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Abstract. When dealing with concrete materials it is always a big issue how

to deal with the moisture transport. Here, we consider a mathematical model
for moisture transport, which is given as a system consisting of the diffusion

equation for moisture and of the ordinary differential equation which describes

a hysteresis operator. In [3] we already proved the existence of a time global
solution of an initial boundary value problem of this system, however, the

uniqueness is obtained only for one dimensional domains. The main purpose

of this paper is to establish the uniqueness of a solution of our problem in three
dimensional domains under the assumption of the smooth boundary and initial

data.

1. Introduction. While studying concrete carbonation it is a crucial step to in-
vestigate the mathematical model describing moisture transport part, for instance,
see [4, 7]. We already proposed a model for moisture transport in [1, 2]. Here, we
aim to prove the uniqueness of solutions to this model, which is the following initial
boundary value problem (P) for a parabolic-type equation including a hysteresis
operator:

∂u

∂t
− div(g(u)∇u) = wf in Q(T ) := (0, T )× Ω, (1.1)

∂w

∂t
+ ∂I(u;w) 3 0 in Q(T ), (1.2)

u = ub on S(T ) := (0, T )× ∂Ω, (1.3)

u(0) = u0, w(0) = w0 in Ω. (1.4)

Here, 0 < T <∞, Ω is a bounded domain in R3 with the smooth boundary ∂Ω, and
g is a given function in C1((0,∞)), f and ub are given functions on Q(T ) and u0
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and w0 are given initial functions defined in Ω. The function I denotes the indicator
function of the closed interval [f∗(u), f∗(u)], that is,

I(u;w) =

{
0 if f∗(u) ≤ w ≤ f∗(u),

+∞ otherwise,

where f∗ and f∗ are given functions on R with f∗ ≤ f∗ on R. Moreover, ∂I
represents the subdifferential of I, namely,

∂I(u;w) =


[0,∞) if w = f∗(u),

{0} if f∗(u) < w < f∗(u),

(−∞, 0] if w = f∗(u).

The system {(1.1)–(1.2)} is a mathematical model of moisture transport for
the concrete carbonation phenomenon in three dimensions and was proposed in
Aiki-Kumazaki [1, 2, 3]. Physically, u and w indicate the relative humidity and
the degree of saturation, respectively, and the diffusion equation (1.1) with the
moisture conductivity g is derived from mass conservation law for the moisture.
Here, as mentioned in [2], g satisfies

lim
r→0+

g(r) = +∞, lim
r→1

g(r) = 1, g(r) ≥ κ for 0 ≤ r ≤ 1,

where κ is a positive constant. In the concrete carbonation process it is known
that the relationship between u and w is given as a hysteresis with an anticlockwise
trend. The functions f∗ and f∗ correspond to the upper and lower curves of the
hysteresis loop, respectively. Therefore, we assume that it is described by a play
operator with the input function u and the output function w. Accordingly, the
relationship between u and w is represented the ordinary differential equation (1.2)
(See, for instance, Brokate and Sprekels [6] and Visintin [13]). On problem (P),
Aiki and Kumazaki already proved the existence of a time global solution in three
dimensions and the uniqueness in only one dimension.

Considering the mathematical results for systems consisting of a parabolic-type
equation and a hysteresis operator, Kenmochi, Koyama and Meyer [9] looked into
the following system which is a mathematical model for a real time controled system:

ut −∆u+ w = f in Q(T ), (1.5)

wt − ν∆w + ∂I(u;w) 3 0 in Q(T ). (1.6)

For the system {(1.5)-(1.6)} with a boundary condition and a initial condition, they
proved the existence and uniqueness of a global-in-time solution for ν ≥ 0. Also,
Colli, Kenmochi and Kubo in [8] studied the following system which represents a
solid-liquid phase transition with a hysteric effect in the kinetics of interface:

ut + wt −∆u = h in Q(T ), (1.7)

wt − ν∆w + l(u,w) + ∂I(u;w) 3 0 in Q(T ), (1.8)

where h is a given function on Q(T ) and l(·, ·) is a smooth function on R×R. On
the initial and boundary value problem for this system {(1.7)-(1.8)}, they showed
the existence of a time global solution for ν ≥ 0 and the uniqueness in the case
ν = 0.

The aim of this paper is to prove the uniqueness of solutions to (P) in three
dimensions. To do so we faced the following two difficulties: The first difficulty is
concerned with the estimate for ∇u, and the second one causes from the lack of
continuity on (1.2) between the input function u and the output function w.
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The first difficulty comes from the nonlinearity of g(u). Precisely, a standard
way to prove uniqueness is to estimate a difference of two solutions as follows. Let
{ui, wi} be a solution of (P) for i = 1, 2. Then, from the divergence term in (1.1)
the following term appears:∫

Ω

(g(u1)− g(u2))∇u2(∇u1 −∇u2)dx. (1.9)

If g is linear, this kind of terms never appears. Also, in one-dimensional case we can
estimate ∇u2 in (1.9) by applying the Sobolev embedding theorem from H1(Ω) to
L∞(Ω). Then, it is not hard to prove the uniqueness. However, in three dimensional
case, this embedding is not valid. In this paper in order to overcome this difficulty
we establish that ∇u ∈ L∞(Q(T )) by applying the classical theory for quasi linear
parabolic equations shown in Ladyženskaja-Solonikov-Uralćeva [10]. In Section 3
the boundedness ∇u will be proved under the smoothness assumption for boundary
and initial data.

The detail of the second difficulty is as follows. When we consider the difference
of two solutions, w1−w2 appears in the right hand side of (1.1). To give an estimate
for w1 − w2 we can obtain the following estimate for its L∞-norm :

|w1 − w2|L∞(Q(s)) ≤ max{|f∗(u1)− f∗(u2)|L∞(Q(s)), |f∗(u1)− f∗(u2)|L∞(Q(s))}

for 0 ≤ s ≤ T. (1.10)

This kind of estimates for (1.6) with ν = 0 was found in Visintin [13], and was
proved by Kenmochi, Koyama and Meyer [9] in case ν > 0. However, it is not
easy to obtain the L∞-norm of the difference of solutions to quasi-linear parabolic
equations in three dimensions. In this paper, by applying the following inequalities
(1.11) and (1.12) we have estimated the difference w1 − w2: The first inequality
(See Visintin [13, Lemma 2.1 in Chapter 3]) is:

|w1 − w2|L∞(0,s) ≤ max{|f∗(u1)− f∗(u2)|L∞(0,s), |f∗(u1)− f∗(u2)|L∞(0,s)} on Ω

for 0 ≤ s ≤ T. (1.11)

The second one is concerned with the embedding between two spaces:

|z|Lq2 (Ω,C([0,T ])) ≤ C
(
|z|Lp1 (0,T ;W 1,q1 (Ω)) + |zt|Lp0 (0,T ;Lq0 (Ω))

)
for z ∈ Lp1(0, T ;W 1,q1(Ω)) with zt ∈ Lp0(0, T ;Lq0(Ω)), (1.12)

where p0, q0, p1, q1 and q2 are positive constants (for detail, see the end of Section
2). On account of these ideas we shall prove the uniqueness in three dimensional
domain in Section 5.

2. Notation and assumptions. In this paper we use the following notations. In
general, for a Banach space X we denote by | · |X its norm. Particularly, we denote
by H = L2(Ω), and the norm and the inner product of H are simply denoted by
| · |H and (·, ·)H , respectively. Also, H1(Ω), H1

0 (Ω) and H2(Ω) are the usual Sobolev
spaces.

Throughout this paper we assume the following (A1)–(A7):
(A1) Ω is a open bounded connected domain of R3 which has the boundary ∂Ω

in the class of C2.
(A2) T is a positive constant.
(A3) G : (0,∞) → R is continuous, g(r) := G′(r) is continuous on (0,∞),

g ∈ C2((0,∞)) and g(r) ≥ g0 for r > 0, where g0 is a positive constant.
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(A4) f ∈ L∞(Q(T )) and ft ∈ L2(0, T ;H) with f ≥ 0 a.e. on Q(T ).
(A5) f∗, f

∗ ∈ C2(R) ∩W 2,∞(R) with 0 ≤ f∗ ≤ f∗ ≤ w∗ on R, where w∗ is a
positive constant. We put L∗ = max{|f∗|W 2,∞(R), |f∗|W 2,∞(R)}.

(A6) ub ∈ C2,1(Q(T )) and ubt ∈ L2(0, T ;H2(Ω)) with ub ≥ κ0 for some positive
constant κ0. Then, there exists a constant M0 > 0 such that

|∇ub|L∞(Q(T )) ≤M0. (2.1)

(A7) u0 ∈ H2(Ω)∩W 1,∞(Ω) with u0 ≥ κ0 and w0 ∈ L∞(Ω) with w0 ≥ 0 a.e. on
Ω. Also, there exists a constant N0 > 0 such that

|∇u0|L∞(Ω) + |∆u0|L∞(Ω) ≤ N0. (2.2)

Moreover, u0 = ub(0) a.e. on ∂Ω and f∗(u0) ≤ w0 ≤ f∗(u0) a.e. on Ω.
Next, we define a solution of (P) on [0, T ] in the following way:

Definition 2.1. Let u and w be functions on Q(T ). We call that the pair {u,w}
is a solution of (P) on [0, T ] if the conditions (S1) ∼ (S4) hold:

(S1) u ∈W 1,2(0, T ;H)∩L∞(0, T ;H1(Ω))∩L2(0, T ;H2(Ω)), u > 0 a.e. on Q(T )
and w ∈W 1,2(0, T ;H).

(S2) ut − div (∇(G(u))) = wf a.e. in Q(T ).
(S3) wt + ∂I(u;w) 3 0 a.e. in Q(T ).
(S4) u = ub a.e. on S(T ) and u(0) = u0, w(0) = w0 a.e. on Ω.

First, we recall the following theorem concerned with the existence of a solution
of (P).

Theorem 2.2. (Aiki-Kumazaki [3]) If (A1) ∼ (A7) hold, then (P) has at least one
solution on [0, T ] such that

κ0 ≤ u ≤ u∗ and 0 ≤ w ≤ w∗ a.e. on Q(T ),

where u∗ = max{|u0|L∞(Ω), |ub|L∞(Q(T )), w∗|f |L∞(Q(T ))}(T + 1) and κ0 and w∗ are
the same constants as in (A5) and (A6), respectively.

Here, we set
g∗ := max

κ0≤r≤u∗
g(r). (2.3)

The main theorem of this paper is the following:

Theorem 2.3. Under (A1) ∼ (A7), let {ui, wi} be solutions of (P) on [0, T ] for
i = 1, 2. If κ0 ≤ ui ≤ u∗ a.e. on Q(T ) for i = 1, 2, then u1 = u2 and w1 = w2 a.e.
on Q(T ).

The proof of Theorem 2.3 is shown in Section 5. To conclude this section we
state the following useful lemma.

Lemma 2.4. If (A1) holds, then (1)∼(3) hold:
(1) (cf. [11, Lemma 3.7.1]) There exists a positive constant C∗ such that

|u|H2(Ω) ≤ C∗(|∆u|H + |u|H) for u ∈ H2(Ω).

(2) (cf. [10, Theorem 2.2 in Chapter 2]) There exists a positive constant C∗ such
that

|u|Lq(Ω) ≤ C∗|∇u|αLm(Ω)|u|
1−α
Lr(Ω) for u ∈W 1,m

0 (Ω),

where α =

(
1

r
− 1

q

)(
1

n
− 1

m
+

1

r

)−1

and m, r ≥ 1, q are positive constants satis-

fying the following condition: If m < n and r ≤ nm/(n−m), then q is any number
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from [r, nm/(n − m)], if m ≥ n > 1, then q is any number in the interval [r,∞)
and if m > n > 1, then q =∞ is also valid.
(3) (cf. [5]) For p0, q0, p1, q1 ≥ 1, let W p0,q0:p1,q1((0, T ),Ω) be the following set:

W p0,q0:p1,q1((0, T ),Ω) := {z ∈ L1(Q(T ))| ∂z
∂t
∈ Lp0(0, T, Lq0(Ω)),

∂z

∂xi
∈ Lp1(0, T, Lq1(Ω)) for i = 1, 2, 3}.

If q2 ≥ max{q0, q1} and p2 ≥ max{p0, p1}, and(
1− 1

p0
+

1

p2

)(
1

N
− 1

q1
+

1

q2

)
>

(
1

p1
− 1

p2

)(
1

q0
− 1

q2

)
, (2.4)

then there exists a positive constant Ce such that

|z|Lp2 (0,T ;Lq2 ) ≤ Ce
(
|z|Lp1 (0,T ;W 1,q1 (Ω)) + |zt|Lp0 (0,T ;Lq0 (Ω))

)
(2.5)

for z ∈W p0,q0:p1,q1((0, T ),Ω).

In the case of p2 =∞, if q2 ≥ max{q0, q1} and
1

p′0

(
1

N
− 1

q1
+

1

q2

)
>

1

p1

(
1

q0
− 1

q2

)
,

where p′0 is the dual index of p0, then there exists a positive constant Ce such that

|z|Lq2 (Ω,C([0,T ])) ≤ Ce
(
|z|Lp1 (0,T ;W 1,q1 (Ω)) + |zt|Lp0 (0,T ;Lq0 (Ω))

)
(2.6)

for z ∈W p0,q0:p1,q1((0, T ),Ω).

Proof. The assertion (2) is a direct consequence of Gagliardo-Nirenberg’s inequality.
Also, by repeating the argument of [5, Chapter IV, Vol. II], we can derive the
inequality in the assertion (3). Here, we give a proof of (2.5) with N = 3, Ω = R3

and R in place of [0, T ]. Similarly to the following proof, we can show that (2.6)
holds. In this proof, we put | · |p,q = | · |Lp(R,Lq(R3)). First, for σ ∈ (0, 1] and

u ∈W p0,q0,p1,q1(R3,R), we define

uσ(x, t) = σ−3−λ
∫
R

∫
R3

ϕ

(
x− y
σ

,
t− s
σλ

)
u(y, s)dyds.

Here, ϕ is a smooth nonnegative function on R3 ×R and vanishes outside B(1)×
(−1, 1), where B(r) is a ball in R3 at the origin with a radius r, and it satisfies that∫ 1

−1

∫
B(1)

ϕ(x, t)dxdt = 1. Also, we choose

λ =
1 + 3( 1

q0
− 1

q1
)

1
p′0

+ 1
p1

,

where p′0 is the dual index of p0. By (2.4) we see that λ > 0. Easily, we have

∂

∂σ
uσ(x, t) = −λσ−3−1

∫
R

∫
R3

t− s
σλ

ϕ

(
x− y
σ

,
t− s
σλ

)
∂u

∂s
(y, s)dyds

−σ−3−λ
∫
R

∫
R3

3∑
i=1

xi − yi
σ

ϕ

(
xi − yi
σ

,
t− s
σλ

)
∂u

∂yi
(y, s)dyids.
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Now, for 0 < α < β ≤ 1, let

L0(x, t) =

∫ β

α

σ−3−1

∫
R

∫
R3

t− s
σλ

ϕ

(
x− y
σ

,
t− s
σλ

)
∂u

∂s
(y, s)dydsdσ,

L1(x, t) =

∫ β

α

σ−3−λ
∫
R

∫
R3

3∑
i=1

xi − yi
σλ

ϕ

(
xi − yi
σ

,
t− s
σλ

)
∂u

∂yi
(y, s)dyidsdσ.

Then, we have

|uβ(x, t)− uα(x, t)| ≤ λ|L0(x, t)|+ |L1(x, t)| for (x, t) ∈ R3 ×R. (2.7)

By using Minkowski’s inequality and Young’s inequality for convolutions, we can
obtain

|L0|p2,q2 ≤ |Φ0|s0,r0
∣∣∣∣∂u∂s

∣∣∣∣
p0,q0

∫ β

α

σ−N−1+N/r0+λ/s0dσ, (2.8)

and

|L1|p2,q2 ≤ |Φ1|s1,r1 |∇u|p1,q1

∫ β

α

σ−N−λ+N/r1+λ/s1dσ, (2.9)

where Φ0(ξ, τ) = τϕ(ξ, τ), Φ1(ξ, τ) = ξϕ(ξ, τ) and

1

r0
= 1− 1

q0
+

1

q2
,

1

s0
= 1− 1

p0
+

1

p2
,

1

r1
= 1− 1

q1
+

1

q2
,

1

s1
= 1− 1

p1
+

1

p2
.

Here, we set

κ̃ = 3

(
1

p′0
+

1

p0

)−1{(
1− 1

p0
+

1

p2

)(
1

3
− 1

q1
+

1

q2

)
−
(

1

q0
− 1

q2

)(
1

p1
− 1

p2

)}
.

By using the fact that −4+3/r0 +λ/s0 = −3−λ+3/r1 +λ/s1 = κ̃−1 and applying
(2.8), (2,9) to (2.7), we have

|uβ − uα|p2,q2 ≤ C1(βκ̃ − ακ̃)

(∣∣∣∣∂u∂s
∣∣∣∣
p0,q0

+ |∇u|p1,q1

)
, (2.10)

where C1 is a positive constant depending on p0, p1, p2, q0, q1, q2. This implies that
uσ is a Cauchy sequence in Lp2(R, Lq2(R3)) so that there exists u∗ ∈ Lp2(R,
Lq2(R3)) such that uσ → u∗ in Lp2(R, Lq2(R3)) as σ → 0. By the definition
of uσ, we see that u∗ = u. Since there exists C2 > 0 such that |uα|p2,q2 ≤ C2|u|p1,q1

for any α ∈ (0, 1] by letting α→ 0 in (2.10) we see that

|u|p2,q2 ≤ |u− uβ |p2,q2 + |uβ |p2,q2

≤ C1βκ̃
(∣∣∣∣∂u∂s

∣∣∣∣
p0,q0

+ |∇u|p1,q1

)
+ C2|u|p1,q1

≤ 2(C1 + C2)

(∣∣∣∣∂u∂s
∣∣∣∣
p0,q0

+ |u|Lp1 (R,W 1,q1 (R3))

)
.

Therefore, we obtain the desired inequality.
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3. Boundedness of ∇u. In this section, we prove that ∇u ∈ L∞(Q(T )) in a
similar way to that of Ladyženskaja-Solonikov-Uralćeva [10, Section 10 in Chapter
3]. The proof is rather long so that we divide it several steps. As the first step,
we show the boundedness of ∇u on the boundary in Lemma 3.1. Next, we give the
Hölder continuity of u in Lemma 3.2, and by using this fact and the boundedness
of the boundary we can obtain that ∇u ∈ Lp(Q(T )) for any p ≥ 2. Then we can
get the boundedness of ∇u on the whole domain.

Lemma 3.1. (cf. [10, Lemma 3.1 in Chapter 6]) Let {u,w} be a solution of (P)
with κ0 ≤ u ≤ u∗ a.e. on Q(T ) under the assumptions (A1)–(A7). Then, there
exists a positive constant N1 such that |∇u| ≤ N1 on S(T ).

Proof. First, we put v = G(u), ρ(r) = G−1(r) for r ∈ R and ṽ = v −G(ub). Then,
we have

ρ′(v)ṽt −∆ṽ = wf − ρ′(v)(G(ub))t + ∆G(ub) a.e. in Q(T ),

ṽ = 0 a.e. on S(T ),

ṽ(0) = G(u0)−G(ub(0)) in Ω.

From the assumption for u on Q(T ), there exists positive constants δ∗ and δ∗ such

that δ∗ ≤ ρ′(v) ≤ δ∗ on Q(T ). By putting f̃ = wf − ρ′(v)(G(ub))t + ∆G(ub), we

see from (A3) and (A6) that f̃ ∈ L∞(Q(T )) and from (A7) that ṽ(0) ∈ H1
0 (Ω) ∩

W 1,∞(Ω). Here, we take sequences {aε} ⊂ C2(Q(T )), {f̃ε} ⊂ C∞(Q(T )) and

{ṽ0,ε} ⊂ C∞0 (Ω) with δ∗/2 ≤ aε ≤ 2δ∗ on Q(T ), |f̃ε|L∞(Q(T )) ≤ |f̃ |L∞(Q(T )) + 1 and

|ṽ0,ε|W 1,∞(Ω) ≤ |ṽ0|W 1,∞(Ω) +1 such that aε → ρ′(v), f̃ε → f̃ strongly in L2(0, T ;H)

and ṽ0,ε → ṽ0 in H1
0 (Ω) as ε→ 0. Then, the following problem (P)ε

aεṽεt −∆ṽε = f̃ε a.e. in Q(T ),

ṽε = 0 a.e. on S(T ),

ṽε(0) = ṽ(0) in Ω.

has a unique classical solution ṽε on Q(T ) (see for instance [10, Chapter 4]). Easily,
we get a constant K > 0 such that |ṽε|L∞(Q(T )) ≤ K for ε > 0.

In order to estimate the flux of a solution to (P) on the boundary we need to
describe ∂Ω in the following exact form (see [12, Chapter 1 and 2]): For δ > 0 we
set

Ωδ := {x ∈ Ω| d(x) < δ},
where d(x) = dist(x, ∂Ω) for x ∈ Ω. Since ∂Ω is in the class of C2, there exists
i∗ ∈ N , δ > 0, a disc ∆i ⊂ R2, ai ∈ C2(∆i), Ωi ⊂ Ωδ and the local coordinate
y′i ∈ R2 on ∆i for 1 ≤ i ≤ i∗ satisfying the following (i), (ii) and (iii):

(i) Ωδ = ∪i
∗

i=1Ωi, ∆i = {y′i ∈ R2| |y′i| < σi},

where σi > 0,

∂Ω = ∪i
∗

i=1{(y′i, ai(y′i))| y′i ∈ ∆i}.
(ii) For 1 ≤ i ≤ i∗ we define an operator Ti : ∆i × (0, δ)→ Ωi by

Ti(y′i, τ) = (y′i, ai(y
′
i))− τν(y′i, ai(y

′
i)) for y′i ∈ ∆i and 0 < τ < δ,

where ν is the outward normal vector on ∂Ω, and Ti is a bijective.
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(iii) By putting Γi = T −1
i and b

(i)
kl =

3∑
j=1

∂Γik
∂xj

∂Γil
∂xj

it holds that

3∑
k,l=1

b
(i)
kl ξkξl ≥ µ

3∑
k=1

ξ2
k for ξ = (ξ1, ξ2, ξ3) ∈ R3 and 1 ≤ i ≤ i∗, (3.1)

where µ is a positive constant.
Here, for any α > 0 and β > 0, let

z(x) = αe−βd(x) for x ∈ Ωδ, (3.2)

and
ẑ(y′i, τ) = z(Ti(y′i, τ)) for (y′i, τ) ∈ ∆i × (0, δ).

Then it is easy to see that ẑ(y′i, τ) = αe−βτ for (y′i, τ) ∈ ∆i× (0, δ) and z ∈ C2(Ωδ).
Also, we have

∆z =

3∑
k=1

∂2z

∂x2
k

= αβ2e−βτ
3∑
k=1

(
∂Γi3
∂xk

)2 − αβe−βτ
3∑
k=1

∂2Γi3
∂x2

k

≥ αβ2e−βτµ− αβe−βτ
3∑
k=1

∂2Γi3
∂x2

k

≥ αβe−βτ (βµ− CΩ) on Ωi,

where CΩ is a positive constant satisfying

3∑
k=1

∣∣∣∣∂2Γik
∂x2

k

∣∣∣∣ ≤ CΩ on Ωi for 1 ≤ i ≤ i∗.

Accordingly, by taking β > 0 such that β ≥ 2CΩ

µ we have

∆z ≥ αβe−βδCΩ on Ωδ. (3.3)

Next, we can take α1 > 0 such that ṽε(0) + z ≤ α1 in Ωδ. In fact, for x ∈ Ωδ
there exists τ > 0 and x0 ∈ ∂Ω such that x = x0 − τν(x0). Since ṽ0,ε(x0) = 0 and

ṽε(0, x) + z(x) = ṽ0,ε(x)− ṽ0,ε(x0) + αe−βτ

≤ |∇ṽ0,ε|L∞(Ω)|x− x0|+ α
= |∇ṽ0,ε|L∞(Ω)τ + α,

elementary calculations implies

ṽε(0, x) + z(x) ≤ α on Ωδ for ε > 0 and α ≥ α1,

where α1 is some positive constant. Also, since |ṽε|L∞(Q(T )) ≤ K for ε > 0, we see

that for α ≥ K/(1− e−βδ),
ṽε + z ≤ K + αe−βδ ≤ α(1− e−βδ) + αe−βδ = α on ∂Ωδ.

Furthermore, let

α = max

{ |f̃ |L∞(Q(T )) + 1

βe−βδCΩ
,

K

1− e−βδ
, α1

}
.

Then, it holds that for ε > 0

aε(ṽε + z)t −∆(ṽε + z) ≤ 0 in (0, T )× Ωδ, (3.4)
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ṽε + z ≤ α on (0, T )× ∂Ωδ,

ṽε(0) + z(0) ≤ α in Ωδ.

Now, we multiply (3.4) by [ṽε + z − α]+. Then, we have

1

2

d

dt

∫
Ωδ

aε|[ṽε + z − α]+|2dx ≤ 1

2

∫
Ωδ

(aε)t|[ṽε + z − α]+|2dx.

Since ∫
Ωδ

(aε)t|[ṽε + z − α]+|2dx ≤
∣∣∣∣ (aε)taε

∣∣∣∣
L∞(Q(T ))

∫
Ωδ

aε|[ṽε + z − α]+|2dx,

by Gronwall’s inequality we can show that ṽε + z ≤ α a.e. on (0, T )×Ωδ for ε > 0.
Therefore, for x ∈ ∂Ω and 0 < r < δ, we have

∂ṽε
∂ν

= lim
r→0

ṽε(x− rν(x))− ṽε(x)

r
≤ lim
r→0

α
(1− e−βr)

r
≤ αβ. (3.5)

Since ṽε is bounded in W 1,2(0, T ;H) ∩ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)), we can
take a subsequence {ṽε,m} such that ṽε,m → v∗ strongly in C([0, T ];H) ∩ L2(0, T ;
H1(Ω)), weakly in W 1,2(0, T ;H) and L2(0, T ;H2(Ω)), weakly star in L∞(0, T ;

H1(Ω)) and
∂ṽε,m
∂ν → ∂v∗

∂ν weakly in L2(0, T ;L2(∂Ω)) as m → ∞. Therefore, by
letting m→∞ we obtain

ρ′(v)v∗t −∆v∗ = f̃ a.e. in Q(T ),

v∗ = 0 a.e. on S(T ),

v∗(0) = ṽ(0) on Ω,

(3.6)

and by the lower semi continuity of weak convergences, we derive

∂v∗

∂ν
≤ αβ on ∂Ω. (3.7)

Now, by the uniqueness of (3.6) we see that v∗ = ṽ = v − G(ub). Therefore, from

(3.6), we see that ∂ṽ
∂ν ≤ αβ a.e. on S(T ). Similarly, we can show that ∂(−ṽ)

∂ν ≤ αβ
a.e. on S(T ). Finally, since ṽ = 0 a.e. on S(T ), we have |∇ṽ| ≤ αβ a.e. on S(T ) so
that (A3) and (A6) implies the conclusion of this lemma.

Next, we prove the Hölder continuity of u. The proof is quite similar to that of
[10] so that we may skip the proof. Since the equation (1.1) does not contain the
class dealt in [10], we give a part of the proof. Precisely, the goal of the following
proof of Lemma 3.2 is to show u ∈ B, where the set B will be defined in the
proof. This set was already considered in [10]. Here, we note that the range of the
parameter k is little bit difference from that of [10]. However, we can prove Lemma
3.2 in a similar way to that of [10, Theorems 7.1 and 8.1 in Chapter 2]. Thus we
finish the proof when we get u ∈ B.

Lemma 3.2. (cf. [10, Theorem 10.1 in Chapter 3]) Under (A1) ∼ (A7) hold, let
{u,w} be a solution of (P) with κ0 ≤ u ≤ u∗ a.e on Q(T ). Then u is Hölder

continuous on Q(T ).

Proof. First, for x0 ∈ Ω and ρ > 0 let Kρ = Kρ(x0) is a ball in R3 at a center x0

with a radius ρ and Ωρ(x0) := Kρ(x0) ∩ Ω. Then by (A1) there exists 0 < θ0 < 1
such that

mes Ωρ(x0) ≤ (1− θ0)mes Kρ(x0) for any x0 ∈ ∂Ω and ρ > 0, (3.8)

where mes A is the Lebesgue measure of A for a measurable subset A ⊂ R3.
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Next, let M , γ and κ be positive numbers. Here, in order to define a set B :=
B(M,γ, r, κ) of functions we introduce the following notations:

w(k)(t, x) = max{w(t, x)− k, 0} for k ∈ R;

Q(ρ, τ) = (t0, t0 + τ)× Ωρ(x0) for ρ > 0, τ > 0, t0 ∈ R with 0 ≤ t0 ≤ t0 + τ ≤ T ;

|z|2V (Q(ρ,τ)) = ess supt0≤t≤t0+τ |z(t)|2L2(Ωρ(x0)) +

∫ t0+τ

t0

|∇z(t)|2L2(Ωρ(x0))dt;

Ak,ρ(t) = {x ∈ Ωρ(x0)| w(t, x) > k} for k ∈ R, 0 ≤ t ≤ T and ρ > 0;

q and r are positive constants satisfying

1

r
+

3

2q
=

3

4

with q ∈ (2, 6] and r ∈ [2,∞). By using these notations we define the set B as
follows: we say that u ∈ B if u ∈ V (T ), |u|L∞(Q(T )) ≤M and the function w(t, x) =
±u(t, x) satisfies the following inequalities (3.10) and (3.11) for 0 ≤ t0 ≤ t0 +τ ≤ T ,
ρ > 0, σ1, σ2 ∈ (0, 1) and k with{

k ∈ [−M,M ] if Kρ(x0) ⊂ Ω,

k ∈ [0,M ] otherwise,
(3.9)

max
t0≤t≤t0+τ

|w(k)(t, x)|2L2(Ωρ−σ1ρ) ≤ |w
(k)(t0)|2L2(Ωρ)

+γ

[
(σ1ρ)−2|w(k)|2L2(Q(ρ,τ)) +

(∫ t0+τ

t0

(mesAk,ρ(t))
r
q dt

) 2
r (1+κ)]

, (3.10)

|w(k)|2V (Q(ρ−σ1ρ, τ−σ2τ))

≤ γ
{

[(σ1ρ)−2 + (σ2ρ)−1]|w(k)|2L2(Q(ρ,τ)) +

(∫ t0+τ

t0

(mesAk,ρ(t))
r
q dt

) 2
r (1+κ)}

,

(3.11)
Although our definition of B is little bit different from one in [10, Section 7 in
Chapter 2], we can prove that u ∈ B implies the Hölder continuity of u in a similar
way to that of [10].

From now on, we shall show that u ∈ B for some positive numbers M , γ, r, δ and
κ. Let x0 ∈ Ω, M = u∗, where u∗ is the same positive constant as in Theorem 2.2,
and ξ ∈ C∞([0, T ]× Ω) with supp ξ(t) ⊂ Kρ(x0) for 0 ≤ t ≤ T and 0 ≤ ξ ≤ 1 a.e.
on [0, T ]× Ω, and k be a number satisfying (3.7), and ρ > 0, 0 ≤ t0 ≤ t0 + τ ≤ T ,
and σ1, σ2 ∈ (0, 1). Also, we put v = u − ub, f1 = wf − ubt and f2 = −g(u)∇ub.
Then it holds that

vt − div(g(u)∇v) = f1 − divf2 in Q(T ). (3.12)

By testing [v − k]+ξ2 ∈ H1
0 (Ω) to (3.12), we have

1

2

d

dt

∫
Ω

|[v − k]+|2ξ2dx+ g0

∫
Ω

|∇[v − k]+|2ξ2dx

≤
∫

Ω

f1[v − k]+ξ2dx+

∫
Ω

f2∇([v − k]+ξ2)dx

+

∫
Ω

|[v − k]+|2ξtξdx+ 2

∫
Ω

g(u)∇[v − k]+[v − k]+ξ∇ξdx a.e. on [0, T ]. (3.13)
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It is easy to see that∫
Ω

f1[v − k]+ξ2(t)dx ≤ 2M |f1|L∞(Q(T ))mesAk,ρ,∫
Ω

f2∇([v − k]+ξ2)dx

=

∫
Ω

f2(∇[v − k]+)ξ2dx+ 2

∫
Ω

f2[v − k]+ξ∇ξdx

≤ g0

4

∫
Ω

|∇[v − k]+|2ξ2dx+ (1 +
1

g0
)|f2|2L∞(Q(T ))mesAk,ρ

+

∫
Ak,ρ

|[v − k]+|2|∇ξ|2dx,

2

∫
Ω

g(u)∇[v − k]+[v − k]+ξ∇ξdx,

≤ g0

4

∫
Ak,ρ

|∇[v − k]+|2ξ2dx+
4(g∗)2

g0

∫
Ak,ρ

|[v − k]+|2|∇ξ|2dx a.e. on [0, T ].

From these inequalities it follows that

1

2

d

dt

∫
Ω

|[v − k]+|2ξ2dx+
g0

2

∫
Ω

|∇[v − k]+|2ξ2dx

≤ γ1mesAk,ρ + γ1

∫
Ak,ρ

(|∇ξ|2 + |ξt|ξ)|[v − k]+|2dx,

where γ1 = 2M |f1|L∞(Q(T )) + (1 + 1
g0

)|f2|2L∞(Ω) + 1 + 4(g∗)2

g0
. By integrating this

inequality over [t0, t1] for 0 ≤ t0 ≤ t1 ≤ T , we obtain

1

2

∫
Ω

|[v(t1)− k]+|2ξ2(t1)dx+
g0

2

∫ t1

t0

∫
Ω

|∇[v − k]+|2ξ2dxdt

≤ 1

2

∫
Ω

|[v(t0)− k]+|2ξ2(t0)dx+ γ1

∫ t1

t0

mesAk,ρdxdt

+

∫ t1

t0

∫
Ak,ρ

(|∇ξ|2 + ξtξ)|[v − k]+|2dxdt.

Here, let r and q be two positive numbers satisfying 1/r + 3/2q = 1 + κ∗ and
κ∗ = 3/8, for instance q = r = 4/3. Clearly, we have∫ t1

t0

mesAk,ρ(t)dxdt ≤ T
1
r′ |Ω|

1
q′

(∫ t1

t0

(mes Ak,ρ(t))
r
q dt

) 1
r

,

where r′ and q′ are the dual indexes of r and q, respectively. Moreover, by setting
k := 2κ∗/3 = 1/4 and taking r̂ and q̂ such that r̂ = 2(1 + k)r and q̂ = 2(1 + k)q, we
see that

1

2

∫
Ω

|[v(t1)− k]+|2ξ2(t1)dx+
g0

2

∫ t1

t0

∫
Ω

|∇[v − k]+|2ξ2dxdt

≤ 1

2

∫
Ω

|[v(t0)− k]+|2ξ2(t0)dx+ γ1T
1
r′ |Ω|

1
q′

(∫ t1

t0

(mes Ak,ρ(t))
r̂
q̂ dt

) 2(1+r)
r̂

+γ1

∫ t1

t0

∫
Ak,ρ

(|∇ξ|2 + |ξt|ξ)|[v − k]+|2dxdt
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for 0 ≤ t0 ≤ t1 ≤ T and
1

r̂
+

3

2q̂
=

3

4
. (3.14)

Then by using [10, Remark 7.2 in Chapter 2] (3.14) implies that u ∈ B(M,γ, r̂, κ)
for some γ > 0. Also, by (3.8), (3.14) and the Hölder continuity of ub up to the
boundary, we see that u satisfies the assumption of [10, Theorem 8.1 in Chapter 2].
Therefore, on account of [10, Theorems 7.1 and 8.1 in Chapter 2] we can show that

v is Hölder continuous on Q(T ). Finally, since ub is Hölder continuous on Q(T ),

u = v + ub is Hölder continuous on Q(T ), too.

By using the estimate of ∇u on the boundary (Lemma 3.1) and the Hölder

continuity on Q(T ) (Lemma 3.2), we prove that ∇u ∈ Lp(Q(T )) for any p ≥ 2.

Lemma 3.3. Under the same assumption as in Lemma 3.1, ∇u ∈ Lp(Q(T )) for
p ≥ 2.

Proof. For p ≥ 2 and M > 1, we put

ϕM (r) :=


rp if r < M,

Mp +
(r −M)pMp−1

2
if M ≤ r ≤M + 1,

Mp +
pMp−1

2
if r > M + 1,

,

ϕ̂M (r) =

∫ r

0

ϕM (s)ds,

v(t) = |∇u(t)|2 and M1 := max{N2
1 , N0} where N1 and N0 are the same constants

as in Lemma 3.1 and as in (2.2), respectively. Then, because of u ∈ L2(0, T ;H2(Ω)),

we can see that
∂

∂xi
(ϕM ([v(t)−M1]+)

∂u(t)

∂xi
ξ2) ∈ H for 1 ≤ i ≤ 3 and a.e. t ∈

[0, T ], and ξ ∈ C∞(Ω). By multiplying (1.1) by
∂

∂xi
(ϕM ([v(t)−M1]+)

∂u(t)

∂xi
ξ2)

and summing up from i = 1 to 3, we have by partial integration and using Lemma
3.1

1

2

d

dt

∫
Ω

ϕ̂M ([v −M1]+)ξ2dx

+

3∑
k=1

3∑
i=1

∫
Ω

∂

∂xi
(g(u)

∂u

∂xk
)× ∂

∂xk

[
ϕM ([v −M1]+)

∂u

∂xi
ξ2

]
dx

=

3∑
i=1

∫
Ω

wf ×
[
∂

∂xi
(ϕM ([v −M1]+))

∂u

∂xi
ξ2

+ϕM ([v −M1]+)
∂2u

∂x2
i

ξ2 + ϕM ([v −M1]+)
∂2u

∂x2
i

2ξ
∂ξ

∂xi

]
dx

a.e. on Q(T ).

Here, we note that the following properties hold:

(i) rϕM (r) ≤ (p+ 1)ϕ̂M (r) for r ≥ 0,
(ii) ϕM (r) ≤ (p+ 1)ϕ̂M (r) + 1 for r ≥ 0,

(iii)
ϕM (r)

r2
≤ (p+ 1)ϕ̂M (r) + 1 for ≥ 0,

(iv) ϕM (r)r
1
2 ≤ (p+ 1)ϕ̂M (r) + 1 for r ≥ 0,

(v) ϕ′M (r)r ≤ pϕM (r) for r ≥ 0,
(vi) ϕ′M (r) ≤ p(ϕM (r) + 1) for r ≥ 0.
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By using the above properties and Young’s inequality, we have

1

2

d

dt

∫
Ω

ϕ̂M ([v(t)−M1]+)ξ2dx+ C1

∫
Ω

g(u(t))ϕM ([v(t)−M1]+)|uxx(t)|2ξ2

≤ C2

∫
Ω

ϕM ([v(t)−M1]+)v2(t)ξ2dx (3.15)

+C3

∫
Ω

ϕ̂M ([v(t)−M1]+)ξ2dx+ C4

∫
Ω

ξ2dx

+C5

∫
Ω

ϕ̂M ([v(t)−M1]+)|∇ξ|2dx+ C6

∫
Ω

|∇ξ|2dx,

where |uxx|2 =
∑3
i,j=1 |

∂2u
∂xi∂xj

|2 and Ci(1 ≤ i ≤ 6) is a positive constant depending

on p, M1, and |wf |L∞(Q(T )).

Here, we estimate the term of
∫

Ω
ϕM ([v−M1]+)v2ξ2dx in the following way. For

ε > 0 we take ξl ∈ C∞(Ω) for l = 1, · · · lε where lε is a positive number determined
later by{

supp ξl ⊂ Bl,ε(xl) := {x ∈ Rn| |xl − x| < ε}, 0 ≤ ξl ≤ 1 on Ω∑lε
l=1 ξl(x) = 1 on Ω, Ωl = Ω ∩Bl,ε(xl).

Then, for each l ≤ lε and xl ∈ Ωl, by taking ξ = ξl and using vϕM ([v−M1]+)ξ2
l∇u =

0 on ∂Ωl we have∫
Ω

ϕM ([v(t)−M1]+)v2(t)ξ2
l dx =

∫
Ωl

ϕM ([v(t)−M1]+)v2(t)ξ2
l dx

=

∫
Ωl

∇u(t)(∇u(t)ϕM ([v(t)−M1]+)v(t)ξ2
l dx

=

∫
Ωl

∇(u(t, x)− u(t, xl))(∇u(t)ϕM ([v(t)−M1]+)v(t)ξ2
l )dx

= −
∫

Ωl

(u(t, x)− u(t, xl))div(∇u(t)ϕM ([v(t)−M1]+)v(t)ξ2
l )dx

= −
∫

Ωl

(u(t, x)− u(t, xl))

[
∆u(t)ϕM ([v(t)−M1]+)v(t)ξ2

l

+∇u(t)ϕ′M ([v(t)−M1]+)∇v(t)v(t)ξ2
l +∇u(t)ϕM ([v(t)−M1]+)v(t)× 2ξl(t)∇ξl

+∇u(t)ϕM ([v(t)−M1]+)ξ2
l (t)∇v(t)

]
dx =:

4∑
j=1

Ij(t) for t ∈ [0, T ]. (3.16)

Here, we put osc{u(t); Ωl} := maxΩlu(t)− minΩlu(t). By using the properties of
ϕM and ϕ̂M and Young’s inequality for any δ > 0, we have

I1(t) ≤
√

3osc{u(t); Ωl}
∫

Ωl

|uxx(t)|ϕM ([v(t)−M1]+)v(t)ξ2
l dx

≤ 3

2δ
osc{u(t); Ωl}2

∫
Ωl

g(u(t))|uxx(t)|2ϕM ([v(t)−M1]+)ξ2
l dx (3.17)

+
δ

2g∗

∫
Ωl

ϕM ([v(t)−M1]+)v2(t)ξ2
l dx,

I2(t) ≤ osc{u(t); Ωl}
∫

Ωl

ϕ′M ([v(t)−M1]+)× 2|uxx(t)|v2(t)ξ2
l dx
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= osc{u(t); Ωl}
∫

Ωl

ϕ′M ([v(t)−M1]+)× 2|uxx(t)|[v(t)−M1]v(t)ξ2
l dx

+osc{u(t); Ωl}
∫

Ωl

ϕ′M ([v(t)−M1]+)× 2|uxx(t)|M1[v(t)−M1]ξ2
l dx

+osc{u(t); Ωl}
∫

Ωl

ϕ′M ([v(t)−M1]+)× 2|uxx(t)|M2
1 ξ

2
l dx

≤ 2osc{u(t); Ωl}
∫

Ωl

(p+ 1)ϕM ([v(t)−M1]+)|uxx(t)|v(t)ξ2
l dx

+2osc{u(t); Ωl}
∫

Ωl

(p+ 1)ϕM ([v(t)−M1]+)M1|uxx(t)|ξ2
l dx

+2osc{u(t); Ωl}
∫

Ωl

ϕM ([v(t)−M1]+)

|[v(t)−M1]+|
|uxx(t)|M2

1 ξ
2
l dx

≤ 3

2δ
osc{u(t); Ωl}2

∫
Ωl

g(u(t))|uxx(t)|2ϕM ([v(t)−M1]+)ξ2
l dx (3.18)

+
2δ(p+ 1)2

g∗

∫
Ωl

ϕM ([v(t)−M1]+)v2(t)ξ2
l dx

+
δ

2

(
4(p+ 1)2M2

1

g∗
+

4M4
1

g∗

)∫
Ωl

((p+ 1)ϕ̂M ([v(t)−M1]+) + 1)ξ2
l dx,

I3(t) ≤ osc{u(t); Ωl}
∫

Ωl

ϕM ([v(t)−M1]+)v
1
2 (t)v(t)× 2ξl|∇ξl|dx

≤ 2

δ
osc{u(t); Ωl}2

∫
Ωl

ϕM ([v(t)−M1]+)v(t)|∇ξl|2dx

+
δ

2

∫
Ωl

ϕM ([v(t)−M1]+)v2(t)ξ2
l (t)dx

≤ 2

δ
osc{u(t); Ωl}2

[∫
Ωl

(p+ 1)ϕ̂M ([v(t)−M1]+)|∇ξl|2dx

+

∫
Ωl

M1[(p+ 1)ϕ̂M ([v(t)−M1]+) + 1]|∇ξl|2dx
]

+
δ

2

∫
Ωl

ϕM ([v(t)−M1]+)v2(t)ξ2
l (t)dx, (3.19)

and

I4(t) ≤ osc{u(t); Ωl}
∫

Ωl

ϕM ([v(t)−M1]+)× 2|uxx(t)|v(t)ξ2
l dx

≤ 1

2δ
osc{u(t); Ωl}2

∫
Ωl

g(u(t))ϕM ([v(t)−M1]+)|uxx(t)|2ξ2
l dx

+
2δ

g∗

∫
Ωl

ϕM ([v(t)−M1]+)v2(t)ξ2
l dx for a.e. t ∈ [0, T ]. (3.20)

By taking a suitable number δ > 0 in (3.17)–(3.20), from (3.16), it follows that

1

2

∫
Ωl

ϕM ([v(t)−M1]+)v2(t)ξ2
l dx ≤

+C7osc{u(t); Ωl}2
∫

Ωl

g(u(t))ϕM ([v(t)−M1]+)|uxx(t)|2ξ2
l dx

+C8

∫
Ωl

(ϕ̂M ([v(t)−M1]+) + 1)ξ2
l dx
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+C9osc{u(t); Ωl}2
∫

Ωl

(ϕ̂M ([v(t)−M1]+) + 1)|∇ξl|2dx for a.e. t ∈ [0, T ], (3.21)

where Ci(i = 7, 8, 9) is a positive constant. By (3.15) replaced ξ and Ω by ξl and
Ωl we have

1

2

d

dt

∫
Ωl

ϕ̂M ([v(t)−M1]+)ξ2
l dx

+

(
C1 − 2C2C7osc{u(t); Ωl}2

)∫
Ωl

g(u(t))ϕM ([v(t)−M1]+)|uxx(t)|2ξ2
l dx

≤
(
C3 + 2C2C8

)∫
Ωl

ϕ̂M ([v(t)−M1]+)ξ2
l dx+

(
C4 + 2C2C8

)∫
Ωl

ξ2
l dx

+

(
C5 + 2C2C9osc{u(t); Ωl}2

)∫
Ω

ϕ̂M ([v(t)−M1]+)|∇ξl|2dx

+

(
C6 + 2C2C9osc{u(t); Ωl}2

)∫
Ωl

|∇ξl|2dx. (3.22)

Here, by Lemma 3.2 since the solution u is Hölder continuous with exponent α on
Q(T ) and the points which takes the maximum and minimum value of u on Ωl
belongs to Ωl ⊂ Bl,ε, there exists C̃ > 0 such that

osc{u(t); Ωl} ≤ |maxΩlu(t)−minΩlu(t)| ≤ C̃εα for t ∈ [0, T ].

Therefore, by taking ε0 > 0 such that µ0 = C1−2C2C7C̃
2ε2α

0 > 0 from (3.22) there
exists Ci > 0 (10 ≤ i ≤ 13) such that

1

2

d

dt

∫
Ωl

ϕ̂M ([v(t)−M1]+)ξ2
l dx+ µ0

∫
Ωl

g(u(t))ϕM ([v(t)−M1]+)|uxx(t)|2ξ2
l dx

≤ C10

∫
Ωl

ϕ̂M ([v(t)−M1]+)ξ2
l dx+ C11

∫
Ωl

ξ2
l dx

+C12

∫
Ωl

ϕ̂M ([v(t)−M1]+)|∇ξl|2dx+ C13

∫
Ωl

|∇ξl|2dx for a.e. t ∈ [0, T ]. (3.23)

Now, we take lε0 for ε0 in (3.23) and set K̂ = max1≤l≤lε0 |∇ξl|. Then from (3.23),
we have

1

2

d

dt

∫
Ωl

ϕ̂M ([v(t)−M1]+)ξ2
l dx+ µ0

∫
Ωl

g(u(t))ϕM ([v(t)−M1]+)|uxx(t)|2ξ2
l dx

≤ C10

∫
Ωl

ϕ̂M ([v(t)−M1]+)ξ2
l dx+ C11

∫
Ωl

ξ2
l dx.

+C12K̂
2

∫
Ωl

ϕ̂M ([v(t)−M1]+)dx+ C13K̂
2|Ω| for a.e. t ∈ [0, T ]. (3.24)

By the summation from l = 1 to lε0 in (3.23) we have

1

2

d

dt

lε0∑
l=1

∫
Ωl

ϕ̂M ([v(t)−M1]+)ξ2
l dx

≤ C10

lε0∑
l=1

∫
Ωl

ϕ̂M ([v(t)−M1]+)ξ2
l dx+ C11lε0 |Ω|

+C12lε0K̂
2

∫
Ω

ϕ̂M ([v(t)−M1]+)dx+ C13lε0K̂
2|Ω| for a.e. t ∈ [0, T ]. (3.25)
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We note that there exists Ĉ > 0 such that 1 ≤ Ĉ
∑lε0
l=1 ξ

2
l . Then, it holds that∫

Ω

ϕ̂M ([v(t)−M1]+)dx ≤ Ĉ
lε0∑
l=1

∫
Ωl

ϕ̂M ([v(t)−M1]+)ξ2
l dx for t ∈ [0, T ].

Therefore, from (3.25), we have

1

2

d

dt

lε0∑
l=1

∫
Ωl

ϕ̂M ([v(t)−M1])ξ2
l dx

≤ (C10 + C12Ĉlε0K̂
2)

lε0∑
l=1

∫
Ωl

ϕ̂M ([v(t)−M1]+)ξ2
l dx+ (C11lε0 + C13lε0K̂

2)|Ω|

for a.e. t ∈ [0, T ].

By setting C14 = C10 +C12Ĉlε0K̂
2 and C15 = C11lε0 +C13lε0K̂

2 and by Gronwall’s
inequality, we have

lε0∑
l=1

∫
Ωl

ϕ̂M ([v(t)−M1]+)ξ2
l dx ≤ 2C15|Ω|e2C14TT for any t ∈ [0, T ]. (3.26)

By the properties (ii) between ϕ and ϕ̂M , from (3.25),∫
Ω

ϕM ([v(t)−M1]+) ≤ (2(p+ 1)ĈC15e
2C14TT + 1)|Ω| for any t ∈ [0, T ]. (3.27)

Since ϕM (r) → rp as M → ∞ for each r > 0, by Fatou’s Lemma and (3.27), we
obtain ∫

Ω

|[v(t)−M1]+|pdx ≤ liminfM→∞

∫
Ω

ϕM ([v(t)−M1]+)dx

≤ (2(p+ 1)ĈC15e
2C14TT + 1)|Ω|.

This implies that Lemma 3.3 holds.

On account of Lemma 3.3, we see that various Lp-norm of ∇u are finite. By
using this result, we prove the boundedness of ∇u.

Lemma 3.4. Let {u,w} be a solution of (P) under the assumption (A1)–(A7).
Then, there exists M > 0 such that |∇u| ≤M a.e. on Q(T ).

Proof. First, for the number N1 as in Lemma 3.1 we set M̃ := {1, N1, N
2
0 } where N0

is the same positive constant as in (2.2) and consider ∂
∂xi

([v(t)−k]+ ∂u(t)
∂xi

) for k ≥ M̃
and t ∈ [0, T ], where v(t) = |∇u(t)|2. Similarly to the proof of Lemma 3.3, we note

that [v(t) − k]+ ∂u(t)
∂xi
∈ H1

0 (Ω) for a.e. t ∈ [0, T ] and ∂
∂xi

([v(t) − k]+ ∂u(t)
∂xi

) ∈ H for

a.e. t ∈ [0, T ] and i = 1, 2, 3. Now, we multiply ∂
∂xi

([v(t) − k]+ ∂u(t)
∂xi

) to (1.1) and
have

1

2

d

dt

∫
Ω

|[v(t)− k]+|2dx

+

3∑
k=1

3∑
i=1

∫
Ω

∂

∂xi
(g(u)

∂u

∂xk
)× ∂

∂xi
([v(t)− k]+

∂u

∂xk
)dx

=

3∑
i=1

∫
Ω

w(t)f(t)×
[
∂

∂xi
([v(t)− k]+)

∂u

∂xi
+ [v(t)− k]+

∂2u

∂x2
i

]
dx

for a.e. t ∈ [0, T ].
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Now, we set Ak(t) = {x ∈ Ω| v(t, x) > k} for k ∈ R and t ∈ [0, T ]. By using
Young’s inequality to each term of the above identity for ε > 0, we have

1

2

d

dt

∫
Ω

|[v(t)− k]+|2dx

+

(
1

2
− |wf |L∞(Q(T ))

εLg
2

)∫
Ω

g(u)[v(t)− k]+|uxx|2dx+
3

8

∫
Ω

g(u)|∇v(t)|2dx

≤
L2
g

2g0

∫
Ak(t)

[v(t)− k]+v2(t)dx+
L2
g

g0

∫
Ak(t)

v3(t)dx

+
2|wf |2L∞(Q(T ))

g0

∫
Ak(t)

v(t)dx+
1

2ε

1

g0

∫
Ak(t)

[v(t)− k]+dx, (3.28)

where Lg is a positive constant given by (A2). By taking ε0 > 0 such that 1/2 −
2(ε0|wf |L∞(Q(T ))Lg) > 0 and integrating it over [0, t] for 0 ≤ t ≤ T , we have

1

2

∫
Ω

|[v(t)− k]+|2dx+
3

8

∫
Ω

g(u)|∇v(t)|2dx

≤
L2
g

2g0

∫ t

0

∫
Ak(τ)

[v(τ)− k]+v2(τ)dxdτ +
L2
g

g0

∫ t

0

∫
Ak(τ)

v3(τ)dxdτ

+
2|wf |2L∞(Q(T ))

g0

∫ t

0

∫
Ak(τ)

v(τ)dxdτ +
1

2ε0

1

g0

∫ t

0

∫
Ak(τ)

[v(τ)− k]+dxdτ

for t ∈ [0, T ]. (3.29)

Let q = 10, r = 2, κ = 1/2 and q′ and r′ be the dual indexes of q and r, respectively.
Then, it is easy to see that∫

Ak(t)

[v(t)− k]+v2(t) ≤
(∫

Ak(t)

v2q(t)

) 1
q
(∫

Ak(t)

||[v(t)− k]+|2 + k2|q
′
) 1
q′

, (3.30)∫
Ak(t)

v3(t)dx ≤ 2

∫
Ak(t)

v(t)(|[v(t)− k]+|2 + k2)dx

≤ 2

(∫
Ak(t)

vq(t)

) 1
q
(∫

Ak(t)

||[v(t)− k]+|2 + k2|q
′
) 1
q′

, (3.31)∫
Ak(t)

v(t)dx =

∫
Ak(t)

([v(t)− k]+ + k)dx

≤ 2

∫
Ak(t)

(|[v(t)− k]+|2 + k2|dx

≤ |Ω|
1
q

(∫
Ak(t)

||[v(t)− k]+|2 + k2|q
′
) 1
q′

, (3.32)∫
Ak(t)

[v(t)− k]+dx ≤
∫
Ak(t)

||[v(t)− k]+|2 + k2|dx

≤ |Ω|
1
q

(∫
Ak(t)

||[v(t)− k]+|2 + k2|q
′
dx

) 1
q′

for t ∈ [0, T ]. (3.33)

By (3.29)–(3.33), we have

1

2

∫
Ω

|[v(t)− k]+|2dx+
3

8

∫
Ω

g(u)|∇v(t)|2dx
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≤ C0

[(∫ t

0

∫
Ak(τ)

v2q(τ)dxdτ

) 1
q

+

(∫ t

0

∫
Ak(τ)

vq(τ)dxdτ

) 1
q

+ 2t
1
p |Ω|

1
q

]

×
[(∫ t

0

∫
Ak(τ)

|[v(τ)− k]+|2q
′
dxdτ

) 1
q′

+ k

(∫ t

0

mesAk(τ)dτ

) 1
q′
]

for 0 ≤ t ≤ T,

(3.34)
where C0 is a positive constant. Here, we note that(∫ t

0

∫
Ak(τ)

|[v(τ)− k]+|2q
′
dxdτ

) 1
q′

≤ |Ω|
κ

q′(1+κ) t
κ

q′(1+κ)

(∫ t

0

∫
Ak(τ)

|[v(τ)− k]+|2q
′(1+κ)dxdτ

) 1
q′(1+κ)

for 0 ≤ t ≤ T.

(3.35)
Therefore, by (3.34) with (3.35), we obtain

1

2

∫
Ω

|[v(t)− k]+|2dx+
3

8

∫
Ω

g(u)|∇v(t)|2dx

≤ C0

[(∫ t

0

∫
Ak(τ)

v20(τ)dxdτ

) 1
10

+

(∫ t

0

∫
Ak(τ)

v10(τ)dxdτ

) 1
10

+ 2t
1
10 |Ω| 1

10

]

×
[
|Ω| 3

10 t
3
10

(∫ t

0

∫
Ak(τ)

|[v(τ)− k]+| 10
3 dxdτ

) 3
5

+ k2

(∫ t

0

mesAk(τ)dτ

) 9
10
]

for 0 ≤ t ≤ T. (3.36)

Here, Lemma 3.3 guarantees that
∫ T

0

∫
Ω
v20(t)dxdt and

∫ T
0

∫
Ω
v10(t)dxdt are finite.

Also, by (2) of Lemma 2.4 in Section 2 with q = 10/3, m = r = 2 and n = 3, we
have for z ∈ C([0, T ];H) ∩ L2(0, T ;H1(Ω)),(∫ t

0

|z|
10
3

L
10
3 (Ω)

dτ

) 3
5

≤
(∫ t

0

C∗|∇z|2H |z|
4
3

Hdτ

) 3
5

≤ C∗ max
0≤s≤t

|z(s)|
4
5

H |∇z|
6
5

L2(0,t;H)

≤ C∗(|z|C([0,t];H) + |∇z|L2(0,t;H))
2.

(3.37)

Here, for any t ∈ [0, T ], we denote by V (t) = C([0, t];H) ∩L2(0, t;H1
0 (Ω)) with the

norm

|z|V (t) = max
0≤s≤t

|z(s)|H + |z|L2(0,t;H1
0 (Ω)) for z ∈ V (t).

By putting C̃0 = C0

[(∫ T
0

∫
Ω
v20(t)dxdt

) 1
10

+

(∫ T
0

∫
Ω
v10(t)dxdt

) 1
10

+ 2T
1
10 |Ω| 1

10

]
and using (3.37) from (3.36) it follows that(

min

{
1

2
,

3

8
g0

}
− C̃0|Ω|

3
10 t

3
10

)
|[v − k]+|2V (t) ≤ C̃0k

2

(∫ t

0

mesAk(τ)dτ

) 9
10

for 0 ≤ t ≤ T.
By taking t∗ > 0 such that m0 := min{ 1

2 ,
3
8g0} − C̃0|Ω|

3
10 (t∗)

3
10 > 0, we obtain

|[v − k]+|V (t) ≤ 2

√
C̃0

m0
k

(∫ t

0

mesAk(τ)dτ

) 3
10 (1+ 1

2 )

for t ≤ t∗. (3.38)
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Therefore, from Theorem 6.1 in Section 2 of [10], we see that there exists k̃ > 1

such that v ≤ 2M1k̃ for a.e. on Q(t) for t < t∗. Since the choice of t∗ does not

depend on the initial data, by repeating this argument we conclude that v ≤ 2M1k̃
for a.e. on Q(T ). Thus, Lemma 3.4 is proved.

4. Boundedness of |ut|H . In the previous section, we showed that ∇u ∈
L∞(Q(T )). The aim of this section is to establish ut ∈ L∞(0, T ;H).

Lemma 4.1. If {u,w} is a solution of (P) with κ0 ≤ u ≤ u∗ a.e. on Q(T ). Then
ut ∈ L∞(0, T ;H)

Proof. First, we consider the following problem (AP):
vt −∆(g(u)v) = F in Q(T ),

v = 0 on S(T ),

v(0) = v0 in Ω,

where F = (wf)t+∆(g(u)ubt)−ubtt and v0 = w(0)f(0)+∆G(u(0))−ubt(0). Here,
from (A4) and (A6) we note that F ∈ L2(0, T ;H) and v0 ∈ H.

First, we show that (AP) has a weak solution v ∈ V (T ) in the following sense:

−
∫
Q(T )

v(t)ηt(t)dxdt−
∫

Ω

v(0)η(0)dx

+

∫
Q(T )

∇(g(u(t))v(t))∇η(t)dxdt =

∫
Q(T )

F (t)η(t)dxdt,

for η ∈W 1,2(0, T ;H) ∩ L2(0, T ;H1
0 (Ω)) with η(T ) = 0. (4.1)

Indeed, we take sequences {Hn} ⊂ C∞(Q(T )) such that g0 ≤ Hn ≤ g∗ on Q(T ) and
|∇Hn| ≤ M on Q(T ), where g∗ and M are the same positive constants as in (2.3)
and Lemma 3.4, andHn → g(u) in L2(0, T ;H1(Ω)) as n→∞, and {v0,n} ⊂ C∞(Ω)
such that v0,n → v0 in H as n→∞. Since Hn, ∇Hn and ∆Hn belong to L∞(Q(T ))
for each n, the classical theory for parabolic equations leads to the following problem

vt −∆(Hnv) = F in Q(T ),

v = 0 on S(T ),

v(0) = v0,n in Ω,

has a solution v = vn ∈W 1,2(0, T ;H) ∩L∞(0, T ;H1
0 (Ω)). Then, by multiplying vn

to the equation we can have the following estimate:

|vn|L∞(0,T ;H) + |vn|L2(0,T ;H1(Ω)) ≤M2,

where M2 is a positive constant independent of n. Therefore, we can take a subse-
quence {vnk} ⊂ {vn} such that for some v ∈ L∞(0, T ;H)∩L2(0, T ;H1(Ω)), vnk → v
weakly in L2(0, T ;H1(Ω)) and weakly star in L∞(0, T ;H) as k →∞.

Let η ∈ W 1,2(0, T ;H) ∩ L2(0, T ;H1
0 (Ω)) with η(T ) = 0. For any δ > 0, there

exists ηδ ∈ C∞(Q(T )) such that |∇η −∇ηδ|L2(Q(T )) < δ. Therefore, we see that∣∣∣∣∫
Q(T )

(∇(Hnkvnk)−∇(g(u)v))∇ηdxdt
∣∣∣∣

=

∣∣∣∣∫
Q(T )

(∇Hnkvnk −∇g(u)v)∇ηdxdt+

∫
Q(T )

(Hnk∇vnk − g(u)∇v)∇ηdxdt
∣∣∣∣
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≤
∣∣∣∣∫
Q(T )

∇Hnk(vnk − v)∇ηdxdt+

∫
Q(T )

(∇Hnk −∇g(u))v∇ηdxdt
∣∣∣∣

+

∣∣∣∣∫
Q(T )

(Hnk − g(u))∇vnk∇ηdxdt+

∫
Q(T )

g(u)(∇vnk −∇v)∇ηdxdt
∣∣∣∣

→ 0 as k →∞.
(4.2)

Also, by integration by parts we have

−
∫
Q(T )

vnk(t)ηt(t)dxdt−
∫

Ω

v(0)η(0)dx

+

∫
Q(T )

∇(Hnk(t)vnk(t))∇η(t)dxdt =

∫
Q(T )

F (t)η(t)dxdt. (4.3)

by letting k →∞ in (4.2) on account of (4.3) we obtain (4.1).
To accomplish the proof of this lemma it is sufficient to show that v = ut − ubt.

To do so, let η̃ be any function in W 1,2(0, T ;H)∩L2(0, T ;H1
0 (Ω))∩L2(0, T ;H2(Ω))

with η̃(T ) = 0. Then, we can take sequence {ηn} ⊂ C∞(Q(T )) such that η̃n → η̃ in
W 1,2(0, T ;H)∩L2(0, T ;H1

0 (Ω))∩L2(0, T ;H2(Ω)) as n→∞. Then, by multiplying
η̃nt to (1.1) we have∫

Q(T )

(ut − ubt)η̃ntdxdt+

∫
Q(T )

∇G(u)∇η̃ntdxdt

=

∫
Q(T )

(wf − ubt)η̃ntdxdt for each n. (4.4)

Here, by using integration by parts it holds that∫
Q(T )

∇G(u)∇η̃ntdxdt

= −
∫
Q(T )

G(u)∆η̃ntdxdt+

∫
S(T )

G(ub)
∂η̃nt
∂ν

dxdt

=

∫
Q(T )

g(u)ut∆η̃ndxdt+

∫
Ω

G(u0)∆η̃n(0)dx

+

∫
S(T )

G(ub)
∂η̃nt
∂ν

dxdt for each n.

Therefore, from (4.4) we obtain∫
Q(T )

(ut − ubt)η̃ntdxdt+

∫
Q(T )

g(u)(ut − ubt)∆η̃ndxdt

=

∫
Q(T )

(wf − ubt)η̃ntdxdt−
∫
Q(T )

g(u)ubt∆η̃ndxdt

−
∫

Ω

G(u0)∆η̃n(0)dx−
∫
S(T )

G(ub)
∂η̃nt
∂ν

dxdt. (4.5)

We note that ∫
Q(T )

(wf − ubt)η̃ntdxdt

= −
∫
Q(T )

((wf)t − ubtt)η̃ndxdt−
∫

Ω

(w(0)f(0)− ubt(0))η̃n(0)dxdt, (4.6)

−
∫
Q(T )

g(u)ubt∆η̃ndxdt
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= −
∫
Q(T )

∆(g(u)ubt)η̃ndxdt−
∫
S(T )

g(ub)ubt
∂η̃n
∂ν

dxdt, (4.7)

∫
Ω

G(u0)∆η̃n(0)dx =

∫
Ω

∆G(u0)η̃n(0)dx+

∫
∂Ω

G(ub(0))
∂η̃n(0)

∂ν
dx, (4.8)

and

∫
S(T )

G(ub)
∂η̃nt
∂ν

dxdt

=

∫
Q(T )

∇G(u)∇η̃ntdxdt+

∫
Q(T )

G(u)∆η̃ntdxdt

=

∫
Q(T )

(G(u)−G(ub))t∆η̃ndxdt+

∫
Ω

(G(u(0))−G(ub(0)))∆η̃n(0)dx

−
∫
Q(T )

(∇G(ub))t∇η̃ndxdt−
∫

Ω

∇G(ub(0))∇η̃n(0)dx

−
∫
Q(T )

(G(u))t∆η̃ndxdt−
∫

Ω

G(u0)∆η̃n(0)dx

= −
∫
Q(T )

(G(ub))t∆η̃ndxdt−
∫

Ω

G(ub(0))∆η̃n(0)dx

−
∫
Q(T )

(∇G(ub))t∇η̃ndxdt−
∫

Ω

∇G(ub(0))∇η̃n(0)dx

= −
∫
S(T )

g(ub)ubt
∂η̃n
∂ν

dxdt−
∫
∂Ω

G(ub(0))
∂η̃n(0)

∂ν
dx. (4.9)

Therefore, by (4.6)–(4.9), we have∫
Q(T )

(ut − ubt)η̃ntdxdt+

∫
Q(T )

g(u)(ut − ubt)∆η̃ndxdt

= −
∫
Q(T )

F η̃ndxdt−
∫

Ω

v(0)η̃n(0)dx. (4.10)

By n→∞ in (4.10) we get∫
Q(T )

(ut − ubt)η̃tdxdt+

∫
Q(T )

g(u)(ut − ubt)∆η̃dxdt

= −
∫
Q(T )

F η̃dxdt−
∫

Ω

v(0)η̃(0)dx. (4.11)

Therefore, by (4.1) and (4.11) we have∫
Q(T )

(v(t)− ut(t) + ubt(t))η̃t(t)dxdt

+

∫
Q(T )

g(u(t))(v(t)− ut(t) + ubt(t))∆η̃(t)dxdt = 0. (4.12)

Here, we set ũ(t) = u(T − t) and ϕ̃(t) = ϕ(T − t) for any ϕ ∈ C∞(Q(T )). Then, by
the result of [10], we see that the following problem

η̄t − g(ũ)∆η̄ = ϕ̃ in Q(T ),

η̄ = 0 on S(T ),

η̄(0) = 0 in Ω
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has a unique solution η̄ ∈ W 1,2(0, T ;H) ∩ L2(0, T ;H1
0 (Ω)) ∩ L2(0, T ;H2(Ω)). Put

η∗(t) = η̄(T − t). Then we have η∗t + g(u)∆η∗ = −ϕ in Q(T ), η∗ = 0 on S(T ) and
η∗(T ) = 0 in Ω. Accordingly, by taking η∗ as η̃ in (4.12) we have∫

Q(T )

(v − ut + ubt)ϕdxdt = 0 for any ϕ ∈ C∞(Q(T )).

This implies that v = ut−ubt a.e. in Q(T ). Finally, since v ∈ L∞(0, T ;H), we have
ut ∈ L∞(0, T ;H). Thus, Lemma 4.1 is proved.

5. Proof of Theorem 2.3. In this Section, by using the properties (I) and (II)
we prove the uniqueness of a solution of (P). Let {u1, w1} and {u2, w2} be solutions
of (P) on [0, T ], ξ1, ξ2 ∈ L2(0, T ;H) defined by (S3), that is, ξi(t) ∈ ∂I(ui(t);wi(t))
for a.e. t ∈ [0, T ], and u = u1 − u2 and w = w1 −w2 on Q(T ). Then it follows that

ut − div(g(u1)∇u1 − g(u2)∇u2) = wf in Q(T ), (5.1)

wit − ν∆wi + ξi = 0 in Q(T ) for i = 1, 2, (5.2)

u = 0, wi = wb on S(T ), for i = 1, 2,

u(0) = 0, wi(0) = w0 on Ω, for i = 1, 2.

For simplicity, for 0 < s ≤ T and x ∈ Ω we put

M(s, x) = max{|f∗(u1(x))− f∗(u2(x))|L∞(0,T ), |f∗(u1(x))− f∗(u2(x))|L∞(0,T )}.
Here, we recall the following lemma.

Lemma 5.1.

|w|L∞(0,s) ≤M(s) a.e. on Q(s) for 0 < s ≤ T.

This Lemma is already proved by [9, Lemma 3.1] so that we omit this proof.

Proof of Theorem 2.3. First, from Lemma 4.1, wif ∈ L∞(Q(T )) and uit ∈ L∞(0, T ;
H) for i = 1, 2, we see that

|∆G(ui)|L∞(0,T ;H) ≤ |wif − uit|L∞(0,T ;H) < +∞.
Therefore, by Lemma 3.4, we see that there exists R > 0 such that

|∆ui|L∞(0,T ;H) =

∣∣∣∣∆G(ui)− g′(ui)|∇ui|2

g(ui)

∣∣∣∣
L∞(0,T ;H)

≤ R. (5.3)

(5.1) implies that

ut − [g′(u1)|∇u1|2 − g′(u2)|∇u2|2 + g(u1)∆u1 − g(u2)∆u2] = wf in Q(T ),

we multiply it by (−∆u) we obtain

1

2

d

dt
|∇u|2H + g0|∆u|2H ≤ (wf,−∆u)H

+([g′(u1)|∇u1|2 − g′(u2)|∇u2|2,−∆u)H + ((g(u1)− g(u2))∆u2,−∆u)H

a.e. on [0, T ]. (5.4)

First, it is easy to see that

(wf,−∆u)H ≤
2|f |2L∞(Q(T ))

g0
|w|2H +

g0

8
|∆u|2H . (5.5)

Next, it holds that

([g′(u1)|∇u1|2 − g′(u2)|∇u2|2,−∆u)H
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= ((g′(u1)− g′(u2))|∇u1|2 + g′(u2)∇u∇(u1 + u2),−∆u)H ,

((g′(u1)− g′(u2))|∇u1|2,−∆u)H ≤
2(M2LgCP )2

g0
|∇u|2H +

g0

8
|∆u|2H , (5.6)

where M is the same positive constant as in Lemma 3.4, Lg is a Lipschitz constant
of g and CP is a positive constant by Poincare’s inequality, and

(g′(u2)∇u∇(u1 + u2),−∆u)H ≤
2(2LgM)2

g0
|∇u|2H +

g0

8
|∆u|2H a.e. on [0, T ]. (5.7)

For the last term of the right hand side in (5.4), from (5.3) we have

((g(u1)− g(u2))∆u2,−∆u)H ≤
2L2

g

g0
|u|2L∞(Ω)R+

g0

8
|∆u|2H . (5.8)

Here, by (1) and (2) of Lemma 2.4 in Section 2 with q = ∞, n = 3, r = 2 and
m = 6 for any η > 0 we obtain

|z|2L∞(Ω) ≤ C
∗|∇z|

3
2

L6(Ω)|z|
1
2

H ≤ C
∗|z|

3
2

H2(Ω)|z|
1
2

H

≤ C∗C
3
2
∗ (|∆z|H + |z|H)

3
2 |z|

1
2

H

≤ C∗C
3
2
∗

(
3η

4
3

4
(|∆z|2H + |z|2H) +

1

4η4
|z|2H

)
=

3

4
C∗C

3
2
∗ η

4
3 |∆z|2H + C∗C

3
2
∗

(
3

4
η

4
3 +

1

4η4

)
CP |∇z|2H for z ∈ H2(Ω). (5.9)

Therefore, by adding (5.4)–(5.9), we have

1

2

d

dt
|∇u|2H +

(
g0

2
− 3

2

L2
g

g0
RC∗C

3
2
∗ (η)

4
3

)
|∆u|2H ≤

2|f |2L∞(Q(T ))

g0
|w|2H

+

(
2(M2LgCP )2

g0
+

2(2LgM)2

g0
+

2L2
g

g0
RC∗C

3
2
∗ CP

(
3

4
η

4
3 +

1

4η4

))
|∇u|2H

a.e. on [0, T ]. (5.10)

Therefore, by taking η0 such that m̃ = g0/2 − 3/2(L2
gRC

∗C
3
2
∗ (η)

4
3 )/g0 > 0 and

putting the coefficient of |∇u|2H in (5.10) by C̃1 = C̃1(η0), we have

1

2

d

dt
|∇u(t)|2H + m̃|∆u(t)|2H ≤

2|f |2L∞(Q(T ))

g0
|w(t)|2H + C̃1|∇u(t)|2H

for a.e. t ∈ [0, T ]. (5.11)

By setting I(t) = 1/2|∇u(t)|2H + m̃
∫ t

0
|∆u(τ)|2Hdτ for t ∈ [0, T ] and using the

Gronwall’s lemma, we get

I(t) ≤
(

2|f |2L∞(Q(T ))

g0

∫ t

0

|w(τ)|2Hdτ
)
eC̃1t for t ∈ [0, T ]. (5.12)

On the other hand, since ut = wf − div(g(u1)∇u1 − g(u2)∇u2), by (5.1)

|ut|2H ≤ C̃2(|f |2L∞(Q(T ))|w|
2
H + [(M2LgCP )2

+(2LgM)2]|∇u|2H + (RLg)
2|u|2L∞(Ω) + (g∗)2|∆u|2H a.e. on [0, T ].

By using (5.9) with η = 1 we have

|ut(t)|2H ≤ C̃2|f |2L∞(Q(T ))|w(t)|2H + C̃3|∇u(t)|2H + C̃4|∆u(t)|2H) for t ∈ [0, T ], (5.13)
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where C̃3 = C̃2((M2LgCP )2 + (2LgM)2 + R2LgC
∗C

3
2
∗ CP ) and C̃4 = C̃2((g∗)2 +

R2Lg3/4C
∗C

3
2
∗ ). Therefore, by integrating (5.13) over [0, t] we obtain∫ t

0

|ut(τ)|2Hdτ ≤ C̃2|f |2L∞(Q(T ))

∫ t

0

|w(τ)|2Hdτ

+C̃3t max
0≤t≤τ

|∇u(τ)|2H + C̃4

∫ t

0

|∆u(τ)|2Hdτ. (5.14)

By using the estimate (5.12) to (5.14), we get∫ t

0

|ut(τ)|2Hdτ ≤ C̃2|f |2L∞(Q(T ))

∫ t

0

|w(τ)|2Hdτ

+max(C̃3, C̃4)(t+ 1)

(
2 +

1

m̃

)(
2|f |2L∞(Q(T ))

g0

∫ t

0

|w(τ)|2Hdτ
)
eC̃1t for t ∈ [0, T ].

(5.15)
Therefore, by (5.12) and (5.15), we see that the following inequality holds:∫ t

0

|ut(τ)|2Hdτ + max
0≤s≤t

|∇u(s)|2H +

∫ t

0

|∆u(τ)|2Hdτ ≤ C̃6

∫ t

0

|w(τ)|2Hdτ

for t ∈ [0, T ], (5.16)

where C̃6 is a positive constant. Here, by putting p0 = q0 = 2, p1 = q1 = 10/3 and
q2 = 5 in (2.6) of Lemma 2.4 in Section 2, we see that there exists Ce > 0 such that

|u|L5(Ω,C([0,T ])) ≤ Ce(|ut|L2(0,T ;H) + |u|
L

10
3 (0,T ;W 1, 10

3 (Ω))
). (5.17)

By using (5.11), we obtain(∫ t

0

|u(τ)|
10
3

L
10
3 (Ω)

dτ

) 3
10

≤ C
(∫ t

0

|∇u(τ)|
10
3

H dτ

) 3
10

≤ CT 3
10 max

0≤s≤t
|∇u(s)|H ≤ CT

3
10

√
C̃6|w|L2(0,t;H) for t ∈ [0, T ], (5.18)

where C is a positive constant. Similarly to the proof of (3.26) in Section 3, by using
(1) of Lemma 2.4 in Section 2 and Poincare’s inequality, we have(∫ t

0

|∇u(τ)|
10
3

L
10
3 (Ω)

dτ

) 3
10

≤ (C∗)
3
10 max

0≤s≤t
|∇u(s)|

4
10

H

(∫ t

0

|u(τ)|2H2(Ω)dτ

) 3
10

≤ (C∗)
3
10 max

0≤s≤t
|∇u(s)|

4
10

H [C2
∗(C

2
P + 1)]

3
10

(∫ t

0

|∇u(τ)|2Hdτ +

∫ t

0

|∆u(τ)|2Hdτ
) 3

10

≤ (C∗)
3
10 [C2

∗(C
2
P + 1)]

3
10

(
T max

0≤s≤t
|∇u(s)|H

+ max
0≤s≤t

|∇u(s)|
4
10

H

(∫ t

0

|∆u(τ)|2Hdτ
) 3

10
)

for t ∈ [0, T ],

so that on account of (5.16) we get(∫ t

0

|∇u|
10
3

L
10
3 (Ω)

dt

) 3
10

≤ 2(C∗)
3
10 [C2

∗(C
2
P + 1)]

3
10 (T + 1)

√
C̃6|w|L2(0,t;H)

for t ∈ [0, T ]. (5.19)
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By putting C̃7 = 2(C∗)
3
10 [C2

∗(C
2
P + 1)]

3
10 (T + 1)

√
C̃6 + CT 3

10

√
C̃6. Then, by (5.16),

(5.17), (5.18) and (5.19) we obtain that

|u|L5(Ω,C([0,t])) ≤ Ce(C̃6 + C̃7)|w|L2(0,t;H). (5.20)

Therefore, by Hölder’s inequality, Lemma 5.1 and (5.20) we have

|w|L2(0,t;H) ≤
√
t|Ω| 3

10 |w|L5(Ω,C([0,t]))

≤ L∗
√
t|Ω| 3

10 |u|L5(Ω,C([0,t]))

≤ L∗
√
t|Ω| 3

10Ce(C̃6 + C̃7)|w|L2(0,t;H).

Finally, by taking t∗ > 0 such that 1 − L∗
√
t∗|Ω| 3

10Ce(C̃6 + C̃7) > 0 we see that
|w|L2(0,t;H) = 0 for 0 ≤ t ≤ t∗ so that w1 = w2 for 0 ≤ t ≤ t∗. Then, from (5.20),
we also see that u1 = u2 for 0 ≤ t ≤ t∗. By repeating this argument for t ≥ t∗ we
see that u1 = u2 and w1 = w2 for 0 ≤ t ≤ T . Thus, Theorem 2.3 is proved.
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