Proc. Natl. Acad. Sci. USA, 79 (1982), 2254–2558. |
[2] |
P. N. Suganthan, E. K. Teoh, D. P. Mital, Pattern recognition by homomorphic graph matching using Hopfield neural networks, Image Vis. Comput., 13 (1995), 45–60. doi: 10.1016/0262-8856(95)91467-R
![]() |
[3] |
T. Deb, A. K. Ghosh, A. Mukherjee, Singular value decomposition applied to associative memory of Hopfield neural network, Mater. Today: Proc., 5 (2018), 2222–2228. doi: 10.1016/j.matpr.2017.09.222
![]() |
[4] |
V. Donskoy, BOMD: building optimization models from data (neural networks based approach), Quant. Finance Econ., 3 (2019), 608–623. doi: 10.3934/QFE.2019.4.608
![]() |
[5] |
L. H. Huang, C. X. Huang, B. W. Liu, Dynamics of a class of cellular neural networks with time-varying delays, Phys. Lett. A, 345 (2005), 330–344. doi: 10.1016/j.physleta.2005.07.039
![]() |
[6] |
W. R. Zhao, Q. Zhu, New results of global robust exponential stability of neural networks with delays, Nonlinear Anal. Real World Appl., 11 (2010), 1190–1197. doi: 10.1016/j.nonrwa.2009.01.008
![]() |
[7] |
T. Li, A. G. Song, M. X. Xue, H. T. Zhang, Stability analysis on delayed neural networks based on an improved delay-partitioning approach, J. Comput. Appl. Math., 235 (2011), 3086–3095. doi: 10.1016/j.cam.2010.10.002
![]() |
[8] |
X. D. Li, S. J. Song, Impulsive control for existence, uniqueness, and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays, IEEE Trans. Neural Netw. Learn. Syst., 24 (2013), 868–877. doi: 10.1109/TNNLS.2012.2236352
![]() |
[9] |
B. Y. Zhang, J. Lam, S. Y. Xu, Stability analysis of distributed delay neural networks based on relaxed Lyapunov-Krasovskii functionals, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1480–1492. doi: 10.1109/TNNLS.2014.2347290
![]() |
[10] | H. W. Zhang, Q. H. Shan, Z. S. Wang, Stability analysis of neural networks with two delay components based on dynamic delay interval method, IEEE Trans. Neural Netw. Learn. Syst., 28 (2015), 259–267. |
[11] |
Q. K. Song, H. Yan, Z. J. Zhao, Y. R. Liu, Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects, Neural Netw., 79 (2016), 108–116. doi: 10.1016/j.neunet.2016.03.007
![]() |
[12] |
C. J. Xu, P. L. Li, Global exponential convergence of neutral-type Hopfield neural networks with multi-proportional delays and leakage delays, Chaos Soliton. Fract., 96 (2017), 139–144. doi: 10.1016/j.chaos.2017.01.012
![]() |
[13] |
N. Cui, H. J. Jiang, C. Hu, A. Abdurahman, Global asymptotic and robust stability of inertial neural networks with proportional delays, Neurocomputing, 272 (2018), 326–333. doi: 10.1016/j.neucom.2017.07.001
![]() |
[14] |
H. F. Li, N. Zhao, X. Wang, X. Zhang, P. Shi, Necessary and sufficient conditions of exponential stability for delayed linear discrete-time systems, IEEE T. Automat. Contr., 64 (2019), 712–719. doi: 10.1109/TAC.2018.2830638
![]() |
[15] |
S. Arik, A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays, J. Franklin I., 356 (2019), 276–291. doi: 10.1016/j.jfranklin.2018.11.002
![]() |
[16] |
F. X. Wang, X. G. Liu, M. L. Tang, L. F. Chen, Further results on stability and synchronization of fractional-order Hopfield neural networks, Neurocomputing, 346 (2019), 12–19. doi: 10.1016/j.neucom.2018.08.089
![]() |
[17] |
W. Q. Shen, X. Zhang, Y. T. Wang, Stability analysis of high order neural networks with proportional delays, Neurocomputing, 372 (2020), 33–39. doi: 10.1016/j.neucom.2019.09.019
![]() |
[18] |
O. Faydasicok, A new Lyapunov functional for stability analysis of neutral-type Hopfield neural networks with multiple delays, Neural Netw., 129 (2020), 288–297. doi: 10.1016/j.neunet.2020.06.013
![]() |
[19] |
H. M. Wang, G. L. Wei, S. P. Wen, T. W. Huang, Generalized norm for existence, uniqueness and stability of Hopfield neural networks with discrete and distributed delays, Neural Netw., 128 (2020), 288–293. doi: 10.1016/j.neunet.2020.05.014
![]() |
[20] | S. Haykin, Neural networks: a comprehensive foundation, Englewood Cliffs, NJ, USA: Prentice-Hall, 1998. |
[21] |
S. Blythe, X. R. Mao, X. X. Liao, Stability of stochastic delay neural networks, J. Franklin I., 338 (2001), 481–495. doi: 10.1016/S0016-0032(01)00016-3
![]() |
[22] |
L. Wan, J. H. Sun, Mean square exponential stability of stochastic delayed Hopfield neural networks, Phys. Lett., 343 (2005), 306–318. doi: 10.1016/j.physleta.2005.06.024
![]() |
[23] |
W. H. Chen, X. M. Lu, Mean square exponential stability of uncertain stochastic delayed neural networks, Phys. Lett. A, 372 (2008), 1061–1069. doi: 10.1016/j.physleta.2007.09.009
![]() |
[24] | Q. H. Zhou, L. Wan, Exponential stability of stochastic delayed Hopfield neural networks, Appl. Math. Comput., 199 (2008), 84–89. |
[25] |
C. X. Huang, Y. G. He, H. N. Wang, Mean square exponential stability of stochastic recurrent neural networks with time-varying delays, Comput. Math. Appl., 56 (2008), 1773–1778. doi: 10.1016/j.camwa.2008.04.004
![]() |
[26] |
R. N. Yang, H. J. Gao, P. Shi, Novel robust stability criteria for stochastic Hopfield neural networks with time delays, IEEE Trans. Syst. Man Cybern. Part B (Cybern.), 39 (2009), 467–474. doi: 10.1109/TSMCB.2008.2006860
![]() |
[27] |
R. N. Yang, Z. X. Zhang, P. Shi, Exponential stability on stochastic neural networks with discrete interval and distributed delays, IEEE Trans. Neural Netw., 21 (2010), 169–175. doi: 10.1109/TNN.2009.2036610
![]() |
[28] | G. Nagamani, P. Balasubramaniam, Robust passivity analysis for Takagi-Sugeno fuzzy stochastic Cohen-Grossberg interval neural networks with time-varying delays, Phys. Scripta, 83 (2010), 015008. |
[29] |
L. Wan, Q. H. Zhou, Almost sure exponential stability of stochastic recurrent neural networks with time-varying delays, Int. J. Bifurcat. Chaos, 20 (2010), 539–544. doi: 10.1142/S0218127410025594
![]() |
[30] |
P. Balasubramaniam, M. Syed Ali, Stochastic stability of uncertain fuzzy recurrent neural networks with Markovian jumping parameters, Int. J. Comput. Math., 88 (2011), 892–902. doi: 10.1080/00207161003716827
![]() |
[31] |
X. D. Li, P. Balasubramaniam, R. Rakkiyappan, Stability results for stochastic bidirectional associative memory neural networks with multiple discrete and distributed time-varying delays, Int. J. Comput. Math., 88 (2011), 1358–1372. doi: 10.1080/00207160.2010.500374
![]() |
[32] | T. Senthilkumar, P. Balasubramaniam, Delay-dependent robust stabilization and H∞ control for uncertain stochastic TS fuzzy systems with multiple time delays, Iran. J. Fuzzy. Syst., 9 (2012), 89–111. |
[33] | L. Wan, Q. H. Zhou, Z. G. Zhou, P. Wang, Dynamical behaviors of the stochastic Hopfield neural networks with mixed time delays, Abstr. Appl. Anal., 2013 (2013), 384981. |
[34] |
R. Krishnasamy, P. Balasubramaniam, Stochastic stability analysis for switched genetic regulatory networks with interval time-varying delays based on average dwell time approach, Stoch. Anal. Appl., 32 (2014), 1046–1066. doi: 10.1080/07362994.2014.962044
![]() |
[35] | L. Liu, Q. X. Zhu, Almost sure exponential stability of numerical solutions to stochastic delay Hopfield neural networks, Appl. Math. Comput., 266 (2015), 698–712. |
[36] |
B. Song, Y. Zhang, Z. Shu, F. N. Hu, Stability analysis of Hopfield neural networks perturbed by Poisson noises, Neurocomputing, 196 (2016), 53–58. doi: 10.1016/j.neucom.2016.02.034
![]() |
[37] |
Q. Yao, L. S. Wang, Y. F. Wang, Existence-uniqueness and stability of reaction-diffusion stochastic Hopfield neural networks with S-type distributed time delays, Neurocomputing, 275 (2018), 470–477. doi: 10.1016/j.neucom.2017.08.060
![]() |
[38] | A. Rathinasamy, J. Narayanasamy, Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks, Appl. Math. Comput., 348 (2019), 126–152. |
1. | Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 5, 978-1-4614-7241-4, 69, 10.1007/978-1-4614-7242-1_5 | |
2. | RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025 | |
3. | Max-Olivier Hongler, Olivier Gallay, Michael Hülsmann, Philip Cordes, Richard Colmorn, Centralized versus decentralized control—A solvable stylized model in transportation, 2010, 389, 03784371, 4162, 10.1016/j.physa.2010.05.047 | |
4. | S. Lämmer, R. Donner, D. Helbing, Anticipative control of switched queueing systems, 2008, 63, 1434-6028, 341, 10.1140/epjb/e2007-00346-5 | |
5. | Dirk Helbing, Amin Mazloumian, 2013, Chapter 7, 978-3-642-32159-7, 357, 10.1007/978-3-642-32160-3_7 | |
6. | Dirk Helbing, 2021, Chapter 7, 978-3-030-62329-6, 131, 10.1007/978-3-030-62330-2_7 | |
7. | Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001 | |
8. | Daniele De Martino, Luca Dall’Asta, Ginestra Bianconi, Matteo Marsili, A minimal model for congestion phenomena on complex networks, 2009, 2009, 1742-5468, P08023, 10.1088/1742-5468/2009/08/P08023 | |
9. | Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 2, 978-1-4614-7241-4, 11, 10.1007/978-1-4614-7242-1_2 | |
10. | Martin Pilat, 2018, Evolving Ensembles of Traffic Lights Controllers, 978-1-5386-7449-9, 958, 10.1109/ICTAI.2018.00148 | |
11. | R. Donner, Multivariate analysis of spatially heterogeneous phase synchronisation in complex systems: application to self-organised control of material flows in networks, 2008, 63, 1434-6028, 349, 10.1140/epjb/e2008-00151-8 | |
12. | Reik Donner, 2009, Chapter 8, 978-3-642-04226-3, 237, 10.1007/978-3-642-04227-0_8 | |
13. | Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 4, 978-1-4614-7241-4, 51, 10.1007/978-1-4614-7242-1_4 | |
14. | Gui-Jun Pan, Xiao-Qing Yan, Zhong-Bing Huang, Wei-Chuan Ma, Gradient networks on uncorrelated random scale-free networks, 2011, 83, 0031-8949, 035803, 10.1088/0031-8949/83/03/035803 | |
15. | Luigi Rarità, Ciro D'Apice, Benedetto Piccoli, Dirk Helbing, Sensitivity analysis of permeability parameters for flows on Barcelona networks, 2010, 249, 00220396, 3110, 10.1016/j.jde.2010.09.006 | |
16. | Massimiliano Daniele Rosini, 2013, Chapter 15, 978-3-319-00154-8, 193, 10.1007/978-3-319-00155-5_15 | |
17. | D. Helbing, Derivation of a fundamental diagram for urban traffic flow, 2009, 70, 1434-6028, 229, 10.1140/epjb/e2009-00093-7 | |
18. | Mauro Garavello, Benedetto Piccoli, 2013, Chapter 6, 978-1-4614-6242-2, 143, 10.1007/978-1-4614-6243-9_6 | |
19. | Carlos Gershenson, Guiding the Self-Organization of Cyber-Physical Systems, 2020, 7, 2296-9144, 10.3389/frobt.2020.00041 | |
20. | Qian Wan, Guoqing Peng, Zhibin Li, Felipe Hiroshi Tahira Inomata, Spatiotemporal trajectory characteristic analysis for traffic state transition prediction near expressway merge bottleneck, 2020, 117, 0968090X, 102682, 10.1016/j.trc.2020.102682 | |
21. | S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, Critical phenomena in complex networks, 2008, 80, 0034-6861, 1275, 10.1103/RevModPhys.80.1275 | |
22. | D. Helbing, A. Mazloumian, Operation regimes and slower-is-faster effect in the controlof traffic intersections, 2009, 70, 1434-6028, 257, 10.1140/epjb/e2009-00213-5 | |
23. | S. Havlin, D. Y. Kenett, E. Ben-Jacob, A. Bunde, R. Cohen, H. Hermann, J. W. Kantelhardt, J. Kertész, S. Kirkpatrick, J. Kurths, J. Portugali, S. Solomon, Challenges in network science: Applications to infrastructures, climate, social systems and economics, 2012, 214, 1951-6355, 273, 10.1140/epjst/e2012-01695-x | |
24. | Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2012, How can macroscopic models reveal self-organization in traffic flow?, 978-1-4673-2066-5, 6989, 10.1109/CDC.2012.6426549 | |
25. | Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 1, 978-1-4614-7241-4, 1, 10.1007/978-1-4614-7242-1_1 | |
26. | S. Blandin, G. Bretti, A. Cutolo, B. Piccoli, Numerical simulations of traffic data via fluid dynamic approach, 2009, 210, 00963003, 441, 10.1016/j.amc.2009.01.057 | |
27. | Lele Zhang, Jan de Gier, Timothy M. Garoni, Traffic disruption and recovery in road networks, 2014, 401, 03784371, 82, 10.1016/j.physa.2014.01.034 | |
28. | Gabriella Bretti, Benedetto Piccoli, A Tracking Algorithm for Car Paths on Road Networks, 2008, 7, 1536-0040, 510, 10.1137/070697768 | |
29. | Jan de Gier, Timothy M Garoni, Omar Rojas, Traffic flow on realistic road networks with adaptive traffic lights, 2011, 2011, 1742-5468, P04008, 10.1088/1742-5468/2011/04/P04008 | |
30. | Jorge E. Macías‐Díaz, Nauman Ahmed, Muhammad Jawaz, Muhammad Rafiq, Muhammad Aziz ur Rehman, Design and analysis of a discrete method for a time‐delayed reaction–diffusion epidemic model, 2021, 44, 0170-4214, 5110, 10.1002/mma.7096 | |
31. | Amin Mazloumian, Nikolas Geroliminis, Dirk Helbing, The spatial variability of vehicle densities as determinant of urban network capacity, 2010, 368, 1364-503X, 4627, 10.1098/rsta.2010.0099 | |
32. | Amin Mazloumian, Nikolas Geroliminis, Dirk Helbing, The Spatial Variability of Vehicle Densities as Determinant of Urban Network Capacity, 2009, 1556-5068, 10.2139/ssrn.1596042 | |
33. | Kai Lu, Jianwei Hu, Jianghui Huang, Deliang Tian, Chao Zhang, Optimisation model for network progression coordinated control under the signal design mode of split phasing, 2017, 11, 1751-9578, 459, 10.1049/iet-its.2016.0326 | |
34. | Dirk Helbing, The Automation of Society is Next: How to Survive the Digital Revolution, 2015, 1556-5068, 10.2139/ssrn.2694312 | |
35. | Gabor Karsai, Xenofon Koutsoukos, Himanshu Neema, Peter Volgyesi, Janos Sztipanovits, 2019, Chapter 18, 978-3-319-77491-6, 425, 10.1007/978-3-319-77492-3_18 | |
36. | Alessia Marigo, Benedetto Piccoli, A Fluid Dynamic Model for T-Junctions, 2008, 39, 0036-1410, 2016, 10.1137/060673060 | |
37. | Stefan Lämmer, Dirk Helbing, Self-control of traffic lights and vehicle flows in urban road networks, 2008, 2008, 1742-5468, P04019, 10.1088/1742-5468/2008/04/P04019 | |
38. | Xenofon Koutsoukos, Gabor Karsai, Aron Laszka, Himanshu Neema, Bradley Potteiger, Peter Volgyesi, Yevgeniy Vorobeychik, Janos Sztipanovits, SURE: A Modeling and Simulation Integration Platform for Evaluation of Secure and Resilient Cyber–Physical Systems, 2018, 106, 0018-9219, 93, 10.1109/JPROC.2017.2731741 | |
39. | Ding-wei Huang, Persistent oscillations in a traffic model with decision-making, 2020, 2, 2523-3963, 10.1007/s42452-019-1893-2 | |
40. | A. Cascone, R. Manzo, B. Piccoli, L. Rarità, Optimization versus randomness for car traffic regulation, 2008, 78, 1539-3755, 10.1103/PhysRevE.78.026113 | |
41. | Gui-Jun Pan, Sheng-Hong Liu, Mei Li, Jamming in the weighted gradient networks, 2011, 390, 03784371, 3178, 10.1016/j.physa.2011.03.018 | |
42. | CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042 | |
43. | Martin Schönhof, Dirk Helbing, Criticism of three-phase traffic theory, 2009, 43, 01912615, 784, 10.1016/j.trb.2009.02.004 | |
44. | Massimiliano Caramia, Ciro D’Apice, Benedetto Piccoli, Antonino Sgalambro, Fluidsim: A Car Traffic Simulation Prototype Based on FluidDynamic, 2010, 3, 1999-4893, 294, 10.3390/a3030294 | |
45. | Hossein Zangoulechi, Shahram Babaie, An adaptive traffic engineering approach based on retransmission timeout adjustment for software-defined networks, 2024, 15, 1868-5137, 739, 10.1007/s12652-023-04732-4 |