Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Review Topical Sections

Shape memory alloy heat activation: State of the art review

  • Received: 31 August 2020 Accepted: 20 November 2020 Published: 03 December 2020
  • The use of shape memory alloys (SMAs) in civil structures attracted the attention of researchers worldwide. This interest is due the unique properties of SMAs, the shape memory effect (SME) and pseudoelasticity. Other desirable attributes for SMA include biocompatibility, high specific strength, wear resistance, anti-fatigue characteristics, and high yield strength. These beneficial qualities allow for a wide range of applications ranging from aerospace field to the medical and civil engineering fields. To intelligently utilize shape memory alloys and widen their application potential, certain characteristics including the heat activation and heat transfer mechanisms must be thoroughly understood. Such understanding would allow the development and optimization of systems utilizing SMA. Hence, this paper presents a state-of-the-art review about shape memory alloys with specific focus on the heat activation mechanisms and the heat transfer modes.

    Citation: Abdelmoneim El Naggar, Maged A. Youssef. Shape memory alloy heat activation: State of the art review[J]. AIMS Materials Science, 2020, 7(6): 836-858. doi: 10.3934/matersci.2020.6.836

    Related Papers:

    [1] Yang Liu . Long-time behavior of a class of viscoelastic plate equations. Electronic Research Archive, 2020, 28(1): 311-326. doi: 10.3934/era.2020018
    [2] Mohammad M. Al-Gharabli, Adel M. Al-Mahdi . Existence and stability results of a plate equation with nonlinear damping and source term. Electronic Research Archive, 2022, 30(11): 4038-4065. doi: 10.3934/era.2022205
    [3] Li-ming Xiao, Cao Luo, Jie Liu . Global existence of weak solutions to a class of higher-order nonlinear evolution equations. Electronic Research Archive, 2024, 32(9): 5357-5376. doi: 10.3934/era.2024248
    [4] Mingqi Xiang, Binlin Zhang, Die Hu . Kirchhoff-type differential inclusion problems involving the fractional Laplacian and strong damping. Electronic Research Archive, 2020, 28(2): 651-669. doi: 10.3934/era.2020034
    [5] Lingzheng Kong, Haibo Chen . Normalized solutions for nonlinear Kirchhoff type equations in high dimensions. Electronic Research Archive, 2022, 30(4): 1282-1295. doi: 10.3934/era.2022067
    [6] Jinheng Liu, Kemei Zhang, Xue-Jun Xie . The existence of solutions of Hadamard fractional differential equations with integral and discrete boundary conditions on infinite interval. Electronic Research Archive, 2024, 32(4): 2286-2309. doi: 10.3934/era.2024104
    [7] Wei Shi, Xinguang Yang, Xingjie Yan . Determination of the 3D Navier-Stokes equations with damping. Electronic Research Archive, 2022, 30(10): 3872-3886. doi: 10.3934/era.2022197
    [8] Fei Jiang . Stabilizing effect of elasticity on the motion of viscoelastic/elastic fluids. Electronic Research Archive, 2021, 29(6): 4051-4074. doi: 10.3934/era.2021071
    [9] Xu Liu, Jun Zhou . Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28(2): 599-625. doi: 10.3934/era.2020032
    [10] Xiaoxia Wang, Jinping Jiang . The uniform asymptotic behavior of solutions for 2D g-Navier-Stokes equations with nonlinear dampness and its dimensions. Electronic Research Archive, 2023, 31(7): 3963-3979. doi: 10.3934/era.2023201
  • The use of shape memory alloys (SMAs) in civil structures attracted the attention of researchers worldwide. This interest is due the unique properties of SMAs, the shape memory effect (SME) and pseudoelasticity. Other desirable attributes for SMA include biocompatibility, high specific strength, wear resistance, anti-fatigue characteristics, and high yield strength. These beneficial qualities allow for a wide range of applications ranging from aerospace field to the medical and civil engineering fields. To intelligently utilize shape memory alloys and widen their application potential, certain characteristics including the heat activation and heat transfer mechanisms must be thoroughly understood. Such understanding would allow the development and optimization of systems utilizing SMA. Hence, this paper presents a state-of-the-art review about shape memory alloys with specific focus on the heat activation mechanisms and the heat transfer modes.


    A coupled system of two Kirchhoff plate equations is considered:

    {|yt|ρyttΔytt+Δ2yt0h1(ts)Δ2y(s)ds+f1(y,z)=0inΩ×(0,),|zt|ρzttΔztt+Δ2zt0h2(ts)Δ2z(s)ds+f2(y,z)=0inΩ×(0,),y=νy=z=νz=0onΓ0×(0,),B1yt0h1(ts)B1y(s)ds=B1zt0h2(ts)B1z(s)ds=0onΓ1×(0,),B2yνyttt0h1(ts)B2y(s)ds=0onΓ1×(0,),B2zνzttt0h2(ts)B2z(s)ds=0onΓ1×(0,),y(x,0)=y0(x),  yt(x,0)=y1(x),   z(x,0)=z0(x),   zt(x,0)=z1(x)inΩ, (1.1)

    where Ω is a bounded domain of R2 with a smooth boundary Γ=Ω=Γ0Γ1, such that ¯Γ0¯Γ1=, the initial data y0, y1, z0 and z1 lie in appropriate Hilbert space.

    The symbols yt and ytt refer, respectively, to first order and second order derivatives (with respect to t) of y, while Δ and Δ2 are the Laplacian and Bilaplacian operators. The functions hi and fi (for i=1,2) verify some assumptions that will be given in the next section. ρ is a positive constant, x=(x1,x2) is the space variable, and the operators B1 and B2 are defined by

    B1y=Δy+(1μ)(2ν1ν2yx1x2ν21yx2x2ν22yx1x1),

    and

    B2y=νΔy+(1μ)τ((ν21ν22)yx1x2+ν1ν2(yx2x2yx1x1)),

    where the constant 0<μ<12 is the Poisson coefficient. Here, ν stands for normal derivative, ν=(ν1,ν2) is the unit outer normal vector to Γ and τ=(ν2,ν1) is a unit tangent vector.

    Model (1.1) describes the interaction of two viscoelastic Kirchhoff plates with rotational forces, which possess a rigid surface and whose interiors are somehow permissive to slight deformations, such that the material densities vary according to the velocity [1]. Each one of these two plates is clamped along Γ0, and without bending and twisting moments on Γ1. The analysis of stability issues for plate models is more challenging due to free boundary conditions and the presence of rotational forces, etc. [2]. Moreover, in our case the source term competes with the dissipation induced by the viscoelastic term only. Therefore, it will be interesting to study this interaction [3].

    We start off by reviewing some works related to quasi-linear wave equation and plate equation. Cavalcanti et al. [1] considered the following equation

    |ut|ρuttΔuΔutt+t0g(ts)Δu(s)dsγΔut=0, (1.2)

    and proved the global existence of weak solutions and a uniform decay rates of the energy in the presence of a strong damping, of the form γΔut acting in the domain and assuming that the relaxation function decays exponentially. Messaoudi and Tatar [3] studied (1.2) but without a strong damping (γ=0). They showed that the memory term is enough to stabilize the solution. The global existence and uniform decay for solutions of (1.2), provided that the initial data are in some stable set, are obtained in [4] with the presence of a source term and with γ=0. Later, in [5], for γ=0, the authors investigated the general decay result of the energy of (1.2) with nonlinear damping. In [6], the author investigated (1.2) with weakly nonlinear time-dependent dissipation and source terms, and he established an explicit and general energy decay rate results without imposing any restrictive growth assumption on the damping term at the origin. For other related results for quasi-linear wave equations, we refer the reader to [7,8,9,10]. For quasi-linear plate equations, we mention the work of Al-Gharabli et al. [11] where the authors studied the well-posedness and asymptotic stability for a quasi-linear viscoelastic plate equation with a logarithmic nonlinearity. Recently, Al-Mahdi [12] studied the same problem as in Al-Gharabli et al. [11], but with infinite memory. With the imposition of a minimal condition on the relaxation function, he obtained an explicit and general decay rate result for the energy. Very recently, in [13], the authors considered a plate equation with infinite memory, nonlinear damping, and logarithmic source. They proved explicit and general decay rate of the solution.

    The stability of coupled quasi-linear systems has been discussed by many authors. Liu [14] considered two coupled quasi-linear viscoelastic wave equations. He showed that the viscoelastic terms' dissipations guarantee that the solutions decay exponentially and polynomially. Later on, with more general relaxation functions and specific initial data, He [15] extended the result of Liu [14]. Recently, Mustafa and Kafini [16] considered the same problem and improved earlier results for a wider class of relaxation functions. In [17], the authors studied the same problem, but with nonlinear damping, and showed a general decay rate estimates of energy of solutions. Very recently, Pişkin and Ekinci [18] generalized and improved earlier results by considering a degenerate damping. Finally, let's mention the recent works of Fang et al.[19] and Zhu et al.[20] that relate to our problem.

    As I know, there is no work regarding quasi-linear plate equations. This paper seems to be the first that deals with this problem.

    The structure of this paper is shown as follows: In Section 2, we present some presumptions that are necessary for the proof of essential results. The third section provides the proof of well-posedness of our system. The general energy decay result is stated and established in Section 4. The fifth section provides two examples that illustrate explicit formulas for the energy decay rates. A concluding section is given at the end.

    This part is devoted to give some necessary materials and assumptions for the proof of our key results. We define

    V={yH2(Ω):y=νy=0  on  Γ0},

    and

    W={yH1(Ω):y=0  on  Γ0}.

    Denoting dx=dx1dx2, we define the bilinear form b:V×VR by:

    b(y,z)=Ω {yx1x1zx1x1+yx2x2zx2x2+2(1μ)yx1x2zx1x2+μ(yx1x1zx2x2+yx2x2zx1x1)}dx.

    Firstly, we must recall Green's formula (see [2]):

    b(y,z)=ΩΔ2yzdx+Γ(B1yνzB2yz)dΓ,  yH4(Ω),zH2(Ω), (2.1)

    and a weaker version of it (see Theorem 5.6 in [21]) in the following form:

    b(y,z)=ΩΔ2yzdx+B1y,νzH12(Γ),H12(Γ)B2y,zH32(Γ),H32(Γ),  zH2(Ω). (2.2)

    We need the following lemma.

    Lemma 2.1. ([22]) For any yC1(0,T;H2(Ω)), we get

    b(t0h1(ts)y(s)ds,yt)=12h1(t)b(y,y)12ddt{(h1y)(t)(t0h1(s)ds)b(y,y)}+12(h1y)(t), (2.3)

    where

    (h1y)(t)=t0h1(ts)b(y(t)y(s),y(t)y(s))ds.

    In this paper, we suppose that:

    (A1): The two non-increasing C1 functions hi:[0,+)(0,+) (for i=1,2) such that

    10hi(s)ds=li>0. (2.4)

    (A2): There are a positive C1 functions Gi:(0,+)(0,+), that are linear or strictly increasing and strictly convex C2 on (0,r],(r<1), with Gi(0)=Gi(0)=0, satisfying for all t0

    hi(t)ξi(t)Gi(hi(t)),fori=1,2, (2.5)

    where ξ1 and ξ2 are positive non-increasing differentiable functions.

    (A3): fi:R2R (for i=1,2) are C1 functions and there exists a positive function F, such that

    f1(x1,x2)=Fx1,f2(x1,x2)=Fx2,x1f1(x1,x2)+x2f2(x1,x2)F(x1,x2)0,

    and

    |fix1(x1,x2)|+|fix2(x1,x2)|d(1+|x1|βi11+|x2|βi21),(x1,x2)R2, (2.6)

    for some constant d>0 and βij1 for i,j=1,2.

    Remark 2.1. 1.The condition (A1) guarantees the hyperbolicity of the first two equations in the system (1.1).

    2. By (2.6) and the mean value theorem, we have for some positive constant d1

    |fi(x1,x2)|d1(|x1|+|x2|+|x1|βi1+|x2|βi2), (2.7)

    and

    |fi(x1,x2)fi(u1,u2)|d1(1+|x1|βi1+|x2|βi2+|u1|βi1+|u2|βi2)(|x1u1|+|x2u2|), (2.8)

    for all (x1,x2),(u1,u2)R2 and i=1,2.

    The energy functional is defined by

    E(t)=1ρ+2Ω|yt|ρ+2dx+12yt2Ky(t)+12(1t0h1(s)ds)b(y,y)+12(h1y)(t)Py(t)+1ρ+2Ω|zt|ρ+2dx+12zt2Kz(t)+12(1t0h2(s)ds)b(z,z)+12(h2z)(t)Pz(t)+ΩF(y,z)dx. (2.9)

    Here,

    K(t)=Ky(t)+Kz(t)andP(t)=Py(t)+Pz(t)+ΩF(y,z)dx

    represent, respectively, the kinetic and the elastic potential energy of the model.

    We have the following dissipation identity:

    Proposition 2.1.

    E(t)=12(h1y)(t)12h1(t)b(y,y)+12(h2z)(t)12h2(t)b(z,z)0. (2.10)

    Proof. Multiplying (1.1)1 by yt and (1.1)2 by zt, summing the resultant equations and integrating over Ω to get

    ddt{1ρ+2Ω|yt|ρ+2dx+12yt2+12b(y,y)+1ρ+2Ω|zt|ρ+2dx+12zt2+12b(z,z)+ΩF(y,z)dx}t0h1(ts)b(y(s),yt)dst0h2(ts)b(z(s),zt)ds=0. (2.11)

    Inserting (2.3) in (2.11), we get the desired result.

    Throughout this paper, c denotes a generic positive constant, and not necessarily the same at different occurrences.

    We begin this part by defining a weak solution of the system (1.1).

    Definition 3.1. A couple of functions (y,z) defined on [0,T] is a weak solution of the problem (1.1) if yC([0,T],V)C1([0,T],W),zC([0,T],V)C1([0,T],W), and satisfies

    Ω|yt|ρyttudx+Ωyttudx+b(y,u)t0h1(ts)b(y(s),u)ds+Ωf1(y,z)udx=0,y(x,0)=y0(x),yt(x,0)=y1(x),

    and

    Ω|zt|ρzttvdx+Ωzttvdx+b(z,v)t0h2(ts)b(z(s),v)ds+Ωf2(y,z)vdx=0,z(x,0)=z0(x),zt(x,0)=z1(x),

    for a.e. t[0,T] and all test functions u,vV.

    Theorem 3.1. Let (y0,y1),(z0,z1)V×W. Assume that assumptions (A1)–(A3) are true. Then, the system (1.1) has at least a local weak solution. Moreover, this solution is global and bounded.

    Proof. With the help of the Faedo-Galerkin approach, the existence is demonstrated. In order to achieve this, let {wj}j=1 be a basis of V. Define Em=span{w1,w2,...,wm}. On the finite dimensional subspaces Em, the initial data are projected as follows:

    ym0(x)=mk=1akwk,ym1(x)=mk=1bkwk,zm0(x)=mk=1ckwk,zm1(x)=mk=1dkwk,

    such that

    (ym0,zm0)(y0,z0)inV2,and(ym1,z1m)(y1,z1)inW2. (3.1)

    Considering the following solution

    ym(x,t)=mk=1pk(t)wk(x),zm(x,t)=mk=1qk(t)wk(x),

    which satisfies the following approximate problem in Em:

    Ω|ymt|ρymttwdx+Ωymttwdx+b(ym,w)t0h1(ts)b(ym(s),w)ds+Ωf1(ym,zm)wdx=0,Ω|zmt|ρzmttwdx+Ωzmttwdx+b(zm,w)t0h2(ts)b(zm(s),w)ds+Ωf2(ym,zm)wdx=0,ym(0)=ym0,ymt(0)=ym1,zm(0)=zm0,zmt(0)=zm1. (3.2)

    This leads to a system of ordinary differential equations (ODEs) for unknown functions pk and qk. Hence, from the standard theory of system of ODEs, a solution (ym,zm) of (3.2) exists, for all m1, on [0,tm), with 0<tmT,m1.

    A priori estimate 1: Let w=ymt in (3.2)1 and w=zmt in (3.2)2. Combining the resultant equations and integrating on Ω to obtain

    ddtEm(t)=12{(h1ym)(t)h1(t)b(ym,ym)+(h2zm)(t)h2(t)b(zm,zm)}, (3.3)

    where

    Em(t)=1ρ+2Ω|ymt|ρ+2dx+12(1t0h1(s)ds)b(ym,ym)+12ymt2+12(h1ym)(t)+1ρ+2Ω|zmt|ρ+2dx+12(1t0h2(s)ds)b(zm,zm)+12zmt2+12(h2zm)(t)+ΩF(ym,zm)dx.

    Noting, by (3.1), that

    (ym0,z0m)V2,(ym1,zm1)W2c.

    Then, by integrating (3.3) over (0,t),0<t<tm, we get a constant M1>0 that doesn't depend on t and m, satisfying

    Em(t)Em(0)M1. (3.4)

    Hence, tm can be replaced by some T>0, for all m1.

    A priori estimate 2: Let w=ymtt in (3.2)1 and w=zmtt in (3.2)2, adding the resultant equations, integrating on Ω, and using Young's inequality to obtain for all η>0

    Ω|ymt|ρ|ymtt|2dx+Ω|zmt|ρ|zmtt|2dx+Ω|ymtt|2dx+Ω|zmtt|2dx=b(ym,ymtt)+t0h1(ts)b(ym(s),ymtt)dsb(zm,zmtt)+t0h2(ts)b(zm(s),zmtt)dsΩf1(ym,zm)ymttdxΩf2(ym,zm)zmttdx2η(b(ymtt,ymtt)+b(zmtt,zmtt))+14η(b(ym,ym)+b(zm,zm))+(1l1)h1(0)+(1l2)h2(0)4ηt0(b(ym(s),ym(s))+b(zm(s),zm(s)))dsΩf1(ym,zm)ymttdxΩf2(ym,zm)zmttdx. (3.5)

    Using Hölder's inequality, Sobolev's embedding, (2.7) and (3.4), one has for some M2>0,

    |Ωf1(ym,zm)ymttdx|dΩ(|ym|+|zm|+|ym|β11+|zm|β12)|ymtt|dxc(ym2+ym2+ymβ112β11+zmβ122β12)ymtt2c({b(ym,ym)}12+{b(zm,zm)}12+{b(ym,ym)}β112+{b(zm,zm)}β122){b(ymtt,ymtt)}12M2{b(ymtt,ymtt)}12. (3.6)

    Similarly, we obtain that

    |Ωf2(ym,zm)zmttdx|M2{b(zmtt,zmtt)}12. (3.7)

    From (3.5)–(3.7), we infer that

    Ω|ymt|ρ|ymtt|2dx+Ω|zmt|ρ|zmtt|2dx+(Ω|ymtt|2dx2ηb(ymtt,ymtt))+(Ω|zmtt|2dx2ηb(zmtt,zmtt))14η(b(ym,ym)+a(zm,zm))+M2({b(ymtt,ymtt)}12+{b(zmtt,zmtt)}12)+(1l1)h1(0)+(1l2)h2(0)4ηt0(b(ym(s),ym(s))+b(zm(s),zm(s)))ds. (3.8)

    Integrating (3.8) on (0,T), and using (3.4) gives us

    T0Ω|ymt|ρ|ymtt|2dxdt+T0Ω|zmt|ρ|zmtt|2dxdt+T0(Ω|ymtt|2dx3ηb(ymtt,ymtt))dt+T0(Ω|zmtt|2dx3ηb(zmtt,zmtt))dtT4η{M1(1+T[(1l1)h1(0)+(1l2)h2(0)])+M22}. (3.9)

    Choosing η small enough, such that

    12u223ηb(u,u)>0,uV,

    and so that

    u223ηb(u,u)>12u22,uV.

    Consequently, (3.9) becomes

    T0Ω|ymt|ρ|ymtt|2dxdt+T0Ω|zmt|ρ|zmtt|2dxdt+12T0Ω(|ymtt|2+|zmtt|2)dxdtT4η{M1(1+T[(1l1)h1(0)+(1l2)h2(0)])+M22}.

    Then, we have

    T0Ω(|ymtt|2+|zmtt|2)dxdtM3, (3.10)

    for some constant M3>0.

    From (3.4) and (3.10), we conclude that

    ym,zm are uniformly bounded inL(0,T;V), (3.11)
    ymt,zmt are uniformly bounded inL(0,T;W), (3.12)

    and

    ymtt,zmtt are uniformly bounded inL2(0,T;W). (3.13)

    Hence, we can extract subsequence of (ym) and (zm), still denoted by (ym) and (zm) respectively, such that

    ymy,zmz in L(0,T;V)and ymy,zmzinL2(0,T;V), (3.14)
    ymtyt,zmtztinL(0,T;W) and ymtyt,zmtztinL2(0,T;W), (3.15)

    and

    ymttytt,zmttztt weakly inL2(0,T;W). (3.16)

    Analysis of the non-linear terms:

    1. Term fi(ym,zm): We have that (ym) and (zm) are bounded in L(0,T;V). This shows, by the use of the embedding of VL(Ω)(ΩR2), the boundedness of (ym) and (zm) in L2(Ω×(0,T)). Likewise, (ymt) and (zmt) are bounded in L2(Ω×(0,T)). Hence, by the use of the Aubin-Lions Theorem, we get, up to a subsequence, that

    ymyandzmzstrongly inL2(Ω×(0,T)).

    Then,

    ymyandzmza.e inΩ×(0,T),

    and, therefore, from (A3),

    fi(ym,zm)fi(y,z)a.e inΩ×(0,T),fori=1,2. (3.17)

    On the other hand, we have (ym) and (zm) that are bounded in L(0,T;L2(Ω)), then, by using (2.7) and (3.4), we get that fi(ym,zm) is bounded in L(0,T;L2(Ω)). This fact and (3.17) leads to

    fi(ym,zm)fi(y,z)inL2(0,T;L2(Ω)),fori=1,2.

    2. Terms |ymt|ρymt and |zmt|ρzmt: We recall that (ymt) and (zmt) are bounded in L(0,T;W), which gives that (ymt) and (zmt) are bounded in L(Ω×(0,T)), and so in L2(Ω×(0,T)). By the same, we deduce that (ymtt) and (zmtt) are bounded in L2(Ω×(0,T)). Now, using Aubin-Lions theorem, we conclude, up to a subsequence, that

    ymtytandzmtztstrongly inL2(Ω×(0,T)),

    and

    |ymt|ρymt|yt|ρytand|zmt|ρzmt|zt|ρzta.e inΩ×(0,T). (3.18)

    Using (3.4), we see that

    |ymt|ρymt2L2(0,T;L2(Ω))C2(ρ+1)T0ymt2(ρ+1)2dtC2(ρ+1)Mρ+11T, (3.19)

    and similarly

    |zmt|ρzmt2L2(0,T;L2(Ω))C2(ρ+1)Mρ+11T, (3.20)

    where C is a positive constant satisfying u2Cu2, for all uW.

    Then, the sequences (|ymt|ρymt) and (|zmt|ρzmt) are bounded in L2(Ω×(0,T)). Combining (3.18), (3.19) and (3.20) and using Lion's lemma [23], one derives

    |ymt|ρymt|yt|ρytand|zmt|ρzmt|zt|ρztinL2(0,T;L2(Ω)). (3.21)

    Next, by integrating (3.2) on (0,t), one obtains

    1ρ+1Ω|ymt|ρymtwdx+Ωymtwdx+t0b(ym,w)dst0s0h1(sζ)b(ym(ζ),w)dζds+t0Ωf1(ym,zm)wdxds=1ρ+1Ω|ym1|ρym1wdx+Ωym1wdx,1ρ+1Ω|zmt|ρzmtwdx+Ωzmtwdx+t0b(zm,w)dst0s0h2(sζ)b(zm(ζ),w)dζds+t0Ωf2(ym,zm)wdxds=1ρ+1Ω|zm1|ρzm1wdx+Ωzm1wdx. (3.22)

    Letting m+, the aforementioned convergence results give that

    1ρ+1Ω|yt|ρytwdx+Ωytwdx1ρ+1Ω|y1|ρy1wdxΩy1wdx=t0b(y,w)ds+t0s0h1(sζ)b(y(ζ),w)dζdst0Ωf1(y,z)wdxds,1ρ+1Ω|zt|ρztwdx+Ωztwdx1ρ+1Ω|z1|ρz1wdxΩz1wdx=t0b(z,w)ds+t0s0h2(sζ)b(z(ζ),w)dζdst0Ωf2(y,z)wdxds, (3.23)

    for all wV.

    Since the terms in the right hand side of (3.23)1 and (3.23)2 are absolutely continuous, then (3.23) is differentiable for a.e. t0, and, therefore, one has for all wV

    Ω|yt|ρyttwdx+b(y,w)+Ωyttwdxt0h1(ts)b(y(s),w)ds+Ωf1(y,z)wdx=0,Ω|zt|ρzttwdx+b(z,w)+Ωzttwdxt0h2(ts)b(z(s),w)ds+Ωf2(y,z)wdx=0.

    Regarding the initial conditions, we recall that

    {ymy,zmz inL2(0,T;V)ymtyt,zmtzt inL2(0,T;W). (3.24)

    Consequently, the use of Lion's Lemma [23] leads to

    ymy,zmzinC([0,T),L2(Ω)). (3.25)

    Hence, ym(x,0) and zm(x,0) make sense and ym(x,0)y(x,0), zm(x,0)z(x,0) in L2(Ω). Recalling that

    ym(x,0)=ym0(x)y0(x),zm(x,0)=zm0(x)z0(x)inV,

    we obtain that

    y(x,0)=y0(x)andz(x,0)=z0(x). (3.26)

    Besides, multiplying (3.2) by ϕC0(0,T) [24] and integrating on (0,T), to get

    1ρ+1T0(|ymt|ρymt,w)L2(Ω)ϕ(t)dt=T0Ωymttwϕ(t)dxdtT0b(ym,w)ϕ(t)dt+T0t0h1(ts)b(ym(s),w)ϕ(t)dsdtT0Ωf1(ym,zm)wϕ(t)dxdt,

    and

    1ρ+1T0(|zmt|ρzmt,w)L2(Ω)ϕ(t)dt=T0Ωzmttwϕ(t)dxdtT0b(zm,w)ϕ(t)dt+T0t0h2(ts)b(zm(s),w)ϕ(t)dsdtT0Ωf2(ym,zm)wϕ(t)dxdt.

    As m+, we have for any wV and any ϕC0(0,T)

    1ρ+1T0(|yt|ρyt,w)L2(Ω)ϕ(t)dt=T0Ωyttwϕ(t)dxdtT0b(y,w)ϕ(t)dt+T0t0h1(ts)b(y(s),w)ϕ(t)dsdtT0Ωf1(y,z)wϕ(t)dxdt,

    and

    1ρ+1T0(|zt|ρzt,w)L2(Ω)ϕ(t)dt=T0Ωzttwϕ(t)dxdtT0b(z,w)ϕ(t)dt+T0t0h2(ts)b(z(s),w)ϕ(t)dsdtT0Ωf2(y,z)wϕ(t)dxdt.

    This means that (see [24])

    yttandzttL2(0,T;V).

    Since yt and ztL2(0,T;L2(Ω)), we deduce that yt and ztC(0,T;V).

    So, ymt(x,0) and zmt(x,0) make sense and

    ymt(x,0)yt(x,0),zmt(x,0)zt(x,0)inV.

    But

    ymt(x,0)=ym1(x)y1(x),zmt(x,0)=zm1(x)z1(x)inW.

    Hence,

    yt(x,0)=y1(x)andzt(x,0)=z1(x).

    Consequently, the proof of local existence of weak solutions is complete. Besides, it is easy to see that

    l1b(y,y)+yt2+l2b(z,z)+zt22E(t)2E(0), (3.27)

    which gives the globalness and boundedness of the solution of problem (1.1).

    We denote by ξ(t)=min and G(t) = \min\{G_1(t), G_2(t)\} .

    Theorem 4.1. Let (u_0, u_1), (v_0, v_1)\in V\times W . Suppose that (A1)(A3) hold. Thus, the energy E(t) satisfies

    \begin{align} E(t)\leq \beta_2G_0^{-1}\left(\beta_1\int_{h^{-1}(r)}^t \xi(s)ds\right),\;\forall\;t > h^{-1}(r),\;{\text{with}}\;G_0(t) = \int_t^r\frac{1}{sG'(s)}ds, \end{align} (4.1)

    for some positive constants \beta_1 and \beta_2 .

    Remark 4.1. ([16])

    1. We recall the Jensen's inequality: Assume F is a concave function on [a, b], \; f:\Omega \to [a, b] and g are in L^1(\Omega) , with g(x)\geq 0 and \int_\Omega g(x)\; dx = m > 0 , then

    \begin{align} \frac{1}{m}\int_\Omega F [f(x)] g(x)\;dx\leq F\Big[\frac{1}{m} \int_\Omega f(x) g(x)\;dx\Big]. \end{align}

    2. From (A2), one has \lim_{t\rightarrow +\infty}h_i(t) = 0 . Hence, \exists\; t_1\geq0 is large enough, verifying

    \begin{eqnarray} h_i(t_1) = r\Rightarrow h_i(t)\leq r,\ \ \ \forall\ t\geq t_1. \end{eqnarray} (4.2)

    One can easily check, for i = 1, 2 , that

    a_i\leq\xi_i(t)G_i(h_i(t))\leq b_i,

    for some constants a_i > 0 and b_i > 0 . This implies that

    \begin{eqnarray} h'_i(t)\leq -\xi_i(t)G_i(h_i(t))\leq -\frac{a_i}{h_i(0)}h_i(0)\leq-\frac{a_i}{h_i(0)}h_i(t),\ \ \forall\;t\in [0,t_1]. \end{eqnarray} (4.3)

    Proof of Theorem (4.1): The proof is divided into three steps.

    Step 1: In this step, we give estimates for the derivatives (with respect to t ) of the functionals \varphi(t) and \psi(t) defined below by:

    \begin{eqnarray} \varphi(t) = \varphi_1(t)+ \varphi_2(t), \end{eqnarray} (4.4)

    with

    \begin{align} \varphi_1(t) = \frac{1}{\rho+1} \int_{\Omega} y \vert y_t\vert^{\rho} y_t\;dx+ \int_\Omega {{\boldsymbol{\nabla y_t\nabla y}}}\;dx, \end{align}
    \begin{align} \varphi_2(t) = \frac{1}{\rho+1} \int_{\Omega} z \vert z_t\vert^{\rho} z_t\;dx+ \int_\Omega {{\boldsymbol{\nabla z_t\nabla z}}}\;dx,\end{align}

    and

    \begin{eqnarray} \psi(t) = \psi_1(t)+\psi_2(t), \end{eqnarray} (4.5)

    with

    \begin{eqnarray} \;\;\psi_1(t)& = & -\frac{1}{\rho+1} \int_{\Omega} \vert y_t\vert^{\rho}y_t\int_{0}^{t}h_1(t-s) (y(t)-y(s))\;ds\;dx\\ &&- \int_{\Omega} {{\boldsymbol{\nabla y_t}}}\int_{0}^{t}h_1(t-s) {{\boldsymbol{\nabla(y(t)-y(s))}}}\;ds\;dx, \end{eqnarray} (4.6)
    \begin{eqnarray*} \psi_2(t) = -\frac{1}{\rho+1} \int_{\Omega} \vert z_t\vert^{\rho}z_t\int_{0}^{t}h_2(t-s) (z(t)-z(s))\;ds\;dx- \int_{\Omega} {{\boldsymbol{\nabla z_t}}}\int_{0}^{t}h_2(t-s) {{\boldsymbol{\nabla(z(t)-z(s))}}}\;ds\;dx. \end{eqnarray*}

    Lemma 4.1. If (A1)(A3) hold. The functional \varphi(t) defined in (4.4) verifies, along the solution of (1.1),

    \begin{eqnarray} \varphi'(t)&\leq&-\frac{l_1}{2} b(y, y)+ \int_{\Omega} \vert{{\boldsymbol{\nabla y_t}}}\vert^2\;dx + \frac{1}{\rho+1} \int_{\Omega} \vert y_t\vert^{\rho+2}\;dx+c(h_1\square y)(t)\\ &-&\frac{l_2}{2} b(z, z)+ \int_{\Omega} \vert{{\boldsymbol{\nabla z_t}}}\vert^2\;dx + \frac{1}{\rho+1} \int_{\Omega} \vert z_t\vert^{\rho+2}\;dx+c(h_2\square z)(t)- \int_\Omega F(y, z)\;dx. \end{eqnarray} (4.7)

    Proof. We have \varphi'(t) = \varphi^{'}_1(t)+\varphi^{'}_2(t) . By using (1.1), we obtain

    \begin{eqnarray} \varphi_1^{'} (t)& = & \int_{\Omega} \vert y_t\vert^{\rho} y_{tt} y\;dx+ \frac{1}{\rho+1} \int_{\Omega} \vert y_t\vert^{\rho+2}\;dx+ \int_{\Omega} \vert{{\boldsymbol{\nabla y_t}}}\vert^2\;dx+ \int_{\Omega} {{\boldsymbol{\nabla y\nabla y_{tt}}}}\;dx \\ & = & -b(y, y)+ \int_0^{t} h_1(t-s) b( y(s), y(t))\;ds + \int_{\Omega} \vert{{\boldsymbol{\nabla y_t}}}\vert^2\;dx + \frac{1}{\rho+1} \int_{\Omega} \vert y_t\vert^{\rho+2}\;dx\\ &&- \int_\Omega f_1(y, z) y\;dx. \end{eqnarray} (4.8)

    Since \int_0^t h_1(s)ds\leq \int_0^{+\infty} h_1(s)ds = 1-l_1 , then, by the use of Cauchy-Schwarz's inequality and Young's inequality, we derive

    \begin{eqnarray} &&\int_0^{t} h_1(t-s) b( y(t), y(s))\;ds\\ && = \int_0^{t} h_1(t-s) b( y(s)-y(t), y(t))\;ds+ \int_0^{t} h_1(t-s) b(y(t), y(t))\;ds\\ &&\leq \int_0^{t} h_1(t-s) \left\{b( y(s)-y(t), y(s)-y(t))\right\}^{\frac{1}{2}}\left\{b(y(t), y(t))\right\}^{\frac{1}{2}}\;ds+ \left(\int_0^{t} h_1(s)ds\right) b(y(t), y(t))\\ &&\leq \frac{l_1}{2} b(y(t), y(t))+\frac{1}{2l_1}\left(\int_0^{t} \sqrt{h_1(t-s)} \Big\{h_1(t-s)b( y(s)-y(t), y(s)-y(t))\Big\}^{\frac{1}{2}}\;ds\right)^2 \\ && \quad +(1-l_1) b(y(t), y(t))\\ &&\leq \left(1-\frac{l_1}{2}\right) b(y(t), y(t))+c(h_1\square y)(t). \end{eqnarray} (4.9)

    Inserting (4.9) in (4.8), we get that

    \begin{align} \varphi^{'}_1(t)\leq -\frac{l_1}{2} b(y, y)+ \int_{\Omega} \vert{{\boldsymbol{\nabla y_t}}}\vert^2\;dx + \frac{1}{\rho+1} \int_{\Omega} \vert y_t\vert^{\rho+2}\;dx+\frac{1-l_1}{2l_1}(h_1\square y)(t)- \int_\Omega f_1(y, z) y\;dx.\end{align}

    Similarly, we infer that

    \begin{align} \varphi^{'}_2(t)\leq -\frac{l_2}{2} b(z, z)+ \int_{\Omega} \vert{{\boldsymbol{\nabla z_t}}}\vert^2\;dx + \frac{1}{\rho+1} \int_{\Omega} \vert z_t\vert^{\rho+2}\;dx+\frac{1-l_2}{2l_2}(h_2\square z)(t)- \int_\Omega f_2(y, z) z\;dx. \end{align}

    Summing the last two inequalities, we get the desired inequality (4.7).

    Lemma 4.2. If (A1)(A3) hold. The functional defined in (4.6) verifies, for any 0 < \delta < 1 and for all t\geq t_1 , along the solution of (1.1),

    \begin{eqnarray} \psi^{'}_1(t)\leq -\frac{h_0}{\rho+1} \int_\Omega \vert y_t\vert^{\rho+2} dx -\frac{h_0}{2}\Vert {{\boldsymbol{\nabla y_t}}}\Vert^2 +c\delta (b(y, y)+ b(z, z))+\frac{c}{\delta}(h_1\square y)(t)-c (h^{'}_1\square y)(t). \end{eqnarray} (4.10)

    Here h_0 = \min\Big\{ \int_0^t h_1(s) ds, \int_0^t h_2(s) ds\Big\} .

    Proof. Differentiating \psi_1(t) with respect to t and using (1.1)_1 , we get

    \begin{eqnarray} \psi^{'}_1(t)& = & - \int_\Omega\vert y_t\vert^{\rho}y_{tt} \int_0^t h_1(t-s)(y(t)-y(s))\;ds\;dx-\frac{1}{\rho+1} \int_{\Omega} \vert y_t\vert^{\rho}y_t \int_0^t h'_1(t-s)(y(t)-y(s))ds\; dx\\ &-&\frac{1}{\rho+1}\left(\int_0^t h_1(s)ds \right) \int_{\Omega} \vert y_t\vert^{\rho+2} dx- \int_{\Omega} {{\boldsymbol{\nabla y_{tt}}}} \int_0^t h_1(t-s){{\boldsymbol{\nabla(y(t)-y(s))}}}ds\;dx\\ &-&\int_{\Omega} \nabla y_{t} \int_0^t h'_1(t-s){{\boldsymbol{\nabla(y(t)-y(s))}}}ds\;dx-\left( \int_0^t h_1(s)ds\right) \int_{\Omega} \vert {{\boldsymbol{\nabla y_t}}} \vert^2 dx \\ & = & \int_0^t h_1(t-s) b\left(y, y(t)-y(s)\right) ds- \int_0^t h_1(t-\zeta)\int_0^t h_1(t-s)b\left(y(s), y(t)-y(\zeta)\right)ds\;d\zeta\\ &+& \int_\Omega f_1(y, z) \int_0^t h_1(t-s)(y(t)-y(s))ds\;dx-\frac{1}{\rho+1} \int_{\Omega} \vert y_t\vert^{\rho}y_t \int_0^t h'_1(t-s)(y(t)-y(s))ds\; dx\\ &-& \frac{1}{\rho+1}\left(\int_0^t h_1(s)ds \right) \int_{\Omega} \vert y_t\vert^{\rho+2} dx-\int_{\Omega} {{\boldsymbol{\nabla y_{t}}}} \int_0^t h'_1(t-s){{\boldsymbol{\nabla(y(t)-y(s))}}}ds\;dx\\ &-&\left( \int_0^t h_1(s)ds\right) \int_{\Omega} \vert {{\boldsymbol{\nabla y_t}}} \vert^2 dx. \end{eqnarray} (4.11)

    Now, we estimate the terms in the right-hand side of (4.11) as follows:

    \bullet Estimation of the term \int_0^t h_1(t-s) b\left(y, y(t)-y(s)\right)ds.

    Cauchy Schwarz's inequality and Young's inequality are used to get, for any \delta > 0 ,

    \begin{eqnarray} &&\int_0^t h_1(t-s) b\left(y, y(t)-y(s)\right)ds\\ &&\leq \int_0^t h_1(t-s)\left[b(y(t), y(t))\right]^{\frac{1}{2}}\left[b\left(y(t)-y(s), y(t)-y(s)\right)\right]^{\frac{1}{2}}ds\\ &&\leq \delta b(y, y)+\frac{1}{4\delta}\left\{\int_0^t h_1(t-s)\left[b\left(y(t)-y(s), y(t)-y(s)\right)\right]^{\frac{1}{2}}ds \right\}^2\\ &&\leq \delta b(y, y)+\frac{c}{\delta}(h_1\square y)(t). \end{eqnarray} (4.12)

    \bullet Estimation of the term - \int_0^t h_1(t-\zeta) \int_0^t h_1(t-s)b\left(y(s), y(t)-y(\zeta)\right)ds\; d\zeta.

    We have

    \begin{eqnarray} &-&\int_0^t h_1(t-\zeta)\int_0^t h_1(t-s)b\left(y(s), y(t)-y(\zeta)\right)ds\;d\zeta\\ &\leq& \int_0^t h_1(t-\zeta)\int_0^t h_1(t-s)b\left(y(s)-y(t), y(t)-y(\zeta)\right)ds\;d\zeta+ \int_0^t h_1(t-\zeta)\int_0^t h_1(t-s)b\left(y(t), y(t)-y(\zeta)\right)ds\;d\zeta\\ &\leq& \int_0^t h_1(t-\zeta)\int_0^t h_1(t-s)\Big[\delta b\left(y(t)-y(s), y(t)-y(s)\right)+\frac{1}{4\delta}b\left(y(t)-y(\zeta), y(t)-y(\zeta)\right)\Big]ds\;d\zeta\\ &&+\left( \int_0^t h_1(\zeta)d\zeta\right)\int_0^t h_1(t-\zeta) b\left(y, y(t)-y(\zeta)\right)d\zeta \\ &\leq& c\delta b(y, y)+c\left(\delta +\frac{1}{\delta}\right)(h_1\square y)(t). \end{eqnarray} (4.13)

    \bullet Estimation of the term - \int_{\Omega} {{\boldsymbol{\nabla y_t}}} \int_0^t h'_1(t-s)(y(t)-y(s))ds dx.

    One has

    \begin{eqnarray} -\int_{\Omega} {{\boldsymbol{\nabla y_t}}} \int_0^t h'_1(t-s)(y(t)-y(s))ds dx &\leq & \delta_1\int_{\Omega}\vert {{\boldsymbol{\nabla y_t}}}\vert^2 + \frac{1}{4\delta_1}\int_{\Omega} \left(\int_0^t h'_1(t-s)(y(t)-y(s))ds \right)^2 dx\\ &\leq & \delta_1\int_{\Omega}\vert {{\boldsymbol{\nabla y_t}}}\vert^2 - \frac{h_1(0)}{4\delta_1}\int_0^t h'_1(t-s) \int_{\Omega} \vert y(t)-y(s) \vert^2 dx ds\\ &\leq & \delta_1\int_{\Omega}\vert {{\boldsymbol{\nabla y_t}}}\vert^2 -\frac{c}{\delta_1}(h_1'\square y)(t). \end{eqnarray} (4.14)

    \bullet Estimation of the term \int_\Omega f_1(y, z) \int_0^t h_1(t-s)(y(t)-y(s))ds\; dx.

    By using (2.7) and (3.27), we derive that

    \begin{eqnarray} && \int_\Omega f_1(y, z) \int_0^t h_1(t-s)(y(t)-y(s))ds\;dx\\ &\leq& c\delta \int_\Omega\left( \vert y\vert^2 +\vert z\vert^2+\vert y\vert^{2\beta_{11}}+ \vert z\vert^{2\beta_{12}}\right)dx+\frac{c}{\delta} \int_\Omega\left( \int_0^t h_1(t-s) (y(t)-y(s)) ds\right)^2 dx\\ &\leq& c\delta\left( b(y, y)+ b(z, z)+ (b(y, y))^{\beta_{11}}+ (b(z, z))^{\beta_{12}}\right)+ \frac{c}{\delta}(h_1\square y)(t)\\ & = &c\delta\left( b(y, y)+ b(z, z)+ b(y, y)(b(y, y))^{\beta_{11}-1}+ b(z, z)(b(z, z))^{\beta_{12}-1}\right)+ \frac{c}{\delta}(h_1\square y)(t)\\ &\leq &c \delta \left( b(y, y)+ b(z, z)+ b(y, y)\Big(\frac{2E(0)}{l_1}\Big)^{\beta_{11}-1}+ b(z, z)\Big(\frac{2E(0)}{l_2}\Big)^{\beta_{12}-1}\right)+ \frac{c}{\delta}(h_1\square y)(t)\\ &\leq& c \delta \left( b(y, y)+ b(z, z)\right) + \frac{c}{\delta}(h_1\square y)(t). \end{eqnarray} (4.15)

    \bullet Estimation of the term -\frac{1}{\rho+1} \int_{\Omega} \vert y_t\vert^{\rho}y_t \int_0^t h'_1(t-s)(y(t)-y(s))ds\; dx.

    Using (3.27) again, we infer that

    \begin{eqnarray} -\frac{1}{\rho+1} \int_{\Omega} \vert y_t\vert^{\rho}y_t \int_0^t h'_1(t-s)(y(t)-y(s))ds\; dx&\leq& c\delta_1 \int_\Omega \vert y_t\vert^{2(\rho+1)} dx-\frac{c}{\delta_1}(h^{'}_1\square y)(t)\\ &\leq& c\delta_1 \Vert {{\boldsymbol{\nabla y_t}}} \Vert^{2(\rho+1)}-\frac{c}{\delta_1}(h^{'}_1\square y)(t)\\ &\leq& c\delta_1 \Big(2E(0)\Big)^{\rho}\Vert {{\boldsymbol{\nabla y_t}}} \Vert^2-\frac{c}{\delta_1}(h^{'}_1\square y)(t). \end{eqnarray} (4.16)

    By combining (4.12)–(4.16), using the fact that - \left(\int_0^t h_1(s)ds\right)\leq -h_0 for all t\geq t_1 and choosing \delta_1 small enough, we derive the estimate (4.10).

    Repeating the calculations above with \psi_2(t) yields

    \begin{eqnarray} \psi^{'}_2(t)\leq -\frac{h_0}{\rho+1} \int_\Omega \vert z_t\vert^{\rho+2} dx -\frac{h_0}{2}\Vert {{\boldsymbol{\nabla z_t}}}\Vert^2 +c\delta (b(y, y)+ b(z, z))+\frac{c}{\delta}(h_2\square y)(t)-c (h^{'}_2\square z)(t). \end{eqnarray} (4.17)

    Combining (4.10) and (4.17), we obtain the following result.

    Corollary 4.1. Assume that (A1)(A3) hold. Then, the functional \psi satisfies, along the solution, the estimate

    \begin{eqnarray} \psi^{'}(t)&\leq& -\frac{h_0}{\rho+1} \int_\Omega \vert y_t\vert^{\rho+2} dx -\frac{h_0}{2}\Vert {{\boldsymbol{\nabla y_t}}}\Vert^2 +c\delta b(y, y) +\frac{c}{\delta}(h_1\square y)(t)-c (h^{'}_1\square y)(t)\\ &-&\frac{h_0}{\rho+1} \int_\Omega \vert z_t\vert^{\rho+2} dx -\frac{h_0}{2}\Vert {{\boldsymbol{\nabla z_t}}}\Vert^2 +c\delta b(z, z)+\frac{c}{\delta}(h_2\square z)(t)-c (h^{'}_2\square z)(t),\;\;\forall\;t\geq t_1, \end{eqnarray} (4.18)

    for any 0 < \delta < 1 .

    Step 2: The aim of this step is to establish the inequality (4.26).

    Let's define the functional

    \begin{eqnarray} F(t) = NE(t)+ \varphi(t)+\frac{4}{h_0} \psi(t), \end{eqnarray} (4.19)

    where N > 0 . For N sufficiently large, one has that F\sim E , i. e.

    \begin{equation} c_1 E(t)\leq F(t)\leq c_2 E(t), \end{equation} (4.20)

    for some c_1, c_2 > 0.

    Let l = \min\left\{l_1, l_2\right\} . By using (2.10), (4.7), (4.18), and taking \delta = \frac{lh_0}{16c} , we get for any t\geq t_1

    \begin{eqnarray*} F'(t)&\leq& -\frac{l}{4}\left( b(y, y)+ b(z, z)\right) -\frac{3}{\rho+1} \int_\Omega\left( \vert y_t\vert^{\rho+2}+\vert z_t\vert^{\rho+2}\right) dx -\Vert {{\boldsymbol{\nabla y_t}}}\Vert^2-\Vert {{\boldsymbol{\nabla z_t}}}\Vert^2 - \int_\Omega F(y, z) dx \nonumber\\ &+&\left(c+\frac{64c^2}{lh_0^2}\right)\Big((h_1\square y)(t)+ (h_2\square z)(t)\Big)+ \left( \frac{N}{2} -\frac{4c}{h_0}\right) \left( (h^{'}_1\square y)(t)+(h^{'}_2\square z)(t)\right).\nonumber \end{eqnarray*}

    Taking N , such that

    \frac{N}{2} -\frac{4c}{h_0} > 0,

    to obtain that

    \begin{eqnarray} F'(t)&\leq& -\frac{l}{4}\left( b(y, y)+ b(z, z)\right) -\frac{3}{\rho+1} \int_\Omega\left( \vert y_t\vert^{\rho+2}+\vert z_t\vert^{\rho+2}\right) dx -\Vert {{\boldsymbol{\nabla y_t}}}\Vert^2-\Vert {{\boldsymbol{\nabla z_t}}}\Vert^2 - \int_\Omega F(y, z) dx \\ &+&c\Big((h_1\square y)(t)+ (h_2\square z)(t)\Big),\;\;\forall\;t\geq t_1. \end{eqnarray} (4.21)

    By the virtue of (2.10) and (4.3), we infer that for any t\geq t_1 ,

    \begin{eqnarray} &&\int^{t_1}_0h_1(s) b(y(t)-y(t-s), y(t)-y(t-s))ds\\ &&\leq-\frac{h_1(0)}{a_1}\int^{t_1}_0h'_1(s) b(y(t)-y(t-s), y(t)-y(t-s))ds\leq -cE'(t), \end{eqnarray}

    and similarly

    \begin{align} \int^{t_1}_0h_2(s)b(z(t)-z(t-s), z(t)-z(t-s))ds\leq -c E'(t). \end{align}

    Hence, (4.21) becomes

    \begin{eqnarray} F'(t)&\leq&-\alpha E(t)+c(h_1\square y)(t)+c(h_2\square z)(t)\\ &\leq&-\alpha E(t)-cE'(t)+c\int^t_{t_1}h_1(s)b(y(t)-y(t-s), y(t)-y(t-s))ds\\ &&+c\int^t_{t_1}h_2(s)b(z(t)-z(t-s), z(t)-z(t-s))ds, \;\;\forall\;t\geq t_1, \end{eqnarray} (4.22)

    where \alpha > 0 . Define \mathcal{H}(t) = F(t)+cE(t) . It is easy to see that \mathcal{H}(t)\sim E(t) . Using (4.22), we get

    \begin{eqnarray} \mathcal{H}'(t)&\leq&-\alpha E(t)+c\int^t_{t_1}h_1(s)b(y(t)-y(t-s), y(t)-y(t-s))ds\\ &&+c\int^t_{t_1}h_2(s)b(z(t)-z(t-s), z(t)-z(t-s))ds. \end{eqnarray} (4.23)

    The following two situations are then distinguished.

    First Case: G_1(t) and G_2(t) are linear.

    By multiplying (4.23) by \xi(t) and using (A2) and (2.10) to obtain

    \begin{eqnarray} \xi(t)\mathcal{H}'(t)&\leq&-\alpha\xi(t)E(t)+c\xi(t)\int^t_{t_1}h_1(s)b(y(t)-y(t-s), y(t)-y(t-s))ds\\ &&+c\xi(t)\int^t_{t_1}h_2(s)b(z(t)-z(t-s), z(t)-z(t-s))ds\\ &\leq&-\alpha\xi(t)E(t)+c\int^t_{t_1}\xi_1(s)h_1(s)b(y(t)-y(t-s), y(t)-y(t-s))ds\\ &&+c\int^t_{t_1}\xi_2(s)h_2(s)b(z(t)-z(t-s), z(t)-z(t-s))ds\\ &\leq&-\alpha\xi(t)E(t)-c\int^t_{t_1}h'_1(s)b(y(t)-y(t-s), y(t)-y(t-s))ds\\ &&-c\int^t_{t_1}h'_2(s)b(z(t)-z(t-s), z(t)-z(t-s))ds\\ &\leq&-\alpha\xi(t)E(t)-cE'(t). \end{eqnarray} (4.24)

    Since \xi is non-increasing, then by using (4.24), the functional \mathcal {F}(t) = \xi(t)\mathcal{H}(t)+cE(t) satisfies for any t\geq t_1 ,

    \mathcal{F}'(t)\leq-\alpha\xi(t)E(t).

    It is obvious that \mathcal{F} \sim E , and then we get the existence of some positive constant m_1 , such that

    \mathcal{F}'(t)\leq -m_1 \xi(t)\mathcal{F}(t).

    By applying Gronwall's Lemma, there exists a constant m_2 > 0 , such that

    \begin{align} \mathcal{F}(t)\leq m_2 e^{-m_1 \int_{t_1}^t \xi(s)\;ds},\end{align}

    and then we have

    E(t)\leq m_3 e^{-m_1 \int_{t_1}^t \xi(s)\;ds},

    where m_3 > 0 .

    Second Case: G_1(t) or G_2(t) is nonlinear. Defining J_1 and J_2 by

    J_1(t) = \frac{\lambda}{t}\int_{0}^t b(y(t)-y(t-s), y(t)-y(t-s))ds,\;\;t > 0,

    and

    J_2(t) = \frac{\lambda}{t}\int^t_{0}b(z(t)-z(t-s), z(t)-z(t-s))ds,\;\;t > 0.

    Since b(y(t), y(t))+b(y(t-s), y(t-s))\leq \frac{2}{l}\left(E(t)+E(t-s)\right)\leq \frac{4}{l}E(0) , for all 0 < s < t , we infer that

    \begin{equation*} J_1(t)\leq\frac{8\lambda}{lt}\int_0^t E(0)ds = \frac{8\lambda}{l}E(0) < +\infty, \end{equation*}

    and similarly

    \begin{equation*} J_2(t)\leq \frac{8\lambda}{l}E(0) < +\infty. \end{equation*}

    By taking 0 < \lambda < 1 sufficiently small, we get, for all t > 0 ,

    \begin{equation} J_1(t) < 1\;\;{\text{and}}\;\; J_2(t) < 1. \end{equation} (4.25)

    Now, defining K_1(t) and K_2(t) by

    K_1(t) = -\int^t_{0}h'_1(s)b(y(t)-y(t-s), y(t)-y(t-s))ds,

    and

    K_2(t) = -\int^t_{0}h'_2(s)b(z(t)-z(t-s), z(t)-z(t-s))ds.

    One can easily check that K_i(t)\leq-c E'(t) , for i = 1, 2 .

    Given that G_1(0) = 0 and the strict convexity of G_1 on (0, r] , one has then G_1(\kappa x)\leq \kappa G_1(x), \; \forall\; 0\leq\kappa\leq 1 and x\in(0, r] . Now, using (A1), (4.25) and Jensen's inequality, we obtain

    \begin{eqnarray*} K_1(t) & = & \frac{1}{\lambda J_1(t)}\int_0^t J_1(t)(-h_1'(s))\lambda b(y(t)-y(t-s), y(t)-y(t-s))ds\\ &\geq & \frac{1}{\lambda J_1(t)}\int_0^t J_1(t)\xi_1(s)G_1(h_1(s)) \lambda b(y(t)-y(t-s), y(t)-y(t-s))ds \\ &\geq & \frac{\xi_1(t)}{\lambda J_1(t)}\int_0^t G_1(J_1(t)h_1(s)) \lambda b(y(t)-y(t-s), y(t)-y(t-s))ds \\ &\geq & \frac{\xi_1(t)}{\lambda}G_1\left(\frac{1}{J_1(t)}\int_0^t J_1(t)h_1(s)\lambda b(y(t)-y(t-s), y(t)-y(t-s))ds \right) \\ & = & \frac{\xi_1(t)}{\lambda}G_1\left(\lambda \int_0^t h_1(s) b(y(t)-y(t-s), y(t)-y(t-s))ds \right) \\ & = &\frac{\xi_1(t)}{\lambda}\overline{G}_1\left(\lambda \int_0^t h_1(s) b(y(t)-y(t-s), y(t)-y(t-s))ds \right). \end{eqnarray*}

    Note that \overline{G}_1 is an extension of G_1 , satisfying \overline{G}_1 as strictly convex and strictly increasing on (0, +\infty) . Thus, we have

    \int_0^t h_1(s) b(y(t)-y(t-s), y(t)-y(t-s))ds\leq \frac{1}{\lambda}\overline{G}_1^{-1}\left(\frac{\lambda K_1(t)}{\xi_1(t)} \right).

    Similarly, we have

    \int^t_{0}h_2(s)b(z(t)-z(t-s), z(t)-z(t-s))ds\leq \frac{1}{\lambda}\overline{G}_2^{-1}\left(\frac{\lambda K_2(t)}{\xi_2(t)}\right),

    where \overline{G}_2 is an extension of G_2 .

    We infer from (4.23) that

    \begin{equation} \mathcal{H}'(t)\leq -\alpha E(t)+c\overline{G}_1^{-1}\left(\frac{\lambda K_1(t)}{\xi_1(t)}\right)+c\overline{G}_2^{-1}\left(\frac{\lambda K_2(t)}{\xi_2(t)} \right),\;\;\forall\; t\geq t_1. \end{equation} (4.26)

    Step 3: Here, we shall prove the desired inequality (4.1).

    We set G = \min\{\overline{G}_1, \overline{G}_2\} . For \varepsilon_0 < r , using (4.26) and since E'\leq0 , \overline{G}_i^{'} > 0 , \overline{G}_i^{''} > 0 , i = 1, 2 , we claim that the functional {\mathcal{G}} , defined by

    {\mathcal{G}}(t) = G'\left(\varepsilon_0\frac{E(t)}{E(0)}\right)\mathcal{H}(t)+E(t),

    is equivalent to E(t) and satisfies

    \begin{eqnarray} {\mathcal{G}}'(t)& = & E'(t)+\varepsilon_0\frac{E'(t)}{E(0)}G''\left(\varepsilon_0\frac{E(t)}{E(0)}\right)\mathcal{H}(t) +G'\left(\varepsilon_0\frac{E(t)}{E(0)}\right)\mathcal{H}'(t)\\ &\leq& -\alpha E(t)G'\left(\varepsilon_0\frac{E(t)}{E(0)}\right) +cG'\left(\varepsilon_0\frac{E(t)}{E(0)}\right)\overline{G}_{1}^{-1}\left(\frac{\lambda K_1(t)}{\xi_1(t)}\right)\\ &&+cG'\left(\varepsilon_0\frac{E(t)}{E(0)}\right)\overline{G}_{2}^{-1}\left(\frac{\lambda K_2(t)}{\xi_2(t)}\right). \end{eqnarray} (4.27)

    The convex conjugate of G in the Young's sense (see [25]) is denoted by G^{*} and satisfies

    \begin{eqnarray} G^{*}(t) = t(G^{\prime})^{-1} (t) - G((G^{\prime})^{-1} (t)). \end{eqnarray} (4.28)

    The following inequality holds true:

    \begin{eqnarray} AB_i\leq G^*(A)+ G(B_i),\;i = 1,2, \end{eqnarray} (4.29)

    with A = G'\left(\varepsilon_0\frac{E(t)}{E(0)}\right) and B_i = \overline{G}_{i}^{-1}\left(\frac{\lambda K_i(t)}{\xi_i(t)}\right), \; i = 1, 2.

    Using (4.27), (4.28) and (4.29), we obtain

    \begin{eqnarray*} \mathcal{G}'(t)&\leq& -\alpha E(t)G'\left(\varepsilon_0\frac{E(t)}{E(0)}\right)+c\varepsilon_0\frac{E(t)}{E(0)} G'\left(\varepsilon_0\frac{E(t)}{E(0)}\right)+c\lambda \left(\frac{K_1(t)}{\xi_1(t)}+ \frac{K_2(t)}{\xi_2(t)}\right).\nonumber\\ \end{eqnarray*}

    Since K_i(t)\leq -cE'(t) (for i = 1, 2) , we infer that

    \begin{eqnarray} \xi(t)\mathcal{G}'(t)&\leq& -\alpha E(t)\xi(t){G}'\left(\varepsilon_0\frac{E(t)}{E(0)}\right)+c\varepsilon_0\frac{E(t)}{E(0)}\xi(t){G}'\left(\varepsilon_0\frac{E(t)}{E(0)}\right) -c E'(t). \end{eqnarray} (4.30)

    Consequently, letting \mathcal{G}_1 = \xi \mathcal{G}+cE , we have: \alpha_1\mathcal{G}_1(t)\leq E(t)\leq\alpha_2\mathcal{G}_1(t), for some \alpha_1, \alpha_2 > 0 .

    Thus, we get

    \begin{eqnarray} {\mathcal{G}}'_1(t)\leq -\beta_1\xi(t)\frac{E(t)}{E(0)}G'\left(\varepsilon_0\frac{E(t)}{E(0)}\right): = -\beta_1\xi(t) \mathcal{G}_2\left(\frac{E(t)}{E(0)}\right),\; \forall\;t\geq t_1, \end{eqnarray} (4.31)

    where \beta_1 > 0 and \mathcal{G}_2(t) = tG'(\varepsilon_0t) . Since \mathcal{G}_2'(t) = G'(\varepsilon_0t)+\varepsilon_0tG''(\varepsilon_0t) , then using the strict convexity of G_{i} (i = 1, 2) on (0, r] , we have \mathcal{G}_2'(t), \mathcal{G}_2(t) > 0 on (0, 1] . Since \mathcal{G}_1\sim E and using (4.31), one derives that

    \begin{equation} \mathcal{R}(t)\sim E(t),\;{\text{where}}\;\mathcal{R}(t) = \frac{\alpha_1 \mathcal{G}_1(t)}{E(0)}, \end{equation} (4.32)

    and

    \mathcal{R}'(t)\leq-\beta_2 \xi(t)\mathcal{G}_2(\mathcal{R}(t)), \forall\; t\geq t_1,

    with \beta_2 > 0 . Integrating the last inequality over (t_1, t) yields

    \begin{eqnarray} \int^t_{t_1}\frac{-\mathcal{R}'(s)}{\mathcal{G}_2(\mathcal{R}(s))}ds\geq \beta_2\int^t_{t_1}\xi(s)ds\Rightarrow \int^{\varepsilon_0\mathcal{R}(t_1)}_{\varepsilon_0\mathcal{R}(t)}\frac{1}{s G'(s)}ds\geq \beta_2\int^t_{t_1}\xi(s)ds. \end{eqnarray}

    Now, the function G_0 defined by G_0(t) = \int^r_t\frac{1}{sG'(s)}ds, is strictly decreasing on (0, r] and satisfies \lim\limits_{t\rightarrow0}G_0(t) = +\infty . Thus, we deduce that

    \mathcal{R}(t)\leq \frac{1}{\varepsilon_0}G^{-1}_0\left(\beta_1\int^t_{t_1}\xi(s)ds\right).

    This inequality together with (4.32) yields to (4.1). This ends the proof of Theorem (4.1).

    In this section, we give two examples that illustrate explicit formulas for the decay rates of the energy.

    1. Let h_1(t) = h_2(t) = pe^{-k(1+t)^q}, \; t\geq0 , where p > 0 , 0 < q\leq1 and p > 0 is chosen so that h_i satisfies (2.4). We can see, for i = 1, 2 , that

    h^{'}_i(t) = -pqk(1+t)^{q-1} e^{-k(1+t)^q} = -\xi_i(t)G_i(h_i(t)),

    where \xi_i(t) = qk(1+t)^{q-1} and G_i(t) = t . From (4.1), it holds that

    E(t)\leq \beta_2 e^{-\beta_1 k(1+t)^q},\;\forall\;t\geq0.

    2. Let h_i(t) = \frac{p_i}{(1+t)^{q_i}}, \; i = 1, 2 , where q_i > 0 and p_i > 0 is chosen such that, (2.4) holds true. One has, for i = 1, 2 ,

    h^{'}_i(t) = \frac{-p_iq_i}{(1+t)^{q_i+1}} = -\frac{q_i}{p_i^{\frac{1}{q_i}}}\left( \frac{p_i}{(1+t)^{q_i}}\right)^{\frac{q_i+1}{q_i}} = -\xi_i(t)G_i(h_i(t)),

    where \xi_i(t) = \frac{q_i}{p_i^{\frac{1}{q_i}}} and G_i(t) = t^{\frac{q_i+1}{q_i}}.

    Putting q_3 = \min\{q_1, q_2\} . Therefore, it follows from (4.1) that

    E(t)\leq\frac{c}{(1+t)^{q_3}},\;\forall\;t\geq0.

    This paper focuses on the existence and the asymptotic stability of solutions for a system of two coupled quasi-linear Kirchhoff plate equations in a bounded domain of \mathbb{R}^2 , subject only to viscoelasticity dissipative terms and with the presence of rotational forces and source terms. Each one of these two equations describes the motion of a plate, which is clamped along one portion of its boundary and has free vibrations on the other portion of the boundary. This work is motivated by previous results concerning coupled quasi-linear wave equations [14,15,16] and single quasi-linear plate equation [12,13].

    As future works, we can change the type of damping by considering, for example, weak damping (of the form y_t ), Balakrishnan-Taylor damping (of the form (\nabla y, \nabla y_t) \Delta y ) or strong damping (of the form \Delta^2 y_t) .

    This work is supported by Researchers Supporting Project number (RSPD2023R736), King Saud University, Riyadh, Saudi Arabia.

    The author declares that there are no conflicts of interest.



    [1] Lagoudas DC (2008) Shape Memory Alloys: Modeling and Engineering Applications, Springer Science & Business Media.
    [2] Bunget G (2011) BATMAV—A bio-inspired micro-aerial vehicle for flapping flight[PhD's Dissertation]. USA: North Carolina State University.
    [3] Duerig T, Stoeckel D, Johnson D (2002) SMA—smart materials for medical applications, European Workshop on Smart Structures in Engineering and Technology, Society of Photo-Optical Instrumentation Engineers, 7-15.
    [4] Kohl M, Popp M, Krevet B (2004) Shape memory micromechanisms for microvalve applications, Smart Structures and Materials 2004: Active Materials: Behavior and Mechanics, Society of Photo-Optical Instrumentation Engineers, 106-117.
    [5] Lan CC, Yang YN (2009) A computational design method for a shape memory alloy actuated compliant finger. J Mech Design 131: 021009.
    [6] Stepan LL, Levi DS, Carman GP (2005) A thin-film nitinol heart valve. J Biomech Eng-T ASME 127: 915-918.
    [7] Veeramani AS, Buckner GD, Owen SE, et al. (2008) Modeling the dynamic behavior of a shape memory alloy actuated catheter. Smart Mater Struct 17: 015037.
    [8] Epps JJ, Chopra I (2001) In-flight tracking of helicopter rotor blades using shape memory alloy actuators. Smart Mater Struct 10: 104-111.
    [9] Gravatt LM, Mabe JH, Calkins FT, et al. (2010) Characterization of varied geometry shape memory alloy beams, Industrial and Commercial Applications of Smart Structures Technologies 2010, Society of Photo-Optical Instrumentation Engineers, 7645U.
    [10] Costanza G, Tata ME (2020) Shape memory alloys for aerospace, recent developments, and new applications: A short review. Materials 13: 1856.
    [11] Abou‐Elfath H (2017) Evaluating the ductility characteristics of self‐centering buckling‐restrained shape memory alloy braces. Smart Mater Struct 26: 055020.
    [12] Carreras G, Casciati F, Casciati S, et al. (2011) Fatigue laboratory tests toward the design of SMA portico‐braces. Smart Struct Syst 7: 41-57.
    [13] McCormick J, DesRoches R, Fugazza D, et al. (2007) Seismic assessment of concentrically braced steel frames with shape memory alloy braces. J Struct Eng 133: 862-870.
    [14] Moradi S, Alam MS, Asgarian B (2014) Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces. Struct Design Tall Spec 23: 1406-1425.
    [15] Indirli M, Castellano M, Clemente P, et al. (2011) Demo-application of shape memory alloy devices: The rehabilitation of the S. Giorgio Church bell-tower, Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways, Society of Photo-Optical Instrumentation Engineers, 262-272.
    [16] Castellano M, Indirli M, Martelli A (2001) UProgress of application, research and development and design guidelines for shape memory alloy devices for cultural heritage structures in Italy, Smart Structures and Materials, Society of Photo-Optical Instrumentation Engineers, 250-261.
    [17] Croci G (2001) Strengthening of the basilica of St francis of assissi after the September 1997 earthquake. Struct Eng Int 8: 56-58.
    [18] Andrawes B, Shin M, Wierschem N (2010) Active confinement of reinforced concrete bridge columns using shape memory alloys. J Bridge Eng 15: 81-89.
    [19] Hussain MA, Driver RG (2005) Experimental investigation of external confinement of reinforced concrete columns by hollow structural section collars. ACI Struct J 102: 242-251.
    [20] Krstulovic-Opara N, Thiedeman PD (2000) Active confinement of concrete members with self-stressing composites. ACI Mater J 97: 297-308.
    [21] Schmidt M, Ullrich J, Wieczorek A, et al. (2016) Experimental methods for investigation of shape memory based elastocaloric cooling processes and model validation. JoVE 111: e53626.
    [22] Vollach S, Shilo D (2010) The mechanical response of shape memory alloys under a rapid heating pulse. Exp Mech 50: 803-811.
    [23] Vollach S, Shilo D, Shlagman H (2016) Mechanical response of shape memory alloys under a rapid heating pulse-part Ⅱ. Exp Mech 56: 1465-1475.
    [24] Malka Y, Shilo D (2017) A fast and powerful release mechanism based on pulse heating of shape memory wires. Smart Mater Struct 26: 095061.
    [25] Motzki P, Gorges T, Kappel M, et al. (2018) High-speed and high-efficiency shape memory alloy actuation. Smart Mater Struct 27: 075047.
    [26] Barnes B, Brei D, Luntz J, Browne A, et al. (2006) Panel deployment using ultrafast SMA latches, ASME 2006 International Mechanical Engineering Congress and Exposition, 273-280.
    [27] Huang W (2002) On the selection of shape memory alloys for actuators. Mater Design 23: 11-19.
    [28] Leary M, Schiavone F, Subic A (2010) Lagging for control of shape memory alloy actuator response time. Mater Design 31: 2124-2128.
    [29] Van Humbeeck J (1999). Non-medical applications of shape memory alloys. Mater Sci Eng A-Struct 273: 134-148.
    [30] Leary M, Schiavone F, Subic A (2010) Lagging for control of shape memory alloy actuator response time. Mater Design 31: 2124-2128.
    [31] Huang S, Leary M, Ataalla T, et al. (2012) Optimisation of Ni-Ti shape memory alloy response time by transient heat transfer analysis. Mater Design 35: 655-663.
    [32] Morgan VT (1975) The overall convective heat transfer from smooth circular cylinders, In: Abraham JP, Gorman JM, Minkowycz WJ, Advances in Heat Transfer, Elsevier, 11: 199-264
    [33] Shahin AR, Meckl PH, Jones JD, et al. (1994) Enhanced cooling of shape memory alloy wires using semiconductor "heat pump" modules. J Intel Mat Syst Str 5: 95-104.
    [34] Pathak A, Brei D, Luntz J (2010) Transformation strain-based method for characterization of convective heat transfer from shape memory alloy wires. Smart Mater Struct 19: 035005.
    [35] Hilpert R (1933) Correlations for laminar forced convection in flow over an isothermal flat plate and in developing and fully developed flow in an isothermal tube. Forsch Ingenieurwes 4: 215-224
    [36] Eggeler G, Hornbogen E, Yawny A, et al. (2004) Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A-Struct 378: 24-33.
    [37] Costanza G, Paoloni S, Tata ME (2014) IR thermography and resistivity investigations on Ni-Ti shape memory alloy. Key Eng Mater 605: 23-26.
    [38] Dolce M, Cardone D (2001) Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion. Int J Mech Sci 43: 2631-2656.
    [39] Costanza G, Tata ME, Libertini R (2016) Effect of temperature on the mechanical behaviour of Ni-Ti shape memory sheets, TMS 2016 145th Annual Meeting & Exhibition, Springer, Cham, 433-439.
  • This article has been cited by:

    1. Adel M. Al-Mahdi, The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: Strong damping versus weak damping of variable-exponent type, 2023, 8, 2473-6988, 27439, 10.3934/math.20231404
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7686) PDF downloads(871) Cited by(16)

Figures and Tables

Figures(15)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog