
Changes in the structure and sizes of human and bovine serum albumins as well as polyvinyl alcohol macromolecules in aqueous solutions depending on temperature, concentration, and acid-base balance (pH) of the solutions are discussed. It is taken into consideration that the change in the hydrodynamic radius of a macromolecule is one of the indicators of structural phase transformations of globular proteins. The methods of the macromolecular radii determination from the shear viscosity and the self-diffusion of macromolecules in solutions are discussed. The hydrodynamic radius values of albumin and polyvinyl alcohol macromolecules obtained by the above methods are thoroughly compared. Consideration of these questions provides us with important information on the nature of the binding of water molecules with protein macromolecules.
Citation: Oleksii V. Khorolskyi, Nikolay P. Malomuzh. Macromolecular sizes of serum albumins in its aqueous solutions[J]. AIMS Biophysics, 2020, 7(4): 219-235. doi: 10.3934/biophy.2020017
[1] | Wael S. Abu El Azm, Ramy Aldallal, Hassan M. Aljohani, Said G. Nassr . Estimations of competing lifetime data from inverse Weibull distribution under adaptive progressively hybrid censored. Mathematical Biosciences and Engineering, 2022, 19(6): 6252-6275. doi: 10.3934/mbe.2022292 |
[2] | Walid Emam, Khalaf S. Sultan . Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148 |
[3] | Hatim Solayman Migdadi, Nesreen M. Al-Olaimat, Omar Meqdadi . Inference and optimal design for the k-level step-stress accelerated life test based on progressive Type-I interval censored power Rayleigh data. Mathematical Biosciences and Engineering, 2023, 20(12): 21407-21431. doi: 10.3934/mbe.2023947 |
[4] | M. Nagy, Adel Fahad Alrasheedi . The lifetime analysis of the Weibull model based on Generalized Type-I progressive hybrid censoring schemes. Mathematical Biosciences and Engineering, 2022, 19(3): 2330-2354. doi: 10.3934/mbe.2022108 |
[5] | Said G. Nassr, Amal S. Hassan, Rehab Alsultan, Ahmed R. El-Saeed . Acceptance sampling plans for the three-parameter inverted Topp–Leone model. Mathematical Biosciences and Engineering, 2022, 19(12): 13628-13659. doi: 10.3934/mbe.2022636 |
[6] | Walid Emam, Ghadah Alomani . Predictive modeling of reliability engineering data using a new version of the flexible Weibull model. Mathematical Biosciences and Engineering, 2023, 20(6): 9948-9964. doi: 10.3934/mbe.2023436 |
[7] | M. Nagy, M. H. Abu-Moussa, Adel Fahad Alrasheedi, A. Rabie . Expected Bayesian estimation for exponential model based on simple step stress with Type-I hybrid censored data. Mathematical Biosciences and Engineering, 2022, 19(10): 9773-9791. doi: 10.3934/mbe.2022455 |
[8] | Fathy H. Riad, Eslam Hussam, Ahmed M. Gemeay, Ramy A. Aldallal, Ahmed Z.Afify . Classical and Bayesian inference of the weighted-exponential distribution with an application to insurance data. Mathematical Biosciences and Engineering, 2022, 19(7): 6551-6581. doi: 10.3934/mbe.2022309 |
[9] | Francisco Julian Ariza-Hernandez, Juan Carlos Najera-Tinoco, Martin Patricio Arciga-Alejandre, Eduardo Castañeda-Saucedo, Jorge Sanchez-Ortiz . Bayesian inverse problem for a fractional diffusion model of cell migration. Mathematical Biosciences and Engineering, 2024, 21(4): 5826-5837. doi: 10.3934/mbe.2024257 |
[10] | Jihong Pang, Chaohui Zhang, Xinze Lian, Yichao Wu . Reliability assessment of permanent magnet brake based on accelerated bivariate Wiener degradation process. Mathematical Biosciences and Engineering, 2023, 20(7): 12320-12340. doi: 10.3934/mbe.2023548 |
Changes in the structure and sizes of human and bovine serum albumins as well as polyvinyl alcohol macromolecules in aqueous solutions depending on temperature, concentration, and acid-base balance (pH) of the solutions are discussed. It is taken into consideration that the change in the hydrodynamic radius of a macromolecule is one of the indicators of structural phase transformations of globular proteins. The methods of the macromolecular radii determination from the shear viscosity and the self-diffusion of macromolecules in solutions are discussed. The hydrodynamic radius values of albumin and polyvinyl alcohol macromolecules obtained by the above methods are thoroughly compared. Consideration of these questions provides us with important information on the nature of the binding of water molecules with protein macromolecules.
As a result of significant advancements in high technology, today's products are becoming more and more reliable, and product lifetimes are increasing. A product's failure may take a long period, such as several years, making it difficult, if not impossible, to gather failure information for products that are as reliable under normal settings. While running at a higher stress level shortens the product's life, the accelerated life test (ALT) is utilized to induce more failures and then derive the reliability information under normal conditions. ALT enables the researcher to change the stress level factors to in order to gain information on the parameters of lifetime distributions more quickly than under regular operating conditions. The main assumption in ALT is that the mathematical model in which species the relationship between the average lifetime and the stress is known or the acceleration factor is known. In some cases, such a model does not exist or is very difficult to suppose. So, partially ALT (PALT) is a good nominee to carry out the life test in such cases. Various types of stress loading may be applied when performing PALT. Constant-stress and step-stress are the two most common types. A test unit runs under constant-stress PALT (CSPALT) in one of two modes: normal use or accelerated use. However, with step-stress PALT (SSPALT), a test item is run under normal conditions first, if it does not fail, it is then run under accelerated conditions until it fails or the observation is censored. The various types of PALT models have been the interest of many researchers see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17].
In many lifetime studies, it is common for the lifetime of test units to be inaccurately recorded. In practice, investigators need to process the censored data, as they rarely have the time to record and watch all of the people involved in the experience during their course of lifetime. There are various censoring patterns. Type-I and Type-II censoring are the most prevalent censoring techniques used in life testing or reliability experiments. Lately, the Type-II progressive censoring scheme has become popular enough to analyze highly reliable data. This kind of censoring scheme can be described as: suppose n identical items are put to test, the integer m≤n is a prespecified number of failures and R1,R2,…,Rm are m prefixed integers satisfying R1+R2+⋯+Rm+m=n. At the time of the first failure t1:m:n,R1 of the surviving units are randomly withdrawn. Likewise, at the time of the second failure t2:m:n,R2 of the surviving units are randomly withdrawn, and so on. At the time of the mth failure tm:m:n, the experiment is stopped and all surviving Rm=n−R1−R2−⋯−Rm−1−m units are withdrawn. Conventional Type-II censoring is a special case when R1=R2=⋯=Rm−1=0 and Rm=n−m. For more details about Type-II progressive censoring, see [18,19,20,21].
The inverted Kumaraswamy (IKum) distribution with the parameters α,β>0, will be denoted by IKum (α,β). IKum distribution was derived from Kumaraswamy distribution (Kum) using the transformation X=1/Y−1, when Y has a Kum distribution. Three special cases of IKum (α,β) distribution are Lomax distribution (when β=1), inverted beta Type-II distribution (when α=1) and log-logistic (Fisk) distribution (when α=β=1). The corresponding cumulative density distribution (CDF), probability density function (PDF) and hazard rate function (HRF) are given, respectively, by
F(x)=[1−(1+x)−α]β,x>0,α,β>0, |
f(x)=αβ(1+x)−(α+1)[1−(1+x)−α]β−1, |
h(x)=αβ(1+x)−(α+1)[1−(1+x)−α]β−1[1−[1−(1+x)−α]β]−1. |
Figure 1 shows that the IKum distribution has a lengthy right tail when compared to other commonly used distributions based on the PDF and HRF curves. As a result, it will influence long-term reliability predictions, producing optimistic predictions of uncommon events that occur in the right tail of the distribution when compared to other distributions. Furthermore, the IKum distribution fits various data sets from the literature quite well. IKum distribution was introduced by reference [22]. They investigated various structural properties with the application. They also addressed the problem of estimation of parameters of the IKum distribution based on Type-II censoring. Reference [23] used general progressive censored samples to evaluate the unknown parameters of the IKum distribution. Reference [24] studied relations for moments of dual generalized order statistics for IKum. For more details about IKum distribution see [25,26]
The motivation of this paper is to apply SSPALT to items whose lifetimes under normal stress conditions follow the IKum distribution under Type-II progressive censoring, and to estimate the involved parameters using ML and Bayes methods (under squared error (SE) and linear exponential (LINEX) loss functions). To demonstrate and evaluate the performance of the given estimating methods, an actual data set is investigated. The rest of this article is planned as follows. Section 2 presents the description of the model. In Section 3, both the ML estimates (MLEs) and observed Fisher information matrix are presented. In addition, Lindely's approximation and the Markov chain Monte Carlo (MCMC) technique are used to get the Bayes estimates (Bes) and the highest posterior density (HPD) credible intervals of the model parameters as given in Section 4. illustrative example and Monte Carlo (MC) simulation results are presented in Sections 5 and 6, respectively. Section 7 presents a numerical example to illustrate all methods of inference established in the article in hand. Finally, we make some concluding remarks in Section 8.
In this Section, for Type-II progressive censoring, we develop the following assumptions under SSPALT:
1) The SSPALT is composed of two stress levels, s0 and s1 (s0<s1), where s0 represents normal stress conditions and s1 represents accelerated stress conditions.
2) Suppose n independent and identical distribution units are placed on a life test and at least one failure must be observed for each stress s0 and s1.
3) All n units are subjected to an initial stress level s0. At the fixed pre-specified time τ the stress level is increased to s1.
4) The lifetime distributions at the stress levels s0 and s1 are assumed to be IKum distribution with shape parameters α1 and α2 respectively, and a common additional shape parameter β.
Under the assumption of the cumulative exposure model (CEM), the CDF of the lifetime of a test unit under SSPALT is given by
G(t)={G1(t)=F1(t),0≤t<τ,G2(t)=F2(s+t−τ),t≥τ, | (1) |
where s is the solution of the equation F1(τ)=F2(s) (see [27]). So, it is evident that s=(1+τ)α1/α2−1.
The corresponding PDF of the lifetime of a test unit is
g(t)={α1β(1+t)−(α1+1)[1−(1+t)−α1]β−1,0≤t<τ,α2β[(1+τ)α1/α2+t−τ]−(α2+1){1−[(1+τ)α1/α2+t−τ]−α2}β−1,t≥τ. | (2) |
This part derives the MLEs of unknown model parameters. Also, we obtain the observed Fisher information matrix. Based on the Type-II progressively censored sample, we have n identical units under an initial stress level s0. The stress level is changed to s1 at a pre-fixed time τ, and the life-testing experiment is terminated when the mth failure time tm:m:n occurs, where 2≤m≤n. Let n1 be the number of units that fail before time τ at stress level s0. With these notations the observed progressive censored data is t1:m:n<t2:m:n<⋯<tn1:m:n<τ<tn1+1:m:n<⋯<tm:m:n. with the corresponding progressive censoring scheme R=(R1,…,Rm), where ∑mj=1Rj=n−m.
From the CEM in (1) and the corresponding PDF in (2), the likelihood function (LF) of α1,α2 and β are obtained based on the Type-II progressively censored sample as follows:
L(α1,α2,β|t)=Cn1∏i=1α1β(1+ti:m:n )−(α1+1)(ψ1(ti:m:n ))β−1[1−(ψ1(ti:m:n ))β]Ri×∏mi=n1+1α2β(ψ(ti:m:n ))−(α2+1)(ψ2 (ti:m:n ))β−1[1−(ψ2 (ti:m:n ))β]Ri, | (3) |
where ψ(ti:m:n )=(1+τ)α1/α2+ti:m:n−τ, ψ1(ti:m:n )=1−(1+ti:m:n )−α1, ψ2 (ti:m:n )=1−(ψ(ti:m:n ))−α2 and C=n(n−1−R1)(n−2−R1−R2)…(n−m−1−∑m−1k=1Rk).
The logarithm of LF may be written as
l(α1,α2,β)=lnC+n1lnα1+(m−n1)lnα2+mlnβ−∑n1i=1[(α1+1)ln(1+ti:m:n )−(β−1)lnψ1(ti:m:n )−Riln(1−(ψ1(ti:m:n ))β)]−∑mi=n1+1[(α2+1)lnψ(ti:m:n )−(β−1)lnψ2 (ti:m:n )−Riln(1−(ψ2 (ti:m:n ))β)]. | (4) |
The likelihood equations of α1, α1 and β as
∂L∂α1=n1α1−∑n1i=1[ln(1+ti:m:n )+(1−β+βRiψ3(ti:m:n ))1ψ1(ti:m:n )∂ψ1(ti:m:n )∂α1]−∑mi=n1+1[((α2+1)+(1−β+βRiψ4(ti:m:n ))α2(ψ(ti:m:n ))−α2ψ2 (ti:m:n ))1ψ(ti:m:n )∂ψ(ti:m:n )∂α1], | (5) |
∂L∂α2=m−n1α2−∑mi=n1+1[lnψ(ti:m:n )+(α2−1)1ψ(ti:m:n )∂ψ(ti:m:n )∂α2]−∑mi=n1+1[(1−β+βRiψ4(ti:m:n ))1ψ2 (ti:m:n )∂ψ2 (ti:m:n )∂α2], | (6) |
∂L∂β=mβ+∑n1i=1[(1−Riψ3(ti:m:n ))lnψ1(ti:m:n )]+∑mi=n1+1[(1−Riψ4(ti:m:n ))lnψ2 (ti:m:n )], | (7) |
where; ψ3(ti:m:n )=(ψ1(ti:m:n ))β1−(ψ1(ti:m:n ))β, ψ4(ti:m:n )=(ψ2 (ti:m:n ))β1−(ψ1(ti:m:n ))β, ∂ψ(ti:m:n )∂α1=1α2(1+τ)α1/α2ln(1+τ), ∂ψ1(ti:m:n )∂α1=(1+ti:m:n )−α1ln(1+ti:m:n ), ∂ψ2 (ti:m:n )∂α1=α2(ψ(ti:m:n ))−(α2+1)∂ψ(ti:m:n )∂α1, ∂ψ(ti:m:n )∂α2=−α1α2∂ψ(ti:m:n )∂α1 and ∂ψ2 (ti:m:n )∂α2=(ψ(ti:m:n ))−α2lnψ(ti:m:n )∂ψ(ti:m:n )∂α2.
It can be seen that (5)-(7) cannot be solved explicitly, hence the MLEs of α1, α2 and β must be obtained using an appropriate numerical method. The iterative algorithm such as the Newton-Raphson (NR) can be utilized to obtain ˆα1, ˆα2 and ˆβ.
Asymptotic confidence interval
The observed Fisher information matrix on α1, α2 and β, I, can be obtained by using (5)-(7). If Θ=(α1,α2,β), then
I=−(∂2l∂ΘiΘj),i,j=1,2,3, |
where the information matrix I is calculated at (ˆα1,ˆα2,ˆβ). The asymptotic variance-covariance matrix may be approximated as the inverse of I. That is,
I−1=(cov(ΘiΘj)). | (8) |
Based on the asymptotic theory of MLEs, the sampling distribution of (ˆΘi−Θi)/√ˆσij is asymptotically standard normal distribution, where ˆσij=1/√var(ˆΘi) is calculated from (8). Therefore, the 100(1−γ)% approximate confidence interval (ACI) of Θi can then be constructed as
(ˆΘi−Z1−γ/2ˆσij,ˆΘi+Z1−γ/2ˆσij),i=1,2,3. |
where Z1−γ/2 is the upper (γ/2) percentile of the standard normal distribution.
This section used SE and LINEX loss functions to obtain BEs of the parameters α1, α2 and β. Unfortunately, in many cases, the BEs are not always able to be described explicitly forms. As a result, using Lindley's approximation and MCMC approach, approximate BEs are obtained under informative prior.
Suppose all the unknown parameters are stochastically independent. Assume that the prior distribution for the parameters α1 and α2 are taken Gamma(μ1,ν1) and Gamma(μ2,ν2) receptively. While the prior distribution of the parameter β is taken Gamma(μ3,ν3). Hence, the joint prior distribution for α1, α2 and β is
π(α1,α2,β)=αμ1−11αμ2−12βμ3−1exp[−(α1ν1+α2ν2+βν3)]. | (9) |
Combining (3) and (9) to obtain the joint posterior density function of the parameters α1, α2 and β as
π∗(α1,α2,β)=αμ1+n1−11αμ2+m−n1−12βμ3+m−1exp[−(α1ν1+α2ν2+βν3)]∏n1i=1(1+ti:m:n )−(α1+1)(ψ1(ti:m:n ))β−1[1−(ψ1(ti:m:n ))β]Ri∏mi=n1+1(ψ(ti:m:n ))−(α2+1)(ψ2 (ti:m:n ))β−1[1−(ψ2 (ti:m:n ))β]Ri. | (10) |
The BEs of the function of the parameters U(Θ)=(α1,α2,β) denting by UBSL, we observe that under SE loss function the BE of U(Θ) is the posterior mean given by
UBSL=E(U(Θ)|t)=∫ΘU(Θ)π∗(Θ|t)dΘ. | (11) |
The SE loss is an asymmetric loss function that puts equal weight to the underestimation and overestimation. In many cases, underestimating a problem is more significant than overestimation a problem, and vice versa. In these circumstances, a LINEX loss can be recommended as an alternative to the SE loss which is given by reference [28]
(U(Θ), U(Θ))=e U(Θ)−U(Θ)−C( U(Θ)−U(Θ))−1. |
where c≠0 is a shape parameter. Here c>1 proposes that an overestimation is more serious than the underestimation, and vice versa for c<0. Further c approaching to zero replicates the SE loss function itself. One may refer to references [28] and [29] for more details in this regard. The BE of U(Θ) under this loss can be derived as
UBLL=E(e−cU|t)=−1cln[∫Θe−cUπ∗(Θ|t)dΘ]. | (12) |
It is seen that estimates given by (11) and (12) cannot be simplified into closed form expressions. Therefore, we next apply Lindley's approximation method and MCMC technique to obtain the desired BEs.
Reference [30] proposed an approximation procedure to evaluate the expressions like (11) and (12). Reference [31] applied this method to obtain BEs under the considered prior distribution. For the three-parameter case U(Θ|t), we observe that E(U(Θ|t)) can be approximated as
E(U(Θ|t))=U+[U1a1+U2a2+U3a3+a4+a5]+12[φ1(U1σ11+U2σ12+U3σ13)+φ2(U1σ21+U2σ22+U3σ23)+φ3(U1σ31+U2σ32+U3σ33)]. | (13) |
where; Ui=∂U∂ξi, σij is the element (i,j) in the variance-covariance matrix (−Lij), i,j=1,2,3, and
ai=ρ1σi1+ρ2σi2+ρ3σi3,i=1,2,3, |
a4=U12σ12+U13σ13+U23σ23,a5=12(U11σ11+U22σ22+U33σ33), |
φ1=σ11L111+2(σ12L121+σ13L131+σ23L231)+σ22L221+σ33L331, |
φ2=σ11L112+2(σ12L122+σ13L132+σ23L232)+σ22L222+σ33L332, |
φ3=σ11L113+2(σ12L123+σ13L133+σ23L233)+σ22L223+σ33L333, |
ρi=∂ρ∂ξi,Uij=∂2U∂ξi∂ξj,Lijk=∂3L∂ξi∂ξj∂ξk. |
Form the prior distribution in (9) and (13), the values of the BEs of various parameters under SE loss function are
α1BSL=ˆα1+a1+12(φ1σ11+φ2σ12+φ3σ13), | (14) |
α2BSL=ˆα2+a2+12(φ1σ12+φ2σ22+φ3σ23), | (15) |
βBSL=ˆβ+a3+12(φ1σ13+φ2σ23+φ3σ33). | (16) |
the BEs of various parameters under LINEX loss function are
α1BLL=−1cln[e−cˆα1(1+c22σ11−cˆα1−c2(φ1σ11+φ2σ12+φ3σ13))], | (17) |
α2BLL=−1cln[e−cˆα2(1+c22σ22−cˆα2−c2(φ1σ12+φ2σ22+φ3σ23))], | (18) |
βBLL=−1cln[e−cˆβ(1+c22σ33−cˆβ−c2(φ1σ13+φ2σ23+φ3σ33))]. | (19) |
The forms (14)-(16) and (17)-(19) are evaluated at the MLEs of the parameters α1, α2 and β respectively.
The MCMC techniques are a general simulation method for sampling from posterior distributions and computing posterior quantities of interest. Indeed, the MCMC samples may be used to completely summarize the posterior uncertainty about the parameters α1, α2 and β through a kernel estimate of the posterior distribution. From the joint posterior density function in (10), the conditional posterior distributions of α1, α2 and β can be written, respectively, as
π∗(α1|α2,β,t)∝αμ1+n1−11e−(α1ν1)n1∏i=1(1+ti:m:n )−α1(ψ1(ti:m:n ))β−1[1−(ψ1(ti:m:n ))β]Ri |
∏mi=n1+1(ψ(ti:m:n ))−(α2+1)(ψ2 (ti:m:n ))β−1[1−(ψ2 (ti:m:n ))β]Ri, |
π∗(α2|α1,β,t)∝αμ2+m−n1−12e−(α2ν2)exp[−(α2ν2)] |
∏mi=n1+1(ψ(ti:m:n ))−(α2+1)(ψ2 (ti:m:n ))β−1[1−(ψ2 (ti:m:n ))β]Ri, |
π∗(β|α1,α2,t)∝βμ3+m−1e−(βν3)n1∏i=1(ψ1(ti:m:n ))β[1−(ψ1(ti:m:n ))β]Ri |
m∏i=n1+1(ψ2 (ti:m:n ))β[1−(ψ2 (ti:m:n ))β]Ri. |
It can be seen that the conditional posterior distributions of α1, α2 and β cannot be reduced analytically to well-known distribution, but the plot of them shows that they are similar to normal distribution see Figures 2-7. So, the Metropolis-Hastings (MH) method is used to generate random samples from this distribution, with normal proposal distribution.
The following MCMC procedure is proposed to compute BEs for the function U≡U(α1,α2,β)
Step 1: Start with α(0)1=ˆα1,α(0)2=ˆα2 and β(0)=ˆβ.
Step 2: Set i=1.
Step 3: Generate α∗1 from proposal distribution N(α(i−1)1,var(α(i−1)1)).
Step 4: Calculate the acceptance probability
S(α(i−1)1|α∗1)=min(1,π∗(α∗1|α(i−1)2,β(i−1),t)π∗(α∗1|α(i−1)2,β(i−1),t)). |
Step 5: Generate U U(0,1).
Step 6: If U≤S(α(i−1)1|α∗1), accept the proposal distribution and set α(i)1=α∗1. Otherwise, reject the proposal distribution and set α(i)1=α(i−1)1.
Step 7: To generate α∗2 and β∗ do the Steps 2-6 for α2 and β.
Step 8: Set i=i+1.
Step 9: Repeat Steps 3-8 N times.
Step 10: Obtain the BEs of U(α1,α2,β) using MCMC under SE and LINEX loss functions as
UBSM=E(U(α1,α2,β|t))=1N−M∑Ni=M+1U(α(i)1,α(i)2,β(i)), |
UBLM=E(e−cU(α1,α2,β|t))=−1cln(1N−M∑Ni=M+1e−cU(α(i)1,α(i)2,β(i))), |
where M is the burn-in period.
Step 11: [U(N−M)γ/2(α(i)1,α(i)2,β(i)),U(N−M)(1−γ/2)(α(i)1,α(i)2,β(i))] yields an approximate 100(1−γ)% credible interval for U(α(i)1,α(i)2,β(i)).
This section presents an example to illustrate the estimation procedure and the CIs for the parameters (α1,α2,β). Generate the Type-II progressive censoring from (3) with true value for parameters (α1,α2,β) as (1.50,2.51,1.71) when (n,m,τ)=(20,15,0.8) with censoring scheme (m1,m2,…,m15)=(5,0,…,10). The simulated data is listed in Table 1.
Failure times under normal condition | Failure times under accelerated condition | ||||||
0.161522 | 0.221959 | 0.236070 | 0.329451 | 0.809535 | 0.883767 | 0.95693 | 0.967955 |
0.522292 | 0.524396 | 0.566979 | 1.942770 | 2.307990 | 4.18468 | 5.613810 |
We obtain the average and mean square error (MSE) for Θ=(α1,α2,β) in Table 2. Also, Approximate and HPD CIs and their lengths are listed in Table 3.
Θ | ML | Bayes | |||||
Lindley's | MCMC | ||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | ||
α1 | 2.37129 | 0.97264 | 1.12533 | 1.44004 | 1.72924 | 1.58455 | 1.26443 |
(0.75915) | (0.2781) | (0.14038) | (0.00359) | (0.05255) | (0.00715) | (0.05549) | |
α2 | 2.37717 | 1.9153 | 1.87413 | 1.86157 | 2.13492 | 2.0524 | 1.84584 |
(0.01765) | (0.35367) | (0.40433) | (0.42046) | (0.14068) | (0.20939) | (0.44111) | |
β | 2.49709 | 1.15864 | 1.21243 | 1.49745 | 1.96639 | 1.80225 | 1.50235 |
(0.61951) | (0.3040) | (0.24757) | (0.04518) | (0.06573) | (0.00851) | (0.04312) |
(n,m) | Θ | Cis | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
(40,30) | α1 | (0.11836, 4.62423) | (0.45268, 3.49434) | 4.50588 | 3.04166 |
α2 | (1.07654, 3.67779) | (1.12724, 3.43897) | 2.60125 | 2.31173 | |
β | (-0.17125, 5.16542) | (0.75421, 4.22058) | 5.33667 | 3.46637 |
This part conducts a simulation analysis to examine the performance of proposed estimates for the Type-II progressive censoring schemes in terms of average estimates and MSE values. We mention that Mathematica 7 software is used, and the simulation is based on 1000 repetitions. The schemes used are as follows:
Scheme I: R1=n−m and Ri=0 for i≠1.
Scheme II: R2=n−m and Ri=0 for i≠2.
Scheme III: Rm=n−m and Ri=0 for i≠m.
The recommended estimates for each scheme are computed using the Type-II progressive censored samples obtained from the IKum distribution using the algorithm given by reference [32]. We select the hyper-parameters (μ1=0.5,ν1=1.2,μ2=0.9,ν2=1.8,μ3=1.5,ν3=1.5) in (9) that allow us to generate the values of α1,α2 and β. These generated values are (α1,α2,β)=(1.50,2.51,1.71). The stress change time τ is chosen to be equal to 0.8.
The MLEs and BEs of α1,α2 and β are obtained based on these censoring schemes. Also, the 95% CIs are computed based on the asymptotic distribution of the MLEs and Bayesian CIs for α1,α2 and β. We replicate the process 1000 times and then compute the average and MSEs of the resulting estimates as well as the average lengths Appr. and HPD CIs. We consider BLL1, BLL2, BLM1 and BLM2 with a notation that c=0.5,2. The respective results are reported up to 5 decimal places in Tables 4-9.
(n,m) | Θ | ML | Bayes | |||||
Lindley's | MCMC | |||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | |||
(40,30) | α1 | 1.65543 | 1.28705 | 1.2519 | 1.21992 | 1.42057 | 1.3590 | 1.20177 |
(0.42999) | (0.21481) | (0.24574) | (0.32018) | (0.21822) | (0.21371) | (0.23893) | ||
α2 | 2.65326 | 2.44264 | 2.38662 | 2.3049 | 2.50495 | 2.43849 | 2.26092 | |
(0.33867) | (0.22183) | (0.22122) | (0.25676) | (0.23316) | (0.21504) | (0.22047) | ||
β | 1.97409 | 1.57305 | 1.54014 | 1.5136 | 1.74602 | 1.66684 | 1.49469 | |
(0.70691) | (0.14638) | (0.16539) | (0.30586) | (0.25685) | (0.20506) | (0.17016) | ||
(40,35) | α1 | 1.64862 | 1.30962 | 1.27755 | 1.24229 | 1.42521 | 1.36892 | 1.22295 |
(0.39323) | (0.19826) | (0.22037) | (0.28567) | (0.20355) | (0.19970) | (0.22091) | ||
α2 | 2.64346 | 2.45204 | 2.40356 | 2.32678 | 2.50473 | 2.44703 | 2.28995 | |
(0.31550) | (0.21374) | (0.21219) | (0.23924) | (0.22513) | (0.21044) | (0.21137) | ||
β | 1.99358 | 1.58682 | 1.57038 | 1.54711 | 1.75867 | 1.68156 | 1.51260 | |
(0.81505) | (0.20465) | (0.18208) | (0.34996) | (0.28678) | (0.22754) | (0.17760) | ||
(60,50) | α1 | 1.62312 | 1.41280 | 1.37516 | 1.31596 | 1.45844 | 1.41501 | 1.29831 |
(0.26361) | (0.15324) | (0.16263) | (0.19733) | (0.16181) | (0.15786) | (0.16666) | ||
α2 | 2.62169 | 2.49885 | 2.46070 | 2.38683 | 2.51963 | 2.47823 | 2.36218 | |
(0.20820) | (0.15756) | (0.15314) | (0.16136) | (0.16234) | (0.15376) | (0.15071) | ||
β | 1.89337 | 1.68729 | 1.63844 | 1.57146 | 1.74089 | 1.68618 | 1.55662 | |
(0.43261) | (0.15993) | (0.15977) | (0.20976) | (0.21772) | (0.18392) | (0.14811) | ||
(60,55) | α1 | 1.59519 | 1.40350 | 1.36644 | 1.30551 | 144190 | 1.40112 | 1.29076 |
(0.21686) | (0.13908) | (0.14671) | (0.17629) | (0.14217) | (0.14075) | (0.15416) | ||
α2 | 2.57916 | 2.46693 | 2.43251 | 2.36330 | 2.48441 | 2.44729 | 2.34256 | |
(0.18811) | (0.15289) | (0.15072) | (0.16101) | (0.15414) | (0.14883) | (0.15115) | ||
β | 1.86461 | 168288 | 1.63200 | 1.55915 | 1.72537 | 1.67403 | 1.55043 | |
(0.32666) | (0.14426) | (0.13634) | (0.16560) | (0.17773) | (0.15357) | (0.13120) |
(n,m) | Θ | ML | Bayes | |||||
Lindley's | MCMC | |||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | |||
(40,30) | α1 | 1.68862 | 1.29947 | 1.26764 | 1.241690 | 1.43982 | 1.37699 | 1.21666 |
(0.43057) | (0.21428) | (0.23551) | (0.30259) | (0.21065) | (0.20411) | (0.22597) | ||
α2 | 2.66861 | 2.45134 | 2.39578 | 2.31587 | 2.51442 | 2.44717 | 2.26779 | |
(0.33133) | (0.21266) | (0.21032) | (0.24253) | (0.22553) | (0.20601) | (0.20951) | ||
β | 2.01308 | 1.57484 | 1.56057 | 1.54242 | 1.76780 | 1.68805 | 151427 | |
(0.77083) | (0.30166) | (0.16461) | (0.32316) | (0.25854) | (0.20274) | (0.16110) | ||
(40,35) | α1 | 1.65135 | 1.31154 | 1.27931 | 1.24215 | 1.42709 | 1.37048 | 1.22409 |
(0.34735) | (0.19456) | (0.20292) | (0.26069) | (0.17793) | (0.17578) | (0.20172) | ||
α2 | 2.62027 | 2.43070 | 2.38256 | 2.30568 | 2.48129 | 2.42432 | 2.26923 | |
(0.27903( | (0.20208) | (0.20078) | (0.22693) | (0.20463) | (0.19348) | (0.20321) | ||
β | 1.96691 | 1.56982 | 1.55748 | 1.52932 | 1.73960 | 1.66554 | 1.50225 | |
(0.69979) | (0.38616) | (0.15731) | (0.30310) | (0.23953) | (0.19178) | (0.15897) | ||
(60,50) | α1 | 1.60625 | 1.39965 | 1.36213 | 1.30233 | 1.44417 | 1.40106 | 1.20507 |
(0.26531) | (0.16239) | (0.17236) | (0.20804) | (0.16985) | (0.16675) | (0.17770) | ||
α2 | 2.60057 | 2.48035 | 2.44261 | 2.36890 | 2.50041 | 2.45968 | 2.34547 | |
(0.18288) | (0.14292) | (0.14011) | (0.15048) | (0.14607) | (0.13983) | (0.14263) | ||
β | 1.88494 | 1.68365 | 1.63859 | 1.56933 | 1.73673 | 1.68342 | 1.55592 | |
(0.41470) | (0.15605) | (0.15761) | (0.21082) | (0.20395) | (0.17375) | (0.14270) | ||
(60,55) | α1 | 1.61851 | 1.42172 | 1.38574 | 1.32649 | 1.46185 | 1.42079 | 1.30954 |
(0.23619) | (0.13926) | (0.14718) | (0.17751) | (0.14668) | (0.14335) | (0.15183) | ||
α2 | 2.59645 | 2.48323 | 2.44889 | 2.37962 | 2.50084 | 2.46374 | 2.35885 | |
(0.16439) | (0.12894) | (0.12704) | (0.13638) | (0.13043) | (0.12576) | (0.12920) | ||
β | 1.89490 | 1.69924 | 1.65377 | 1.58544 | 1.74823 | 1.69593 | 1.57028 | |
(0.40487) | (0.14542) | (0.14846) | (0.19649) | (0.19938) | (0.16804) | (0.13378) |
(n,m) | Θ | ML | Bayes | |||||
Lindley's | MCMC | |||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | |||
(40,30) | α1 | 1.67468 | 1.33963 | 1.30954 | 1.27582 | 1.44789 | 1.39401 | 1.25246 |
(0.38210) | (0.18888) | (0.20886) | (0.26779) | (0.19642) | (0.19114) | (0.20608) | ||
α2 | 2.71109 | 2.45218 | 2.38609 | 2.30586 | 2.52052 | 2.43673 | 2.22214 | |
(0.52014) | (0.28634) | (0.28811) | (0.35025) | (0.31761) | (0.27747) | (0.27014) | ||
β | 2.00940 | 1.59348 | 1.58277 | 1.56234 | 1.76239 | 1.68673 | 1.51879 | |
(0.84333) | (0.23874) | (0.19153) | (0.36994) | (0.28759) | (0.22777) | (0.17522) | ||
(40,35) | α1 | 1.68589 | 1.35414 | 1.32299 | 1.28701 | 1.45995 | 1.40578 | 1.26368 |
(0.37445) | (0.17471) | (0.19429) | (0.25425) | (0.18654) | (0.18062) | (0.19413) | ||
α2 | 2.66805 | 2.45790 | 2.40602 | 2.32949 | 2.51081 | 2.44812 | 2.27892 | |
(0.35275) | (0.23424) | (0.23040) | (0.25831) | (0.24459) | (0.22541) | (0.22312) | ||
β | 2.02579 | 1.61455 | 1.60452 | 1.57674 | 1.78200 | 1.70581 | 1.53676 | |
(0.83181) | (0.34268) | (0.18228) | (0.36377) | (0.27424) | (0.21447) | (0.16139) | ||
(60,50) | α1 | 1.60030 | 1.41001 | 1.37509 | 1.31679 | 1.44653 | 1.40723 | 1.30017 |
(0.21965) | (0.14099) | (0.14861) | (0.17702) | (0.14551) | (0.14381) | (0.15526) | ||
α2 | 2.61698 | 2.48318 | 2.44130 | 2.36411 | 2.50299 | 2.45715 | 2.32968 | |
(0.24871) | (0.19030) | (0.18436) | (0.19556) | (0.19353) | (0.18235) | (0.17888) | ||
β | 1.87625 | 1.68946 | 1.641710 | 1.57152 | 1.73156 | 1.68095 | 1.55817 | |
(0.34566) | (0.14527) | (0.14214) | (0.17674) | (0.18279) | (0.15742) | (0.13209) | ||
(60,55) | α1 | 1.61398 | 1.42225 | 1.38779 | 1.32984 | 1.45989 | 1.42045 | 1.31294 |
(0.21681) | (0.13114) | (0.13831) | (0.16568) | (0.13753) | (0.13484) | (0.14381) | ||
α2 | 2.60790 | 2.48732 | 2.45145 | 2.38085 | 2.50462 | 2.46549 | 2.35508 | |
(0.18854) | (0.14604) | (0.14322) | (0.15220) | (0.14838) | (0.14218) | (0.14344) | ||
β | 1.88892 | 1.69278 | 1.65098 | 1.58316 | 1.74135 | 1.69007 | 1.56630 | |
(0.40552) | (0.14335) | (0.15024) | (0.20478) | (0.19462) | (0.16359) | (0.13086) |
(n,m) | Θ | Cis | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
(40,30) | α1 | (0.44842, 2.86243) | (0.57881, 2.51126) | 2.41400 | 1.93245 |
α2 | (1.57289, 3.73362) | (1.58029, 3.59153) | 2.16073 | 2.01124 | |
β | (0.56166, 3.38652) | (0.89460, 3.05901) | 2.82485 | 2.16441 | |
(40,35) | α1 | (0.51150, 2.78575) | (0.61392, 2.46083) | 2.27425 | 1.84690 |
α2 | (1.64491, 3.64201) | (1.63511, 3.50903) | 1.99710 | 1.87392 | |
β | (0.61090, 3.37626) | (0.91712, 3.03803) | 2.76536 | 2.12091 | |
(60,50) | α1 | (0.68488, 2.56136) | (0.72896, 2.35349) | 1.87648 | 1.62453 |
α2 | (1.79284, 3.45054) | (1.77264, 3.36206) | 1.65770 | 1.58942 | |
β | (0.83455, 2.95220) | (1.00713, 2.79542) | 2.11765 | 1.78829 | |
(60,55) | α1 | (0.69241, 2.49797) | (0.73149, 2.30604) | 1.80556 | 1.57456 |
α2 | (1.79774, 3.36058) | (1.77490, 3.27798) | 1.56284 | 1.50307 | |
β | (0.84745, 2.88178) | (1.00683, 2.7615) | 2.03434 | 1.73932 |
(n,m) | Θ | Cis | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
(40,30) | α1 | (0.46780, 2.90944) | (0.58824, 2.5402) | 2.44164 | 1.95197 |
α2 | (1.58403, 3.75319) | (1.58524, 3.60722) | 2.16915 | 2.02198 | |
β | (0.58767, 3.43848) | (0.90980, 3.07903) | 2.85081 | 2.16922 | |
(40,35) | α1 | (0.50841, 2.79430) | (0.61227, 2.46790) | 2.28589 | 1.85563 |
α2 | (1.62795, 3.61259) | (1.61686, 3.47999) | 1.98464 | 1.86313 | |
β | (0.61274, 3.32109) | (0.91109, 2.99448) | 2.70834 | 2.08340 | |
(60,50) | α1 | (0.67377, 2.53872) | (0.71706, 2.33422) | 1.86496 | 1.61716 |
α2 | (1.77842, 3.42272) | (1.75907, 3.33550) | 1.64431 | 1.57643 | |
β | (0.84327, 2.92661) | (1.00736, 2.77472) | 2.08334 | 1.76736 | |
(60,55) | α1 | (0.71446, 2.52256) | (0.74751, 2.32754) | 1.80809 | 1.58002 |
α2 | (1.81359, 3.37931) | (1.78876, 3.29593) | 1.56572 | 1.50717 | |
β | (0.86825, 2.92154) | (1.02278, 2.77349) | 2.05329 | 1.75071 |
(n,m) | Θ | Cis | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
(40,30) | α1 | (0.57373, 2.77563) | (0.64412, 2.45263) | 2.20190 | 1.80851 |
α2 | (1.48642, 3.93577) | (1.50360, 3.74638) | 2.44935 | 2.24278 | |
β | (0.64792, 3.37089) | (0.92108, 3.01884) | 2.72297 | 2.09776 | |
(40,35) | α1 | (0.58083, 2.79095) | (0.65407, 2.46931) | 2.21012 | 1.81524 |
α2 | (1.62504, 3.71106) | (1.60794, 3.55714) | 2.08601 | 1.94920 | |
β | (0.65645, 3.39514) | (0.93527, 3.05102) | 2.73868 | 2.11575 | |
(60,50) | α1 | (0.72122, 2.47937) | (0.74526, 2.29158) | 1.75815 | 1.54631 |
α2 | (1.74578, 3.48818) | (1.72035, 3.38819) | 1.74240 | 1.66784 | |
β | (0.87150, 2.88100) | (1.01345, 2.7403) | 2.00950 | 1.72685 | |
(60,55) | α1 | (0.73253, 2.49543) | (0.75623, 2.30571) | 1.76290 | 1.54948 |
α2 | (1.80380, 3.41201) | (1.77484, 3.32044) | 1.60821 | 1.54560 | |
β | (0.87613, 2.90170) | (1.02087, 2.75243) | 2.02557 | 1.73156 |
This section analyzes a real data set given by reference [33]. It consists of thirty successive values of March precipitation (in inches) in Minneapolis/St Paul. The data are as follows:
0.77,1.74,0.81,1.20,1.95,1.20,0.47,1.43,3.37,2.20,3.00,3.09,1.51,2.10,0.52,1.62,1.31,0.32,0.59,0.81,2.81,1.87,1.18,1.35,4.75,2.48,0.96,1.89,0.90,2.05. |
Reference [22], verified that the IKum distribution provides a good fit for the given data set. The calculated Kolmogorov-Smirnov (K−S) distance between the empirical and the fitted for the IKum distribution was 0.1105 and its p-value is 0.8571 where ˆα=3.0038 and ˆβ=8.7984 which indicates that this distribution can be considered as an adequate model for the given data set.
Now, using SSPALT, we will analyze the supplied data by setting the value of τ to be 1.3. From the original data, three Type-II progressive censored schemes are generated with number of stages m=20 from a total of n=30 observations and removed items Rj, where j=1,2,…,m. These different schemes can be described as follows:
Scheme I: R1=n−m and R2=R3=⋯=Rm=0.
Scheme II: R1=R2=R3=⋯=Rm−1=0 and Rm=n−m.
Scheme III: R1=R2=R3=⋯=Rm=0 and n=m.
Note that Type-II censoring (Scheme II) and complete sampling (Scheme III) can be considered as a special case of Type-II progressive censoring when n=m and R1=R2=R3=⋯=Rm=0.
We calculate the MLEs of the parameters α and β and their associated 95% asymptotic CIs. We also compute BEs utilizing the MH algorithm under the non-informative prior. Note that the non-informative prior is assumed where μi=νi=0, i=1,2,3. It is indicated that, while generating samples from the posterior distribution utilizing the MH algorithm, initial values of (α,β) are considered as (α(0),β(0))=(ˆα,ˆβ), where ˆα and ˆβ are the MLEs of the parameters α and β respectively. Thus, we considered the variance-covariance matrix SΘ of (ln(ˆα),ln(ˆβ)), that can be easily obtained utilizing the delta method. Finally, we discarded 2000 burn-in samples among the total 10000 samples created from the posterior density, and subsequently obtained Bayes estimates, and HPD interval estimates utilizing the technique of [34].
All the estimated values of MLEs and associated standard errors (St.Er) are presented in Table 10. Also, Bayesian estimation using Lindley's approximations and MCMC by applying MH algorithm and its St.Er are computed. Approximate CIs for MLEs and HPD for Bayesian estimates using MCMC are presented in Table 11 under SE loss function.
Scheme | Θ | ML | Bayesian | |||||
Lindley's | MCMC | |||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | |||
Scheme I | α1 | 1.9162 | 1.9288 | 1.9365 | 1.9540 | 1.9137 | 1.9103 | 1.9032 |
(0.6442) | (0.0924) | |||||||
α2 | 3.0628 | 3.0634 | 3.0684 | 3.0706 | 3.0623 | 3.0583 | 3.0498 | |
(0.6638) | (0.0995) | |||||||
β | 4.7644 | 4.7605 | 4.7652 | 4.7646 | 4.7602 | 4.7562 | 4.7478 | |
(2.2619) | (0.1007) | |||||||
Scheme II | α1 | 24812 | 2.4862 | 2.4904 | 2.998 | 2.4771 | 2.4737 | 2.4666 |
(0.6410) | (0.0924) | |||||||
α2 | 2.5023 | 2.5041 | 2.5066 | 2.5103 | 2.5015 | 2.4979 | 2.4901 | |
(0.4429) | (0.0934) | |||||||
β | 7.8787 | 7.8778 | 7.8788 | 7.8787 | 7.8810 | 7.8770 | 7.8685 | |
(3.7634) | (0.9982) | |||||||
Scheme III | α1 | 2.9300 | 2.9331 | 2.9367 | 2.9443 | 2.9259 | 2.9224 | 2.9149 |
(0.6427) | (0.0851) | |||||||
α2 | 3.3399 | 3.3405 | 3.3420 | 3.3442 | 3.3358 | 3.3319 | 3.3237 | |
(0.5232) | (0.0724) | |||||||
β | 7.7583 | 7.7577 | 7.7582 | 7.7582 | 7.7558 | 7.7518 | 7.7433 | |
(3.3666) | (0.0905) |
Scheme | Θ | CIs | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
Scheme I | α1 | (0.6536, 3.1788) | (1.7411, 2.1002) | 2.5252 | 0.3591 |
α2 | (1.7617, 4.3638) | (2.8737, 3.2645) | 2.6021 | 0.3908 | |
β | (0.3312, 9.1975) | (4.5711, 4.9614) | 8.8663 | 0.3903 | |
Scheme II | α1 | (1.2249, 3.7376) | (2.2932, 2.6537) | 2.5127 | 0.3605 |
α2 | (1.6341, 3.3706) | (2.3091, 2.6851) | 1.7365 | 0.3760 | |
β | (0.5025, 15.2549) | (7.6931, 8.0797) | 14.7524 | 0.3866 | |
Scheme III | α1 | (1.6702, 4.1897) | (2.7439, 3.1108) | 2.5195 | 0.3669 |
α2 | (2.3144, 4.3655) | (3.1494, 3.5284) | 2.0510 | 0.3790 | |
β | (1.15987, 14.3568) | (7.5501, 7.9403) | 13.1969 | 0.3902 |
The convergence of MCMC estimation in case of scheme II of Type-II progressive censoring for the given real data set. As shown in Figure 8, the Bayesian estimates using MCMC are convergence through three sub-graphs: scatter plot, histogram, and cumulative mean of the 10, 000 estimates.
In this study, the statistical inferences procedure for the unknown parameters of the IKum distribution and the acceleration factor, when the data are Type-II progressive censored from SSPALT were considered. We studied this problem under CEM. Since it is impossible to compute the MLEs in closed form, the Newton-Raphson approach is suggested as an alternative. We develop the approximate confidence interval length of the parameters and acceleration factor based on the asymptotic distribution of MLEs. We investigated the Bayes estimation approach in order to obtain an alternate estimate procedure. Bayesian estimates are achieved by Lindley's approximation the MCMC method, based on SE and LINEX loss functions. Under the premise that the priors of α1,α2 and β are Gamma density, the Metropolis-Hastings sampling technique is shown to produce Bayesian estimates. In addition, HPD CIs have been acquired. The Monte Carlo simulation study was utilized to get numerical point and interval estimates of the parameters.
From the results in Tables 4-9, we observe the following:
1) when the sample size increases, the MSEs of MLEs and BEs of the considered parameters decrease.
2) The BEs of the considered parameters obtained from both Lindley's approximation and MCMC method give more accurate results through the MSEs than MLEs.
3) The BEs of β obtained from Lindley's approximation give more accurate results through the MSEs than the BEs obtained from MCMC method.
4) The BEs of the considered parameters based on LINEX loss function (c=2) are smaller than that based on SE loss function.
5) In most cases, the HPD CIs give more accurate results than the approximate CIs since the lengths of the former are less than the lengths of latter, for different sample sizes, observed failures, and censoring schemes.
A real-life numerical example of March precipitation (in inches) in Minneapolis failure times is used to demonstrate the usefulness of the recommended estimation technique under SSPALT based on Type-II progressive censored. As per the K-S distance and the p-value, the data set presents a good match for the IKum distribution. To confirm that the distribution matches the data.
The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4340290DSR03). Additionally, the authors thank the editor and the reviewers for their careful reading of the research article and for their constructive comments that greatly improved this paper.
All authors declare that there is no conflict of interest in this paper.
[1] | Fenimore PW, Frauenfelder H, Magazù S, et al. (2013) Concepts and problems in protein dynamics. Chem Phys 424: 2-6. |
[2] | Peters T (1996) All about Albumin: Biochemistry, Genetics, and Medical Applications New York: Academic Press, 1-432. |
[3] | He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358: 209-215. |
[4] | Majorek KA, Porebski PJ, Dayal A, et al. (2012) Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol Immunol 52: 174-182. |
[5] | Akdogan Y, Reichenwallner J, Hinderberger D (2012) Evidence for water-tuned structural differences in proteins: an approach emphasizing variations in local hydrophilicity. PLoS ONE 7: e45681. |
[6] | Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45: 153-203. |
[7] | Pagnotta SE, Ricci MA, Bruni F, et al. (2008) Water structure around trehalose. Chem Phys 345: 159-163. |
[8] | Magazù S, Migliardo F, Benedetto A, et al. (2011) Thermal behavior of hydrated lysozyme in the presence of sucrose and trehalose by EINS. J Non-Cryst Solids 357: 664-670. |
[9] | Luik AI, Naboka YuN, Mogilevich SE, et al. (1998) Study of human serum albumin structure by dynamic light scattering: two types of reactions under different pH and interaction with physiologically active compounds. Spectrochim Acta A Mol Biomol Spectrosc 54: 1503-1507. |
[10] | Maslova MN, Zaritskiy AR, Chaykov LL (2014) The blood plasma particles sizes oscillations observed by dynamic light scattering. Biophys J 106: 457a-458a. |
[11] | Magazù S, Maisano G, Migliardo P, et al. (1999) Experimental simulation of macromolecules in trehalose aqueous solutions: a photon correlation spectroscopy study. J Chem Phys 111: 9086-9092. |
[12] | Sjöberg B, Mortensen K (1994) Interparticle interactions and structure in nonideal solutions of human serum albumin studied by small-angle neutron scattering and Monte Carlo simulation. Biophys Chemist 52: 131-138. |
[13] | Kiselev MA, Gryzunov YA, Dobretsov GE, et al. (2001) The size of human serum albumin molecules in solution. Biophysics 46: 423-427. |
[14] | Varga B, Migliardo F, Takacs E, et al. (2008) Neutron scattering studies on dUTPase complex in the presence of bioprotectant systems. Chem Phys 345: 250-258. |
[15] | Chicea D, Chicea R, Chicea LM (2013) HSA particle size characterization by AFM. Rom Reports Phys 65: 178-185. |
[16] | Olivieril JR, Craievich AF (1995) The subdomain structure of human serum albumin in solution under different pH conditions studied by small angle X-ray scattering. Eur Biophys J 24: 77-84. |
[17] | Wilkins DK, Grimshaw SB, Receveur V, et al. (1999) Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochem 38: 16424-16431. |
[18] | Magazù S (2000) NMR, static and dynamic light and neutron scattering investigations on polymeric aqueous solutions. J Mol Struct 523: 47-59. |
[19] | Qian J, Tang Q, Cronin B, et al. (2008) Development of a high performance size exclusion chromatography method to determine the stability of human serum albumin in a lyophilized formulation of Interferon alfa-2b. J Chromatogr A 1194: 48-56. |
[20] | Monkos K (2004) On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach. BBA-Proteins Proteom 1700: 27-34. |
[21] | Einstein A (1906) Eine neue bestimmung der moleküldimensionen. Ann Phys 19: 289-305. |
[22] | Batchelor GK (1967) An Introduction to Fluid Dynamics Cambridge: Cambridge university press, 1-615. |
[23] | Malomuzh NP, Orlov EV (2005) Static shear viscosity of a bimodal suspension. Ukr J Phys 50: 618-622. |
[24] | Orlov EV (2010) Shear viscosity of dispersions of particles with liquid shells. Colloid J 72: 820-824. |
[25] | Khorolskyi OV (2018) Effective radii of macromolecules in dilute polyvinyl alcohol solutions. Ukr J Phys 63: 144-149. |
[26] | Mooney RCL (1941) An X-ray study of the structure of polyvinyl alcohol. J Am Chem Soc 63: 2828-2832. |
[27] | Bunn CW (1948) Crystal structure of polyvinyl alcohol. Nature 161: 929-930. |
[28] | Colvin BG (1974) Crystal structure of polyvinyl alcohol. Nature 248: 756-759. |
[29] | Gowariker VR, Viswanathan NV, Sreedhar J (1986) Polymer science New York: Wiley, 1-505. |
[30] | Rumyantsev M, Gushchin A, Zelentsov S (2012) Effect of the type of hydrogen bonding on the reactivity of hydroxyl groups in the acetalization of poly(viny1 alcohol) with butanal. Polym Sci Series B 54: 464-471. |
[31] | Karunakaran DJSA, Ganesh T, Sylvester MM, et al. (2014) Dielectric properties and analysis of H-bonded interaction study in complex systems of binary and ternary mixtures of polyvinyl alcohol with water and DMSO. Fluid Phase Equil 382: 300-306. |
[32] | Tamai Y, Tanaka H, Nakanishi K (1996) Molecular dynamics study of polymer-water interaction in hydrogels. 1. Hydrogen-bond structure. Macromolecules 29: 6750-6760. |
[33] | Budhlall BM, Landfester K, Sudol ED, et al. (2003) Characterization of partially hydrolyzed poly(vinyl alcohol). Effect of poly(vinyl alcohol) molecular architecture on aqueous phase conformation. Macromolecules 36: 9477-9484. |
[34] | Fileti EE, Chaudhuri P, Canuto S (2004) Relative strength of hydrogen bond interaction in alcohol-water complexes. Chem Phys Lett 400: 494-499. |
[35] | Pal S, Kundu TK (2012) Theoretical study of hydrogen bond formation in trimethylene glycol-water complex. Int Scholarly Res Notices 2012: 570394. |
[36] | Rumyantsev M (2013) Influences of co-solvent on hydrogen bond reorganization in ternary poly(vinyl alcohol) solutions. Eur Polym J 49: 2257-2266. |
[37] | Rumyantsev M, Zelentsov SV, Gushchin AV (2013) Retardation effect in acetalization of poly(vinyl alcohol) with butyraldehyde. Eur Polym J 49: 1698-1706. |
[38] | Malomuzh NP, Bulavin LA, Gotsulskyi VYa, et al. (2020) Characteristic changes in the density and shear viscosity of human blood plasma with varying protein concentration. Ukr J Phys 65: 151-156. |
[39] | Rumyantsev M, Rumyantsev S, Kazantsev OA, et al. (2020) Managing of hydrogen bonding in aqueous poly(vinyl alcohol) solutions: new perspectives towards preparation of more homogeneous poly(vinyl butyral). J Polym Res 27: 52. |
[40] | Groda YG, Vikhrenko VS, Poghosyan AH, et al. (2015) Conformation and diffusion properties of polyvinyl alcohol and polyvinylpyrrolidone molecules. Elect J Nat Sci 24: 60-67. |
[41] | Fisenko AI, Malomuzh NP (2009) To what extent is water responsible for the maintenance of the life for warm-blooded organisms? Int J Mol Sci 10: 2383-2411. |
[42] | Bulavin LA, Malomuzh NP (2010) Dynamic phase transition in water as the most important factor of provision of denaturation of proteins in heat blood organisms. Phys Alive 18: 16-22. |
[43] | Migliardo F, Magazù S, Caccamo MT (2013) Infrared, raman and INS studies of poly-ethylene oxide oligomers. J Mol Struct 1048: 261-266. |
[44] | Caccamo MT, Magazù S (2016) Tagging the oligomer-to-polymer crossover on EG and PEGs by infrared and raman spectroscopies and by wavelet cross-correlation spectral analysis. Vibr Spectr 85: 222-227. |
[45] | Garvey M, Tadros T, Vincent B (1974) A comparison of the volume occupied by macromolecules in the adsorbed state and in bulk solution: Adsorption of narrow molecular weight fractions of poly(vinyl alcohol) at the polystyrene/water interface. J Colloid Interf Sci 49: 57-68. |
[46] | Wang B, Mukataka S, Kokufuta E, et al. (2000) Viscometric, light scattering, and size exclusion chromatography studies on the structural changes of aqueous poly(vinyl alcohol) induced by γ-ray irradiation. J Polym Sci Pol Phys 38: 214-221. |
[47] | Wiśniewska M (2012) Temperature effects on the adsorption of polyvinyl alcohol on silica. Cent Eur J Chem 10: 1236-1244. |
[48] | Khorolskyi OV, Moskalenko YuD (2020) Calculation of the macromolecular size of bovine serum albumin from the viscosity of its aqueous solutions. Ukr J Phys 65: 41-49. |
[49] | Magazù S, Calabrò E (2011) Studying the electromagnetic-induced changes of the secondary structure of bovine serum albumin and the bioprotective effectiveness of trehalose by Fourier transform infrared spectroscopy. J Phys Chem B 115: 6818-6826. |
[50] | Magazù S, Calabrò E, Campo S, et al. (2012) New insights into bioprotective effectiveness of disaccharides: an FTIR study of human haemoglobin aqueous solutions exposed to static magnetic fields. J Bio Phys 38: 61-74. |
[51] | Minutoli L, Altavilla D, Bitto A, et al. (2008) Trehalose: a biophysics approach to modulate the inflammatory response during endotoxic shock. Eur J Pharm 589: 272-280. |
[52] | Yadav S, Shire SJ, Kalonia DS (2011) Viscosity analysis of high concentration bovine serum albumin aqueous solutions. Pharm Res 28: 1973-1983. |
[53] | Gaigalas AK, Hubbard JB, McCurley M, et al. (1992) Diffusion of bovine serum albumin in aqueous solutions. J Phys Chem 96: 2355-2359. |
[54] | Keller KH, Canales ER, Yum SI (1971) Tracer and mutual diffusion coefficients of proteins. J Phys Chem 75: 379-387. |
[55] | Jachimska B, Pajor A (2017) Physico-chemical characterization of bovine serum albumin in solution and as deposited on surfaces. Bioelectrochem 87: 138-146. |
[56] | Brenner H (1974) Rheology of a dilute suspension of axisymmetric brownian particles. J Multiphase Flow 1: 195-341. |
[57] | Khorolskyi OV (2019) Calculation of the effective macromolecular radii of human serum albumin from the shear viscosity data for its aqueous solutions. Ukr J Phys 64: 287-292. |
[58] | Bardik V, Gotsulskii V, Pavlov E, et al. (2012) Light scattering study of human serum albumin in pre-denaturation: relation to dynamic transition in water at 42 °C. J Mol Liq 176: 60-64. |
[59] | Atamas N, Bardik V, Bannikova A, et al. (2017) The effect of water dynamics on conformation changes of albumin in pre-denaturation state: photon correlation spectroscopy and simulation. J Mol Liq 235: 17-23. |
[60] | Atamas N, Bardik VY, Komisarenko S, et al. (2019) Water dynamics and stability of major blood proteins at pre-denaturation stage. Atti Accad Pelorit Pericol Cl Sci Fis Mat Nat 97: A16. |
[61] | Hushcha TO, Luik AI, Naboka YN (2000) Conformation changes of albumin in its interaction with physiologically active compounds as studied by quasi-elastic light scattering spectroscopy and ultrasonic method. Talanta 53: 29-34. |
1. | O. E. Abo-Kasem, A. Abdelgaffar, Aned Al Mutairi, Rana H. Khashab, Wael S. Abu El Azm, Classical and Bayesian estimation for Gompertz distribution under the unified hybrid censored sampling with application, 2023, 13, 2158-3226, 10.1063/5.0174543 | |
2. | Manal M. Yousef, Aisha Fayomi, Ehab M. Almetwally, Simulation Techniques for Strength Component Partially Accelerated to Analyze Stress–Strength Model, 2023, 15, 2073-8994, 1183, 10.3390/sym15061183 | |
3. | Neama Salah Youssef Temraz, Analysis of stress-strength reliability with m-step strength levels under type I censoring and Gompertz distribution, 2024, 9, 2473-6988, 30728, 10.3934/math.20241484 | |
4. | Said G. Nassr, Amal S. Hassan, Ehab M. Almetwally, Aned Al Mutairi, Rana H. Khashab, Neema M. ElHaroun, Statistical inference of the inverted exponentiated Lomax distribution using generalized order statistics with application to COVID-19, 2023, 13, 2158-3226, 10.1063/5.0174540 | |
5. | Aned Al Mutairi, Afaf Alrashidi, Neama Taher Al-Sayed, Sarah Mohammad Behairy, Mohammed Elgarhy, Said G. Nassr, Bayesian and E-Bayesian estimation based on constant-stress partially accelerated life testing for inverted Topp–Leone distribution, 2023, 21, 2391-5471, 10.1515/phys-2023-0126 | |
6. | Mazen Nassar, Refah Alotaibi, Ahmed Elshahhat, Reliability analysis at usual operating settings for Weibull Constant-stress model with improved adaptive Type-Ⅱ progressively censored samples, 2024, 9, 2473-6988, 16931, 10.3934/math.2024823 | |
7. | Mustafa M. Hasaballah, Yusra A. Tashkandy, M. E. Bakr, Oluwafemi Samson Balogun, Dina A. Ramadan, Classical and Bayesian inference of inverted modified Lindley distribution based on progressive type-II censoring for modeling engineering data, 2024, 14, 2158-3226, 10.1063/5.0190542 | |
8. | Ahmadur Rahman, Mustafa Kamal, Shahnawaz Khan, Mohammad Faisal Khan, Manahil SidAhmed Mustafa, Eslam Hussam, Mintodê Nicodème Atchadé, Aned Al Mutairi, Statistical inferences under step stress partially accelerated life testing based on multiple censoring approaches using simulated and real-life engineering data, 2023, 13, 2045-2322, 10.1038/s41598-023-39170-x | |
9. | Mustafa M. Hasaballah, Yusra A. Tashkandy, Oluwafemi Samson Balogun, Mahmoud E. Bakr, Bayesian inference for two populations of Lomax distribution under joint progressive Type‐II censoring schemes with engineering applications, 2024, 40, 0748-8017, 4335, 10.1002/qre.3633 | |
10. | Intekhab Alam, Sadia Anwar, Lalit Kumar Sharma, Inference on adaptive Type-II progressive hybrid censoring under partially accelerated life test for Gompertz distribution, 2023, 14, 0975-6809, 2661, 10.1007/s13198-023-02129-2 | |
11. | Pavuluri Jaswanth, Pavuluri Yaswanth chowdary, M.V.S. Ramprasad, Deep learning based intelligent system for robust face spoofing detection using texture feature measurement, 2023, 29, 26659174, 100868, 10.1016/j.measen.2023.100868 | |
12. | Laila A. Al-Essa, Alaa H. Abdel-Hamid, Tmader Alballa, Atef F. Hashem, Reliability analysis of the triple modular redundancy system under step-partially accelerated life tests using Lomax distribution, 2023, 13, 2045-2322, 10.1038/s41598-023-41363-3 | |
13. | Amal S. Hassan, Najwan Alsadat, Mohammed Elgarhy, Hijaz Ahmad, Heba F. Nagy, On Estimating Multi- Stress Strength Reliability for Inverted Kumaraswamy Under Ranked Set Sampling with Application in Engineering, 2024, 31, 1776-0852, 10.1007/s44198-024-00196-y | |
14. | Areej M. AL-Zaydi, On Moments of Inverse Kumaraswamy Distribution Based on Progressive Type-II Censored Order Statistics, 2024, 2214-1766, 10.1007/s44199-024-00099-3 |
Failure times under normal condition | Failure times under accelerated condition | ||||||
0.161522 | 0.221959 | 0.236070 | 0.329451 | 0.809535 | 0.883767 | 0.95693 | 0.967955 |
0.522292 | 0.524396 | 0.566979 | 1.942770 | 2.307990 | 4.18468 | 5.613810 |
Θ | ML | Bayes | |||||
Lindley's | MCMC | ||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | ||
α1 | 2.37129 | 0.97264 | 1.12533 | 1.44004 | 1.72924 | 1.58455 | 1.26443 |
(0.75915) | (0.2781) | (0.14038) | (0.00359) | (0.05255) | (0.00715) | (0.05549) | |
α2 | 2.37717 | 1.9153 | 1.87413 | 1.86157 | 2.13492 | 2.0524 | 1.84584 |
(0.01765) | (0.35367) | (0.40433) | (0.42046) | (0.14068) | (0.20939) | (0.44111) | |
β | 2.49709 | 1.15864 | 1.21243 | 1.49745 | 1.96639 | 1.80225 | 1.50235 |
(0.61951) | (0.3040) | (0.24757) | (0.04518) | (0.06573) | (0.00851) | (0.04312) |
(n,m) | Θ | Cis | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
(40,30) | α1 | (0.11836, 4.62423) | (0.45268, 3.49434) | 4.50588 | 3.04166 |
α2 | (1.07654, 3.67779) | (1.12724, 3.43897) | 2.60125 | 2.31173 | |
β | (-0.17125, 5.16542) | (0.75421, 4.22058) | 5.33667 | 3.46637 |
(n,m) | Θ | ML | Bayes | |||||
Lindley's | MCMC | |||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | |||
(40,30) | α1 | 1.65543 | 1.28705 | 1.2519 | 1.21992 | 1.42057 | 1.3590 | 1.20177 |
(0.42999) | (0.21481) | (0.24574) | (0.32018) | (0.21822) | (0.21371) | (0.23893) | ||
α2 | 2.65326 | 2.44264 | 2.38662 | 2.3049 | 2.50495 | 2.43849 | 2.26092 | |
(0.33867) | (0.22183) | (0.22122) | (0.25676) | (0.23316) | (0.21504) | (0.22047) | ||
β | 1.97409 | 1.57305 | 1.54014 | 1.5136 | 1.74602 | 1.66684 | 1.49469 | |
(0.70691) | (0.14638) | (0.16539) | (0.30586) | (0.25685) | (0.20506) | (0.17016) | ||
(40,35) | α1 | 1.64862 | 1.30962 | 1.27755 | 1.24229 | 1.42521 | 1.36892 | 1.22295 |
(0.39323) | (0.19826) | (0.22037) | (0.28567) | (0.20355) | (0.19970) | (0.22091) | ||
α2 | 2.64346 | 2.45204 | 2.40356 | 2.32678 | 2.50473 | 2.44703 | 2.28995 | |
(0.31550) | (0.21374) | (0.21219) | (0.23924) | (0.22513) | (0.21044) | (0.21137) | ||
β | 1.99358 | 1.58682 | 1.57038 | 1.54711 | 1.75867 | 1.68156 | 1.51260 | |
(0.81505) | (0.20465) | (0.18208) | (0.34996) | (0.28678) | (0.22754) | (0.17760) | ||
(60,50) | α1 | 1.62312 | 1.41280 | 1.37516 | 1.31596 | 1.45844 | 1.41501 | 1.29831 |
(0.26361) | (0.15324) | (0.16263) | (0.19733) | (0.16181) | (0.15786) | (0.16666) | ||
α2 | 2.62169 | 2.49885 | 2.46070 | 2.38683 | 2.51963 | 2.47823 | 2.36218 | |
(0.20820) | (0.15756) | (0.15314) | (0.16136) | (0.16234) | (0.15376) | (0.15071) | ||
β | 1.89337 | 1.68729 | 1.63844 | 1.57146 | 1.74089 | 1.68618 | 1.55662 | |
(0.43261) | (0.15993) | (0.15977) | (0.20976) | (0.21772) | (0.18392) | (0.14811) | ||
(60,55) | α1 | 1.59519 | 1.40350 | 1.36644 | 1.30551 | 144190 | 1.40112 | 1.29076 |
(0.21686) | (0.13908) | (0.14671) | (0.17629) | (0.14217) | (0.14075) | (0.15416) | ||
α2 | 2.57916 | 2.46693 | 2.43251 | 2.36330 | 2.48441 | 2.44729 | 2.34256 | |
(0.18811) | (0.15289) | (0.15072) | (0.16101) | (0.15414) | (0.14883) | (0.15115) | ||
β | 1.86461 | 168288 | 1.63200 | 1.55915 | 1.72537 | 1.67403 | 1.55043 | |
(0.32666) | (0.14426) | (0.13634) | (0.16560) | (0.17773) | (0.15357) | (0.13120) |
(n,m) | Θ | ML | Bayes | |||||
Lindley's | MCMC | |||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | |||
(40,30) | α1 | 1.68862 | 1.29947 | 1.26764 | 1.241690 | 1.43982 | 1.37699 | 1.21666 |
(0.43057) | (0.21428) | (0.23551) | (0.30259) | (0.21065) | (0.20411) | (0.22597) | ||
α2 | 2.66861 | 2.45134 | 2.39578 | 2.31587 | 2.51442 | 2.44717 | 2.26779 | |
(0.33133) | (0.21266) | (0.21032) | (0.24253) | (0.22553) | (0.20601) | (0.20951) | ||
β | 2.01308 | 1.57484 | 1.56057 | 1.54242 | 1.76780 | 1.68805 | 151427 | |
(0.77083) | (0.30166) | (0.16461) | (0.32316) | (0.25854) | (0.20274) | (0.16110) | ||
(40,35) | α1 | 1.65135 | 1.31154 | 1.27931 | 1.24215 | 1.42709 | 1.37048 | 1.22409 |
(0.34735) | (0.19456) | (0.20292) | (0.26069) | (0.17793) | (0.17578) | (0.20172) | ||
α2 | 2.62027 | 2.43070 | 2.38256 | 2.30568 | 2.48129 | 2.42432 | 2.26923 | |
(0.27903( | (0.20208) | (0.20078) | (0.22693) | (0.20463) | (0.19348) | (0.20321) | ||
β | 1.96691 | 1.56982 | 1.55748 | 1.52932 | 1.73960 | 1.66554 | 1.50225 | |
(0.69979) | (0.38616) | (0.15731) | (0.30310) | (0.23953) | (0.19178) | (0.15897) | ||
(60,50) | α1 | 1.60625 | 1.39965 | 1.36213 | 1.30233 | 1.44417 | 1.40106 | 1.20507 |
(0.26531) | (0.16239) | (0.17236) | (0.20804) | (0.16985) | (0.16675) | (0.17770) | ||
α2 | 2.60057 | 2.48035 | 2.44261 | 2.36890 | 2.50041 | 2.45968 | 2.34547 | |
(0.18288) | (0.14292) | (0.14011) | (0.15048) | (0.14607) | (0.13983) | (0.14263) | ||
β | 1.88494 | 1.68365 | 1.63859 | 1.56933 | 1.73673 | 1.68342 | 1.55592 | |
(0.41470) | (0.15605) | (0.15761) | (0.21082) | (0.20395) | (0.17375) | (0.14270) | ||
(60,55) | α1 | 1.61851 | 1.42172 | 1.38574 | 1.32649 | 1.46185 | 1.42079 | 1.30954 |
(0.23619) | (0.13926) | (0.14718) | (0.17751) | (0.14668) | (0.14335) | (0.15183) | ||
α2 | 2.59645 | 2.48323 | 2.44889 | 2.37962 | 2.50084 | 2.46374 | 2.35885 | |
(0.16439) | (0.12894) | (0.12704) | (0.13638) | (0.13043) | (0.12576) | (0.12920) | ||
β | 1.89490 | 1.69924 | 1.65377 | 1.58544 | 1.74823 | 1.69593 | 1.57028 | |
(0.40487) | (0.14542) | (0.14846) | (0.19649) | (0.19938) | (0.16804) | (0.13378) |
(n,m) | Θ | ML | Bayes | |||||
Lindley's | MCMC | |||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | |||
(40,30) | α1 | 1.67468 | 1.33963 | 1.30954 | 1.27582 | 1.44789 | 1.39401 | 1.25246 |
(0.38210) | (0.18888) | (0.20886) | (0.26779) | (0.19642) | (0.19114) | (0.20608) | ||
α2 | 2.71109 | 2.45218 | 2.38609 | 2.30586 | 2.52052 | 2.43673 | 2.22214 | |
(0.52014) | (0.28634) | (0.28811) | (0.35025) | (0.31761) | (0.27747) | (0.27014) | ||
β | 2.00940 | 1.59348 | 1.58277 | 1.56234 | 1.76239 | 1.68673 | 1.51879 | |
(0.84333) | (0.23874) | (0.19153) | (0.36994) | (0.28759) | (0.22777) | (0.17522) | ||
(40,35) | α1 | 1.68589 | 1.35414 | 1.32299 | 1.28701 | 1.45995 | 1.40578 | 1.26368 |
(0.37445) | (0.17471) | (0.19429) | (0.25425) | (0.18654) | (0.18062) | (0.19413) | ||
α2 | 2.66805 | 2.45790 | 2.40602 | 2.32949 | 2.51081 | 2.44812 | 2.27892 | |
(0.35275) | (0.23424) | (0.23040) | (0.25831) | (0.24459) | (0.22541) | (0.22312) | ||
β | 2.02579 | 1.61455 | 1.60452 | 1.57674 | 1.78200 | 1.70581 | 1.53676 | |
(0.83181) | (0.34268) | (0.18228) | (0.36377) | (0.27424) | (0.21447) | (0.16139) | ||
(60,50) | α1 | 1.60030 | 1.41001 | 1.37509 | 1.31679 | 1.44653 | 1.40723 | 1.30017 |
(0.21965) | (0.14099) | (0.14861) | (0.17702) | (0.14551) | (0.14381) | (0.15526) | ||
α2 | 2.61698 | 2.48318 | 2.44130 | 2.36411 | 2.50299 | 2.45715 | 2.32968 | |
(0.24871) | (0.19030) | (0.18436) | (0.19556) | (0.19353) | (0.18235) | (0.17888) | ||
β | 1.87625 | 1.68946 | 1.641710 | 1.57152 | 1.73156 | 1.68095 | 1.55817 | |
(0.34566) | (0.14527) | (0.14214) | (0.17674) | (0.18279) | (0.15742) | (0.13209) | ||
(60,55) | α1 | 1.61398 | 1.42225 | 1.38779 | 1.32984 | 1.45989 | 1.42045 | 1.31294 |
(0.21681) | (0.13114) | (0.13831) | (0.16568) | (0.13753) | (0.13484) | (0.14381) | ||
α2 | 2.60790 | 2.48732 | 2.45145 | 2.38085 | 2.50462 | 2.46549 | 2.35508 | |
(0.18854) | (0.14604) | (0.14322) | (0.15220) | (0.14838) | (0.14218) | (0.14344) | ||
β | 1.88892 | 1.69278 | 1.65098 | 1.58316 | 1.74135 | 1.69007 | 1.56630 | |
(0.40552) | (0.14335) | (0.15024) | (0.20478) | (0.19462) | (0.16359) | (0.13086) |
(n,m) | Θ | Cis | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
(40,30) | α1 | (0.44842, 2.86243) | (0.57881, 2.51126) | 2.41400 | 1.93245 |
α2 | (1.57289, 3.73362) | (1.58029, 3.59153) | 2.16073 | 2.01124 | |
β | (0.56166, 3.38652) | (0.89460, 3.05901) | 2.82485 | 2.16441 | |
(40,35) | α1 | (0.51150, 2.78575) | (0.61392, 2.46083) | 2.27425 | 1.84690 |
α2 | (1.64491, 3.64201) | (1.63511, 3.50903) | 1.99710 | 1.87392 | |
β | (0.61090, 3.37626) | (0.91712, 3.03803) | 2.76536 | 2.12091 | |
(60,50) | α1 | (0.68488, 2.56136) | (0.72896, 2.35349) | 1.87648 | 1.62453 |
α2 | (1.79284, 3.45054) | (1.77264, 3.36206) | 1.65770 | 1.58942 | |
β | (0.83455, 2.95220) | (1.00713, 2.79542) | 2.11765 | 1.78829 | |
(60,55) | α1 | (0.69241, 2.49797) | (0.73149, 2.30604) | 1.80556 | 1.57456 |
α2 | (1.79774, 3.36058) | (1.77490, 3.27798) | 1.56284 | 1.50307 | |
β | (0.84745, 2.88178) | (1.00683, 2.7615) | 2.03434 | 1.73932 |
(n,m) | Θ | Cis | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
(40,30) | α1 | (0.46780, 2.90944) | (0.58824, 2.5402) | 2.44164 | 1.95197 |
α2 | (1.58403, 3.75319) | (1.58524, 3.60722) | 2.16915 | 2.02198 | |
β | (0.58767, 3.43848) | (0.90980, 3.07903) | 2.85081 | 2.16922 | |
(40,35) | α1 | (0.50841, 2.79430) | (0.61227, 2.46790) | 2.28589 | 1.85563 |
α2 | (1.62795, 3.61259) | (1.61686, 3.47999) | 1.98464 | 1.86313 | |
β | (0.61274, 3.32109) | (0.91109, 2.99448) | 2.70834 | 2.08340 | |
(60,50) | α1 | (0.67377, 2.53872) | (0.71706, 2.33422) | 1.86496 | 1.61716 |
α2 | (1.77842, 3.42272) | (1.75907, 3.33550) | 1.64431 | 1.57643 | |
β | (0.84327, 2.92661) | (1.00736, 2.77472) | 2.08334 | 1.76736 | |
(60,55) | α1 | (0.71446, 2.52256) | (0.74751, 2.32754) | 1.80809 | 1.58002 |
α2 | (1.81359, 3.37931) | (1.78876, 3.29593) | 1.56572 | 1.50717 | |
β | (0.86825, 2.92154) | (1.02278, 2.77349) | 2.05329 | 1.75071 |
(n,m) | Θ | Cis | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
(40,30) | α1 | (0.57373, 2.77563) | (0.64412, 2.45263) | 2.20190 | 1.80851 |
α2 | (1.48642, 3.93577) | (1.50360, 3.74638) | 2.44935 | 2.24278 | |
β | (0.64792, 3.37089) | (0.92108, 3.01884) | 2.72297 | 2.09776 | |
(40,35) | α1 | (0.58083, 2.79095) | (0.65407, 2.46931) | 2.21012 | 1.81524 |
α2 | (1.62504, 3.71106) | (1.60794, 3.55714) | 2.08601 | 1.94920 | |
β | (0.65645, 3.39514) | (0.93527, 3.05102) | 2.73868 | 2.11575 | |
(60,50) | α1 | (0.72122, 2.47937) | (0.74526, 2.29158) | 1.75815 | 1.54631 |
α2 | (1.74578, 3.48818) | (1.72035, 3.38819) | 1.74240 | 1.66784 | |
β | (0.87150, 2.88100) | (1.01345, 2.7403) | 2.00950 | 1.72685 | |
(60,55) | α1 | (0.73253, 2.49543) | (0.75623, 2.30571) | 1.76290 | 1.54948 |
α2 | (1.80380, 3.41201) | (1.77484, 3.32044) | 1.60821 | 1.54560 | |
β | (0.87613, 2.90170) | (1.02087, 2.75243) | 2.02557 | 1.73156 |
Scheme | Θ | ML | Bayesian | |||||
Lindley's | MCMC | |||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | |||
Scheme I | α1 | 1.9162 | 1.9288 | 1.9365 | 1.9540 | 1.9137 | 1.9103 | 1.9032 |
(0.6442) | (0.0924) | |||||||
α2 | 3.0628 | 3.0634 | 3.0684 | 3.0706 | 3.0623 | 3.0583 | 3.0498 | |
(0.6638) | (0.0995) | |||||||
β | 4.7644 | 4.7605 | 4.7652 | 4.7646 | 4.7602 | 4.7562 | 4.7478 | |
(2.2619) | (0.1007) | |||||||
Scheme II | α1 | 24812 | 2.4862 | 2.4904 | 2.998 | 2.4771 | 2.4737 | 2.4666 |
(0.6410) | (0.0924) | |||||||
α2 | 2.5023 | 2.5041 | 2.5066 | 2.5103 | 2.5015 | 2.4979 | 2.4901 | |
(0.4429) | (0.0934) | |||||||
β | 7.8787 | 7.8778 | 7.8788 | 7.8787 | 7.8810 | 7.8770 | 7.8685 | |
(3.7634) | (0.9982) | |||||||
Scheme III | α1 | 2.9300 | 2.9331 | 2.9367 | 2.9443 | 2.9259 | 2.9224 | 2.9149 |
(0.6427) | (0.0851) | |||||||
α2 | 3.3399 | 3.3405 | 3.3420 | 3.3442 | 3.3358 | 3.3319 | 3.3237 | |
(0.5232) | (0.0724) | |||||||
β | 7.7583 | 7.7577 | 7.7582 | 7.7582 | 7.7558 | 7.7518 | 7.7433 | |
(3.3666) | (0.0905) |
Scheme | Θ | CIs | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
Scheme I | α1 | (0.6536, 3.1788) | (1.7411, 2.1002) | 2.5252 | 0.3591 |
α2 | (1.7617, 4.3638) | (2.8737, 3.2645) | 2.6021 | 0.3908 | |
β | (0.3312, 9.1975) | (4.5711, 4.9614) | 8.8663 | 0.3903 | |
Scheme II | α1 | (1.2249, 3.7376) | (2.2932, 2.6537) | 2.5127 | 0.3605 |
α2 | (1.6341, 3.3706) | (2.3091, 2.6851) | 1.7365 | 0.3760 | |
β | (0.5025, 15.2549) | (7.6931, 8.0797) | 14.7524 | 0.3866 | |
Scheme III | α1 | (1.6702, 4.1897) | (2.7439, 3.1108) | 2.5195 | 0.3669 |
α2 | (2.3144, 4.3655) | (3.1494, 3.5284) | 2.0510 | 0.3790 | |
β | (1.15987, 14.3568) | (7.5501, 7.9403) | 13.1969 | 0.3902 |
Failure times under normal condition | Failure times under accelerated condition | ||||||
0.161522 | 0.221959 | 0.236070 | 0.329451 | 0.809535 | 0.883767 | 0.95693 | 0.967955 |
0.522292 | 0.524396 | 0.566979 | 1.942770 | 2.307990 | 4.18468 | 5.613810 |
Θ | ML | Bayes | |||||
Lindley's | MCMC | ||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | ||
α1 | 2.37129 | 0.97264 | 1.12533 | 1.44004 | 1.72924 | 1.58455 | 1.26443 |
(0.75915) | (0.2781) | (0.14038) | (0.00359) | (0.05255) | (0.00715) | (0.05549) | |
α2 | 2.37717 | 1.9153 | 1.87413 | 1.86157 | 2.13492 | 2.0524 | 1.84584 |
(0.01765) | (0.35367) | (0.40433) | (0.42046) | (0.14068) | (0.20939) | (0.44111) | |
β | 2.49709 | 1.15864 | 1.21243 | 1.49745 | 1.96639 | 1.80225 | 1.50235 |
(0.61951) | (0.3040) | (0.24757) | (0.04518) | (0.06573) | (0.00851) | (0.04312) |
(n,m) | Θ | Cis | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
(40,30) | α1 | (0.11836, 4.62423) | (0.45268, 3.49434) | 4.50588 | 3.04166 |
α2 | (1.07654, 3.67779) | (1.12724, 3.43897) | 2.60125 | 2.31173 | |
β | (-0.17125, 5.16542) | (0.75421, 4.22058) | 5.33667 | 3.46637 |
(n,m) | Θ | ML | Bayes | |||||
Lindley's | MCMC | |||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | |||
(40,30) | α1 | 1.65543 | 1.28705 | 1.2519 | 1.21992 | 1.42057 | 1.3590 | 1.20177 |
(0.42999) | (0.21481) | (0.24574) | (0.32018) | (0.21822) | (0.21371) | (0.23893) | ||
α2 | 2.65326 | 2.44264 | 2.38662 | 2.3049 | 2.50495 | 2.43849 | 2.26092 | |
(0.33867) | (0.22183) | (0.22122) | (0.25676) | (0.23316) | (0.21504) | (0.22047) | ||
β | 1.97409 | 1.57305 | 1.54014 | 1.5136 | 1.74602 | 1.66684 | 1.49469 | |
(0.70691) | (0.14638) | (0.16539) | (0.30586) | (0.25685) | (0.20506) | (0.17016) | ||
(40,35) | α1 | 1.64862 | 1.30962 | 1.27755 | 1.24229 | 1.42521 | 1.36892 | 1.22295 |
(0.39323) | (0.19826) | (0.22037) | (0.28567) | (0.20355) | (0.19970) | (0.22091) | ||
α2 | 2.64346 | 2.45204 | 2.40356 | 2.32678 | 2.50473 | 2.44703 | 2.28995 | |
(0.31550) | (0.21374) | (0.21219) | (0.23924) | (0.22513) | (0.21044) | (0.21137) | ||
β | 1.99358 | 1.58682 | 1.57038 | 1.54711 | 1.75867 | 1.68156 | 1.51260 | |
(0.81505) | (0.20465) | (0.18208) | (0.34996) | (0.28678) | (0.22754) | (0.17760) | ||
(60,50) | α1 | 1.62312 | 1.41280 | 1.37516 | 1.31596 | 1.45844 | 1.41501 | 1.29831 |
(0.26361) | (0.15324) | (0.16263) | (0.19733) | (0.16181) | (0.15786) | (0.16666) | ||
α2 | 2.62169 | 2.49885 | 2.46070 | 2.38683 | 2.51963 | 2.47823 | 2.36218 | |
(0.20820) | (0.15756) | (0.15314) | (0.16136) | (0.16234) | (0.15376) | (0.15071) | ||
β | 1.89337 | 1.68729 | 1.63844 | 1.57146 | 1.74089 | 1.68618 | 1.55662 | |
(0.43261) | (0.15993) | (0.15977) | (0.20976) | (0.21772) | (0.18392) | (0.14811) | ||
(60,55) | α1 | 1.59519 | 1.40350 | 1.36644 | 1.30551 | 144190 | 1.40112 | 1.29076 |
(0.21686) | (0.13908) | (0.14671) | (0.17629) | (0.14217) | (0.14075) | (0.15416) | ||
α2 | 2.57916 | 2.46693 | 2.43251 | 2.36330 | 2.48441 | 2.44729 | 2.34256 | |
(0.18811) | (0.15289) | (0.15072) | (0.16101) | (0.15414) | (0.14883) | (0.15115) | ||
β | 1.86461 | 168288 | 1.63200 | 1.55915 | 1.72537 | 1.67403 | 1.55043 | |
(0.32666) | (0.14426) | (0.13634) | (0.16560) | (0.17773) | (0.15357) | (0.13120) |
(n,m) | Θ | ML | Bayes | |||||
Lindley's | MCMC | |||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | |||
(40,30) | α1 | 1.68862 | 1.29947 | 1.26764 | 1.241690 | 1.43982 | 1.37699 | 1.21666 |
(0.43057) | (0.21428) | (0.23551) | (0.30259) | (0.21065) | (0.20411) | (0.22597) | ||
α2 | 2.66861 | 2.45134 | 2.39578 | 2.31587 | 2.51442 | 2.44717 | 2.26779 | |
(0.33133) | (0.21266) | (0.21032) | (0.24253) | (0.22553) | (0.20601) | (0.20951) | ||
β | 2.01308 | 1.57484 | 1.56057 | 1.54242 | 1.76780 | 1.68805 | 151427 | |
(0.77083) | (0.30166) | (0.16461) | (0.32316) | (0.25854) | (0.20274) | (0.16110) | ||
(40,35) | α1 | 1.65135 | 1.31154 | 1.27931 | 1.24215 | 1.42709 | 1.37048 | 1.22409 |
(0.34735) | (0.19456) | (0.20292) | (0.26069) | (0.17793) | (0.17578) | (0.20172) | ||
α2 | 2.62027 | 2.43070 | 2.38256 | 2.30568 | 2.48129 | 2.42432 | 2.26923 | |
(0.27903( | (0.20208) | (0.20078) | (0.22693) | (0.20463) | (0.19348) | (0.20321) | ||
β | 1.96691 | 1.56982 | 1.55748 | 1.52932 | 1.73960 | 1.66554 | 1.50225 | |
(0.69979) | (0.38616) | (0.15731) | (0.30310) | (0.23953) | (0.19178) | (0.15897) | ||
(60,50) | α1 | 1.60625 | 1.39965 | 1.36213 | 1.30233 | 1.44417 | 1.40106 | 1.20507 |
(0.26531) | (0.16239) | (0.17236) | (0.20804) | (0.16985) | (0.16675) | (0.17770) | ||
α2 | 2.60057 | 2.48035 | 2.44261 | 2.36890 | 2.50041 | 2.45968 | 2.34547 | |
(0.18288) | (0.14292) | (0.14011) | (0.15048) | (0.14607) | (0.13983) | (0.14263) | ||
β | 1.88494 | 1.68365 | 1.63859 | 1.56933 | 1.73673 | 1.68342 | 1.55592 | |
(0.41470) | (0.15605) | (0.15761) | (0.21082) | (0.20395) | (0.17375) | (0.14270) | ||
(60,55) | α1 | 1.61851 | 1.42172 | 1.38574 | 1.32649 | 1.46185 | 1.42079 | 1.30954 |
(0.23619) | (0.13926) | (0.14718) | (0.17751) | (0.14668) | (0.14335) | (0.15183) | ||
α2 | 2.59645 | 2.48323 | 2.44889 | 2.37962 | 2.50084 | 2.46374 | 2.35885 | |
(0.16439) | (0.12894) | (0.12704) | (0.13638) | (0.13043) | (0.12576) | (0.12920) | ||
β | 1.89490 | 1.69924 | 1.65377 | 1.58544 | 1.74823 | 1.69593 | 1.57028 | |
(0.40487) | (0.14542) | (0.14846) | (0.19649) | (0.19938) | (0.16804) | (0.13378) |
(n,m) | Θ | ML | Bayes | |||||
Lindley's | MCMC | |||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | |||
(40,30) | α1 | 1.67468 | 1.33963 | 1.30954 | 1.27582 | 1.44789 | 1.39401 | 1.25246 |
(0.38210) | (0.18888) | (0.20886) | (0.26779) | (0.19642) | (0.19114) | (0.20608) | ||
α2 | 2.71109 | 2.45218 | 2.38609 | 2.30586 | 2.52052 | 2.43673 | 2.22214 | |
(0.52014) | (0.28634) | (0.28811) | (0.35025) | (0.31761) | (0.27747) | (0.27014) | ||
β | 2.00940 | 1.59348 | 1.58277 | 1.56234 | 1.76239 | 1.68673 | 1.51879 | |
(0.84333) | (0.23874) | (0.19153) | (0.36994) | (0.28759) | (0.22777) | (0.17522) | ||
(40,35) | α1 | 1.68589 | 1.35414 | 1.32299 | 1.28701 | 1.45995 | 1.40578 | 1.26368 |
(0.37445) | (0.17471) | (0.19429) | (0.25425) | (0.18654) | (0.18062) | (0.19413) | ||
α2 | 2.66805 | 2.45790 | 2.40602 | 2.32949 | 2.51081 | 2.44812 | 2.27892 | |
(0.35275) | (0.23424) | (0.23040) | (0.25831) | (0.24459) | (0.22541) | (0.22312) | ||
β | 2.02579 | 1.61455 | 1.60452 | 1.57674 | 1.78200 | 1.70581 | 1.53676 | |
(0.83181) | (0.34268) | (0.18228) | (0.36377) | (0.27424) | (0.21447) | (0.16139) | ||
(60,50) | α1 | 1.60030 | 1.41001 | 1.37509 | 1.31679 | 1.44653 | 1.40723 | 1.30017 |
(0.21965) | (0.14099) | (0.14861) | (0.17702) | (0.14551) | (0.14381) | (0.15526) | ||
α2 | 2.61698 | 2.48318 | 2.44130 | 2.36411 | 2.50299 | 2.45715 | 2.32968 | |
(0.24871) | (0.19030) | (0.18436) | (0.19556) | (0.19353) | (0.18235) | (0.17888) | ||
β | 1.87625 | 1.68946 | 1.641710 | 1.57152 | 1.73156 | 1.68095 | 1.55817 | |
(0.34566) | (0.14527) | (0.14214) | (0.17674) | (0.18279) | (0.15742) | (0.13209) | ||
(60,55) | α1 | 1.61398 | 1.42225 | 1.38779 | 1.32984 | 1.45989 | 1.42045 | 1.31294 |
(0.21681) | (0.13114) | (0.13831) | (0.16568) | (0.13753) | (0.13484) | (0.14381) | ||
α2 | 2.60790 | 2.48732 | 2.45145 | 2.38085 | 2.50462 | 2.46549 | 2.35508 | |
(0.18854) | (0.14604) | (0.14322) | (0.15220) | (0.14838) | (0.14218) | (0.14344) | ||
β | 1.88892 | 1.69278 | 1.65098 | 1.58316 | 1.74135 | 1.69007 | 1.56630 | |
(0.40552) | (0.14335) | (0.15024) | (0.20478) | (0.19462) | (0.16359) | (0.13086) |
(n,m) | Θ | Cis | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
(40,30) | α1 | (0.44842, 2.86243) | (0.57881, 2.51126) | 2.41400 | 1.93245 |
α2 | (1.57289, 3.73362) | (1.58029, 3.59153) | 2.16073 | 2.01124 | |
β | (0.56166, 3.38652) | (0.89460, 3.05901) | 2.82485 | 2.16441 | |
(40,35) | α1 | (0.51150, 2.78575) | (0.61392, 2.46083) | 2.27425 | 1.84690 |
α2 | (1.64491, 3.64201) | (1.63511, 3.50903) | 1.99710 | 1.87392 | |
β | (0.61090, 3.37626) | (0.91712, 3.03803) | 2.76536 | 2.12091 | |
(60,50) | α1 | (0.68488, 2.56136) | (0.72896, 2.35349) | 1.87648 | 1.62453 |
α2 | (1.79284, 3.45054) | (1.77264, 3.36206) | 1.65770 | 1.58942 | |
β | (0.83455, 2.95220) | (1.00713, 2.79542) | 2.11765 | 1.78829 | |
(60,55) | α1 | (0.69241, 2.49797) | (0.73149, 2.30604) | 1.80556 | 1.57456 |
α2 | (1.79774, 3.36058) | (1.77490, 3.27798) | 1.56284 | 1.50307 | |
β | (0.84745, 2.88178) | (1.00683, 2.7615) | 2.03434 | 1.73932 |
(n,m) | Θ | Cis | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
(40,30) | α1 | (0.46780, 2.90944) | (0.58824, 2.5402) | 2.44164 | 1.95197 |
α2 | (1.58403, 3.75319) | (1.58524, 3.60722) | 2.16915 | 2.02198 | |
β | (0.58767, 3.43848) | (0.90980, 3.07903) | 2.85081 | 2.16922 | |
(40,35) | α1 | (0.50841, 2.79430) | (0.61227, 2.46790) | 2.28589 | 1.85563 |
α2 | (1.62795, 3.61259) | (1.61686, 3.47999) | 1.98464 | 1.86313 | |
β | (0.61274, 3.32109) | (0.91109, 2.99448) | 2.70834 | 2.08340 | |
(60,50) | α1 | (0.67377, 2.53872) | (0.71706, 2.33422) | 1.86496 | 1.61716 |
α2 | (1.77842, 3.42272) | (1.75907, 3.33550) | 1.64431 | 1.57643 | |
β | (0.84327, 2.92661) | (1.00736, 2.77472) | 2.08334 | 1.76736 | |
(60,55) | α1 | (0.71446, 2.52256) | (0.74751, 2.32754) | 1.80809 | 1.58002 |
α2 | (1.81359, 3.37931) | (1.78876, 3.29593) | 1.56572 | 1.50717 | |
β | (0.86825, 2.92154) | (1.02278, 2.77349) | 2.05329 | 1.75071 |
(n,m) | Θ | Cis | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
(40,30) | α1 | (0.57373, 2.77563) | (0.64412, 2.45263) | 2.20190 | 1.80851 |
α2 | (1.48642, 3.93577) | (1.50360, 3.74638) | 2.44935 | 2.24278 | |
β | (0.64792, 3.37089) | (0.92108, 3.01884) | 2.72297 | 2.09776 | |
(40,35) | α1 | (0.58083, 2.79095) | (0.65407, 2.46931) | 2.21012 | 1.81524 |
α2 | (1.62504, 3.71106) | (1.60794, 3.55714) | 2.08601 | 1.94920 | |
β | (0.65645, 3.39514) | (0.93527, 3.05102) | 2.73868 | 2.11575 | |
(60,50) | α1 | (0.72122, 2.47937) | (0.74526, 2.29158) | 1.75815 | 1.54631 |
α2 | (1.74578, 3.48818) | (1.72035, 3.38819) | 1.74240 | 1.66784 | |
β | (0.87150, 2.88100) | (1.01345, 2.7403) | 2.00950 | 1.72685 | |
(60,55) | α1 | (0.73253, 2.49543) | (0.75623, 2.30571) | 1.76290 | 1.54948 |
α2 | (1.80380, 3.41201) | (1.77484, 3.32044) | 1.60821 | 1.54560 | |
β | (0.87613, 2.90170) | (1.02087, 2.75243) | 2.02557 | 1.73156 |
Scheme | Θ | ML | Bayesian | |||||
Lindley's | MCMC | |||||||
BSL | BLL1 | BLL2 | BSM | BLM1 | BLM2 | |||
Scheme I | α1 | 1.9162 | 1.9288 | 1.9365 | 1.9540 | 1.9137 | 1.9103 | 1.9032 |
(0.6442) | (0.0924) | |||||||
α2 | 3.0628 | 3.0634 | 3.0684 | 3.0706 | 3.0623 | 3.0583 | 3.0498 | |
(0.6638) | (0.0995) | |||||||
β | 4.7644 | 4.7605 | 4.7652 | 4.7646 | 4.7602 | 4.7562 | 4.7478 | |
(2.2619) | (0.1007) | |||||||
Scheme II | α1 | 24812 | 2.4862 | 2.4904 | 2.998 | 2.4771 | 2.4737 | 2.4666 |
(0.6410) | (0.0924) | |||||||
α2 | 2.5023 | 2.5041 | 2.5066 | 2.5103 | 2.5015 | 2.4979 | 2.4901 | |
(0.4429) | (0.0934) | |||||||
β | 7.8787 | 7.8778 | 7.8788 | 7.8787 | 7.8810 | 7.8770 | 7.8685 | |
(3.7634) | (0.9982) | |||||||
Scheme III | α1 | 2.9300 | 2.9331 | 2.9367 | 2.9443 | 2.9259 | 2.9224 | 2.9149 |
(0.6427) | (0.0851) | |||||||
α2 | 3.3399 | 3.3405 | 3.3420 | 3.3442 | 3.3358 | 3.3319 | 3.3237 | |
(0.5232) | (0.0724) | |||||||
β | 7.7583 | 7.7577 | 7.7582 | 7.7582 | 7.7558 | 7.7518 | 7.7433 | |
(3.3666) | (0.0905) |
Scheme | Θ | CIs | Lengths of CIs | ||
Appr. CI | HPD CI | Appr. CI | HPD CI | ||
Scheme I | α1 | (0.6536, 3.1788) | (1.7411, 2.1002) | 2.5252 | 0.3591 |
α2 | (1.7617, 4.3638) | (2.8737, 3.2645) | 2.6021 | 0.3908 | |
β | (0.3312, 9.1975) | (4.5711, 4.9614) | 8.8663 | 0.3903 | |
Scheme II | α1 | (1.2249, 3.7376) | (2.2932, 2.6537) | 2.5127 | 0.3605 |
α2 | (1.6341, 3.3706) | (2.3091, 2.6851) | 1.7365 | 0.3760 | |
β | (0.5025, 15.2549) | (7.6931, 8.0797) | 14.7524 | 0.3866 | |
Scheme III | α1 | (1.6702, 4.1897) | (2.7439, 3.1108) | 2.5195 | 0.3669 |
α2 | (2.3144, 4.3655) | (3.1494, 3.5284) | 2.0510 | 0.3790 | |
β | (1.15987, 14.3568) | (7.5501, 7.9403) | 13.1969 | 0.3902 |