Citation: Christos V. Nikolopoulos. Mathematical modelling of a mushy region formation during sulphation of calcium carbonate[J]. Networks and Heterogeneous Media, 2014, 9(4): 635-654. doi: 10.3934/nhm.2014.9.635
[1] | Amira Bouhali, Walid Ben Aribi, Slimane Ben Miled, Amira Kebir . Impact of immunity loss on the optimal vaccination strategy for an age-structured epidemiological model. Mathematical Biosciences and Engineering, 2024, 21(6): 6372-6392. doi: 10.3934/mbe.2024278 |
[2] | Qiuyi Su, Jianhong Wu . Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models. Mathematical Biosciences and Engineering, 2020, 17(6): 7671-7691. doi: 10.3934/mbe.2020390 |
[3] | Zhisheng Shuai, P. van den Driessche . Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences and Engineering, 2012, 9(2): 393-411. doi: 10.3934/mbe.2012.9.393 |
[4] | Xinyu Bai, Shaojuan Ma . Stochastic dynamical behavior of COVID-19 model based on secondary vaccination. Mathematical Biosciences and Engineering, 2023, 20(2): 2980-2997. doi: 10.3934/mbe.2023141 |
[5] | Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067 |
[6] | Ying He, Junlong Tao, Bo Bi . Stationary distribution for a three-dimensional stochastic viral infection model with general distributed delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18018-18029. doi: 10.3934/mbe.2023800 |
[7] | Tong Guo, Jing Han, Cancan Zhou, Jianping Zhou . Multi-leader-follower group consensus of stochastic time-delay multi-agent systems subject to Markov switching topology. Mathematical Biosciences and Engineering, 2022, 19(8): 7504-7520. doi: 10.3934/mbe.2022353 |
[8] | Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372 |
[9] | Jinliang Wang, Hongying Shu . Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences and Engineering, 2016, 13(1): 209-225. doi: 10.3934/mbe.2016.13.209 |
[10] | Shuang-Hong Ma, Hai-Feng Huo . Global dynamics for a multi-group alcoholism model with public health education and alcoholism age. Mathematical Biosciences and Engineering, 2019, 16(3): 1683-1708. doi: 10.3934/mbe.2019080 |
[1] |
G. Ali, V. Furuholt, R. Natalini and I. Torcicollo, A mathematical model of sulphite chemical aggression of limestones with high permeability. Part I. Modeling and qualitative analysis, Transport in Porous Media, 69 (2007), 109-122. doi: 10.1007/s11242-006-9067-2
![]() |
[2] |
G. Ali, V. Furuholt, R. Natalini and I. Torcicollo, A mathematical model of sulphite chemical aggression of limestones with high permeability. Part II: Numerical approximation, Transport in Porous Media, 69 (2007), 175-188. doi: 10.1007/s11242-006-9068-1
![]() |
[3] |
D. Aregba-Driollet, F. Diele and R. Natalini, A Mathematical Model for the SO2 Aggression to Calcium Carbonate Stones: Numerical Approximation and Asymptotic Analysis, SIAM J. APPL. MATH. , 64 (2004), 1636-1667. doi: 10.1137/S003613990342829X
![]() |
[4] |
F. Clareli, A. Fasano and R. Natalini, Mathematics and monument conservation: Free boundary models of marble sulfation, SIAM Journal on Applied Mathematics, 69 (2008), 149-168. doi: 10.1137/070695125
![]() |
[5] | A. Fasano and R. Natalini, Lost Beauties of the Acropolis: What Mathematics Can Say, SIAM news, 2006. |
[6] | T. Fatima, Multiscale Reaction Diffusion Systems Describing Concrete Corrosion: Modelling and Analysis, Ph.D thesis, Technical University of Eindhoven, 2013. |
[7] |
T. Fatima, N. Arab, E. P. Zemskov and A. Muntean, Homogenization of a reaction - diffusion system modeling sulfate corrosion of concrete in locally periodic perforated domains, Journal of Engineering Mathematics, 69 (2011), 261-276. doi: 10.1007/s10665-010-9396-6
![]() |
[8] |
T. Fatima and A. Muntean, Sulfate attack in sewer pipes: Derivation of a concrete corrosion model via two-scale convergence, Nonlinear Analysis: Real World Applications, 15 (2014), 326-344. doi: 10.1016/j.nonrwa.2012.01.019
![]() |
[9] | T. Fatima, A. Muntean and T. Aiki, Distributed space scales in a semilinear reaction-diffusion system including a parabolic variational inequality: A well-posedness study, Adv. Math. Sci. Appl., 22 (2012), 295-318. |
[10] |
T. Fatima, A. Muntean and M. Ptashnyk, Unfolding-based corrector estimates for a reaction - diffusion system predicting concrete corrosion, Applicable Analysis, 91 (2012), 1129-1154. doi: 10.1080/00036811.2011.625016
![]() |
[11] |
F. R. Guarguaglini and R. Natalini, Fast reaction limit and large time behavior of solutions to a nonlinear model of sulphation phenomena, Commun. Partial Differ. Equations, 32 (2007), 163-189. doi: 10.1080/03605300500361438
![]() |
[12] |
F. R. Guarguaglini and R. Natalini, Global existence of solutions to a nonlinear model of sulphation phenomena in calcium carbonate stones, Nonlinear Analysis: Real World Applications, 6 (2005), 477-494. doi: 10.1016/j.nonrwa.2004.09.007
![]() |
[13] |
E. J. Hinch, Perturbation Methods, Cambridge University Press, 1991. doi: 10.1017/CBO9781139172189
![]() |
[14] |
A. A. Lacey and L. A. Herraiz, Macroscopic models for melting derived from averaging microscopic Stefan problems I: Simple geometries with kinetic undercooling or surface tension, Euro. Jnl. of Applied Mathematics, 11 (2002), 153-169. doi: 10.1017/S0956792599004027
![]() |
[15] |
A. A. Lacey and L. A. Herraiz, Macroscopic models for melting derived from averaging microscopic Stefan problems II: Effect of varying geometry and composition, Euro. Jnl. of Applied Mathematics, 13 (2002), 261-282. doi: 10.1017/S0956792501004818
![]() |
[16] |
R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Caimbridge University Press, 2002. doi: 10.1017/CBO9780511791253
![]() |
[17] |
C. V. Nikolopoulos, A mushy region in concrete corrosion, Applied Mathematical Modelling, 34 (2010), 4012-4030. doi: 10.1016/j.apm.2010.04.005
![]() |
[18] | C. V. Nikolopoulos, Macroscopic models for a mushy region in concrete corrosion, Journal of Engineering Mathematics, 2014, DOI 10.1007/s10665-014-9743-0. |
[19] | J. L. Schnoor, Enviromental Modeling, Fate and transport of pollutants in water, air, and soil, John Willey and Sons, Inc., 1996. |
1. | Jinhu Xu, Yan Geng, A nonstandard finite difference scheme for a multi-group epidemic model with time delay, 2017, 2017, 1687-1847, 10.1186/s13662-017-1415-8 | |
2. | Zhijun Liu, Jing Hu, Lianwen Wang, Modelling and analysis of global resurgence of mumps: A multi-group epidemic model with asymptomatic infection, general vaccinated and exposed distributions, 2017, 37, 14681218, 137, 10.1016/j.nonrwa.2017.02.009 | |
3. | Xue Ran, Lin Hu, Lin-Fei Nie, Zhidong Teng, Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate, 2021, 394, 00963003, 125798, 10.1016/j.amc.2020.125798 | |
4. | Yan Geng, Jinhu Xu, Stability preserving NSFD scheme for a multi-group SVIR epidemic model, 2017, 01704214, 10.1002/mma.4357 | |
5. | Yan Liu, Pinrui Yu, Dianhui Chu, Huan Su, Stationary distribution of stochastic multi-group models with dispersal and telegraph noise, 2019, 33, 1751570X, 93, 10.1016/j.nahs.2019.01.007 | |
6. | Xinyou Meng, Qingling Zhang, Complex Dynamics in a Singular Delayed Bioeconomic Model with and without Stochastic Fluctuation, 2015, 2015, 1026-0226, 1, 10.1155/2015/302494 | |
7. | Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020 | |
8. | Junyuan Yang, Yuming Chen, Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate, 2018, 12, 1751-3758, 789, 10.1080/17513758.2018.1528393 | |
9. | Ying Guo, Wei Zhao, Xiaohua Ding, Input-to-state stability for stochastic multi-group models with multi-dispersal and time-varying delay, 2019, 343, 00963003, 114, 10.1016/j.amc.2018.07.058 | |
10. | Lan Meng, Wei Zhu, Analysis of SEIR epidemic patch model with nonlinear incidence rate, vaccination and quarantine strategies, 2022, 200, 03784754, 489, 10.1016/j.matcom.2022.04.027 | |
11. | Zhen Cao, Lin-Fei Nie, DYNAMICS OF A STOCHASTIC VECTOR-HOST EPIDEMIC MODEL WITH AGE-DEPENDENT OF VACCINATION AND DISEASE RELAPSE, 2023, 13, 2156-907X, 1274, 10.11948/20220099 | |
12. | Han Ma, Yanyan Du, Zong Wang, Qimin Zhang, Positivity and Boundedness Preserving Numerical Scheme for a Stochastic Multigroup Susceptible-Infected-Recovering Epidemic Model with Age Structure, 2024, 1557-8666, 10.1089/cmb.2023.0443 |