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ABSTRACT. When dealing with concrete materials it is always a big issue how
to deal with the moisture transport. Here, we consider a mathematical model
for moisture transport, which is given as a system consisting of the diffusion
equation for moisture and of the ordinary differential equation which describes
a hysteresis operator. In [3] we already proved the existence of a time global
solution of an initial boundary value problem of this system, however, the
uniqueness is obtained only for one dimensional domains. The main purpose
of this paper is to establish the uniqueness of a solution of our problem in three
dimensional domains under the assumption of the smooth boundary and initial
data.

1. Introduction. While studying concrete carbonation it is a crucial step to in-
vestigate the mathematical model describing moisture transport part, for instance,
see [4, 7]. We already proposed a model for moisture transport in [1, 2]. Here, we
aim to prove the uniqueness of solutions to this model, which is the following initial
boundary value problem (P) for a parabolic-type equation including a hysteresis
operator:

% —div(g(w)Vu) =wf inQ(T):=(0,T) x Q, (1.1)
ow .

o +0I(u;w) 20 in Q(T), (1.2)

u=u, onS(T):=(0,T) x 00, (1.3)

u(0) =up, w(0)=wp in Q. (1.4)

Here, 0 < T < 00, 2 is a bounded domain in R? with the smooth boundary 92, and
g is a given function in C1((0,00)), f and w;, are given functions on Q(T) and ug
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and wy are given initial functions defined in 2. The function I denotes the indicator
function of the closed interval [f.(u), f*(u)], that is,

I(u;w):{o if fi(u) <w < f*(u),

400  otherwise,

where f* and f, are given functions on R with f, < f* on R. Moreover, 91
represents the subdifferential of I, namely,

[0,00)  ifw=f*(u),
OI(u;w) = < {0} if fo(u) <w < f*(u),
(—00,0] if w= fi(u).

The system {(1.1)—(1.2)} is a mathematical model of moisture transport for
the concrete carbonation phenomenon in three dimensions and was proposed in
Aiki-Kumazaki [1, 2, 3]. Physically, v and w indicate the relative humidity and
the degree of saturation, respectively, and the diffusion equation (1.1) with the
moisture conductivity ¢ is derived from mass conservation law for the moisture.
Here, as mentioned in [2], ¢ satisfies

lim g(r) = 400, limg(r) =1, g(r) >k for 0 <r <1,
r—0+ r—1

where k is a positive constant. In the concrete carbonation process it is known
that the relationship between u and w is given as a hysteresis with an anticlockwise
trend. The functions f* and f, correspond to the upper and lower curves of the
hysteresis loop, respectively. Therefore, we assume that it is described by a play
operator with the input function u and the output function w. Accordingly, the
relationship between u and w is represented the ordinary differential equation (1.2)
(See, for instance, Brokate and Sprekels [6] and Visintin [13]). On problem (P),
Aiki and Kumagzaki already proved the existence of a time global solution in three
dimensions and the uniqueness in only one dimension.

Considering the mathematical results for systems consisting of a parabolic-type
equation and a hysteresis operator, Kenmochi, Koyama and Meyer [9] looked into
the following system which is a mathematical model for a real time controled system:

w—Au+w=f inQ), (1.5)

wy — vAw + 0I(w;w) 30  in Q(T). (1.6)

For the system {(1.5)-(1.6)} with a boundary condition and a initial condition, they
proved the existence and uniqueness of a global-in-time solution for v > 0. Also,

Colli, Kenmochi and Kubo in [8] studied the following system which represents a
solid-liquid phase transition with a hysteric effect in the kinetics of interface:
ug+wy —Au=h in Q(T), (1.7)
wy — vAw + l(u, w) + 0I(u;w) 20  in Q(T), (1.8)
where h is a given function on Q(7T) and (-, -) is a smooth function on R x R. On
the initial and boundary value problem for this system {(1.7)-(1.8)}, they showed
the existence of a time global solution for ¥ > 0 and the uniqueness in the case
v=0.

The aim of this paper is to prove the uniqueness of solutions to (P) in three
dimensions. To do so we faced the following two difficulties: The first difficulty is
concerned with the estimate for Vu, and the second one causes from the lack of
continuity on (1.2) between the input function u and the output function w.
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The first difficulty comes from the nonlinearity of g(u). Precisely, a standard
way to prove uniqueness is to estimate a difference of two solutions as follows. Let
{u;,w;} be a solution of (P) for i = 1,2. Then, from the divergence term in (1.1)
the following term appears:

[ (atwn) = glua)) Vux(Van - Fua)ie (1.9)

If ¢ is linear, this kind of terms never appears. Also, in one-dimensional case we can
estimate Vuy in (1.9) by applying the Sobolev embedding theorem from H' () to
L*>(£2). Then, it is not hard to prove the uniqueness. However, in three dimensional
case, this embedding is not valid. In this paper in order to overcome this difficulty
we establish that Vu € L (Q(T)) by applying the classical theory for quasi linear
parabolic equations shown in LadyZenskaja-Solonikov-Uraléeva [10]. In Section 3
the boundedness Vu will be proved under the smoothness assumption for boundary
and initial data.

The detail of the second difficulty is as follows. When we consider the difference
of two solutions, w; —ws appears in the right hand side of (1.1). To give an estimate
for wy — we we can obtain the following estimate for its L°°-norm :

|w1 — wa| Lo (Q(s)) < max{|f*(u1) — f*(u2)|Leo(Q(s))s [fx(u1) = fulua)|Loo (s}
for 0 <s <T. (1.10)

This kind of estimates for (1.6) with v = 0 was found in Visintin [13], and was
proved by Kenmochi, Koyama and Meyer [9] in case v > 0. However, it is not
easy to obtain the L*°-norm of the difference of solutions to quasi-linear parabolic
equations in three dimensions. In this paper, by applying the following inequalities
(1.11) and (1.12) we have estimated the difference wy — wy: The first inequality
(See Visintin [13, Lemma 2.1 in Chapter 3]) is:

|w1 — wa|peo(0,s) < max{|f*(u1) — f*(u2)|pe(0,5), | fx(u1) = fi(uz)|po(0,5)} on Q
for0<s<T. (1.11)

The second one is concerned with the embedding between two spaces:
|2| a2 @,c(0,1)) < O<Z|LP1 (0,T;Whar(Q)) T Zt|LT’0(O7T;L‘10(Q)))

for z € LP1(0, T; Wh%(Q)) with 2, € LP°(0,T; L% (), (1.12)
where po, qo, p1, ¢1 and g2 are positive constants (for detail, see the end of Section
2). On account of these ideas we shall prove the uniqueness in three dimensional
domain in Section 5.

2. Notation and assumptions. In this paper we use the following notations. In
general, for a Banach space X we denote by |- |x its norm. Particularly, we denote
by H = L*(Q), and the norm and the inner product of H are simply denoted by
||z and (-, -)u, respectively. Also, H(Q), H}(2) and H?(Q) are the usual Sobolev
spaces.

Throughout this paper we assume the following (A1)—(AT):

(A1) Q is a open bounded connected domain of R? which has the boundary 9
in the class of C2.

(A2) T is a positive constant.

(A3) G : (0,00) — R is continuous, g(r) := G'(r) is continuous on (0, c0),
g € C%((0,00)) and g(r) > go for r > 0, where gq is a positive constant.



686 TOYOHIKO AIKI AND KOTA KUMAZAKI

(A4) f € L>=(Q(T)) and f; € L?(0,T; H) with f > 0 a.e. on Q(T).

(A5) f., f* € C2(R)NW2>*(R) with 0 < f, < f* < w, on R, where w, is a
positive constant. We put L, = max{|f.|w2cc(®r), [f*|w2~r)}-

(A6) up € C>H(Q(T)) and up € L2(0,T; H*(Q)) with up > ko for some positive
constant kg. Then, there exists a constant My > 0 such that

|Vup| Lo o(y) < Mo. (2.1)

(A7) ug € H2(2) N W (Q) with ug > ko and wg € L>=°(Q) with wy > 0 a.e. on
Q. Also, there exists a constant Ny > 0 such that

|Vuo|Lo () + [Auo|r=(q) < No- (2.2)

Moreover, ug = up(0) a.e. on 92 and fi(up) < wo < f*(up) a.e. on Q.
Next, we define a solution of (P) on [0,T] in the following way:

Definition 2.1. Let u and w be functions on Q(7"). We call that the pair {u,w}
is a solution of (P) on [0, T if the conditions (S1) ~ (S4) hold:

(S1) w € WH2(0,T; HYNL>(0,T; HY(Q))N L2(0,T; H2(R2)), u > 0 a.e. on Q(T)
and w € WH%(0,T; H).

(52) up — div (V(G(w))) =wf ae. in Q(T).

(S3) wy + 0I(u;w) 20  ae. in Q(T).

(S4) u = up a.e. on S(T) and u(0) = ug, w(0) = wy a.e. on .

First, we recall the following theorem concerned with the existence of a solution
of (P).
Theorem 2.2. (Aiki-Kumazaki [3]) If (A1) ~ (A7) hold, then (P) has at least one
solution on [0,T] such that

ko <u<u® and 0<w<w, ae onQT),

where u* = max{|uo| =), [Ub| Lo (1)), Wx| [l (@) }(T + 1) and ko and w, are
the same constants as in (A5) and (A6), respectively.

Here, we set

g* = max g(r). (2.3)

ro<r<u*

The main theorem of this paper is the following:

Theorem 2.3. Under (A1) ~ (A7), let {u;, w;} be solutions of (P) on [0,T] for
i=1,2. If ko <u; <u* ae. on Q(T) fori=1,2, then u; = ug and w; = wy a.e.
on Q(T).

The proof of Theorem 2.3 is shown in Section 5. To conclude this section we
state the following useful lemma.

Lemma 2.4. If (A1) holds, then (1)~(3) hold:
(1) (cf. [11, Lemma 3.7.1]) There exists a positive constant C, such that

lulmz() < Cul(|Aulp + |ulg)  foruw e H*(Q).

(2) (cf. [10, Theorem 2.2 in Chapter 2]) There exists a positive constant C* such
that

lul o) < CF|Vulfm o lul (o forue W™ (Q),

1 o1\/1 1 1\" . ,
where « = | — — — - — — 4 - and m,r > 1, q are positive constants satis-
r oq n o m T

fying the following condition: If m < n and r < nm/(n—m), then q is any number
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from [r,mm/(n —m)], if m > n > 1, then q is any number in the interval [r,00)
and if m >mn > 1, then ¢ = oo is also valid.
(3) (cf. [5]) For po,qo,p1,q1 > 1, let WPo:20:P1a1((0, T'), Q) be the following set:

Wroaopras (0, T, Q) := {z € LY(Q(T))| % € LP(0,T, L (1)),

0z
8331»
If ¢o > max{qo,q1} and ps > max{po,p1}, and

1 1 1 1 1 1 1 1 1
N
po P2 ) \N @ @ p1 P2/ \q@ @

then there exists a positive constant C, such that

€ LP(0,T, L% (Q)) fori=1,2,3}.

|2]Lp2 (0,15002) < Ce <|Z|LP1 (0, W1 (Q)) T |Zt|LP0(0,T;L‘10(Q))> (2.5)

for z € WPoaoPLAL(((, T) Q).
In the case of pa = 00, if ga > max{qo,q1} and

1 ( 1 1 n 1) S 1 ( 1 1 )
P\N @1 @) pi\wo @)
where pf, is the dual index of po, then there exists a positive constant C, such that

2| a2 (@.c(0,1)) < Ce <|ZLP1 0,7:whai () T |ZtLPo(o,T;Lqu(Q))> (2.6)

for z € WPo-doPLAL(((, T'), Q).

Proof. The assertion (2) is a direct consequence of Gagliardo-Nirenberg’s inequality.
Also, by repeating the argument of [5, Chapter IV, Vol. II], we can derive the
inequality in the assertion (3). Here, we give a proof of (2.5) with N =3, Q = R?
and R in place of [0,7]. Similarly to the following proof, we can show that (2.6)
holds. In this proof, we put |- |,, = |- [zr(r,La(r?)). First, for o € (0,1] and
u € WPod0:P1.01(R3 R), we define

o __—3-A rT—1y t—s
u (a:,t)—o /1;(/1?{330( o ’ 0_)\ )u(y75)dyd8

Here, ¢ is a smooth nonnegative function on R? x R and vanishes outside B(1) x
(—1,1), where B(r) is a ball in R? at the origin with a radius r, and it satisfies that

fil fB(l) o(z,t)dzdt = 1. Also, we choose

14+3(5 — o)
=T, 1 =

% p1

where pj, is the dual index of py. By (2.4) we see that A > 0. Easily, we have

o , B 3.1 t—s (z—y t—s\Ou
aO'U ($7t)__/\0' /R/R3 P <)0< o | o) 8S(y78)dyd8

3
—3-) Ti—yi (xi—y; t—s)\ Ou
_ 3 2y, 5)dyds.
g /1%\/1{‘5 vt p Q0< e ) 0_)\ >8y,(y 5) Y;as




688 TOYOHIKO AIKI AND KOTA KUMAZAKI

Now, for 0 < a < 8 <1, let

Ao t—s [x—y t—s)\0u
EO(x’t>:/a o? 1/R/R3 - <p< — )as(yﬁ)dydsda,

A LAgra— i —Yi t—s)\ Ou
Ly(z,1) = *34// TiZ Vi (LY 2y, 8)dydsdo.
= [Lom [ ST ) o

Then, we have

[uP (z,t) — u®(x,t)] < AN Lo(z,t)| +|L1(x,t)| for (z,t) € R®* x R. (2.7)

By using Minkowski’s inequality and Young’s inequality for convolutions, we can
obtain

du 7 —N—14+N/ro+X/s
|‘C0‘P2,q2 < |<p0|507ro 87 g 0 °do, (2'8)
§ Po,qo V&
and
B
|E1|;D27(12 S |<I)1|81,T1|VU|P17(11/ 07N7A+N/r1+)\/51d0’ (29)

where ®¢(&,7) = 1p(€,7), ®1(§,7) = &p(€,T) and

Here, we set

N 1 1\ ! 1 1\/1 1 1 1 1\/1 1
F=3(—+— l——4+— )=+ =) - ——— [ ——-—=) .

Do Po po P2/ \3 @ g G q/)\p1 D2
By using the fact that —4+3/rq+A/sg = —3—A+3/r1+A/s1 = k—1 and applying
(2.8), (2,9) to (2.7), we have

du

‘uﬂ - ua|P2,Q2 < Cl(ﬁ’l~£ - Oﬁ)( s

n wm,m) (2.10)

Po,q0

where C; is a positive constant depending on pg, p1, P2, 9o, ¢1,g2- This implies that
u’ is a Cauchy sequence in LP?(R, L% (R3)) so that there exists u* € LP?(R,
L2(R3)) such that u® — w* in LP2(R,L%(R3)) as ¢ — 0. By the definition
of u”, we see that u* = u. Since there exists Co > 0 such that |u®|p, 4, < Col|t|p, ¢
for any « € (0,1] by letting o — 0 in (2.10) we see that

|u|1727qz < ‘u - uﬂlpzﬂz + |u6|P2,Q2
_(|0u
S Clﬁn (‘6 + |vu|p17Q1> + 62|u|p17fh
S
Po,q0
U
S 2(61 + CQ) 87 + |u|LP1 (R,Wha1 (RS))) :
S
Po,q0

Therefore, we obtain the desired inequality. O



MOISTURE TRANSPORT IN CONCRETE MATERIALS 689

3. Boundedness of Vu. In this section, we prove that Vu € L>®(Q(T)) in a
similar way to that of Ladyzenskaja-Solonikov-Uraléeva [10, Section 10 in Chapter
3]. The proof is rather long so that we divide it several steps. As the first step,
we show the boundedness of Vu on the boundary in Lemma 3.1. Next, we give the
Holder continuity of w in Lemma 3.2, and by using this fact and the boundedness
of the boundary we can obtain that Vu € LP(Q(T)) for any p > 2. Then we can
get the boundedness of Vu on the whole domain.

Lemma 3.1. (¢f. [10, Lemma 3.1 in Chapter 6]) Let {u,w} be a solution of (P)
with ko < u < u* a.e. on Q(T) under the assumptions (A1)-(A7). Then, there
exists a positive constant N1 such that |Vu| < Ny on S(T).

Proof. First, we put v = G(u), p(r) = G=1(r) for r € R and @ = v — G(up). Then,
we have
P — A =wf = p'(v)(G(up))e + AG(up)  ace. in Q(T),
=0 a.. on S(T),
9(0) = G(up) — G(up(0))  in Q.

From the assumption for v on Q(T), there e)fists positive constants §, and §* such
that d. < p'(v) < 6% on Q(T). By putting f = wf — p'(v)(G(up)): + AG(up), we
see from (A3) and (A6) that f € L>(Q(T)) and from (A7) that #(0) € HI(Q) N
Whee(Q). Here, we take sequences {a.} C Cz~(Q(T)), {fs} € C=(Q(T)) and
{00} € C5°(Q) with 0./2 < ac < 26" on Q(T), [f<|z=(q(r)) < [flL>~(Qm) +1 and
|00, |lwi.e (@) < |Oo|wiee(q)+1 such that a. — p'(v), fe — f strongly in L*(0,T; H)
and ¥ . — Up in H(2) as € — 0. Then, the following problem (P).

acUer — AV, = fe a.e. in Q(T),

9. =0 a.e. on S(T),
0:(0) =0(0) in Q.

has a unique classical solution . on Q(T') (see for instance [10, Chapter 4]). Easily,
we get a constant K > 0 such that |Oc|p(q(r)) < K for € > 0.

In order to estimate the flux of a solution to (P) on the boundary we need to
describe 99 in the following exact form (see [12, Chapter 1 and 2]): For 6 > 0 we
set

Qs :={z € Q| d(z) < §},

where d(z) = dist(z,99Q) for x € Q. Since 9 is in the class of C?, there exists
i* € N, § >0, adisc A; C R?, a; € C?(A;), Q; C Qs and the local coordinate
yi € R? on A; for 1 <i < i* satisfying the following (i), (ii) and (iii):

(i) Qs =UZ Q. A= {y € R?| |y} < oy},
where o; > 0,

090 = U_ {(y}, ai(v)] i € A}
(ii) For 1 < ¢ < ¢* we define an operator T; : A; x (0,d) — €; by

Ti(yi, 7) = (yi> as(y;)) — Tv(y;, ai(y;)) for y; € Ay and 0 < 7 < 4,

where v is the outward normal vector on 0f2, and 7; is a bijective.
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3

i O, Oy .
(iii) By putting T; = 7, and b;cl) = Z R 22 it holds that
= ax]’ &rj

3 3
Sooas = ud ¢ fore=(6,6,6) R and1<i<i,  (3.)

k=1 k=1

where p is a positive constant.
Here, for any a > 0 and 8 > 0, let

2(z) = ae ) for z € Qj, (3.2)
and
2y, ) = 2(Tily;, ) for (y;,7) € Ai x (0, 9).
Then it is easy to see that 2(y!,7) = ae™ "7 for (yi,7) € A; x (0,6) and z € C?(Qs).
Also, we have

3
0%z

Az = —
> 5

k=1
3 3
6Fi3 aQFii’)
= afPe Ty (T —ape Ty =
=1 8xk \ o axk
0T,
> 2 _—pBTt —BT i3
> afe PTu—afe ; 3%%
> afefT(Bu—Cq) on @,
where Cg, is a positive constant satisfying
3
0T,
Z 2k < Cqon Q; for1<i<i*,
Ox;,
k=1
Accordingly, by taking 8 > 0 such that 8 > % we have
Az > afe P Cq  on Qs. (3.3)

Next, we can take a; > 0 such that 9:(0) + 2z < aq in Q4. In fact, for x € Qs
there exists 7 > 0 and zp € 0§ such that x = xg — Tv(x). Since ¥y (xo) = 0 and

(0, ) + z(x) D0 (2) — Do (w0) + e™P7
|V1~}075|Lm(9) |{ZZ — :L’0| + «

|V’l~)075|Loc(Q)T + a,

Al

elementary calculations implies
0:(0,2) + 2(x) < aon Qs for e > 0 and o > ay,

where o is some positive constant. Also, since |17€|Loo(Q(T)) < K for € > 0, we see
that for a > K/(1 — e™5?),

Te+2<K+ae P < a(l — 6_’86) +ae P = o on 9.

Furthermore, let

a = max me(Q(T)) 1 K «
n Be=BiCq 1 —e B8’ L

Then, it holds that for € > 0
ac(Ue +2)t — A(0e +2) <0 in (0,T) x Qs, (3.4)
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Ue+2z<a on(0,T)x s,
9:(0) + 2(0) < in Q.
Now, we multiply (3.4) by [0 + 2z — a|T. Then, we have
1d N 1 -
i o ol = ol e < 5 [ @i+ = - ol P
Since

/(as)tHﬁs-i—z—a]ﬂ?de (ae)s
Qs

Qe

/ ac|[e +z — a]+|2dx,
Loo(Q(T)) /8%

by Gronwall’s inequality we can show that 0. + z < a a.e. on (0,7) x s for € > 0.
Therefore, for x € 02 and 0 < r < §, we have
~ ~ o o~ - 767-

00, ~ lim Ve(x —rv(x)) — 0 (2) < limaw

ov r—0 r r—0 r
Since @ is bounded in W12(0,T; H) N L>(0,T; H(Q)) N L?(0,T; H?(£2)), we can
take a subsequence {0, ,,,} such that 9., — v* strongly in C([0,T]; H) N L*(0,T;
HY(Q)), weakly in W12(0,T; H) and L2(0,T; H?(Q)), weakly star in L>(0,T;
HY(Q)) and 8”3’"’ — 9 weakly in L?(0,T; L*(0)) as m — oo. Therefore, by

o ov
letting m — oo we obtain

P (i —Av* =f ae. inQ(T),
v*=0 ae. onS(T), (3.6)
v*(0) =0(0) on £,
and by the lower semi continuity of weak convergences, we derive
8 *
811}/ < af on 9. (3.7)
Now, by the uniqueness of (3.6) we see that v* = ¥ = v — G(up). Therefore, from
(3.6), we see that % < af ae. on S(T). Similarly, we can show that % < af

a.e. on S(T'). Finally, since o = 0 a.e. on S(T'), we have |V9| < af a.e. on S(T) so
that (A3) and (A6) implies the conclusion of this lemma. O

< ap. (3.5)

Next, we prove the Holder continuity of u. The proof is quite similar to that of
[10] so that we may skip the proof. Since the equation (1.1) does not contain the
class dealt in [10], we give a part of the proof. Precisely, the goal of the following
proof of Lemma 3.2 is to show u € B, where the set B will be defined in the
proof. This set was already considered in [10]. Here, we note that the range of the
parameter k is little bit difference from that of [10]. However, we can prove Lemma
3.2 in a similar way to that of [10, Theorems 7.1 and 8.1 in Chapter 2]. Thus we
finish the proof when we get u € B.

Lemma 3.2. (¢f. [10, Theorem 10.1 in Chapter 3]) Under (A1) ~ (A7) hold, let
{u,w} be a solution of (P) with ko < u < u* a.e on Q(T). Then w is Hoélder
continuous on Q(T).

Proof. First, for zop € Q and p > 0 let K, = K,(z¢) is a ball in R? at a center z
with a radius p and Q,(zo) := K,(x9) N Q. Then by (A1) there exists 0 < §p < 1
such that

mes Q,(x¢) < (1 —6p)mes K,(zo) for any z¢ € 9Q and p > 0, (3.8)

where mes A is the Lebesgue measure of A for a measurable subset A C R3.
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Next, let M, v and x be positive numbers. Here, in order to define a set B :=
B(M,~,r, ) of functions we introduce the following notations:

w® (¢, z) = max{w(t,z) — k,0} for k € R;
Q(p,T) = (to,to + 1) x Q,(xo) for p> 0,7 > 0,t0 € R with 0 <ty <tg+7 < T;

to+T1
|Z|%/(Q(p,‘r)) = ess Suptogt§t0+r|Z(t)|2L2(Qp(mo)) +/t |Vz(t)|%2(§2p(mo))dt;
0

Ap p(t) ={z € Qp(z0)| w(t,z) > k} for ke R,0<t < T and p > 0;
q and r are positive constants satisfying
1 3 3

PRI
with ¢ € (2,6] and r € [2,00). By using these notations we define the set B as
follows: we say that u € Bif u € V(T), |u|p(q(r)) < M and the function w(t, z) =
+u(t, ) satisfies the following inequalities (3.10) and (3.11) for 0 < tg < to+7 < T,
p>0, 01,09 €(0,1) and k with

kel[-M,M] if K,(x9) C Q, (3.9)
k € [0, M] otherwise, '
(k) 2 (k) 2
L max [P (o), ) < 0O ),
to+T RN CED)
+7{(alp)‘Qlw(’“)liQ(Q(,},T)) + (/ (mesAhp(t))th) } (3.10)
to

(k)2
(W™ (Qp—01p, 7—0ar))

, e to+T o\ +R)
<o {0102 4 (e o gy + ([ mesarnFar) ),

t

’ (3.11)

Although our definition of B is little bit different from one in [10, Section 7 in

Chapter 2], we can prove that u € B implies the Holder continuity of « in a similar
way to that of [10].

From now on, we shall show that u € B for some positive numbers M, ~, r, § and

k. Let 2o € Q, M = u*, where u* is the same positive constant as in Theorem 2.2,

and & € C*°([0, 7] x ) with supp £(t) C K,(z) for 0 <t <T and 0 < ¢ <1 ae.

on [0,7] x ©, and k be a number satisfying (3.7), and p > 0,0 <ty <tg+7 < T,

and o1, 02 € (0,1). Also, we put v = u — up, f1 = wf —up: and fo = —g(u)Vuy.
Then it holds that

vy — div(g(u)Vv) = f1 — divfy in Q(T). (3.12)
By testing [v — k]T€2 € HL(Q) to (3.12), we have
33 [ 1lo = K€+ go [ V0~ kP
< [ hlo- K €do s [ £ 1€
Q Q

+ / v — K*26éds + 2 / 9 Vo — K[ — K*eVEdr ace. on [0,T].  (3.13)
Q Q
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It is easy to see that

/ filv = KT (t)da < 2M | f1| oo (q(ry)mes Ay, p,
Q

/ V([0 — K*€2)da
Q

- / f(Vo— K*)e2da + 2 / fz[v*kﬁévfdw

IN

/ ‘v +‘ §2d$ + (1 + )|f2|Loo(Q(T))IHGBSA)€ P
_ 2
+ /A ek PP
2/ g(W) Vv — kT v — k] TEVEda,
Q

4 *\2
<8 [ 19— ke + S
4 Ja, 90
From these inequalities it follows that

3 L=k Pede+ D [ 90— 1P

< yimesAg, + 1 / (IVEP + [6,16)|[v — K] [2de,

Ak’p

/ v — K P|VEde ae. on [0,T].

P

*\2
where y1 = 2M| 1| q(ry) + (1 + glo)‘f2|%°°(ﬁ +1+ 4<Z0) . By integrating this
inequality over [tg, 1] for 0 < to < ¢, < T, we obtain

/I (t) — k] 2E2(0 d:c+—/ /|v K 2€2dudt
to

/| v(to) — kT 2€% (to)dx +m mesAhpdmdt

to

2 _ ]1t+2
+/to /A,W('Vfl + 66l — kI dadt.

Here, let r and ¢ be two positive numbers satisfying 1/r + 3/2¢ = 1 + k. and
ks« = 3/8, for instance ¢ = r = 4/3. Clearly, we have

t1 N 1 t1 - -
mesAy, ,(t)dzdt < T+ |Q|< (/ (mes Ak,p(t))th) )

tU t()

where 1’ and ¢’ are the dual indexes of r and ¢, respectively. Moreover, by setting
k :=2k,/3 = 1/4 and taking 7 and § such that # = 2(1+ k)r and ¢ = 2(1 + k)q, we

see that
/| K22 (1) da + 20 / /|v K 2€2dadt

3 [ lltto) = W PE s + T ( / (nes A (0)

2(147)

IN

t1
2 _ 112
o, /Ak,p('vf' 1616l — K]* Pdudt
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forOStogtlgTand%—F%:% (3.14)
Then by using [10, Remark 7.2 in Chapter 2] (3.14) implies that u € B(M,~, #, &)
for some v > 0. Also, by (3.8), (3.14) and the Hélder continuity of wu;, up to the
boundary, we see that u satisfies the assumption of [10, Theorem 8.1 in Chapter 2].
Therefore, on account of [10, Theorems 7.1 and 8.1 in Chapter 2] we can show that
v is Holder continuous on Q(T'). Finally, since u; is Holder continuous on Q(T),

u = v ~+ up is Holder continuous on Q(7T), too. O

By using the estimate of Vu on the boundary (Lemma 3.1) and the Holder
continuity on Q(7T) (Lemma 3.2), we prove that Vu € LP(Q(T)) for any p > 2.

Lemma 3.3. Under the same assumption as in Lemma 3.1, Vu € LP(Q(T)) for
p 2> 2.

Proof. For p > 2 and M > 1, we put

rP if r < M,
— M)pMP—1
om(r) = Mp—&-% if M <r<M+1,
M1
Y et 5 ifr>M+1,

B (r) = / " par(s)ds,

v(t) = |Vu(t)|? and M; := max{N{, No} where N; and Ny are the same constants
as in Lemma 3.1 and as in (2.2), respectively. Then, because of u € L2(0,T; H%(Q)),

we can see that aa (o ([v(t) — Myt )ag( )f e Hfor1 <i<3andae tE€
€T
ou(t)

[0,T], and & € C*(Q2). By multiplying (1.1) by ai(gaM([ (t) — M| ") == o £?)

and summing up from i = 1 to 3, we have by partial integration and using Lemma

3.1
1d

th
3
+3°3 [ ot >§Z) . [@Mqv—Mﬂ >§Z§Q}dx
=Z/wax [ai,<wM<[v—M1}+>>§;§2

o€ ]
ox;

SOM([U — My]")E%dw

+om([v = M]* )6 2€2+90M([U—M1] )8 2 26—

a.e. on Q(T).
Here, we note that the following properties hold:

(i) rom(r) <(p+1)@um(r) forr >0,
(1) om(r)<@+1)om(r)+1 forr >0,
i) P10 < )Eur) 41 for 20,
(i) eu(r)rs < (p+1)@u(r)+1  forr >0,
( (r)r <ppm(r) forr >0,

( (r) <plem(r)+1) forr>0.

O
o
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By using the above properties and Young’s inequality, we have

53 [ P = MIEdn + Co [ alu@)on (00) = M) (OE
<G / onr([0(t) — My )o? (H)e2da (3.15)
Q
+Cs /Q P ([v(t) — My )3 dx + 04/95%0

+C5/@M([v(t)7M1]+)|V§|2dx+C6/Q|V§|2dx,

where |ug,|? = ijzl 89? o 2 and C;(1 < < 6) is a positive constant depending

on p, My, and |w f| L (q(ry)-

Here, we estimate the term of [, par([v— M| )v?E?dx in the following way. For
£ >0 we take & € C°(Q) for [ = 1,---I. where I. is a positive number determined
later by

supp & C Bie(x) :=={z € R"| |7y —z| <&}, 0<&E<1onQ
256:1 G(z)=1onQ, Q=0nNB(z).

Then, for each | < . and z; € Q, by taking & = & and using v ([v—M;]T)EEVu =
0 on 0€; we have

[ ealot) = MRt = | parolt) = M1 0)gEdo

Q

= | Vu®)(Vu(t)pu([v(t) — Mi]")o(t)&} dw

Q

= [ V(u(t,z) = u(t,2))(Vu(t)en ([o(t) — Mi]F)o(t)&})dw

197]
= */Q (u(t, ) — u(t, z1))div(Vu(t)ou ([o(t) — Mi] Yo (t)&F ) da
= - /Q (u(t, z) —u(t, z1)) {Au(f)#?M([U(t) = M )u(t)€}
+Vu(t)¢hy ([v(t) — Mi]F)Vot)u(t)E] + Vu(t)y ([ (t) = Mu]")o(t) x 26()VE
+Vu(t) o ([v(t) — My]HER )V }dm = Z[ ) for t € [0,T7. (3.16)

Here, we put osc{u(t); 4} := maxq,u(t)— ming,u (t) By using the properties of
eu and @py and Young’s inequality for any ¢ > 0, we have

L(t) < ﬁOSC{U(t);Qz}/ [taw () loar ([v(t) — Mi]F)o(t)éi de

< Soscfu(t); )’ / )t (8) Pora ([0(t) — M) )2 (3.17)

T o o e ([v(t) = Mi] ") ()& da,

I5(t) < osc{u(t); i} . P ([w(t) = Mi]™) x 2Juqg ()[0? (8)&7 do
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= osc{u(t); 4} ; P ([0(t) = Mi]™) % 2Jua (1) [v(t) — Mi]o(t)éidz

+osc{u(t); u} ; P ([0(t) = Mi]T) X 2Juge (8)| Mafo(t) — M) da

+OSC{U(t);Qz}/Q P ([(t) = Mi]F) % 2fugg ()| MPE} da

< 20sc{u(t); 4} 5 (p+ Dom([v(t) — Mi] ™) ugs (B)|v(t) & dz

+QOSC{U(t);Qz}/Q (0 + Dar([v(t) — Mi] ") Mifus (8) |67 da

e ([v(t) = Mi]*)
Q |[U(t) - M1]+|
< gyoselu(®: )? | gu®)lua (O o ([o(t) ~ MiJF)eFda (3.18)
+26(p;1)/ﬂl ou([v(t) — My] )P (t)E da
L8 <4<p+ 1PM7 | 4M]
9 g

+2osc{u(t); U} |tz (8)| MEF e

2 ) /Ql((p + 1)@m([o(t) — My)T) + 1)EPda,

I5(t) < osc{u(t); 2} ) o ([0(t) = My P2 (B)u(t) x 26|VE|da

< Zosc{u(t): )2 /Q i ([0(t) — My )o(t) V& Pda

+5 [ enlbot) - Mp )
ose{u(t): )2 [ /Q (0 + D@ ([ot) — M) Ve Pda
n / M[(p+ D)Ear(o(t) — My]*) + 1]|V&[2de
7]

* g /Q e ([o(t) = M (O (1), (3.19)

and
I(t) < osc{u(t);Ql}/Q oa([v(t) — M) X 2luge ()|v(t)Elda

< %Osc{u(t); QY [ gut)em([v(t) — Mi]")|uge (t) 2 da
197}

26
+= [ om([v(t) = My] ") (t)& da for ae. t € [0,T]. (3.20)
9 Jo,
By taking a suitable number ¢ > 0 in (3.17)—(3.20), from (3.16), it follows that
1

3 [ enu) = )0t <

+C7OSC{U(t);Qz}2/ g(u(®))par([o(t) = My] ") uge (8)€7 da

197

1 /Q @ar([o(t) — Mi]*) + 1)€2da
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+Cgosc{u(t); 12 i (@am([v(t) — My]T) 4+ 1)|VE|2da for ae. t € [0,T], (3.21)

where C;(i = 7,8,9) is a positive constant. By (3.15) replaced ¢ and Q by & and

Q; we have
1d A
3t . (O~ M )ehda

+(cl—2czc7osc{u<t>;szl}2) [ stuens o) = M s )P

< <C3 + 20208> / @M([U(t) - Mﬂ*‘)ffdx + <C4 + 20208> f?dl‘
97}

o

+ (05 + 20, Cyosc{u(t); 91}2) /Q oar([v(t) — My |IVE P de

+(C’6+QCgCgosc{u(t);Ql}2)/ V& |2 da. (3.22)
197}

Here, by Lemma 3.2 since the solution u is Holder continuous with exponent a on
Q(T) and the points which takes the maximum and minimum value of u on )
belongs to ; C B ., there exists C' > 0 such that

osc{u(t); '} < |maxq,u(t) — ming,u(t)] < Ce® for t € [0, T].

Therefore, by taking €y > 0 such that pug = Cy — 20207@25(2)0‘ > 0 from (3.22) there
exists C; > 0 (10 <4 < 13) such that

53 . Pullo) =T IeRdr o [ atut)ar(0(8) = M)

< Cyo / Gar(olt) — My ")ede + Cny [ €2
QL Ql

+012/ @M([v(t)—M1}+)|V§l|2dw+C13/ V& |?dx for ae. t € [0,T]. (3.23)
QL Ql

Now, we take I, for gy in (3.23) and set K = maxi<i<i., |V&|. Then from (3.23),
we have

53 . Pl =T IeRdr o [ atu)ar(0(8) = M)

< Cho / Gar((o(t) — MyH)e2dr + Oy [ €2da
Ql QL

+CK? | Gu(o(t) — My )de + C13K2|Q| for a.e. t € [0,T). (3.24)
197}

By the summation from [ =1 to [, in (3.23) we have

1d . 2
s 2 | Bulle) - M) )ehs
1=1 "¢
ey
< CIOZ/ Pu([v(t) — Mi]*)&de + Crale Q)
=1/

+012l50f(2 (,/D\M([U(t) — M1]+)d.13 + C13lgok2‘ﬂ| for a.e. t € [O,T] (325)



698 TOYOHIKO AIKI AND KOTA KUMAZAKI

We note that there exists C' > 0 such that 1 < C’Z;;"l £2. Then, it holds that

/ m([v(t) = My]T)dz < CZ/ o] My T)éRdx for t € [0, T).

Therefore, from (3.25), we have

thZ/ g — My))& dx

< (Cro + C12Cle, K?) Z/ Pu([v(t) = Mi] ") dw + (Cile, + Cusley K2)I0)

for a.e. t € [0,7T].

By setting C14 = C1g+ C12C1., K2 and Cy5 = Ch1le, + Chsle, K2 and by Gronwall’s
inequality, we have

> / u([v(t) — Mi]h)&dr < 2C15]9]e* 7T for any t € [0, T). (3.26)

By the properties (ii) between ¢ and @y, from (3.25),
/ o ([v(t) — My]F) < (2(p 4+ 1)CC15e2“4TT + 1)|Q) for any t € [0,T].  (3.27)
Q

Since @pr(r) — 7P as M — oo for each r > 0, by Fatou’s Lemma and (3.27), we
obtain

/ [o(t) = My]* [Pda < Timinfas e / on([0(t) = M)V )da
Q Q

< 2(p+1)CC1e*TT +1)|Q.
This implies that Lemma 3.3 holds. O

On account of Lemma 3.3, we see that various LP-norm of Vu are finite. By
using this result, we prove the boundedness of Vu.

Lemma 3.4. Let {u,w} be a solution of (P) under the assumption (A1)-(A7).
Then, there exists M > 0 such that |Vu| < M a.e. on Q(T).

Proof. First, for the number N; as in Lemma 3.1 we set M := {1, N1, N2} where Ny
is the same positive constant as in (2.2) and consider %([v(t) kT ou( t)) for k > M
and t € [0, T], where v(t) = |Vu(t)|?. Similarly to the proof of Lemma 3.3, we note
that [v(t) — k]*aau—agf_) € Hi(Q) for a.e. t € [0,7] and 8%i([v(t) k]+au(t)) € H for
a.e. t € [0,7] and 7 = 1,2,3. Now, we multiply a,%i([v(t) — k]“‘agm(:)) (1.1) and
have

s [0~ W o
: ou B ou
+;;/ 350@ 3xk) 3xi([v(t)—k]+axk)dx
:Z: Qw [8ii([v(t)_k]+)g; +[v(t)—k;]+g;§ de

for a.e. t € [0,T].
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Now, we set Ax(t) = {z € Q| v(t,z) > k} for k € R and ¢t € [0,7]. By using
Young’s inequality to each term of the above identity for € > 0, we have

th/‘ [*de
el

1 3
+(5 - oflmomy 55 ) [ @O i uss P + 3 [ glveto)Pas
Q Q
LQ L2
< 4/ [U(t)—k]+v2(t)da:+—9/ () d
290 Ja ) 9o Ja, ()

2wf|? . 11
+w/ o(t)dr 4+ — — [o(t) — k]*dx, (3.28)
9o Ar(t) 2 9o J a (1)

where L, is a positive constant given by (A2). By taking ¢ > 0 such that 1/2 —
2(o|lwf|re=(q(r))Ly) > 0 and integrating it over [0,t] for 0 < ¢ < T, we have

3
/| |2dx+8/ﬂg(u)|Vv(t)|2dx
// T)dxdr + —= // T)dzdr
290 A( T> go Ak(r)
2lw f o
o L= em) | ‘L // 7)dadr + — // k)T dzdr
Akm 250 90 Akm

for t € [0, T]. (3.29)

Let ¢ =10, r =2, Kk = 1/2 and ¢’ and r’ be the dual indexes of ¢ and r, respectively.
Then, it is easy to see that
1

/ k(t)[v<t>k1+v2<t>s( / k(t)vz%t)) (/ o)~k wip)" (ma0)

/ V3 (t)dx < 2/ v(t)(|[v(t) — k)T + k?)dx
A (t)

1
7/

<(f k(t)v%t))é(/A RCCE ) (3:31)

Q=

v(t) — k] 2\dx
gz/w(u (1) — K2 + K2|d

% o(t) — kT2 21q’ % )
<10 (/,w'[ (1)~ P+ 12 ) | (3:32)
/ [v(t)—kmxg/ [w(t) = K*2 + k2|da
A (t) A (t)
< |Qfs (/A o l|[v(t) — k] T|> + k2|q/dm) " orte [0, 7). (3.33)

By (3.29)-(3.33), we have

2 § u v 2 X
3 | 6 =K+ 5 [ aiVow)Pd
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<G[([ [, i)'« ([, o) o]

1
7/

« K/O /AW) Ilv(7) —k]+|2q’dxd7>q/ +k:(/0 mesAk(T)dT) ] for 0<¢<T,

(3.34)
where Cj is a positive constant. Here, we note that

(/ot /Am) [lo(r) = K727 da:dr>

. . ¢ , TaTe
< |Q|T0FR t T (/ / [[v(r) — k] *|* (1+"‘)dxd7) for 0 <t <T.
Ag(T)
(3.35)

R

Therefore, by (3.34) with (3.35), we obtain
3
/| — e+ 5 [ aIVelo)fds
1

ULy (L) o
ool ) )

for0 <t <T. (3.36)

Here, Lemma 3.3 guarantees that fo Jo v*°(t)dxdt and fo Jo v10(t)dzdt are finite.
Also, by (2) of Lemma 2.4 in Section 2 Wlth q=10/3, m=r = 2 and n = 3, we
have for z € C([0,T]; H) N L?(0,T; H*()),

t 3 ¢ 3
173() 5 « 9 %d 5
K < K
</0 A dr) < ([ CIvsilediar
’ s (3.37)
< C maXt| ( )|H|VZ|L2(()¢H)
< Cullzleqosm + V2l L2 0,m)°

Here, for any t € [0, T], we denote by V(¢) = C([0,t]; H) N L?(0,¢; H} () with the
norm
2l = Ofgag 2(8)|m + |Z|L2(o,t;Hg(Q)) for z € V().

L
10

~ T
By putting Cy = {(fo Jo v*( dmdt) (fo Jo vt dmdt) + 2T10|Q|110}
and using (3.37) from (3.36) it follows that

1 s s - t 1
(min{Q, : } ColQ|70t 0) [[v — k;]+|%/(t) < Cok? (/ mesAk(T)dT>
0

for0 <t <T.
By taking ¢* > 0 such that mg := min{3, 2go} — ColQ] 10 (£,) 10 > 0, we obtain

15 (1+3)
v — Kty < 2\/> (/ mes Ay (T )dT) for t < t*. (3.38)
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Therefore, from Theorem 6.1 in Section 2 of [10], we see that there exists k > 1
such that v < 2Mik for a.e. on Q(t) for t < t*. Since the choice of t* does not

depend on the initial data, by repeating this argument we conclude that v < 2M1k
for a.e. on Q(T). Thus, Lemma 3.4 is proved. O

4. Boundedness of |u;|y. In the previous section, we showed that Vu €
L (Q(T)). The aim of this section is to establish u, € L>(0,T; H).

Lemma 4.1. If {u,w} is a solution of (P) with kg < u < u* a.e. on Q(T). Then
up € L0, T; H)

Proof. First, we consider the following problem (AP):

v = Ag(w)o) = F in Q(T),
v=0 onS(T),
v(0) =vg in €,
where F = (wf); + A(g(uw)upt) — upts and vg = w(0) f(0) + AG(u(0)) — upt (0). Here,
from (A4) and (A6) we note that F' € L?(0,T; H) and vy € H.
First, we show that (AP) has a weak solution v € V(T') in the following sense:

— v ¢(t)dxdt — | v dzx
Lm<mu>t /<wm>

Q

+ / V(g (ut))o(t)) V() dudt — / F(On(t)dadt,
Q(T) Q(T)

for n € WH2(0,T; H) N L*(0,T; H} (Q)) with n(T) = 0. (4.1)
Indeed, we take sequences {H,} C C*°(Q(T)) such that go < H,, < ¢* on Q(T") and
IVH,| < M on Q(T), where g* and M are the same positive constants as in (2.3)
and Lemma 3.4, and H,, — g(u) in L(0,T; H(Q2)) asn — oo, and {vg ,,} C C*(Q)
such that vy, = v in H as n — oco. Since Hy,, VH,, and AH,, belong to L>(Q(T))
for each n, the classical theory for parabolic equations leads to the following problem

v A(Haw) = F i Q(T),
v=0 on S(T),
v(0) = v, in €,

has a solution v = v,, € WH2(0,T; H) N L>(0,T; H} (2)). Then, by multiplying v,,
to the equation we can have the following estimate:

[Vn|Lo<0,7:m) + |VnlL2 0,130 () < Mo,

where M> is a positive constant independent of n. Therefore, we can take a subse-
quence {v,x} C {v,} such that for some v € L°(0,T; H)NL?(0,T; H*(Q)), v — v
weakly in L2(0,T; H'(Q2)) and weakly star in L>°(0,T; H) as k — oc.

Let n € W12(0,T; H) N L*(0,T; H} () with n(T) = 0. For any § > 0, there
exists ns € C>°(Q(T')) such that |V — Vns|r2(q(r)) < . Therefore, we see that

/ (V(Hnkvnk) — V(g(u)v))Vndxdt’
Q(T)

= (VHpknk — Vg(u)v)Vndzdt + / (HpnxVonk — g(w)Vo)Vndzdt
Q(T) Q(T)
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< ‘/ VHnk (Unk — v)Vndadt +/ (VHpr — Vg(u))vVndxdt‘
Q(T) Q

(T)
+ (Honte — g(u))Vup, Vndzdt + / g(u)(Von, — Vv)Vndxdt‘
QT) Q(T)
— 0as k — oo.
(4.2)
Also, by integration by parts we have
[ vatmtdsdt [ o©)n(0)ds
Q(T) Q
[V (Ho () oni(6) V(1) deedt = / Fltyn(t)dwdt. (4.3)
Q(T) Q(T)

by letting & — oo in (4.2) on account of (4.3) we obtain (4.1).

To accomplish the proof of this lemma it is sufficient to show that v = u; — up;.
To do so, let 7 be any function in W12(0,T; H)NL2(0,T; H(Q))NL?(0,T; H*(Q))
with 7(T") = 0. Then, we can take sequence {n,} C C°>°(Q(T)) such that 7, — 7 in
W20, T; HYNL*(0,T; HY(Q))NL?(0,T; H*(Q)) as n — oo. Then, by multiplying
Tine to (1.1) we have

/ (usr — upt)Mpedadt + VG (u)Vipededt
Q(T) Q(T)

= / (wf — upt)nedadt for each n. (4.4)
Q(T)

Here, by using integration by parts it holds that

/ VG (u) Vi dadt
QD)

= - / G (u) Adjydadt + / G(u) 2t
QT) S(T) g
g(u)utAﬁndxdt—l—/ G (ug) Ay, (0)dx
QD) o 0
+ G(up) Int Gudt for each n.
S(T) v

Therefore, from (4.4) we obtain

[ = w)iwdade + [ ) s~ un) Mot
Q(T) Q(T)

:/ (wf_ubt)ﬁntdxdt—/ g(u)ubtAﬁndxdt
Q(T) Q(T)

- / G (up) Ay (0)da — G(up) Vit 1. (4.5)
Q S(T) ov
We note that

/ (wf — upt)pedadt

Q(T)

= —/ (wf)e — wpee) M dadt — / (w(0) f(0) — upt (0)) 7, (0)ddt, (4.6)
Q(T) Q

- / g(u)up Any, dadt
Q(T)
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~ 8 mn
=— [ Alg(u)up)indadt — / g(usJupy " dudt, (4.7)
Q(T) 5(T) v

/ G (uo) Aijn (0)dw = / AG ()i (0)da + G(ub(O))aﬁgV(O)d% (4.8)
Q Q o0

= VG (u)Viededt + G(u)Afjpdadt
Q(T) Q(T)

= / (G(u) — G(up))tAfpdadt + / (G(u(0)) — G(up(0))) A7, (0)dx
Q(T) Q

and | (VGw) Viidudt — /Q VG (s (0)) Vi (0)da
(G(u))s Adfdadt — /Q G (10) A (0)dz
(G(up))eAifndadt — /Q G (6(0)) Adin (0)da
(VG () Vitndadt — /Q VG (s (0)) Vi (0)dz

_ Ot _ 01 (0)
_ /S Sl ot = [ Glun(0) = 2 (4.9)

Therefore, by (4.6)—(4.9), we have

/ (ur — upt)Mpedadt + / g(u)(uy — up) Anjpdadt
Q(T) Q(T)

=— Fr,dxdt — / v(0)7, (0)dz. (4.10)
Q(T) Q

By n — oo in (4.10) we get

/ (ug — upt)Medxdt + / g(u)(uy — upy) Afdadt
Q(T) Q(T)

S Frdxdt — / v(0)7(0)dz. (4.11)
Q(T) Q

Therefore, by (4.1) and (4.11) we have

/ (0(t) — wn(t) + upe (0))ie(¢)dvdt
Q(T)

+ / 9 (u(t)(w(t) — we() + upa () Adi(t)ddt = 0. (4.12)
Q(T)

Here, we set @(t) = u(T —t) and @(t) = (T —t) for any ¢ € C*°(Q(T)). Then, by
the result of [10], we see that the following problem

e — g(@) A = ¢ in Q(T),
7=0o0n S(T),
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has a unique solution 7 € W2(0,T; H) N L%(0,T; H} (2)) N L2(0,T; H*(Q)). Put
n*(t) = (T —t). Then we have nf + g(u)An* = —¢ in Q(T), n* =0 on S(T') and
n*(T) =0 in Q. Accordingly, by taking n* as 7 in (4.12) we have

/ (v — ug + upt)pdadt = 0 for any ¢ € C*(Q(T)).
Q(T)

This implies that v = u; —up a.e. in Q(T). Finally, since v € L>°(0,T; H), we have
ug € L°°(0,T; H). Thus, Lemma 4.1 is proved. O

5. Proof of Theorem 2.3. In this Section, by using the properties (I) and (II)
we prove the uniqueness of a solution of (P). Let {uy, w1} and {us, ws} be solutions
of (P) on [0,T7, &1,& € L?(0,T; H) defined by (S3), that is, & (t) € OI(u;(t); w;(t))
for a.e. t € [0,7T], and u = uy — ug and w = wy; — wg on Q(T'). Then it follows that
up — div(g(u1)Vur — g(u2)Vus) = wf  in Q(T), (5.1)
wi —vAw; +& =0 inQ(T) for i =1,2, (5.2)
u=0,w; =w, onS(T), fori=1,2,
u(0) = 0,w;(0) =wy onQ, fori=1,2.
For simplicity, for 0 < s < T and x € Q we put
M (s, ) = max{|fi(ui(z)) = fu(ua(@))| Lo 0,1), [f" (w1 (2)) = 7 (u2(2)) oo 0,1 }-
Here, we recall the following lemma.
Lemma 5.1.
|w]ree(o,5) < M(s) a.e. on Q(s) for0<s<T.
This Lemma is already proved by [9, Lemma 3.1] so that we omit this proof.

Proof of Theorem 2.3. First, from Lemma 4.1, w; f € L>®(Q(T)) and u;s € L>(0, T}
H) for i = 1,2, we see that

|AG (wi)| Lo 0,7;m) < Wi f — Wit| oo 0,151y < +00.
Therefore, by Lemma 3.4, we see that there exists R > 0 such that
g(ui) Lo (0,T;H)

|Aui| oo (0,150) =

(5.1) implies that
up = [9'(u1) [ Vur [* = ¢ (ua2) [Vuz|* + g(ur) Aur — g(uz)Aus] = wf in Q(T),
we multiply it by (—Awu) we obtain

1d
§$|VU|%H + golAul < (wf, —Au)y
+([g' (u)[Vur|* = g’ (u2) | Vue?, =Au) i + ((9(ur) — g(uz))Aug, —Au) g
a.e. on [0,77]. (5.4)
First, it is easy to see that
2Ty | o L 90 A 12
(wf,—Au)g < T|w|H + §|AU|H. (5.5)

Next, it holds that
(I’ (1) [Vur [* — ¢’ (u2)| Vug|*, —Au) g
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= ((¢'(u1) = ¢ (u2))|Vur|* + ¢’ (u2) VuV (uy + uz), —Au) g

2(M?L,Cp)?
(g ) — (02 VP, ~ By < 2L
where M is the same positive constant as in Lemma 3.4, L is a Lipschitz constant

of g and Cp is a positive constant by Poincare’s inequality, and
2(2L,M)?
9o

Valf + RlAul,  (5.6)

(¢’ (u2)VuV (ug + ug), —Au) g < |Vul|% + %|Au|§q a.e. on [0,T]. (5.7)

For the last term of the right hand side in (5.4), from (5.3) we have

2L§ 2 gJo 2
((g(wr) = glu2)) Az, ~Au)y < = Lfulpoe o) R + | Aulfy. (5.8)

Here, by (1) and (2) of Lemma 2.4 in Section 2 with ¢ = co, n = 3, r = 2 and
m = 6 for any n > 0 we obtain

2 1 w2 1
|Z‘%°°(Q) < C*|VZ|£6(Q)|Z|1§I <C |Z|12{2(Q)|Z|12{
3 1
<CrC2(|A%lm + |2ln)? |13
377 1
<003 (B8t + 40 + el )

C*C’277 |Az|% + C*C? ( N3+ 4774)CP|VZH for z € H*(Q). (5.9)
Therefore, by adding (5.4)—(5.9), we have

2
g - 4 |f|L:>o T
sarouty + (2 - 3Epoci )s)m 3y < QD
2(M2L 2 9(2L,M)? 2L2
90 90 g0 477

a.e. on [0,T]. (5.10)

Therefore, by taking no such that m = go/2 — 3/2(L§RC*C (1)3)/g0 > 0 and
putting the coefficient of |Vu|?, in (5.10) by C; = C1 (1), we have

1d i 2011~ qer i
5 37|Vl +mlduff < —=CE ()}, + Cu[Vu(®);
9o
for a.e. t € [0,T]. (5.11)

By setting I(t) = 1/2|Vu(t)|%} + mfo |Au(T)|%dr for t € [0,T] and using the
Gronwall’s lemma, we get

21712 . t .
I(t) < ('“Q(T”/ |w(T)|§{dT)eClt for t € [0, 7). (5.12)
g0 0

On the other hand, since vy = wf — div(g(u;)Vus — g(ug)Vus), by (5.1)
el Fr < Co| fI7 ey |wlFr + [(MPLyCp)?
+(2Lg M)?]|Vulf + (RLg)?|ulF 0y + (9%)*| Aulfy ae. on [0,T].
By using (5.9) with 7 = 1 we have
lue ()31 < Colf12 ey lw () + CslVul(t)|F + Cal Au(t) ) for t € [0,T], (5.13)
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where Cy = Co(M2LyCp)® + (2L, M)* + RL, ,C*C2Cp) and Oy = Ca((g*)? +
R2L,3/4C*C ) Therefore, by integrating (5.13) over [0, ¢] we obtain

/O ()2 < Calf iy / o (r) 2y dr

t
+Cst max |Vu(7)|% + 6’4/ |Au(T)|%dr. (5.14)
0<t<r o

By using the estimate (5.12) to (5.14), we get

t t
/0 ()2 < Col £, / (7 2

- 2/ 2.
+maX(C’3,C’4)(t+1)<2+ >(|f|L‘Q<T”/| ol d7> Gt for t € [0, T).

(5.15)
Therefore, by (5.12) and (5.15), we see that the following inequality holds:

t t t
/ |ut(7)|%1d7'+ max |Vu(5)|§{ Jr/ |Au(7’)|§ld7 < 6‘5/ |w(7)|%1d7'
0 Oss<t 0 0

for ¢t € [0,T7, (5.16)

where Cg is a positive constant. Here, by putting po = g0 = 2, p1 = ¢1 = 10/3 and
g2 = 5 in (2.6) of Lemma 2.4 in Section 2, we see that there exists C. > 0 such that

lulzs@.cqo,m) < Celluelzomm +ul 1o 100 o))- (5.17)
By using (5.11), we obtain
3 3
70 10 t 10 10
</ |u(r 3@ d7> < C</ [Vu(r)| 5 dT)
3
< CTTo max, |Vu(s)|g < CTio \/ Colw|2(0,1.1) for t € [0,T7, (5.18)

0<s<

where C is a positive constant. Similarly to the proof of (3.26) in Section 3, by using
(1) of Lemma 2.4 in Section 2 and Poincare’s inequality, we have

3 3
(/ [Vu(r %70 d7‘> < (C*)% Orgax [Vu(s) (/ |u(r ‘H‘Z(Q dT)

< (C*)io max [Vu(s I [C2(C2 + 1) (/ IVu(r \Hd7—+/ |Au(r |Hdr)

=

0<s

< (C)YBICAC + 1)) (T max [Vu(s)|

<s<t

3
+ ax [Vu(s) (/ [Au(r |Hd7') ) for ¢t € [0, T7,

so that on account of (5.16) we get

3
10 3 3 -
(/ Vulfy g t) < 2ACTBCACH + I+ 1)y ool

L3 (Q)

for t € [0, T]. (5.19)
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By putting C7 = 2(C*) 10 [C2(C% +1)]10 (T +1)\/Cg + CT101/Cs. Then, by (5.16),
(5.17), (5.18) and (5.19) we obtain that

[ul 25 (Q,0(0.4])) < Ce(Cs + C’7)|w\L2(o,t;H)~ (5.20)
Therefore, by Holder’s inequality, Lemma 5.1 and (5.20) we have

(w2000 < \/ﬂﬂl%lg’lm(n,a[mﬂn
< L*\/£|Q|T;|U|L5~(Q,C([~O,t]))
< LVHQ0C(Cs + Co)|wlr2(0,4m)-

Finally, by taking ¢* > 0 such that 1 — L,v/#*|Q|16Ce(Cs + Cr) > 0 we see that
|w|r2(0,4,m) = 0 for 0 <t < t* so that wy = wy for 0 < ¢ < ¢*. Then, from (5.20),
we also see that u; = ug for 0 <t < t*. By repeating this argument for ¢ > t* we
see that u; = us and wy; = wy for 0 < ¢ < T. Thus, Theorem 2.3 is proved.
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