
Citation: Aziz Belmiloudi. Cardiac memory phenomenon, time-fractional order nonlinear system and bidomain-torso type model in electrocardiology[J]. AIMS Mathematics, 2021, 6(1): 821-867. doi: 10.3934/math.2021050
[1] | Stephen T. Abedon . Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages. AIMS Microbiology, 2017, 3(2): 186-226. doi: 10.3934/microbiol.2017.2.186 |
[2] | Stephen T. Abedon . Active bacteriophage biocontrol and therapy on sub-millimeter scales towards removal of unwanted bacteria from foods and microbiomes. AIMS Microbiology, 2017, 3(3): 649-688. doi: 10.3934/microbiol.2017.3.649 |
[3] | Marzena Połaska, Barbara Sokołowska . Bacteriophages—a new hope or a huge problem in the food industry. AIMS Microbiology, 2019, 5(4): 324-346. doi: 10.3934/microbiol.2019.4.324 |
[4] | Stefanía B. Pascal, Ramiro Lorenzo, María Victoria Nieto Farías, John W.A. Rossen, Paula M. A. Lucchesi, Alejandra Krüger . Characterization of the flanking region of the Shiga toxin operon in Stx2a bacteriophages reveals a diversity of the NanS-p sialate O-acetylesterase gene. AIMS Microbiology, 2023, 9(3): 570-590. doi: 10.3934/microbiol.2023030 |
[5] | Ashrafus Safa, Jinath Sultana Jime, Farishta Shahel . Cholera toxin phage: structural and functional diversity between Vibrio cholerae biotypes. AIMS Microbiology, 2020, 6(2): 144-151. doi: 10.3934/microbiol.2020009 |
[6] | Jia Wang, Feiyang Zhao, Huzhi Sun, Qian Wang, Can Zhang, Wenhua Liu, Ling Zou, Qiang Pan, Huiying Ren . Isolation and characterization of the Staphylococcus aureus bacteriophage vB_SauS_SA2. AIMS Microbiology, 2019, 5(3): 285-307. doi: 10.3934/microbiol.2019.3.285 |
[7] | Ariel J. Santiago, Maria L. Burgos-Garay, Leila Kartforosh, Mustafa Mazher, Rodney M. Donlan . Bacteriophage treatment of carbapenemase-producing Klebsiella pneumoniae in a multispecies biofilm: a potential biocontrol strategy for healthcare facilities. AIMS Microbiology, 2020, 6(1): 43-63. doi: 10.3934/microbiol.2020003 |
[8] | Oluwafolajimi Adesanya, Tolulope Oduselu, Oluwawapelumi Akin-Ajani, Olubusuyi M. Adewumi, Olusegun G. Ademowo . An exegesis of bacteriophage therapy: An emerging player in the fight against anti-microbial resistance. AIMS Microbiology, 2020, 6(3): 204-230. doi: 10.3934/microbiol.2020014 |
[9] | Chiaki Sugiura, Saki Miyaue, Yuka Shibata, Akiko Matsumoto, Sumio Maeda . Bacteriophage P1vir-induced cell-to-cell plasmid transformation in Escherichia coli. AIMS Microbiology, 2017, 3(4): 784-797. doi: 10.3934/microbiol.2017.4.784 |
[10] | Diana R. Alves, Stephen T. Abedon . An online phage therapy bibliography: separating under-indexed wheat from overly indexed chaff. AIMS Microbiology, 2017, 3(3): 525-528. doi: 10.3934/microbiol.2017.3.525 |
In the present paper we study the effective conductivity of an
(λ+,λ−)∈[0,+∞[2∗≡[0,+∞[2∖{(0,0)}. |
We note that the limit case of zero conductivity corresponds to a thermal insulator. On the other hand, if the conductivity tends to
We now introduce the geometry of the problem. If
q=(q110⋯00⋱⋯0⋮⋮⋱⋮00⋯qnn), | (1) |
and
Q≡n∏j=1]0,qjj[⊆Rn. | (2) |
The set
˜Q≡]0,1[n,˜q≡In≡(10⋯00⋱⋯0⋮⋮⋱⋮00⋯1). |
Then we take
α∈]0,1[ and a bounded open connected subset Ω of Rn of class C1,α such that Rn∖¯Ω is connected. | (3) |
The symbol '
Sq[qI[ϕ]]≡⋃z∈Zn(qz+qI[ϕ]),Sq[qI[ϕ]]−≡Rn∖¯Sq[qI[ϕ]]. |
The set
With the aim of introducing the definition of the effective conductivity, we first have to introduce a boundary value problem for the Laplace equation. If
{Δu+j=0in Sq[qI[ϕ]],Δu−j=0in Sq[qI[ϕ]]−,u+j(x+qeh)=u+j(x)+δhjqjj∀x∈¯Sq[qI[ϕ]],∀h∈{1,…,n},u−j(x+qeh)=u−j(x)+δhjqjj∀x∈¯Sq[qI[ϕ]]−,∀h∈{1,…,n},λ+∂∂νqI[ϕ]u+j−λ−∂∂νqI[ϕ]u−j=0on ∂qI[ϕ],u+j−u−j=0on ∂qI[ϕ],∫∂qI[ϕ]u+jdσ=0, | (4) |
where
Definition 1.1. Let
λeff[q,ϕ,(λ+,λ−)]≡(λeffij[q,ϕ,(λ+,λ−)])i,j=1,…,n |
is the
λeffij[q,ϕ,(λ+,λ−)]≡1|Q|n{λ+∫qI[ϕ]∂∂xiu+j[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]∂∂xiu−j[q,ϕ,(λ+,λ−)](x)dx}∀i,j∈{1,…,n}. |
Remark 1.2. Under the assumptions of Definition 1.1, by applying the divergence theorem, one can verify that
λeffij[q,ϕ,(λ+,λ−)]=1|Q|n{λ+∫qI[ϕ]Du+i[q,ϕ,(λ+,λ−)](x)⋅Du+j[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]Du−i[q,ϕ,(λ+,λ−)](x)⋅Du−j[q,ϕ,(λ+,λ−)](x)dx}∀i,j∈{1,…,n}. |
Indeed, if we set
˜u+k[q,ϕ,(λ+,λ−)](x)=u+k[q,ϕ,(λ+,λ−)](x)−xk∀x∈¯Sq[qI[ϕ]]˜u−k[q,ϕ,(λ+,λ−)](x)=u−k[q,ϕ,(λ+,λ−)](x)−xk∀x∈¯Sq[qI[ϕ]]−∀k∈{1,…,n}, |
then
1|Q|n{λ+∫qI[ϕ]Du+i[q,ϕ,(λ+,λ−)](x)⋅Du+j[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]Du−i[q,ϕ,(λ+,λ−)](x)⋅Du−j[q,ϕ,(λ+,λ−)](x)dx}=1|Q|n{λ+∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅D(xi+˜u+i[q,ϕ,(λ+,λ−)](x))dx+λ−∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅D(xi+˜u−i[q,ϕ,(λ+,λ−)](x))dx}=1|Q|n{λ+∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅Dxidx+λ+∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅D˜u+i[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅Dxidx+λ−∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅D˜u−i[q,ϕ,(λ+,λ−)](x)dx}=1|Q|n{λ+∫qI[ϕ]∂∂xiu+j[q,ϕ,(λ+,λ−)](x)dx+λ+∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅D˜u+i[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]∂∂xiu−j[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅D˜u−i[q,ϕ,(λ+,λ−)](x)dx}. |
Therefore, in order to conclude that the two definitions are equivalent, we need to show that
λ+∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅D˜u+i[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅D˜u−i[q,ϕ,(λ+,λ−)](x)dx=0. | (5) |
By an application of the divergence theorem for
∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅D˜u+i[q,ϕ,(λ+,λ−)](x)dx=∫∂qI[ϕ](∂∂νqI[ϕ]u+j[q,ϕ,(λ+,λ−)](x))˜u+i[q,ϕ,(λ+,λ−)](x)dσx | (6) |
and
∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅D˜u−i[q,ϕ,(λ+,λ−)](x)dx=∫∂Q(∂∂νQu−j[q,ϕ,(λ+,λ−)](x))˜u−i[q,ϕ,(λ+,λ−)](x)dσx−∫∂qI[ϕ](∂∂νqI[ϕ]u−j[q,ϕ,(λ+,λ−)](x))˜u−i[q,ϕ,(λ+,λ−)](x)dσx. | (7) |
By the periodicity of
∫∂Q(∂∂νQu−j[q,ϕ,(λ+,λ−)](x))˜u−i[q,ϕ,(λ+,λ−)](x)dσx=∫∂Q(∂∂νQxj)˜u−i[q,ϕ,(λ+,λ−)](x)dσx+∫∂Q(∂∂νQ˜u−j[q,ϕ,(λ+,λ−)](x))˜u−i[q,ϕ,(λ+,λ−)](x)dσx=∫∂Q(νQ(x)⋅ej)˜u−i[q,ϕ,(λ+,λ−)](x)dσx+∫∂Q(νQ(x)⋅D˜u−j[q,ϕ,(λ+,λ−)](x))˜u−i[q,ϕ,(λ+,λ−)](x)dσx=0, | (8) |
since contributions on opposite sides of
λ+∫qI[ϕ]Du+j[q,ϕ,(λ+,λ−)](x)⋅D˜u+i[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]Du−j[q,ϕ,(λ+,λ−)](x)⋅D˜u−i[q,ϕ,(λ+,λ−)](x)dx=λ+∫∂qI[ϕ](∂∂νqI[ϕ]u+j[q,ϕ,(λ+,λ−)](x))˜u+i[q,ϕ,(λ+,λ−)](x)dσx−λ−∫∂qI[ϕ](∂∂νqI[ϕ]u−j[q,ϕ,(λ+,λ−)](x))˜u−i[q,ϕ,(λ+,λ−)](x)dσx. | (9) |
Since the validity of (4) implies that
˜u+i[q,ϕ,(λ+,λ−)](x)=˜u−i[q,ϕ,(λ+,λ−)](x)∀x∈∂qI[ϕ] |
and that
λ+∂∂νqI[ϕ]u+j[q,ϕ,(λ+,λ−)](x)−λ−∂∂νqI[ϕ]u−j[q,ϕ,(λ+,λ−)](x)=0∀x∈∂qI[ϕ], |
we then deduce by (9) that (5) holds true.
As a consequence, the effective conductivity matrix of Definition 1.1 coincides with the one analyzed by Ammari, Kang, and Touibi [5,p. 121] for a periodic two-phase composite and which can be deduced by classical homogenization theory (see, e.g., Allaire [1], Bensoussan, Lions, and Papanicolaou [6], Jikov, Kozlov, and Oleĭnik [27], Milton [41]). We emphasize that the justification of the expression of the effective conductivity via homogenization theory holds for 'small' values of the periodicity parameters. For further remarks on the definition of effective conductivity we refer to Gluzman, Mityushev, and Nawalaniec [24,§2.2].
The main goal of our paper is to give an answer to the following question:
What can be said on the regularity of the map(q,ϕ,(λ+,λ−))↦λeff[q,ϕ,(λ+,λ−)]? | (10) |
We answer to the above question by proving that for all
Λij:D+n(R)×(C1,α(∂Ω,Rn)∩A˜Q∂Ω)×]−1−ε,1+ε[→R |
such that
λeffij[q,ϕ,(λ+,λ−)]=δijλ−+(λ++λ−)Λij[q,ϕ,λ+−λ−λ++λ−] | (11) |
for all
In particular, in the present paper we follow the strategy of [39] where we have studied the behavior of the longitudinal flow along a periodic array of cylinders upon perturbations of the shape of the cross section of the cylinders and the periodicity structure, when a Newtonian fluid is flowing at low Reynolds numbers around the cylinders. More precisely, we transform the problem into a set of integral equations defined on a fixed domain and depending on the set of variables
Formula (11) implies that the effective conductivity
(q,ϕ,(λ+,λ−))↦λeffij[q,ϕ,(λ+,λ−)] | (12) |
from
λeffij[qδ,ϕδ,(λ+δ,λ−δ)]=∞∑k=0ckδk | (13) |
for
Furthermore, such a high regularity result can be seen as a theoretical justification which guarantees that differential calculus may be used in order to characterize critical periodicity-shape-conductivity triples
As already mentioned, our method is based on integral equations, that are derived by potential theory. However, integral equations could also be deduced by the generalized alternating method of Schwarz (cf. Gluzman, Mityushev, and Nawalaniec [24] and Drygaś, Gluzman, Mityushev, and Nawalaniec [19]), which also allows to produce expansions in the concentration.
Incidentally, we observe that the are several contributions concerning optimization of effective parameters from many different points of view. For example, one can look for optimal lattices without confining to rectangular distributions. In this direction, Kozlov [29] and Mityushev and Rylko [44] have discussed extremal properties of hexagonal lattices of disks. On the other hand, even if, in wide generality, the optimal composite does not exist (cf. Cherkaev [13]), one can discuss the dependence on the shape under some specific restrictions. For example, one could build composites with prescribed effective conductivity as described in Lurie and Cherkaev [38] (see also Gibiansky and Cherkaev [22]). In Rylko [49], the author has studied the influence of perturbations of the shape of the circular inclusion on the macroscopic conductivity properties of 2D dilute composites. Inverse problems concerning the determination of the shape of equally strong holes in elastic structures were considered by Cherepanov [12]. For an experimental work concerning the analysis of particle reinforced composites we mention Kurtyka and Rylko [30]. Also, we mention that one could apply the topological derivative method as in Novotny and Sokołowski [46] for the optimal design of microstructures.
Let
Let
Sq[ΩQ]≡⋃z∈Zn(qz+ΩQ),Sq[ΩQ]−≡Rn∖¯Sq[ΩQ]. |
If
Ckb(¯Sq[ΩQ]−)≡{u∈Ck(¯Sq[ΩQ]−):Dγu is bounded ∀γ∈Nn s. t. |γ|≤k}, |
and we endow
‖u‖Ckb(¯Sq[ΩQ]−)≡∑|γ|≤ksupx∈¯Sq[ΩQ]−|Dγu(x)|∀u∈Ckb(¯Sq[ΩQ]−), |
where
Ck,βb(¯Sq[ΩQ]−)≡{u∈Ck,β(¯Sq[ΩQ]−):Dγu is bounded ∀γ∈Nn s. t. |γ|≤k}, |
and we endow
‖u‖Ck,βb(¯Sq[ΩQ]−)≡∑|γ|≤ksupx∈¯Sq[ΩQ]−|Dγu(x)|+∑|γ|=k|Dγu:¯Sq[ΩQ]−|β∀u∈Ck,βb(¯Sq[ΩQ]−), |
where
Ckq(¯Sq[ΩQ]−)≡{u∈Ckb(¯Sq[ΩQ]−):u is q-periodic}, |
which we regard as a Banach subspace of
Ck,βq(¯Sq[ΩQ]−)≡{u∈Ck,βb(¯Sq[ΩQ]−):u is q-periodic}, |
which we regard as a Banach subspace of
Our method is based on a periodic version of classical potential theory. In order to construct periodic layer potentials, we replace the fundamental solution of the Laplace operator by a
ΔSq,n=∑z∈Znδqz−1|Q|n, |
where
Sq,n(x)=−∑z∈Zn∖{0}1|Q|n4π2|q−1z|2e2πi(q−1z)⋅x |
in the sense of distributions in
We now introduce periodic layer potentials. Let
vq[∂ΩQ,μ](x)≡∫∂ΩQSq,n(x−y)μ(y)dσy∀x∈Rn,wq,∗[∂ΩQ,μ](x)≡∫∂ΩQνΩQ(x)⋅DSq,n(x−y)μ(y)dσy∀x∈∂ΩQ, |
for all
v+q[∂ΩQ,μ]≡vq[∂ΩQ,μ]|¯Sq[ΩQ] v−q[∂ΩQ,μ]≡vq[∂ΩQ,μ]|¯Sq[ΩQ]−. |
We collect in the following theorem some properties of
Theorem 2.1. Let
(i) The map from
(ii) Let
∂∂νΩQv±q[∂ΩQ,μ]=∓12μ+wq,∗[∂ΩQ,μ]on ∂ΩQ. |
Moreover,
∫∂ΩQwq,∗[∂ΩQ,μ]dσ=(12−|ΩQ|n|Q|n)∫∂ΩQμdσ. |
(iii) Let
Δvq[∂ΩQ,μ]=0in Rn∖∂Sq[ΩQ]. |
(iv) The operator
In order to consider shape perturbations of the inclusions of the composite, we introduce a class of diffeomorphisms. Let
A˜Q∂Ω≡{ϕ∈A∂Ω:ϕ(∂Ω)⊆˜Q},A˜Q¯Ω′≡{Φ∈A¯Ω′:Φ(¯Ω′)⊆˜Q}. | (14) |
If
We conclude this section of preliminaries with some results on problem (4). By means of the following proposition, whose proof is of immediate verification, we can transform problem (4) into a
Proposition 2.2. Let
(u+j,u−j)∈C1,αloc(¯Sq[qI[ϕ]])×C1,αloc(¯Sq[qI[ϕ]]−) |
solves problem (4) if and only if the pair
(˜u+j,˜u−j)∈C1,αq(¯Sq[qI[ϕ]])×C1,αq(¯Sq[qI[ϕ]]−) |
delivered by
˜u+j(x)=u+j(x)−xj∀x∈¯Sq[qI[ϕ]],˜u−j(x)=u−j(x)−xj∀x∈¯Sq[qI[ϕ]]−, |
solves
{Δ˜u+j=0in Sq[qI[ϕ]],Δ˜u−j=0in Sq[qI[ϕ]]−,˜u+j(x+qeh)=˜u+j(x)∀x∈¯Sq[qI[ϕ]],∀h∈{1,…,n},˜u−j(x+qeh)=˜u−j(x)∀x∈¯Sq[qI[ϕ]]−,∀h∈{1,…,n},λ+∂∂νqI[ϕ]˜u+j−λ−∂∂νqI[ϕ]˜u−j=(λ–λ+)(νqI[ϕ])jon ∂qI[ϕ],˜u+j−˜u−j=0on ∂qI[ϕ],∫∂qI[ϕ]˜u+jdσ=−∫∂qI[ϕ]yjdσy. | (15) |
Next, we show that problems (4) and (15) admit at most one solution.
Proposition 2.3. Let
(i) Problem (4) has at most one solution in
(ii) Problem (15) has at most one solution in
Proof. By the equivalence of problems (4) and (15) of Proposition 2.2, it suffices to prove statement (ⅱ), which we now consider. By the linearity of the problem, it clearly suffices to show that if
{Δ˜u+j=0in Sq[qI[ϕ]],Δ˜u−j=0in Sq[qI[ϕ]]−,˜u+j(x+qeh)=˜u+j(x)∀x∈¯Sq[qI[ϕ]],∀h∈{1,…,n},˜u−j(x+qeh)=˜u−j(x)∀x∈¯Sq[qI[ϕ]]−,∀h∈{1,…,n},λ+∂∂νqI[ϕ]˜u+j−λ−∂∂νqI[ϕ]˜u−j=0on ∂qI[ϕ],˜u+j−˜u−j=0on ∂qI[ϕ],∫∂qI[ϕ]˜u+jdσ=0, | (16) |
then
Let
∂∂νqI[ϕ]˜u−j=0on ∂qI[ϕ]. |
Accordingly, the divergence theorem implies that
0≤∫Q∖¯qI[ϕ]|D˜u−j(y)|2dy=∫∂Q˜u−j(y)∂∂νQ˜u−j(y)dσy−∫∂qI[ϕ]˜u−j(y)∂∂νqI[ϕ]˜u−j(y)dσy=0. |
Indeed, by the
∫∂Q˜u−j(y)∂∂νQ˜u−j(y)dσy=0. |
Then, there exists
Next we consider the case
∂∂νqI[ϕ]˜u+j=0on ∂qI[ϕ]. |
By the uniqueness of the solution of the interior Neumann problem up to constants, there exists
In this section, we convert problem (4) into an equivalent integral equation. As done in [39] for the longitudinal flow along a periodic array of cylinders, we do so by representing the solution in terms of single layer potentials, whose densities solve certain integral equations. Therefore, we first start with the following proposition regarding the invertibility of an integral operator that will appear in such integral formulation of problem (4).
Proposition 3.1. Let
Kγ[μ]=12μ−γwq,∗[∂qI[ϕ],μ]on ∂qI[ϕ],∀μ∈C0,α(∂qI[ϕ]). |
Then the following statements hold.
(i)
(ii)
Proof. We first consider statement (ⅰ). If
γ=γ+−γ−γ++γ−. |
Accordingly, we have to consider only the limit cases
K1[μ]=12μ−wq,∗[∂qI[ϕ],μ]=0on ∂qI[ϕ]. |
The jump formula for the normal derivative of the single layer potential of Theorem 2.1 (ⅱ) implies that
μ=∂∂νqI[ϕ]v−q[∂qI[ϕ],μ]−∂∂νqI[ϕ]v+q[∂qI[ϕ],μ]=0on ∂qI[ϕ]. |
Next, we consider the case
K−1[μ]=12μ+wq,∗[∂qI[ϕ],μ]=0on ∂qI[ϕ]. |
The jump formula for the normal derivative of the single layer potential of Theorem 2.1 (ⅱ) implies that
μ=∂∂νqI[ϕ]v−q[∂qI[ϕ],μ]−∂∂νqI[ϕ]v+q[∂qI[ϕ],μ]=0on ∂qI[ϕ]. |
Next, we consider statement (ⅱ). The Fredholm alternative theorem and the compactness of
Kγ[μ]=12μ−γwq,∗[∂qI[ϕ],μ]=0, | (17) |
then
0=∫∂qI[ϕ]Kγ[μ]dσ={12−γ(12−|qI[ϕ]||Q|)}∫∂qI[ϕ]μdσ. |
A straightforward computation shows that
We are now ready to show that problem (4) can be reformulated in terms of an integral equation which admits a unique solution.
Theorem 3.2. Let
(u+j[q,ϕ,(λ+,λ−)],u−j[q,ϕ,(λ+,λ−)])∈C1,αloc(¯Sq[qI[ϕ]])×C1,αloc(¯Sq[qI[ϕ]]−). |
Moreover
u+j[q,ϕ,(λ+,λ−)](x)=v+q[∂qI[ϕ],μj](x)−−∫∂qI[ϕ]v+q[∂qI[ϕ],μj](y)dσy−−∫∂qI[ϕ]yjdσy+xj∀x∈¯Sq[qI[ϕ]],u−j[q,ϕ,(λ+,λ−)](x)=v−q[∂qI[ϕ],μj](x)−−∫∂qI[ϕ]v−q[∂qI[ϕ],μj](y)dσy−−∫∂qI[ϕ]yjdσy+xj∀x∈¯Sq[qI[ϕ]]−, | (18) |
where
12μj−λ+−λ−λ++λ−wq,∗[∂qI[ϕ],μj]=λ+−λ−λ++λ−(νqI[ϕ])jon ∂qI[ϕ]. | (19) |
Proof. We first note that, by Proposition 2.3 (ⅱ), problem (4) has at most one solution in
(νqI[ϕ])j∈C0,α(∂qI[ϕ])0, |
Proposition 3.1 (ⅰ) implies that there exists a unique solution
λ+(−12μj+wq,∗[∂qI[ϕ],μj])−λ−(12μj+wq,∗[∂qI[ϕ],μj])=(λ–λ+)(νqI[ϕ])jon ∂qI[ϕ],v+q[∂qI[ϕ],μj]−−∫∂qI[ϕ]v+q[∂qI[ϕ],μj]dσ−v−q[∂qI[ϕ],μj]+−∫∂qI[ϕ]v−q[∂qI[ϕ],μj]dσ=0on ∂qI[ϕ]. |
Accordingly, the properties of the single layer potential (see Theorem 2.1) together with Proposition 2.2 imply that the pair of functions defined by (18) solves problem (4).
The previous theorem provides an integral equation formulation of problem (4) and a representation formula for its solution. We conclude this section by writing the effective conductivity in a form which makes use of the density
∫qI[ϕ]∂∂xiu+j[q,ϕ,(λ+,λ−)](x)dx=∫∂qI[ϕ]u+j[q,ϕ,(λ+,λ−)](y)(νqI[ϕ](y))idσy=∫∂qI[ϕ](v+q[∂qI[ϕ],μj](y)−−∫∂qI[ϕ]v+q[∂qI[ϕ],μj](z)dσz−−∫∂qI[ϕ]zjdσz+yj)(νqI[ϕ](y))idσy=∫∂qI[ϕ]v+q[∂qI[ϕ],μj](y)(νqI[ϕ](y))idσy−∫∂qI[ϕ](νqI[ϕ](y))idσy−∫∂qI[ϕ]v+q[∂qI[ϕ],μj](z)dσz−∫∂qI[ϕ](νqI[ϕ](y))idσy−∫∂qI[ϕ]zjdσz+δij|qI[ϕ]|n. |
Similarly, we have
∫Q∖¯qI[ϕ]∂∂xiu−j[q,ϕ,(λ+,λ−)](x)dx=∫∂Qu−j[q,ϕ,(λ+,λ−)](y)(νQ(y))idσy−∫∂qI[ϕ]u−j[q,ϕ,(λ+,λ−)](y)(νqI[ϕ](y))idσy=δij|Q|n−∫∂qI[ϕ]v−q[∂qI[ϕ],μj](y)(νqI[ϕ](y))idσy+∫∂qI[ϕ](νqI[ϕ](y))idσy−∫∂qI[ϕ]v−q[∂qI[ϕ],μj](z)dσz+∫∂qI[ϕ](νqI[ϕ](y))idσy−∫∂qI[ϕ]zjdσz−δij|qI[ϕ]|n. |
Indeed
∫∂Q(v−q[∂qI[ϕ],μj](y)−−∫∂qI[ϕ]v−q[∂qI[ϕ],μj](z)dσz−−∫∂qI[ϕ]zjdσz+yj)(νQ(y))idσy=∫∂Qyj(νQ(y))idσy=δij|Q|n. |
Moreover, by the divergence theorem, we have
∫∂qI[ϕ](νqI[ϕ](y))idσy=0∀i∈{1,…,n}. |
Accordingly, by the continuity of the single layer potential, we have that
λeffij[q,ϕ,(λ+,λ−)]=1|Q|n{λ+∫qI[ϕ]∂∂xiu+j[q,ϕ,(λ+,λ−)](x)dx+λ−∫Q∖¯qI[ϕ]∂∂xiu−j[q,ϕ,(λ+,λ−)](x)dx}=1|Q|n{δijλ−|Q|n+(λ+−λ−)(∫∂qI[ϕ]vq[∂qI[ϕ],μj](y)(νqI[ϕ](y))idσy−∫∂qI[ϕ](νqI[ϕ](y))idσy−∫∂qI[ϕ]vq[∂qI[ϕ],μj](z)dσz−∫∂qI[ϕ](νqI[ϕ](y))idσy−∫∂qI[ϕ]zjdσz+δij|qI[ϕ]|n)}=δijλ−+(λ++λ−){1|Q|n(λ+−λ−)(λ++λ−)(∫∂qI[ϕ]vq[∂qI[ϕ],μj](y)(νqI[ϕ](y))idσy+δij|qI[ϕ]|n)}. | (20) |
Thanks to Theorem 3.2, the study of problem (4) can be reduced to the study of the boundary integral equation (19). Therefore, our first step in order to study the dependence of the solution of problem (4) upon the triple
Before starting with this plan, we note that equation (19) is defined on the
Lemma 4.1. Let
12θj(t)−λ+−λ−λ++λ−∫qϕ(∂Ω)DSq,n(qϕ(t)−s)⋅νqI[ϕ](qϕ(t))(θj∘ϕ(−1))(q−1s)dσs=λ+−λ−λ++λ−(νqI[ϕ](qϕ(t)))j∀t∈∂Ω, | (21) |
if and only if the function
μj(x)=(θj∘ϕ(−1))(q−1x)∀x∈∂qI[ϕ] | (22) |
solves equation (19). Moreover, equation (21) has a unique solution in
Proof. The equivalence of equation (21) in the unknown
Inspired by Lemma 4.1, for all
Mj:D+n(R)×(C1,α(∂Ω,Rn)∩A˜Q∂Ω)×]−2,2[×C0,α(∂Ω)→C0,α(∂Ω) |
by setting
Mj[q,ϕ,γ,θ](t)≡12θ(t)−γ∫qϕ(∂Ω)DSq,n(qϕ(t)−s)⋅νqI[ϕ](qϕ(t))(θ∘ϕ(−1))(q−1s)dσs−γ(νqI[ϕ](qϕ(t)))j∀t∈∂Ω, | (23) |
for all
Mj[q,ϕ,λ+−λ−λ++λ−,θ]=0 on ∂Ω. | (24) |
Our aim is to recover the regularity of the solution
Lemma 4.2. Let
(i) The map from
V[q,ϕ,θ](t)≡∫qϕ(∂Ω)Sq,n(qϕ(t)−s)(θ∘ϕ(−1))(q−1s)dσs∀t∈∂Ω, |
is real analytic.
(ii) The map from
W∗[q,ϕ,θ](t)≡∫qϕ(∂Ω)DSq,n(qϕ(t)−s)⋅νqI[ϕ](qϕ(t))(θ∘ϕ(−1))(q−1s)dσs∀t∈∂Ω, |
is real analytic.
Next, we state the following technical lemma about the real analyticity upon the diffeomorphism
Lemma 4.3. Let
(i) For each
∫ϕ(∂Ω)w(s)dσs=∫∂Ωw∘ϕ(y)˜σ[ϕ](y)dσy,∀ω∈L1(ϕ(∂Ω)). |
Moreover, the map
(ii) The map from
We are now ready to prove that the solutions of (24) depend real analytically upon the triple 'periodicity-shape-contrast'. We do so by means of the following.
Proposition 4.4. Let
(i) For each
Mj[q,ϕ,γ,θj]=0on ∂Ω, |
and we denote such a function by
(ii) There exist
\mathbb{D}_n^+(\mathbb{R})\times \left(C^{1, \alpha}(\partial\Omega, \mathbb{R}^n) \cap {\mathcal{A}}_{\partial\Omega}^{\widetilde{Q}}\right)\times ]-1-\varepsilon, 1+\varepsilon[ |
to
\theta_j[q, \phi, \gamma] = \Theta_j[q, \phi, \gamma] \quad \forall (q, \phi, \gamma) \in \mathbb{D}_n^+(\mathbb{R})\times \left(C^{1, \alpha}(\partial\Omega, \mathbb{R}^n) \cap {\mathcal{A}}_{\partial\Omega}^{\widetilde{Q}}\right)\times [-1, 1]. |
Proof. The proof of statement (ⅰ) is a straightforward modification of the proof of Lemma 4.1. Indeed, it suffices to replace
Next we turn to consider statement (ⅱ). As a first step we have to study the regularity of the map
\begin{align*} &\partial_{\theta}M_j[q, \phi, \gamma, \theta_j[q, \phi, \gamma]](\psi)(t) \\& = \frac{1}{2}\psi(t) -\gamma \int_{q\phi(\partial\Omega)}\, DS_{q, n}(q\phi(t)-s)\cdot\nu_{q\mathbb{I}[\phi]}(q\phi(t))(\psi \circ \phi^{(-1)})(q^{-1}s)\, d\sigma_s \, \, \, \, \forall t \in \partial\Omega, \end{align*} |
for all
In this section we prove our main result that answers to question (10) on the behavior of the effective conductivity upon the triple 'periodicity-shape-conductivity'. To this aim, we exploit the representation formula in (20) of the effective conductivity and the analyticity result of Proposition 4.4.
Theorem 5.1. Let
\begin{align} \lambda^{\mathrm{eff}}_{ij}[q, \phi, (\lambda^+, \lambda^-)] \equiv \delta_{ij}\lambda^-+(\lambda^++\lambda^-) \Lambda_{ij}\left[q, \phi, \frac{\lambda^+-\lambda^-}{\lambda^++\lambda^-}\right] \end{align} | (25) |
for all
Proof. Let
\begin{align*} \Lambda_{ij}[q, \phi, \gamma] \equiv \frac{1}{|Q|_n}\gamma \Bigg\{\int_{\partial q\mathbb{I}[\phi]} v_q[\partial q\mathbb{I}[\phi], (\Theta_j[q, \phi, \gamma]\circ\phi^{(-1)})(q^{-1}\cdot)](y)(&\nu_{q\mathbb{I}[\phi]}(y))_i\, d\sigma_y \\&+\delta_{ij}|q\mathbb{I}[\phi]|_{n} \Bigg\} \end{align*} |
for all
\begin{align*} \Lambda_{ij}[q, \phi, \gamma] = \frac{1}{|Q|_n}\gamma \Bigg\{\!\int_{\partial \Omega} \!\!\! V[q, \phi, \Theta_j[q, \phi, \gamma]](y)(\nu_{q\mathbb{I}[\phi]}(q\phi(y)))_i&\tilde\sigma[q\phi](y)\, d\sigma_y \\ &+\delta_{ij} |q\mathbb{I}[\phi]|_{n}\! \Bigg\} \end{align*} |
for all
|Q|_n = \prod\limits_{l = 1}^nq_{ll} \qquad\qquad \forall q \in \mathbb{D}_n^+(\mathbb{R}), |
clearly
\begin{align*} |q\mathbb{I}[\phi]|_{n} = & \int_{q\mathbb{I}[\phi]}1\, dy = |Q|_n\int_{\mathbb{I}[\phi]}1\, dy\\ = & |Q|_n\frac{1}{n}\int_{\phi(\partial\Omega)}y\cdot\nu_{\mathbb{I}[\phi]}(y)\, d\sigma_y = |Q|_n\frac{1}{n}\int_{\partial\Omega}\phi(y)\cdot\nu_{\mathbb{I}[\phi]}(\phi(y))\tilde \sigma[\phi](y)\, d\sigma_y. \end{align*} |
Then, by taking into account that the pointwise product in Schauder spaces is bilinear and continuous, and that the integral in Schauder spaces is linear and continuous, Lemma 4.3 implies that the map from
In the present paper we considered the effective conductivity of a two or three dimensional periodic two-phase composite material. The composite is obtained by introducing into a homogeneous matrix a periodic set of inclusions of a large class of sufficiently smooth shapes. We proved a regularity result for the effective conductivity of such a composite upon perturbations of the periodicity structure, of the shape of the inclusions, and of the conductivities of each material. Namely, we showed the real analytic dependence of the effective conductivity as a functional acting between suitable Banach spaces.
The consequences of our result are twofold. First, this high regularity result represents a theoretical justification to guarante that differential calculus may be used in order to characterize critical periodicity-shape-conductivity triples
\lambda^{\mathrm{eff}}_{ij}[q_\delta, \phi_\delta, (\lambda^+_\delta, \lambda^-_\delta)] = \sum\limits_{k = 0}^{\infty}c_{k} \delta^{k} |
for
Both the authors are members of the 'Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni' (GNAMPA) of the 'Istituto Nazionale di Alta Matematica' (INdAM) and acknowledge the support of the Project BIRD191739/19 'Sensitivity analysis of partial differential equations in the mathematical theory of electromagnetism' of the University of Padova. P.M. acknowledges the support of the grant 'Challenges in Asymptotic and Shape Analysis - CASA' of the Ca' Foscari University of Venice. The authors wish to thank the anonymous referees for many valuable comments that have improved the presentation of the paper.
[1] | R. A. Adams, Sobolev spaces, Academic Press, New-York, 1975. |
[2] |
O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A, 40 (2007), 6287-6303. doi: 10.1088/1751-8113/40/24/003
![]() |
[3] |
R. Almeida, N. R. Bastos, M. T. Monteiro, Modeling some real phenomena by fractional differential equations, Math. Methods Appl. Sci., 39 (2016), 4846-4855. doi: 10.1002/mma.3818
![]() |
[4] | T. Arpadffy-Lovas, I. Baczko, B. Balati, M. Bitay, N. Jost, C. Lengyel, et. al., Electrical Restitution and its modifications by antiarrhythmic drugs in undiseased human ventricular muscle, Front. Pharmacol., 11, (2020), 479. |
[5] | T. Ashihara, J. Constantino, N. A. Trayanova, Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window, Circ. Res., 102 (2008), 737-745. |
[6] |
O. V. Aslanidi, A. P. Benson, M. R. Boyett, H. Zhang, Mechanisms of defibrillation by standing waves in the bidomain ventricular tissue with voltage applied in an external bath, Physica D, 238 (2009), 984-991. doi: 10.1016/j.physd.2009.02.003
![]() |
[7] |
G. W. Beeler, H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, J. Physiol., 268 (1977), 177-210. doi: 10.1113/jphysiol.1977.sp011853
![]() |
[8] |
A. Belmiloudi, Time-varying delays in electrophysiological wave propagation along cardiac tissue and minimax control problems associated with uncertain bidomain type models, AIMS Mathematics, 4 (2019), 928-983. doi: 10.3934/math.2019.3.928
![]() |
[9] |
A. Belmiloudi, S. Corre, Mathematical modeling and analysis of dynamic effects of multiple time-varying delays on electrophysiological wave propagation in the heart, Nonlinear Anal-Real, 47 (2019), 18-44. doi: 10.1016/j.nonrwa.2018.09.025
![]() |
[10] |
A. Belmiloudi, Mathematical modeling and optimal control problems in brain tumor targeted drug delivery strategies, Int. J. Biomath., 10 (2017), 1750056. doi: 10.1142/S1793524517500565
![]() |
[11] |
A. Belmiloudi, Dynamical behavior of nonlinear impulsive abstract partial differential equations on networks with multiple time-varying delays and mixed boundary conditions involving time-varying delays, J. Dyn. Control Syst., 21 (2015), 95-146. doi: 10.1007/s10883-014-9230-y
![]() |
[12] |
A. Belmiloudi, Robust control problem of uncertain bidomain models in cardiac electrophysiology, Journal of Coupled Systems and Multiscale Dynamics, 1 (2013), 332-350. doi: 10.1166/jcsmd.2013.1023
![]() |
[13] | A. Belmiloudi, Stabilization, optimal and robust control. Theory and applications in biological and physical sciences, Springer-Verlag, London, 2008. |
[14] |
A. Belmiloudi, Robust control problems associated with time-varying delay nonlinear parabolic equations, IMA J. Math. Control I., 20 (2003), 305-334. doi: 10.1093/imamci/20.3.305
![]() |
[15] |
A. Belmiloudi, Regularity results and optimal control problems for the perturbation of Boussinesq equations of the ocean, Numer. Func. Anal. Opt., 21 (2000), 623-651. doi: 10.1080/01630560008816941
![]() |
[16] |
M. Bendahmane, K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1 (2006), 185-218. doi: 10.3934/nhm.2006.1.185
![]() |
[17] |
G. A. Bocharov, F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183-199. doi: 10.1016/S0377-0427(00)00468-4
![]() |
[18] | M. Boulakia, M. A. Fernandez, J. F Gerbeau, N. Zemzemi, A coupled system of PDEs and ODEs arising in electrocardiogramms modeling, Applied Math. Res. Exp., 28 (2008). |
[19] |
Y. Bourgault, Y. Coudiere, C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal-Real, 10 (2009), 458-482. doi: 10.1016/j.nonrwa.2007.10.007
![]() |
[20] |
N. Buric, K. Todorovic, N. Vasovic, Dynamics of noisy FitzHugh-Nagumo neurons with delayed coupling, Chaos, Solitons and Fractals, 40 (2009), 2405-2413. doi: 10.1016/j.chaos.2007.10.036
![]() |
[21] |
J. O. Campos, R. S. Oliveira, R. W. dos Santos, B. M. Rocha, Lattice Boltzmann method for parallel simulations of cardiac electrophysiology using GPUs, J. Comput. Appl. Math., 295 (2016), 70-82. doi: 10.1016/j.cam.2015.02.008
![]() |
[22] |
M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. Int., 13 (1967), 529-539. doi: 10.1111/j.1365-246X.1967.tb02303.x
![]() |
[23] |
E. M. Cherry, F. H. Fenton, T. Krogh-Madsen, S. Luther, U. Parlitz, Introduction to Focus Issue: Complex Cardiac Dynamics, Chaos, 27 (2017), 093701. doi: 10.1063/1.5003940
![]() |
[24] | P. Colli Franzone, G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level. In: Evolution Equations, Semigroups and Functional Analysis (eds.A. Lorenzi, B. Ruf), Birkhauser, Basel, 49-78, 2002. |
[25] |
P. Colli Franzone, L. Guerri, S. Tentoni, Mathematical modeling of the excitation process in myocardial tissue: Influence of fiber rotation on wavefront propagation and potential field, Math. Biosci., 101 (1990), 155-235. doi: 10.1016/0025-5564(90)90020-Y
![]() |
[26] |
T. Comlekoglu, S. H. Weinberg, Memory in a fractional-order cardiomyocyte model alters properties of alternans and spontaneous activity, Chaos, 27 (2017), 093904. doi: 10.1063/1.4999351
![]() |
[27] |
S. Corre, A. Belmiloudi, Coupled lattice Boltzmann simulation method for bidomain type models in cardiac electrophysiology with multiple time-delays, Math. Model. Nat. Pheno., 14 (2019), 207. doi: 10.1051/mmnp/2019045
![]() |
[28] |
S. Corre, A. Belmiloudi, Coupled lattice Boltzmann method for numerical simulations of fully coupled Heart and Torso bidomain system in electrocardiology, Journal of Coupled System and Multiscale Dynamics, 4 (2016), 207-229. doi: 10.1166/jcsmd.2016.1109
![]() |
[29] | S. Corre, A. Belmiloudi, Coupled Lattice Boltzmann Modeling of Bidomain Type Models in Cardiac Electrophysiology, Mathematical and Computational Approaches in Advancing Modern Science and Engineering (eds. J. Bélair, et al.), Springer, 209-221, 2016. |
[30] |
H. Dal, S. Goktepe, M. Kaliske, E. Kuhl, A fully implicit finite element method for bidomain models of cardiac electromechanics, Comput. Method. Appl. M., 253 (2013), 323-336. doi: 10.1016/j.cma.2012.07.004
![]() |
[31] | S. Das, K. Maharatna, Fractional dynamical model for the generation of ECG like signals from filtered coupled Van-der, Comput. Methods Programs Biomed., 122 (2013), 490-507. |
[32] | K. Diethelm, Fractional differential equations, Springer, Berlin, 2010. |
[33] |
K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229-248. doi: 10.1006/jmaa.2000.7194
![]() |
[34] |
S. Dipierro, E. Valdinoci, A simple mathematical model inspired by the Purkinje cells: from delayed travelling waves to fractional diffusion, Bull. Math. Biol., 80 (2018), 1849-1870, doi: 10.1007/s11538-018-0437-z
![]() |
[35] | M. Dupraz, S. Filippi, A. Gizzi, A. Quarteroni, R. Ruiz-Baier, Finite element and finite volume-element simulation of pseudo-ECGs and cardiac alternans, Math. Method. Appl. Sci., 38 (2015), 1046-1058. |
[36] | D. Baleanu, A. M. Lopes, (eds.) Applications in engineering, life and social sciences. In: Handbook of fractional calculus with applications, De Gruyter, 2019. |
[37] | K. A. Ellenbogen, B. L. Wilkoff, G. N. Kay, C. P. Lau, A. Auricchio, Clinical cardiac pacing, defibrillation and resynchronization therapy, Elsevier - Health Sciences Division; 5th Revised edition, 2017. |
[38] |
F. Fenton, A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation, Chaos, 8 (1998), 20-47. doi: 10.1063/1.166311
![]() |
[39] |
R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-465. doi: 10.1016/S0006-3495(61)86902-6
![]() |
[40] |
L. Glass, Synchronization and rhythmic processes in physiology, Nature, 410 (2001), 277-284. doi: 10.1038/35065745
![]() |
[41] |
J. M. Gomes, R. Weber dos Santos, E. M. Cherry, Alternans promotion in cardiac electrophysiology models by delay differential equations, Chaos, 27 (2017), 093915. doi: 10.1063/1.4999471
![]() |
[42] | G. H. Hardy, J. E. Littlewood, Some properties of fractional integrals I, Math. Z., 27 (1928). |
[43] | D. A. Israel, D. J. Edell, R. G. Mark, Time delays in propagation of cardiac action potential, Am. J. Physiol., 258 (1990), H1906-17. |
[44] |
D. Jeyaraj, M. Ashwath, D. S. Rosenbaum, Pathophysiology and clinical implications of cardiac memory, Pacing Clin Electrophysiol, 33 (2010), 346-352. doi: 10.1111/j.1540-8159.2009.02630.x
![]() |
[45] |
S. J. Kalbfleisch, J. Sousa, R. el-Atassi, H. Calkins, J. Langberg, F. Morady, Repolarization abnormalities after catheter ablation of accessory atrioventricular connections with radiofrequency current, J. Am. Coll. Cardiol., 18 (1991), 1761-1766. doi: 10.1016/0735-1097(91)90518-E
![]() |
[46] | J. Keener, J. Sneyd, Mathematical Physiology, Springer-Verlag, New York, 2009. |
[47] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, 2006. |
[48] |
A. Kubica, M. Yamamoto, Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients, Fract. Calc. Appl. Anal., 21 (2018), 276-311. doi: 10.1515/fca-2018-0018
![]() |
[49] | G. W. Leibniz, Letter from Hanover, Germany, to G.F.A. L'Hôpital, September 30; 1695, Mathematische Schriften, 2 (1849), 301-302. |
[50] |
L. Li, J. G. Liu, A generalized definition of Caputo derivatives and its application to fractional ODEs, SIAM J. Math. Anal., 50 (2018), 2867-2900. doi: 10.1137/17M1160318
![]() |
[51] | G. Lines, M. Buist, P. Grottum, A. J. Pullan, J. Sundnes, A. Tveito, Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Computing and Visualization in Science, 5 (2003), 215-239. |
[52] | J. L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Tome 1 & 2, Dunod, Paris, 1968. |
[53] | C. H. Luo, Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circ. Res., 68 (1991), 1501-1526. |
[54] | C. H. Luo, Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circ. Res., 74 (1994), 1071-1096. |
[55] |
R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586-1593. doi: 10.1016/j.camwa.2009.08.039
![]() |
[56] |
C. C. Mitchell, D. G. Schaeffer, A two-current model for the dinamics of cardiac membrane, Bull. Math. Biol., 65 (2003), 767-793. doi: 10.1016/S0092-8240(03)00041-7
![]() |
[57] |
J. Roger, A. McCulloch, A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE T. Biomed. Eng., 41 (1994), 743-757. doi: 10.1109/10.310090
![]() |
[58] | T. Nakagawa, T. Yagi, A. Ishida, Y. Mibiki, Y. Yamashina, H. Sato, et al., Differences between cardiacmemory Twave changes after idiopathic left ventricular tachycardia and ischemic T wave inversion induced by acute coronary syndrome, J. Electrocardiol., 49 (2016), 596-602. |
[59] | N. Ozgen, Z. Lu, G. J. Boink, D. H. Lau, I. N. Shlapakova, Y. Bobkov, et al., Microtubules and angiotensin II receptors contribute to modulation of repolarization induced by ventricular pacing, Heart Rhythm, 9 (2012), 1865-72. |
[60] | L. Padeletti, C. Fantappie, L. Perrotta, G. Ricciardi, P. Pieragnoli, M. Chiostri, et al., Cardiac memory in humans: vectocardiographic quantification in cardiac resynchronization therapy, Clin. Res. Cardiol., 100 (2011), 100-51. |
[61] |
A. Panfilov, R. Aliev, A simple two-variable model of cardiac excitation, Chaos Solitons and Fractals, 7 (1996), 293-301. doi: 10.1016/0960-0779(95)00089-5
![]() |
[62] | I. Petras, Fractional-order chaotic systems, Fractional-order nonlinear systems, Springer, 2011. |
[63] | A. N. Plotnikov, A. Shvilkin, W. Xiong, J. R. de Groot, L. Rosenshtraukh, S. Feinmark, et al., Interactions between antiarrhythmic drugs and cardiac memory, Cardiovasc. Res., 50 (2001), 335-344. |
[64] | A. J. Pullan, M. L. Buist, L. K. Cheng, Mathematically modelling the electrical activity of the heart-from cell to body surface and back again, World Scientific, Singapore, 2005. |
[65] | A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Vol. 37 of Texts in Applied Mathematics (2nd ed.), Springer-Verlag, Berlin, 2007. |
[66] |
M. B. Rosenbaum, H. H. Blanco, M. V. Elizari, J. O. Lazzari, J. M. Davidenko, Eletrotonic modulation of the T-wave and cardiac memory, Am. J. Cardiol., 50 (1982), 213-222. doi: 10.1016/0002-9149(82)90169-2
![]() |
[67] | Y. Sakamoto, Y. Inden, H. Okamoto, K. Mamiya, T. Tomomatsu, A. Fujii, et al., T-wave changes of cardiac memory caused by frequent premature ventricular contractions originating from the right ventricular outflow tract, J. Cardiovasc. Electrophysiol., 30 (2019), 1549-1556. |
[68] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications; Edited and with a foreword by S. M. Nikolski; Translated from the 1987 Russian original; Revised by the authors. |
[69] |
R. F. Sandra, M. A. Savi, An analysis of heart rhythm dynamics using a three-coupled oscillator model, Chaos, Solitons and Fractals, 41 (2009), 2553-2565. doi: 10.1016/j.chaos.2008.09.040
![]() |
[70] |
T. Seidman, H. Z. Zhou, Existence and uniqueness of optimal controls for a quasilinear parabolic equation, SIAM J. Control Optim., 20 (1982), 747-762. doi: 10.1137/0320054
![]() |
[71] |
A. Shvilkin, H. D. Huang, M. E. Josephson, Cardiac memory: diagnostic tool in the making, Circ-Arrhythmia Elect., 8 (2015), 475-482. doi: 10.1161/CIRCEP.115.002778
![]() |
[72] |
A. Shvilkin, K. K. Ho, M. R. Rosen, M. E. Josephson, T-vector direction differentiates post-pacing from ischemic T-wave inversion in precordial leads, Circulation, 111 (2005), 969-974. doi: 10.1161/01.CIR.0000156463.51021.07
![]() |
[73] |
E. A. Sosunov, E. P. Anyukhovsky, M. R. Rosen, Altered ventricular stretch contributes to initiation of cardiac memory, Heart Rhythm, 5 (2008), 106-113. doi: 10.1016/j.hrthm.2007.09.008
![]() |
[74] | J. Sundnes, G. Lines, X. Cai, B. F. Nielsen, K. A. Mardal, A. Tveito, Computing the electrical activity in the heart, Springer, Berlin, 2006. |
[75] |
M. C. Suran, A. D. Margulescu, R. Bruja, D. Vinereanu, Surface ECG criteria can discriminate post-septal pacing cardiac memory from ischemic T wave inversions, J. Electrocardiol., 58 (2020), 10-17. doi: 10.1016/j.jelectrocard.2019.10.004
![]() |
[76] |
W. Tan, C. Fu, C. Fu, W. Xie, H. Cheng, An anomalous subdiffusion model for calcium spark in cardiac myocytes, Appl. Phys. Lett., 91 (2007), 183901. doi: 10.1063/1.2805208
![]() |
[77] | R. Temam, Navier-Stokes equations, North-Holland, Amsterdam, 1984. |
[78] | L. Tung, A bi-domain model for describibg ischemic myocardial d-c potentials [Thesis/Dissertation], Massachussets Institute of Technology, 1978. |
[79] | K. H. Ten Tusscher, A. V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model, Am. J. Physiol-Heart C., 291 (2006), H1088-H1100. |
[80] | M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal-Real, 10 (2009), 849-868. |
[81] | E. J. Vigmond, R. W. dos Santos, A. J. Prassl, M. Deo, G. Plank, Solvers for the cardiac bidomain equations, Prog. Biophys. Mol. Bio., 96 (2008), 3-18. |
[82] |
J. W. Waks, D. A. Steinhaus, A. Shvilkin, D. B. Kramer, Post-pacemaker T-wave Inversions: Cardiac Memory, Am. J. Med., 129 (2016), 170-172. doi: 10.1016/j.amjmed.2015.09.001
![]() |
[83] | B. J. West, M. Turalska, P. Grigolini, Networks of echoes: imitation, innovation and invisible leaders, Springer Science & Business Media, 2014. |
[84] | S. Westerlund, L. Ekstam, Capacitor theory, IEEE T. Dielect. El. In., 1 (1994), 826-839. |
[85] |
H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061
![]() |
[86] | Y. Zhou, Basic theory of fractional differential equations, World Scientific, Singapore, 2014. |
1. | Philip Serwer, Optimizing Anti-Viral Vaccine Responses: Input from a Non-Specialist, 2020, 9, 2079-6382, 255, 10.3390/antibiotics9050255 | |
2. | Paul Hyman, Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth, 2019, 12, 1424-8247, 35, 10.3390/ph12010035 | |
3. | Philip Serwer, Elena Wright, Nanomedicine and Phage Capsids, 2018, 10, 1999-4915, 307, 10.3390/v10060307 | |
4. | Han Lu, Wenbin Xiong, Zong Li, Peihan Yan, Ruyin Liu, Xinchun Liu, Isolation and characterization of SGF3, a novel Microviridae phage infecting Shigella flexneri, 2022, 297, 1617-4615, 935, 10.1007/s00438-022-01883-5 | |
5. | Han Lu, Zong Li, Amro Elbaz, Shou-Qing Ni, Synergistic action of phages and lytic proteins with antibiotics: a combination strategy to target bacteria and biofilms, 2023, 23, 1471-2180, 10.1186/s12866-023-02881-2 |