Uniqueness of solutions to a mathematical model describing moisture transport in
concrete materials
-
1.
Department of Mathematical and Physical Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681
-
2.
Natural and Physical Sciences, Tomakomai National College of Technology, 443, Nishikioka, Tomakomai-shi, Hokkaido, 059-1275
-
Received:
01 June 2014
Revised:
01 August 2014
-
-
Primary: 74H25, 35K55; Secondary: 47J40.
-
-
When dealing with concrete materials it is always a big issue how to deal with
the moisture transport. Here, we consider a mathematical model for moisture
transport, which is given as a system consisting of the diffusion equation for moisture and
of the ordinary differential equation which describes a hysteresis operator.
In [3] we already proved the existence of a time global solution of an initial boundary
value problem of this system, however, the uniqueness is obtained only for one dimensional domains.
The main purpose of this paper is to establish the uniqueness of a solution of our problem in
three dimensional domains
under the assumption of the smooth boundary and initial data.
Citation: Toyohiko Aiki, Kota Kumazaki. Uniqueness of solutions to a mathematical model describing moisture transport in concrete materials[J]. Networks and Heterogeneous Media, 2014, 9(4): 683-707. doi: 10.3934/nhm.2014.9.683
Related Papers:
[1] |
Toyohiko Aiki, Kota Kumazaki .
Uniqueness of solutions to a mathematical model describing moisture transport in
concrete materials. Networks and Heterogeneous Media, 2014, 9(4): 683-707.
doi: 10.3934/nhm.2014.9.683
|
[2] |
Thomas Geert de Jong, Georg Prokert, Alef Edou Sterk .
Reaction–diffusion transport into core-shell geometry: Well-posedness and stability of stationary solutions. Networks and Heterogeneous Media, 2025, 20(1): 1-14.
doi: 10.3934/nhm.2025001
|
[3] |
Magali Tournus, Aurélie Edwards, Nicolas Seguin, Benoît Perthame .
Analysis of a simplified model of the urine concentration mechanism. Networks and Heterogeneous Media, 2012, 7(4): 989-1018.
doi: 10.3934/nhm.2012.7.989
|
[4] |
Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa .
A one dimensional free boundary problem for adsorption phenomena. Networks and Heterogeneous Media, 2014, 9(4): 655-668.
doi: 10.3934/nhm.2014.9.655
|
[5] |
Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko .
Sharp interface limit in a phase field model of cell motility. Networks and Heterogeneous Media, 2017, 12(4): 551-590.
doi: 10.3934/nhm.2017023
|
[6] |
Mingming Fan, Jianwen Sun .
Positive solutions for the periodic-parabolic problem with large diffusion. Networks and Heterogeneous Media, 2024, 19(3): 1116-1132.
doi: 10.3934/nhm.2024049
|
[7] |
Ken-Ichi Nakamura, Toshiko Ogiwara .
Periodically growing solutions in a class of strongly monotone semiflows. Networks and Heterogeneous Media, 2012, 7(4): 881-891.
doi: 10.3934/nhm.2012.7.881
|
[8] |
Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski .
An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171.
doi: 10.3934/nhm.2017006
|
[9] |
Bendong Lou .
Self-similar solutions in a sector for a quasilinear parabolic equation. Networks and Heterogeneous Media, 2012, 7(4): 857-879.
doi: 10.3934/nhm.2012.7.857
|
[10] |
F. R. Guarguaglini, R. Natalini .
Nonlinear transmission problems for quasilinear diffusion systems. Networks and Heterogeneous Media, 2007, 2(2): 359-381.
doi: 10.3934/nhm.2007.2.359
|
-
Abstract
When dealing with concrete materials it is always a big issue how to deal with
the moisture transport. Here, we consider a mathematical model for moisture
transport, which is given as a system consisting of the diffusion equation for moisture and
of the ordinary differential equation which describes a hysteresis operator.
In [3] we already proved the existence of a time global solution of an initial boundary
value problem of this system, however, the uniqueness is obtained only for one dimensional domains.
The main purpose of this paper is to establish the uniqueness of a solution of our problem in
three dimensional domains
under the assumption of the smooth boundary and initial data.
References
[1]
|
T. Aiki and K. Kumazaki, Mathematical model for hysteresis phenomenon in moisture transport in concrete carbonation process, Phys. B, 407 (2012), 1424-1426. doi: 10.1016/j.physb.2011.10.016
|
[2]
|
T. Aiki and K. Kumazaki, Mathematical modelling of concrete carbonation process with hysteresis effect, RIMS, Kyoto Univ., sūrikaisekikenkyūsho, kōkyūuroku, 1792 (2012), 99-107.
|
[3]
|
T. Aiki and K. Kumazaki, Well-posedness of a mathematical model for moisture transport appearing in concrete carbonation process, Adv. Math. Sci. Appl., 21 (2011), 361-381.
|
[4]
|
B. Bary and A. Sellier, Coupled moisture-Carbon dioxide-Calcium transfer model for carbonation of concrete, Cem. Concr. Res., 34 (2004), 1859-1872. doi: 10.1016/j.cemconres.2004.01.025
|
[5]
|
O. V. Besov, V. P. ll'in and S. M. Nikol'ski, Integral Representations of Functions and Embedding Theorems, Vol. II. Scripta Series in Mathematics. Edited by Mitchell H. Taibleson. V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto, Ont.-London, 1979.
|
[6]
|
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer-Verlag, 1996. doi: 10.1007/978-1-4612-4048-8
|
[7]
|
H. Derluyn, D. Derome, J. Carmeliet, E. Stora and R. Barbarulo, Hysteric moisture behavior of concrete: Modelling analysis, Cem. Concr. Res., 42 (2012), 1379-1388.
|
[8]
|
P. Colli, N. Kenmochi and M. Kubo, A phase field model with temperature dependent constraint, J. Math. Anal. Appl., 256 (2001), 668-685. doi: 10.1006/jmaa.2000.7338
|
[9]
|
N. Kenmochi, T. Koyama and G. H. Meyer, Parabolic PDEs with hysteresis and quasivariational inequalities, Nonlinear Anal., 34 (1998), 665-686. doi: 10.1016/S0362-546X(97)00592-0
|
[10]
|
O. A. Ladyženskaja, V. A. Solonnilov and N. N. Uralćeva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Society, Providence RI, 1967.
|
[11]
|
O. A. Ladyženskaja and N. N. Ural'ceva, Équations Aux Dérivées Partielles de Type Elliptique, Dunod, Paris, 1968.
|
[12]
|
J. Nečas, Les Methodes Directes en Theorie des Equations Elliptiques, Academia, Praha, and Masson et Cie Editeurs, Paris, 1967.
|
[13]
|
A. Visintin, Differential Models of Hysteresis, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-662-11557-2
|
-
-
This article has been cited by:
1.
|
Bin Chen, Sergey A. Timoshin,
Optimal control of a population dynamics model with hysteresis,
2022,
42,
0252-9602,
283,
10.1007/s10473-022-0116-x
|
|
2.
|
Kota Kumazaki, Toyohiko Aiki, Naoki Sato, Yusuke Murase,
Multiscale model for moisture transport with adsorption phenomenon in concrete materials,
2018,
97,
0003-6811,
41,
10.1080/00036811.2017.1325473
|
|
3.
|
Toyohiko Aiki, Sergey A. Timoshin,
Existence and uniqueness for a concrete carbonation process with hysteresis,
2017,
449,
0022247X,
1502,
10.1016/j.jmaa.2016.12.086
|
|
4.
|
Sergey A. Timoshin,
Bang–Bang Control of a Prey–Predator Model with a Stable Food Stock and Hysteresis,
2023,
88,
0095-4616,
10.1007/s00245-023-09984-2
|
|
-
-