Research article Special Issues

Dynamics of a stochastic HBV infection model with cell-to-cell transmission and immune response

  • Received: 31 July 2020 Accepted: 10 December 2020 Published: 15 December 2020
  • In this paper, considering the proven role of exosomes and the inevitable randomization within-host, we establish a hepatitis B virus (HBV) model with cell-to-cell transmission and CTL immune response from a deterministic framework to a stochastic differential equation (SDE). By introducing the reproduction number R0, we prove that R0 can be used to govern the stochastic dynamics of the SDE HBV model. Under certain assumptions, if R01, the solution of the SDE model always fluctuates around the infection-free equilibrium of the deterministic model, which indicates that the HBV will eventually disappear almost surely; if R0>1, under extra conditions, the solution of the SDE model fluctuates around endemic equilibrium of the corresponding deterministic model, which leads to the stochastic persistence of the HBV with probability one. One of the most interesting findings is that the fluctuation amplitude is positively related to the intensity of the white noise, which can provide us some useful control strategies to regulate HBV infection dynamics.

    Citation: Xiaoqin Wang, Yiping Tan, Yongli Cai, Kaifa Wang, Weiming Wang. Dynamics of a stochastic HBV infection model with cell-to-cell transmission and immune response[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 616-642. doi: 10.3934/mbe.2021034

    Related Papers:

    [1] Yiping Tan, Yongli Cai, Zhihang Peng, Kaifa Wang, Ruoxia Yao, Weiming Wang . Dynamics of a stochastic HBV infection model with drug therapy and immune response. Mathematical Biosciences and Engineering, 2022, 19(8): 7570-7585. doi: 10.3934/mbe.2022356
    [2] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [3] Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358
    [4] Jiazhe Lin, Rui Xu, Xiaohong Tian . Threshold dynamics of an HIV-1 model with both viral and cellular infections, cell-mediated and humoral immune responses. Mathematical Biosciences and Engineering, 2019, 16(1): 292-319. doi: 10.3934/mbe.2019015
    [5] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
    [6] Ran Zhang, Shengqiang Liu . Global dynamics of an age-structured within-host viral infection model with cell-to-cell transmission and general humoral immunity response. Mathematical Biosciences and Engineering, 2020, 17(2): 1450-1478. doi: 10.3934/mbe.2020075
    [7] Khalid Hattaf, Noura Yousfi . Dynamics of SARS-CoV-2 infection model with two modes of transmission and immune response. Mathematical Biosciences and Engineering, 2020, 17(5): 5326-5340. doi: 10.3934/mbe.2020288
    [8] Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006
    [9] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [10] Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139
  • In this paper, considering the proven role of exosomes and the inevitable randomization within-host, we establish a hepatitis B virus (HBV) model with cell-to-cell transmission and CTL immune response from a deterministic framework to a stochastic differential equation (SDE). By introducing the reproduction number R0, we prove that R0 can be used to govern the stochastic dynamics of the SDE HBV model. Under certain assumptions, if R01, the solution of the SDE model always fluctuates around the infection-free equilibrium of the deterministic model, which indicates that the HBV will eventually disappear almost surely; if R0>1, under extra conditions, the solution of the SDE model fluctuates around endemic equilibrium of the corresponding deterministic model, which leads to the stochastic persistence of the HBV with probability one. One of the most interesting findings is that the fluctuation amplitude is positively related to the intensity of the white noise, which can provide us some useful control strategies to regulate HBV infection dynamics.




    [1] World Health Organization, Hepatitis B, Accessed 12 Nov. 2020. Available from: https://www.who.int/health-topics/hepatitis#tab=tab_1.
    [2] M. Nowak, R. M. May, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74–79. doi: 10.1126/science.272.5258.74
    [3] R. A. Arnaout, M. A. Nowak, Competitive coexistence in antiviral immunity, J. Theor. Biol., 204 (2000), 431–441. doi: 10.1006/jtbi.2000.2027
    [4] R. V. Culshaw, S. Ruan, R. J. Spiteri, Optimal HIV treatment by maximising immune response, J. Math. Biol., 48 (2004), 545–562. doi: 10.1007/s00285-003-0245-3
    [5] D. Bertacchi, F. Zucca, S. Foresti, D. Mangioni, A. Gori, Combination versus sequential monotherapy in chronic HBV infection: a mathematical approach, Math. Med. Biol., 32 (2015), 383–403.
    [6] A. U. Neumann, Hepatitis B viral kinetics: A dynamic puzzle still to be resolved, Hepatology, 42 (2005), 249–254.
    [7] M. Nowak, R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology: Mathematical Principles of Immunology and Virology, Oxford University Press, UK, 2000.
    [8] J. Li, K. Men, Y. Yang, D. Li, Dynamical analysis on a chronic hepatitis C virus infection model with immune response, J. Theor. Biol., 365 (2015), 337–346. doi: 10.1016/j.jtbi.2014.10.039
    [9] M. Li, J. Zu, The review of differential equation models of HBV infection dynamics, J. Virol. Meth., 266 (2019), 103–113. doi: 10.1016/j.jviromet.2019.01.014
    [10] A. Mojaver, H. Kheiri, Dynamical analysis of a class of hepatitis C virus infection models with application of optimal control, Inter. J. Biomath., 9 (2016), 1650038.
    [11] W. Mothes, N. M. Sherer, J. Jin, P. Zhong, Virus cell-to-cell transmission, J. Virol., 84 (2010), 8360–8368.
    [12] S. Pan, S. P. Chakrabarty, Threshold dynamics of HCV model with cell-to-cell transmission and a non-cytolytic cure in the presence of humoral immunity, Commun. Nonlinear Sci., 61 (2018), 180–197. doi: 10.1016/j.cnsns.2018.02.010
    [13] K. Razali, H. Thein, J. Bell, M. Cooper-Stanbury, K. Dolan, G. Dore, et al., Modelling the hepatitis C virus epidemic in Australia, Drug Alcohol Depen., 91 (2007), 228–235.
    [14] B. Roe, W. W. Hall, Cellular and molecular interactions in coinfection with hepatitis C virus and human immunodeficiency virus, Expert Rev. Mol. Med., 10 (2008), e30.
    [15] F. Zhang, J. Li, C. Zheng, L. Wang, Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation, Commun. Nonlinear Sci., 42 (2017), 464–476. doi: 10.1016/j.cnsns.2016.06.009
    [16] P. Zhong, L. M. Agosto, J. B. Munro, W. Mothes, Cell-to-cell transmission of viruses, Curr. Opin. Virol., 3 (2013), 44–50.
    [17] M. Sourisseau, N. Sol-Foulon, F. Porrot, F. Blanchet, O. Schwartz, Inefficient human immunodeficiency virus replication in mobile lymphocytes, J. Virol., 81 (2006), 1000–1012.
    [18] B. Monel, E. Beaumont, D. Vendrame, O. Schwartz, D. Brand, Hiv cell-to-cell transmission requires the production of infectious virus particles and does not proceed through env-mediated fusion pores, J. Virology, 86 (2012), 3924–3933. doi: 10.1128/JVI.06478-11
    [19] Y. Yang, Q. Han, Z. Hou, C. Zhang, Z. Tian, J. Zhang, Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction, Cell. Mol. Immunol., 14 (2017), 465–475. doi: 10.1038/cmi.2016.24
    [20] G. Bocharov, B. Ludewig, A. Bertoletti, P. Klenerman, T. Junt, P. Krebs, et al., Underwhelming the immune response: effect of slow virus growth on CD8+-T-lymphocyte responses, J. Virol., 78 (2004), 2247–2254.
    [21] S. Cai, Y. Cai, X. Mao, A stochastic differential equation SIS epidemic model with two independent brownian motions, J. Math. Anal. Appl., 474 (2019), 1536–1550. doi: 10.1016/j.jmaa.2019.02.039
    [22] Y. Cai, J. Jiao, Z. Gui, Y. Liu, W. M. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comp., 329 (2018), 210–226. doi: 10.1016/j.amc.2018.02.009
    [23] Y. Cai, Y. Kang, M. Banerjee, W.M. Wang, A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equations, 259 (2015), 7463–7502. doi: 10.1016/j.jde.2015.08.024
    [24] Y. Cai, Y. Kang, W. M. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comp., 305 (2017), 221–240. doi: 10.1016/j.amc.2017.02.003
    [25] C. Ji, D. Jiang, Dynamics of an HIV-1 infection model with cell-mediated immune response and stochastic perturbation, Inter. J. Biomath., 5 (2012), 1250039.
    [26] T. Luzyanina, G. Bocharov, Stochastic modeling of the impact of random forcing on persistent hepatitis B virus infection, Math. Comp. Simul., 96 (2014), 54–65. doi: 10.1016/j.matcom.2011.10.002
    [27] F. A. Rihan, H. J. Alsakaji, C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for covid-19, Adv. Differ. Equ., 2020 (2020), 502.
    [28] Y. Wang, D. Jiang, Stationary distribution and extinction of a stochastic viral infection model, Discrete Dyn. Nat. Soc., 2017 (2017), 1–13.
    [29] Y. Wang, D. Jiang, A. Alsaedi, T. Hayat, Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function, Phys. A, 501 (2018), 276–292. doi: 10.1016/j.physa.2018.02.040
    [30] Y. Wang, D. Jiang, T. Hayat, B. Ahmad, A stochastic HIV infection model with T-cell proliferation and CTL immune response, Appl. Math. Comp., 315 (2017), 477–493. doi: 10.1016/j.amc.2017.07.062
    [31] Y. Yuan, L. J. S. Allen, Stochastic models for virus and immune system dynamics, Math. Biosci., 234 (2011), 84–94. doi: 10.1016/j.mbs.2011.08.007
    [32] F. Xie, M. Shan, X. Lian, W. M. Wang, Periodic solution of a stochastic HBV infection model with logistic hepatocyte growth, Appl. Math. Comp., 293 (2017), 630–641. doi: 10.1016/j.amc.2016.06.028
    [33] T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes, J. Appl. Probab., 7 (1970), 49–58. doi: 10.2307/3212147
    [34] T. G. Kurtz, Limit theorems for sequences of jump Markov processes approximating ordinary differential processes, J. Appl. Probab., 8 (1971), 344–356. doi: 10.2307/3211904
    [35] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/S0025-5564(02)00108-6
    [36] X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2007.
    [37] D. J. Higham, An algorithmic introduction to numerical simulations of stochastic differentila equations, SIAM Rev., 43 (2001), 525–546. doi: 10.1137/S0036144500378302
  • This article has been cited by:

    1. Caterina Balzotti, Maya Briani, Estimate of traffic emissions through multiscale second order models with heterogeneous data, 2022, 17, 1556-1801, 863, 10.3934/nhm.2022030
    2. Mohamed Benyahia, Massimiliano D. Rosini, A macroscopic traffic model with phase transitions and local point constraints on the flow, 2017, 12, 1556-181X, 297, 10.3934/nhm.2017013
    3. Mauro Garavello, Benedetto Piccoli, Boundary coupling of microscopic and first order macroscopic traffic models, 2017, 24, 1021-9722, 10.1007/s00030-017-0467-5
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3785) PDF downloads(402) Cited by(23)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog