
Citation: Md. Hasan Ali, Robiul Islam Rubel. A comparative review of Mg/CNTs and Al/CNTs composite to explore the prospect of bimetallic Mg-Al/CNTs composites[J]. AIMS Materials Science, 2020, 7(3): 217-243. doi: 10.3934/matersci.2020.3.217
[1] | Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785 |
[2] | Ning Bai, Juan Zhang , Li Li, Zhen Jin . Evaluating the effect of virus mutation on the transmission of avian influenza H7N9 virus in China based on dynamical model. Mathematical Biosciences and Engineering, 2019, 16(5): 3393-3410. doi: 10.3934/mbe.2019170 |
[3] | Tingting Yu, Sanling Yuan . Dynamics of a stochastic turbidostat model with sampled and delayed measurements. Mathematical Biosciences and Engineering, 2023, 20(4): 6215-6236. doi: 10.3934/mbe.2023268 |
[4] | Guo Lin, Shuxia Pan, Xiang-Ping Yan . Spreading speeds of epidemic models with nonlocal delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7562-7588. doi: 10.3934/mbe.2019380 |
[5] | Yan’e Wang , Zhiguo Wang, Chengxia Lei . Asymptotic profile of endemic equilibrium to a diffusive epidemic model with saturated incidence rate. Mathematical Biosciences and Engineering, 2019, 16(5): 3885-3913. doi: 10.3934/mbe.2019192 |
[6] | Keguo Ren, Xining Li, Qimin Zhang . Near-optimal control and threshold behavior of an avian influenza model with spatial diffusion on complex networks. Mathematical Biosciences and Engineering, 2021, 18(5): 6452-6483. doi: 10.3934/mbe.2021321 |
[7] | Yajuan Guo, Zijian Liu, Yuanshun Tan, Yawei Liu . Modeling and analysis of a stochastic giving-up-smoking model with quit smoking duration. Mathematical Biosciences and Engineering, 2023, 20(12): 20576-20598. doi: 10.3934/mbe.2023910 |
[8] | Ke Qi, Zhijun Liu, Lianwen Wang, Qinglong Wang . Survival and stationary distribution of a stochastic facultative mutualism model with distributed delays and strong kernels. Mathematical Biosciences and Engineering, 2021, 18(4): 3160-3179. doi: 10.3934/mbe.2021157 |
[9] | Edoardo Beretta, Dimitri Breda . An SEIR epidemic model with constant latency time and infectious period. Mathematical Biosciences and Engineering, 2011, 8(4): 931-952. doi: 10.3934/mbe.2011.8.931 |
[10] | Tingting Ding, Tongqian Zhang . Asymptotic behavior of the solutions for a stochastic SIRS model with information intervention. Mathematical Biosciences and Engineering, 2022, 19(7): 6940-6961. doi: 10.3934/mbe.2022327 |
Avian influenza is an animal infectious disease caused by the transmission of influenza A viruses. Influenza A viruses are divided into subtypes according to two proteins on the surface of the virus: Hemagglutinin (HA) and neuraminidase (NA) [1]. Most avian influenza viruses infect only certain species and do not infect humans. However, a few avian influenza viruses have crossed the species barrier to infect humans and even kill them, such as H5N1, H7N1, H7N2, H7N3, H7N7, H9N2 and H7N9. Among them, H5N1 is a highly pathogenic avian influenza virus, which was first detected in human in Hong Kong in 1997. After that, humans infection with avian influenza have occurred from time to time. As of December 2019, the global cumulative number of cases of human infection with H5N1 avian influenza arrives 861, with 455 deaths. Unlike H5N1, H7N9 is classified as a low pathogenicity avian influenza virus [2]. In March 2013, there was the first case of human infection with the H7N9 avian influenza virus in Shanghai, China. In the following weeks, this virus spread to several provinces and municipalities in mainland China. As of May 2017, H7N9 has resulted in 1263 human cases in China, of whom 459 died, with a mortality rate of nearly 37%. The frequent outbreak of avian influenza in the world not only brings a serious threat to human health, but also causes psychological panic and huge social impact, and brings a huge blow to the national economy. Therefore, it has been important to understand the dynamical behavior of avian influenza and to predict what may occur. Mathematical modeling has been a useful tool to describe the dynamical behavior of avian influenza and to obtain a better understanding of transmission mechanisms. Recently, many avian influenza models have been built from different perspectives (see [2,3,4,5,6,7,8,9,10,11,12] and references therein).
As we all know, there exist time delays during the spread of avian influenza, which can be used to describe not only the infection period of avian influenza virus in poultry (human) population, but also the incubation period of avian influenza in poultry (human) population and the immune period of recovered human to avian influenza. Therefore, the time delays should be considered such that the avian influenza models are more realistic. Generally speaking, delayed differential equations exhibit more complex dynamical behavior than differential equations without delay because time delay can make a stable equilibrium position to be unstable [13,14,15,16]. Consequently, it is of great interest to describe the transmission mechanism of avian influenza by introducing time delay into the models. For example, Liu et al. [7] and Kang et al. [12] established avian influenza models with different time delays in the poultry and human populations by considering the incubation periods of avian influenza virus and the survival probabilities of infected poultry and humans. By considering the existence of intracellular delay between initial infection of a cell and the release of new virus particles, Samanta [17] established a non-autonomous ordinary differential equation with distributed delay to characterize the spread of avian influenza between poultry and humans. These surveys imply that the research of time delay on avian influenza is a meaningful issue and is still open for study.
On the other hand, many existing literatures only focus on the deterministic avian influenza models that do not consider the impact of environmental noise. However, in the real world, the spread of avian influenza is often affected by the variations of environmental factors, such as humidity, temperature and so on [18,19]. Due to the fluctuations in the environment, an actual avian influenza system would not remain in a stable state, which would interfere with this stable state by acting directly on the density or indirectly affecting the parameter values. Therefore, it is of great significance to reveal the impact of environmental noise on avian influenza model by using stochastic model, so as to obtain more real benefits and accurately predict the future dynamics of avian influenza. To better understand the transmission dynamics of avian influenza, some authors have introduced stochastic perturbations into the deterministic models [20,21,22]. Zhang et al. [20] constructed a stochastic avian-human influenza model with logistic growth for avian population, and discussed the dynamical behavior of this model. Further, Zhang et al. [21] investigated a stochastic avian-human influenza epidemic model with psychological effect in human population and saturation effect within avian population. On the basis of the deterministic model established by Iwami et al. [3], Zhang et al. [22] established the corresponding stochastic model by introducing density disturbance. All the papers mentioned above only focused on the extinction and persistence of stochastic avian influenza models. However, to the best of our knowledge, there is no results related to the asymptotic behavior of stochastic avian influenza model around the equilibria of the corresponding deterministic model.
Motivated by the above discussions, in this paper, we investigate the asymptotic behavior of a stochastic delayed avian influenza model with saturated incidence rate. This work differs from existing results [7,12,17,20,21,22] in that (a) time delays and white noise are taken into account to describe the latency period of avian influenza virus in both poultry and human population and the environmental fluctuations; (b) asymptotic behavior of a stochastic delayed avian influenza model is studied. Overview of the rest of the article is as follows: In section 3, we show that there exists a unique global positive solution of system (2.3) with the given initial value (2.4). In section 4, we prove that the solution of system (2.3) is going around E0 under certain conditions. Further, we derive that the solution of system (2.3) is going around E∗ under certain conditions in section 5. In section 6, some numerical examples are introduced to illustrate the effectiveness of theoretic results. Finally, some conclusions are given in section 7.
Although the avian influenza virus spreads between wild birds and poultry, and between poultry and humans, we will only consider the transmission dynamics of avian influenza between poultry and humans because poultry is the main source of infection. Moreover, we assume that the virus is not spread between humans and mutate. We denote the total population of poultry and humans at time t by Na(t) and Nh(t), respectively. When the susceptible poultry contact with the infected poultry closely, there is usually no quick way to detect whether they are infected or the detection cost is too high, which makes it impossible to distinguish whether the close contacts of poultry are infected with the avian influenza virus. Therefore, the poultry population is divided into three sub-populations depending on the state of the disease: susceptible poultry Sa(t), exposed poultry Ea(t) and infected poultry Ia(t). The total poultry population at time t is denoted by Na(t)=Sa(t)+Ea(t)+Ia(t). The human population is divided into three sub-populations, which are susceptible human Sh(t), infected human with avian influenza Ia(t) and recovered human from avian influenza Rh(t). The total population of human at time t is given by Nh(t)=Sh(t)+Ih(t)+Rh(t).
The reason why we do not consider the exposed class for human population is that the close contacts of human beings are usually isolated and tested to determine whether they are infected with the avian influenza virus. The poultry in Ea either shows symptoms after incubation period and move to Ia, or always stays in Ea until natural death. The number of susceptible poultry (human) is increased by new recruitment, but decreases by natural death and infection (moving to class Ia (Ih)). The number of infected poultry (human) is increased by the infection of susceptible poultry (human) and reduced through natural and disease-related death. In addition, the number of infected humans is also reduced by recovery from the disease (moving to class Rh). Based on the above discussions, we obtain the schematic diagram of our model (see Figure 1).
The corresponding avian influenza model can be represented by the following equations:
{dSa(t)dt=Λa−μaSa(t)−βaSa(t)Ia(t)1+α1Ia(t),dEa(t)dt=βae−μaτaSa(t−τa)Ia(t−τa)1+α1Ia(t−τa)−(μa+γa)Ea(t),dIa(t)dt=γaEa(t)−(μa+δa)Ia(t),dSh(t)dt=Λh−μhSh(t)−βhSh(t)Ia(t)1+α2Ia(t),dIh(t)dt=βhe−μhτhSh(t−τh)Ia(t−τh)1+α2Ia(t−τh)−(μh+δh+θh)Ih(t),dRh(t)dt=θhIh(t)−μhRh(t). | (2.1) |
All parameters in model (2.1) are assumed non-negative and described in Table 1.
Parameter | Description |
Λa | new recruitment of the poultry populations |
Λh | new recruitment of the human population |
βa | the transmission rate from infective poultry to susceptible poultry |
βh | the transmission rate from infective poultry to susceptible human |
μa | the natural death rate of poultry populations |
μh | the natural death rate of human populations |
δa | the disease-related death rate of poultry populations |
δh | the disease-related death rate of humans populations |
γa | the transfer rate of exposed poultry to infected poultry |
θh | the recovery rate of the infective human |
αi(i=1,2) | parameters that measure the inhibitory effect |
Because the removed human populations Rh(t) has no effect on the dynamics of the first five equations, system (2.1) can be decoupled to the following system:
{dSa(t)dt=Λa−μaSa(t)−βaSa(t)Ia(t)1+α1Ia(t),dEa(t)dt=βae−μaτaSa(t−τa)Ia(t−τa)1+α1Ia(t−τa)−(μa+γa)Ea(t),dIa(t)dt=γaEa(t)−(μa+δa)Ia(t),dSh(t)dt=Λh−μhSh(t)−βhSh(t)Ia(t)1+α2Ia(t),dIh(t)dt=βhe−μhτhSh(t−τh)Ia(t−τh)1+α2Ia(t−τh)−(μh+δh+θh)Ih(t). | (2.2) |
A realistic avian influenza system would not remain in this stable state due to environmental fluctuations. In this paper, we will reveal how the environmental white noise affects the spread of avian influenza through investigating the dynamics of a stochastic delayed avian influenza model with saturated incidence rate. Taking the same approach as the literatures [23,24], we assume that the environmental white noise is directly proportional to the variables Sa(t), Ea(t), Ia(t), Sh(t) and Ih(t), respectively. Then, corresponding to system (2.2), the stochastic avian influenza model with time delay is of the following form
{dSa(t)=(Λa−μaSa(t)−βaSa(t)Ia(t)1+α1Ia(t))dt+σ1Sa(t)dB1(t),dEa(t)=(βae−μaτaSa(t−τa)Ia(t−τa)1+α1Ia(t−τa)−(μa+γa)Ea(t))dt+σ2Ea(t)dB2(t),dIa(t)=(γaEa(t)−(μa+δa)Ia(t))dt+σ3Ia(t)dB3(t),dSh(t)=(Λh−μhSh(t)−βhSh(t)Ia(t)1+α2Ia(t))dt+σ4Sh(t)dB4(t),dIh(t)=(βhe−μhτhSh(t−τh)Ia(t−τh)1+α2Ia(t−τh)−(μh+δh+θh)Ih(t))dt+σ5Ih(t)dB5(t), | (2.3) |
in which Bi(t)(i=1,2,⋯,5) are mutually independent standard Brownian motions defined on a complete probability space (Ω,F,P) with a filtration{Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right continuous while F0 contains all P-null sets), σi(i=1,2,⋯,5) denote the intensities of the white noises. The initial value of system (2.3) are
{Sa(θ)=φ1(θ),Ea(θ)=φ2(θ),Ia(θ)=φ3(θ),Sh(θ)=φ4(θ),Ih(θ)=φ5(θ),φi(θ)∈C([−τ,0],R5+),i=1,2,3,4,5,τ=max{τa,τh}, | (2.4) |
where C is the Banach space C([−τ,0];R5+) of continuous functions mapping the interval [−τ,0] into R5+, and R5+={x=(x1,x2,x3,x4,x5):xi>0,i=1,2,3,4,5}. By a biological meaning, we assume that φi(0)>0(i=1,2,3,4,5).
In this section, we prove that the solution of system (2.3) is global and positive for any initial value (2.4).
Theorem 1. For any initial value (2.4), system (2.3) has a unique positive solution (Sa(t),Ea(t),Ia(t),Sh(t),Ih(t)) on t≥0 and the solution will remain in R5+ with probability one, in other words, (Sa(t),Ea(t),Ia(t),Sh(t),Ih(t))∈R5+ for all t≥0 almost surely.
Proof. Since the coefficients of system (2.3) satisfy the local Lipschitz conditions, then for any initial value (2.4), there exists a unique local solution (Sa(t),Ea(t),Ia(t),Sh(t),Ih(t)) on t∈[−τ,τe), where τe is the explosive time. To show this solution is global, we only need to show that τe=∞ a.s. To this end, let k0≥1 be sufficiently large such that (Sa(θ),Ea(θ),Ia(θ),Sh(θ),Ih(θ))(θ∈[−τ,0]) all lie within the interval [1k0,k0]. For each integer k≥k0, define the stopping time as
τk=inf{t∈[0,τe):Sa(t)∉(1k,k) or Ea(t)∉(1k,k) or Ia(t)∉(1k,k) or Sh(t)∉(1k,k) or Ih(t)∉(1k,k)}. |
We set inf∅=∞. Obviously, τk increasing when k→∞. Let τ∞=limk→∞τk, where τ∞≤τe a.s. If we can verify τ∞=∞ a.s., then τe=∞ and (Sa(t),Ea(t),Ia(t),Sh(t),Ih(t))∈R5+ a.s. for all t≥0. That is to say, to complete the proof we only need to show that τ∞=∞ a.s. If this assertion is not true, then there is a pair of constants T>0 and ε∈(0,1) such that
P{τ∞≤T}>ε. |
There exists an integer k1≥k0 such that
P{τk≤T}≥ε for all k≥k1. | (3.1) |
Define a C2-function V: R5+→R+ by
V(Sa,Ea,Ia,Sh,Ih)=e−μaτa(Sa−a−alnSaa)+(Ea−1−lnEa)+(Ia−1−lnIa)+βae−μaτa∫tt−τaSa(s)Ia(s)1+α1Ia(s)ds+e−μhτh(Sh−b−blnShb)+(Ih−1−lnIh)+βhe−μhτh∫tt−τhSh(s)Ia(s)1+α2Ia(s)ds, |
in which a and b are positive constants to be determined later. The nonnegativity of this function can be derived from x−1−lnx≥0 for any x>0. Applying the Itô's formula to V, we get
dV=e−μaτa(1−aSa)dSa+e−μaτaa2S2a(dSa)2+(1−1Ea)dEa+a2E2a(dEa)2+(1−1Ia)dIa+a2I2a(dIa)2+βae−μaτaSaIa1+α1Ia−βae−μaτaSa(t−τa)Ia(t−τa)1+α1Ia(t−τa)+e−μhτh(1−bSh)dSh+e−μhτhb2S2h(dSh)2+(1−1Ih)dIh+12I2h(dIh)2+βhe−μhτhShIh1+α2Ia−βhe−μhτhSh(t−τh)Ia(t−τh)1+α2Ia(t−τh)=LVdt+e−μaτaσ1(Sa−a)dB1(t)+σ2(Ea−1)dB2(t)+σ3(Ia−1)dB3(t)+e−μhτhσ4(Sh−b)dB4(t)+σ5(Ih−1)dB5(t), | (3.2) |
where
LV=e−μaτa(1−aSa)(Λa−μaSa)−(1−1Ea)(μa+γa)Ea+(1−1Ia)(γaEa−(μa+δa)Ia)+e−μhτh(1−bSh)(Λh−μhSh)−(1−1Ih)(μh+δh+θh)Ih+e−μaτaaσ212+σ222+σ232+e−μhτhbσ242+σ252≤e−μaτaΛa+aμae−μaτa+aσ212e−μaτa+2μa+δa+γa+12σ22+12σ23+e−μhτhΛh+bμhe−μhτh+μh+δh+θh+bσ242e−μhτh+12σ25+(aβae−μaτa+bβhe−μhτh−(μa+δa))Ia. |
Choose a=μaeμaτaβa and b=δaeμhτhβh or a=δaeμaτaβa and b=μaeμhτhβh such that
aβae−μaτa+bβhe−μhτh−(μa+δa)=0. |
Then, we can get
LV(Sa,Ea,Ia,Sh,Ih)≤e−μaτaΛa+aμae−μaτa+e−μhτhΛh+bμhe−μhτh+2μa+γa+δa+μh+δh+θh+aσ212e−μaτa+bσ242e−μhτh+12(σ22+σ23+σ25)=:K, |
where K is a positive constant. It thus follows from (3.2) that
dV(Sa,Ea,Ia,Sh,Ih)≤Kdt+e−μaτaσ1(Sa−a)dB1(t)+σ2(Ea−1)dB2(t)+σ3(Ia−1)dB3(t)+e−μhτhσ4(Sh−b)dB4(t)+σ5(Ih−1)dB5(t). | (3.3) |
Integrating both sides of (3.3) from 0 to τk∧T=min{τk,T} and then taking the expectation results in
EV(Sa(τk∧T),Ea(τk∧T),Ia(τk∧T),Sh(τk∧T),Ih(τk∧T))≤V(Sa(0),Ea(0),Ia(0),Sh(0),Ih(0))+KE(τk∧T)≤V(Sa(0),Ea(0),Ia(0),Sh(0),Ih(0))+KT. | (3.4) |
Set Ωk={τk≤T} for k≥k1, and according to (3.1), we have P(Ωk)≥ε. For every ω∈Ωk, there exists Sa(τk,ω) or Ea(τk,ω) or Ia(τk,ω) or Sh(τk,ω) or Ih(τk,ω) equals either k or 1k. Therefore, V(Sa(τk,ω),Ea(τk,ω),Ia(τk,ω),Sh(τk,ω),Ih(τk,ω)) is no less either k−1−lnk or 1k−1−ln1k or k−a−alnka or 1k−a+alnak or k−b−blnkb or 1k−b+blnbk.
Therefore, we have
V(Sa(τk,ω),Ea(τk,ω),Ia(τk,ω),Sh(τk,ω),Ih(τk,ω))≥(k−1−lnk)∧(1k−1+lnk)∧(k−a−alnka)∧(1k−a+alnak)∧(k−b−blnkb)∧(1k−b+blnbk). |
It follows from (3.4) that
V(Sa(0),Ea(0),Ia(0),Sh(0),Ih(0))+KT≥E[1ΩkV(Sa(τk,ω),Ea(τk,ω),Ia(τk,ω),Sh(τk,ω),Ih(τk,ω))]≥ε[(k−1−lnk)∧(1k−1+lnk)∧(k−a−alnka)∧(1k−a+alnak)∧(k−b−blnkb)∧(1k−b+blnbk)], |
where 1Ωk denotes the indicator function of Ωk. Letting k→∞, then
∞>V(Sa(0),Ea(0),Ia(0),Sh(0),Ih(0))+KT=∞, |
which leads to the contradiction. This completes the proof.
In this section, we will investigate the solution of system (2.3) around disease-free equilibrium E0 under certain conditions. It is worthwhile to mention that, if R0=βaγaΛae−μaτaμa(μa+δa)(μa+γa)<1, the deterministic system (2.2) is globally asymptotically stable around the unique disease-free equilibrium E0=(S0a,0,0,S0h,0)=(Λaμa,0,0,Λhμh,0), but E0 is not the equilibrium of the stochastic system (2.3). Thus, the result concerning the solution of stochastic system (2.3) around E0 is presented by the following theorem.
Theorem 2. Let (Sa(t),Ea(t),Ia(t),Sh(t),Ih(t)) be the solution of system (2.3) with the initial value (2.4). If R0<1 and the following conditions hold
σ21<μa,σ22<μa+γa,σ23<μa+δa,σ24<μh,σ25<μh+δh+θh, |
then,
lim supt→∞1tE∫t0(Sa−Λaμa)2ds≤σ21Λ2aμ2a(μa−σ21),lim supt→∞1tE∫t0(E2a+I2a)ds≤P1M1,lim supt→∞1tE∫t0(Sh−Λhμh)2ds≤Λ2hμ2h(μh−σ24)(σ24+βhα2),lim supt→∞1tE∫t0I2hds≤P2, |
where
M1=min{μa+γa−σ224,(μa+γa−σ22)(μa+δa−σ23)(μa+δa)4γ2a},P1=e−2μaτaσ21Λ2aμ2a[1μa−σ21(2μ2a+2μaγa+γ2a2(μa+γa)+σ21)+1],P2=2e−2μhτhΛhμ2h(μh+δh+θh−σ25)[α2σ24+βhα2(μh−σ24)(2μ2h+2μhδh+2μhθh+(δh+θh)22(μh+δh+θh)+σ24)+σ24]. |
Proof. Since (S0a,0,0,S0h,0) is the disease-free equilibrium of system (2.2), then
Λa=μaS0a,Λh=μhS0h. |
According to system (2.3), we can obtain that
dSa(t)=[−μa(Sa−Λaμa)−βaSaIa1+α1Ia]dt+σ1SadB1(t)=[−μa(Sa−Λaμa)−βa(Sa−Λaμa)Ia1+α1Ia−βaΛaμaIa1+α1Ia]dt+σ1SadB1(t), | (4.1) |
and
d[Ea(t+τa)+μa+γaγaIa(t+τa)]=dEa(t+τa)+μa+γaγadIa(t+τa)≤[βae−μaτa(Sa−Λaμa)Ia1+α1Ia−(μa+γa)(μa+δa)γaIa(t+τa)+βae−μaτaΛaμaIa]dt+σ2Ea(t+τa)dB2(t)+σ3(μa+γa)γaIa(t+τa)dB3(t)≤[βae−μaτa(Sa−Λaμa)Ia1+α1Ia+(μa+γa)(μa+δa)γa(Ia(t)−Ia(t+τa))]dt+σ2Ea(t+τa)dB2(t)+σ3(μa+γa)γaIa(t+τa)dB3(t). | (4.2) |
Let V1=12(Sa−Λaμa)2, then applying the Itô's formula to V1, together with (4.1), we have
dV1=[(Sa−Λaμa)(−μa(Sa−Λaμa)−βa(Sa−Λaμa)Ia1+α1Ia−βaΛaμaIa1+α1Ia)+12σ21S2a]dt+σ1Sa(Sa−Λaμa)dB1(t)=[−μa(Sa−Λaμa)2−βa(Sa−Λaμa)2Ia1+α1Ia−βaΛaμa(Sa−Λaμa)Ia1+α1Ia+12σ21S2a]dt+σ1Sa(Sa−Λaμa)dB1(t)=:LV1dt+σ1Sa(Sa−Λaμa)dB1(t), |
where
LV1≤−μa(Sa−Λaμa)2−βaΛaμa(Sa−Λaμa)Ia1+α1Ia+σ21(Sa−Λaμa)2+σ21Λ2aμ2a=−(μa−σ21)(Sa−Λaμa)2−βaΛaμa(Sa−Λaμa)Ia1+α1Ia+σ21Λ2aμ2a. | (4.3) |
Similarly, let V2=Ea(t+τa)+μa+γaγaIa(t+τa)+(μa+γa)(μa+δa)γa∫t+τatIa(s)ds, it follows from (4.2) that
dV2≤βae−μaτa(Sa−Λaμa)Ia1+α1Ia+σ2Ea(t+τa)dB2(t)+σ3(μa+γa)γaIa(t+τa)dB3(t). |
Define ˉV=e−μaτaV1+ΛaμaV2, then
dˉV≤[−e−μaτa(μa−σ21)(Sa−Λaμa)2+e−μaτaσ21Λ2aμ2a]dt+σ1Sa(Sa−Λaμa)dB1(t)+σ2Ea(t+τa)dB2(t)+σ3(μa+γa)γaIa(t+τa)dB3(t). | (4.4) |
Integrating both sides of (4.4) from 0 to t and taking expectation, we get
EˉV(t)−EˉV(0)≤−e−μaτa(μa−σ21)E∫t0(Sa−Λaμa)2ds+e−μaτaσ21Λ2aμ2at. |
Therefore, we can obtain
lim supt→∞1tE∫t0(Sa−Λaμa)2ds≤σ21Λ2aμ2a(μa−σ21). |
Similarly, we define
V3=12[e−μaτa(Sa−Λaμa)+Ea(t+τa)]2, |
then,
LV3=−e−2μaτaμa(Sa−Λaμa)2−e−μaτa(2μa+γa)(Sa−Λaμa)Ea(t+τa)−(μa+γa)E2a(t+τa)+12e−2μaτaσ21S2a+12σ22E2a(t+τa)≤−e−2μaτaμa(Sa−Λaμa)2+μa+γa2E2a(t+τa)+(2μa+γa)2e−2μaτa2(μa+γa)(Sa−Λaμa)2−(μa+γa)E2a(t+τa)+e−2μaτaσ21(Sa−Λaμa)2+e−2μaτaσ21Λ2aμ2a+12σ22E2a(t+τa)=e−2μaτa(2μ2a+2μaγa+γ2a2(μa+γa)+σ21)(Sa−Λaμa)2−12(μa+γa−σ22)E2a(t+τa)+e−2μaτaσ21Λ2aμ2a. |
Let V4=V3+12(μa+γa−σ22)∫t+τatE2a(s)ds, we get
LV4≤e−2μaτa(2μ2a+2μaγa+γ2a2(μa+γa)+σ21)(Sa−Λaμa)2−12(μa+γa−σ22)E2a+e−2μaτaσ21Λ2aμ2a. |
Let V5=12I2a, the derivative of V5 can be calculated as
LV5=γaEaIa−(μa+δa)I2a+12σ23I2a≤μa+δa2I2a+γ2a2(μa+δa)E2a−(μa+δa)I2a+12σ23I2a=γ2a2(μa+δa)E2a−12(μa+δa−σ23)I2a. |
The Young's inequality is used above. Let
˜V=V4+e−μaτaμa−σ21(2μ2a+2μaγa+γ2a2(μa+γa)+σ21)ˉV+(μa+γa−σ22)(μa+δa)2γ2aV5, |
which implies that
L˜V≤−12(μa+γa−σ22)E2a+e−2μaτaσ21Λ2aμ2a+e−2μaτaσ21Λ2aμ2a(μa−σ21)(2μ2a+2μaγa+γ2a2(μa+γa)+σ21)+14(μa+γa−σ22)E2a−(μa+γa−σ22)(μa+δa−σ23)(μa+δa)4γ2aI2a=−14(μa+γa−σ22)E2a−(μa+γa−σ22)(μa+δa−σ23)(μa+δa)4γ2aI2a+e−2μaτaσ21Λ2aμ2a[1μa−σ21(2μ2a+2μaγa+γ2a2(μa+γa)+σ21)+1]. | (4.5) |
Integrating both sides of (4.5) from 0 to t and then taking expectation yields
E˜V(t)−E˜V(0)≤−14(μa+γa−σ22)E∫t0E2a(s)ds−(μa+γa−σ22)(μa+δa−σ23)(μa+δa)4γ2aE∫t0I2a(s)ds+e−2μaτaσ21Λ2aμ2a[1μa−σ21(2μ2a+2μaγa+γ2a2(μa+γa)+σ21)+1]t. |
Consequently, we can obtain
lim supt→∞1tE∫t0(E2a(s)+I2a(s))ds≤P1M1, |
where M1 and P1 are defined in Theorem 2. Further, according to system (2.3), we have
dSh(t)=[−μh(Sh−Λhμh)−βhShIa1+α2Ia]dt+σ4ShdB4(t)=[−μh(Sh−Λhμh)−(Sh−Λhμh)βhIa1+α2Ia−βhΛhIaμh(1+α2Ia)]dt+σ4ShdB4(t), | (4.6) |
and
dIh(t+τh)=[βhe−μhτhShIa1+α2Ia−(μh+δh+θh)Ih(t+τh)]dt+σ5Ih(t+τh)dB5(t)≤[βhe−μhτhIa1+α2Ia(Sh−Λhμh)+βhΛhe−μhτhα2μh−(μh+δh+θh)Ih(t+τh)]dt+σ5Ih(t+τh)dB5(t). | (4.7) |
Let V6=12(Sh−Λhμh)2. Noting (4.6), we have
LV6=−μh(Sh−Λhμh)2−βh(Sh−Λhμh)2Ia1+α2Ia−βhΛhμh(Sh−Λhμh)Ia1+α2Ia+12σ24S2h≤−μh(Sh−Λhμh)2−βhΛhμh(Sh−Λhμh)Ia1+α2Ia+σ24(Sh−Λhμh)2+σ24Λ2hμ2h=−(μh−σ24)(Sh−Λhμh)2−βhΛhμh(Sh−Λhμh)Ia1+α2Ia+σ24Λ2hμ2h. |
Let V7=e−μhτhV6+ΛhμhIh(t+τh), it follows from (4.7) that
LV7≤−e−μhτh(μh−σ24)(Sh−Λhμh)2+e−μhτhσ24Λ2hμ2h+βhΛ2he−μhτhα2μ2h−Λhμh(μh+δh+θh)Ih(t+τh)≤−e−μhτh(μh−σ24)(Sh−Λhμh)2+e−μhτhΛ2hμ2h(σ24+βhα2). | (4.8) |
Integrating both sides of (4.8) from 0 to t and then taking the expectation yields
EV7(t)−EV7(0)≤−e−μhτh(μh−σ24)E∫t0(Sh−Λhμh)2ds+e−μhτhΛ2hμ2h(σ24+βhα2)t, |
therefore, we can get
lim supt→∞1tE∫t0(Sh−Λhμh)2ds≤Λ2hμ2h(μh−σ24)(σ24+βhα2). |
Let V8=12[e−μhτh(Sh−Λhμh)+Ih(t+τh)]2, then
LV8=(e−μhτh(Sh−Λhμh)+Ih(t+τh))[e−μhτh(Λh−μhSh)−(μh+δh+θh)Ih(t+τh)]+12e−2μhτhσ24S2h+12σ25I2h(t+τh)≤−e−2μhτhμh(Sh−Λhμh)2+(2μh+δh+θh)2e−2μhτh2(μh+δh+θh)(Sh−Λhμh)2+μh+δh+θh2I2h(t+τh)−(μh+δh+θh)I2h(t+τh)+e−2μhτhσ24(Sh−Λhμh)2+e−2μhτhσ24Λ2hμ2h+12σ25I2h(t+τh)=e−2μhτh(2μ2h+2μhδh+2μhθh+(δh+θh)22(μh+δh+θh)+σ24)(Sh−Λhμh)2−12(μh+δh+θh−σ25)I2h(t+τh)+e−2μhτhσ24Λ2hμ2h. |
Defining
V9=V8+e−μhτhμh−σ24(2μ2h+2μhδh+2μhθh+(δh+θh)22(μh+δh+θh)+σ24)V7+12(μh+δh+θh−σ25)∫t+τhtI2h(s)ds, |
we get
LV9≤−12(μh+δh+θh−σ25)I2h+e−2μhτhΛ2hμ2h[1μh−σ24(σ24+βhα2)(2μ2h+2μhδh+2μhθh+(δh+θh)22(μh+δh+θh)+σ24)+σ24]. | (4.9) |
Integrating both sides of (4.9) from 0 to t and taking expectation, we obtain
EV9(t)−EV9(0)≤−12(μh+δh+θh−σ25)E∫t0I2h(s)ds+e−2μhτhΛ2hμ2h[1μh−σ24(σ24+βhα2)(2μ2h+2μhδh+2μhθh+(δh+θh)22(μh+δh+θh)+σ24)+σ24]t. |
Consequently, we can obtain
lim supt→∞E∫t0I2h(s)ds≤P2, |
where P2 is defined in Theorem 2. This completes the proof.
If R0>1, there exists an endemic equilibrium E∗=(S∗a,E∗a,I∗a,S∗h,I∗h) of system (2.2), but it is not the equilibrium of system (2.3), where S∗a=Λa(1+α1I∗a)μa(1+α1I∗a)+βaI∗a, E∗a=βaΛae−μaτaI∗a(μa+γa)[μa(1+α1I∗a)+βaI∗a], I∗a=μa(R0−1)α1μa+βa, S∗h=Λh(1+α2I∗a)μh(1+α2I∗a)+βhI∗a, E∗a=βhe−μhτhS∗hI∗a(μh+δh+θh)(1+α2I∗a). In this section, we show that the solution of system (2.3) is going around E∗ under certain conditions.
Theorem 3. Let (Sa(t),Ea(t),Ia(t),Sh(t),Ih(t)) be the solution of system (2.3) with initial value (2.4). If R0>1 and the following conditions hold
(i) σ21<μa,σ22<12(μa+γa),σ23<12(μa+δa),σ24<μh,σ25<μh+δh+θh;
(ii) max(√P3,√P4,√P5,√P6)<d(E∗,E0),
then
lim supt→∞1tE∫t0(Sa−S∗a)2ds≤P3,lim supt→∞E∫t0[(Ea(s)−E∗a)2+(Ia(s)−I∗a)2]ds≤L1L2=:P4,lim supt→∞E∫t0(Sh−S∗h)2ds≤P5,lim supt→∞E∫t0(Ih−I∗h)2ds≤P6, |
where
d(E∗,E0)=√(S∗a−Λaμa)2+(E∗a)2+(I∗a)2+(S∗h−Λhμh)2+(I∗h)2P3=1μa−σ21[σ21(S∗a)2+σ21S∗aL32μa+(eμaτaS∗a+L3μae−μaτa)(12σ22E∗a+μa+γa2γaσ23I∗a)],P4=L1L2,P5=σ24(S∗h)2μh−σ24,P6=σ24L24(μh−σ24)(μh+δh+θh−σ25)2+2σ25(I∗h)2μh+δh+θh−σ25,L1=e−μaτaμa−σ21(2μ2a+2μaγa+γ2a2(μa+γa)+σ21)[σ21(S∗a)2+σ21S∗aL32μa+(eμaτaS∗a+L3μae−μaτa)(12σ22E∗a+12μa+γaγaσ23I∗a)]+e−2μaτaσ21(S∗a)2+σ22(E∗a)2+σ23(μa+δa)(μa+γa−2σ22)2γ2a(I∗a)2,L2=min{14(μa+γa−2σ22),(μa+δa)(μa+γa−2σ22)(μa+δa−2σ23)4γ2a},L3=βaS∗aI∗a1+α1I∗a,L4=β∗hS∗hI∗a1+α2I∗a. |
Proof. Since (S∗a,E∗a,I∗a,S∗h,I∗h) is the interior equilibrium of system (2.2), then
Λa=μaS∗a+βaS∗aI∗a1+α1I∗a,(μa+γa)E∗a=βae−μaτaS∗aI∗a1+α1I∗a,I∗aE∗a=γaμa+δa,Λh=μhS∗h+βhS∗hI∗a1+α2I∗a,(μh+δh+θh)I∗h=βhe−μhτhS∗hI∗a1+α2I∗a. | (5.1) |
Define the Lyapunov function W1 as W1=Sa−S∗a−S∗alnSaS∗a, from which we have
dW1=(Λa−μaSa−βaSaIa1+α1Ia−ΛaS∗aSa+μaS∗a+βaS∗aIa1+α1Ia+12S∗aσ21)dt+σ1(Sa−S∗a)dB1(t)=[(μaS∗a+βaS∗aI∗a1+α1I∗a)(2−S∗aSa−SaS∗a)+βaS∗aI∗a1+α1I∗a(−SaIa(1+α1I∗a)S∗aI∗a(1+α1Ia)+SaS∗a+Ia(1+α1I∗a)I∗a(1+α1Ia)−1)+12S∗aσ21]dt+σ1(Sa−S∗a)dB1(t)=LW1dt+σ1(Sa−S∗a)dB1(t), |
where
LW1=−(μa+βaI∗a1+α1I∗a)(Sa−S∗a)2Sa−βa(Sa−S∗a)(Ia1+α1Ia−I∗a1+α1I∗a)+12S∗aσ21. | (5.2) |
Similarly, we can define W2 as
W2=Ea(t+τa)−E∗a−E∗alnEa(t+τa)E∗a+μa+γaγa(Ia(t+τa)−I∗a−I∗alnIa(t+τa)I∗a). |
By using the Itô's formula, the derivative of W2 is calculated as follows
LW2=(1−E∗aEa(t+τa))(βae−μaτaSaIa1+α1Ia−(μa+γa)Ea(t+τa))+μa+γaγa(1−I∗aIa(t+τa))(γaEa(t+τa)−(μa+δa)Ia(t+τa))+12σ22E∗a+μa+γa2γaσ23I∗a=βae−μaτaI∗a1+α1I∗a(Sa−S∗a)(1+α1I∗aI∗aIa1+α1Ia−1)+βae−μaτaS∗aI∗a1+α1I∗a(SaS∗a−1+α1I∗aS∗aI∗aSaIa1+α1IaE∗aEa(t+τa)+1+α1I∗aI∗aIa1+α1Ia−Ia(t+τa)I∗a−Ea(t+τa)E∗aI∗aIa(t+τa))+12σ22E∗a+12μa+γaγaσ23I∗a. | (5.3) |
Since x−1−lnx≥0 for x>0, the following estimate can be obtained
1+α1I∗aS∗aI∗aSaIa1+α1IaE∗aEa(t+τa)≥1+ln(1+α1I∗aS∗aI∗aSaIa1+α1IaE∗aEa(t+τa))=1+lnSaS∗a−lnIa(t+τa)I∗a+lnIa(1+α1I∗a)I∗a(1+α1Ia)−lnEa(t+τa)E∗aI∗aIa(t+τa). | (5.4) |
Substituting (5.4) into (5.3), we can get
LW2≤βae−μaτaI∗a1+α1I∗a(Sa−S∗a)(1+α1I∗aI∗aIa1+α1Ia−1)+βae−μaτaS∗aI∗a1+α1I∗a(SaS∗a−1−lnSaS∗a+lnIa(t+τa)I∗a−lnIa(1+α1I∗a)I∗a(1+α1Ia)+lnEa(t+τa)E∗aI∗aIa(t+τa)+1+α1I∗aI∗aIa1+α1Ia−Ia(t+τa)I∗a−Ea(t+τa)E∗aI∗aIa(t+τa))+12σ22E∗a+12μa+γaγaσ23I∗a=βae−μaτaI∗a1+α1I∗a(Sa−S∗a)(1+α1I∗aI∗aIa1+α1Ia−1)+βae−μaτaS∗aI∗a1+α1I∗a[(SaS∗a−lnSaS∗a)−(Ia(t+τa)I∗a−lnIa(t+τa)I∗a)+(Ia(1+α1I∗a)I∗a(1+α1Ia)−lnIa(1+α1I∗a)I∗a(1+α1Ia))−(Ea(t+τa)E∗aI∗aIa(t+τa)−lnEa(t+τa)E∗aI∗aIa(t+τa))−1]+12σ22E∗a+12μa+γaγaσ23I∗a. | (5.5) |
Choose W3=W2+βae−μaτaS∗aI∗a1+α1I∗a∫t+τat(Ia(s)I∗a−lnIa(s)I∗a−1)ds. Therefore, LW3 can be obtained as follows by using (5.5):
LW3≤βae−μaτaI∗a1+α1I∗a(Sa−S∗a)(Ia(1+α1I∗a)I∗a(1+α1Ia)−1)+βae−μaτaS∗aI∗a1+α1I∗a[(SaS∗a−lnSaS∗a)−(Ia(t+τa)I∗a−lnIa(t+τa)I∗a)+(Ia(1+α1I∗a)I∗a(1+α1Ia)−lnIa(1+α1I∗a)I∗a(1+α1Ia))−(Ea(t+τa)E∗aI∗aIa(t+τa)−lnEa(t+τa)E∗aI∗aIa(t+τa))−1]+12σ22E∗a+12μa+γaγaσ23I∗a+βae−μaτaS∗aI∗a1+α1I∗a(Ia(t+τa)I∗a−lnIa(t+τa)I∗a−1)−βae−μaτaS∗aI∗a1+α1I∗a(IaI∗a−lnIaI∗a−1)≤βae−μaτaI∗a1+α1I∗a(Sa−S∗a)(Ia(1+α1I∗a)I∗a(1+α1Ia)−1)+βae−μaτaS∗aI∗a1+α1I∗a[SaS∗a+S∗aSa−1−IaI∗a+Ia(1+α1I∗a)I∗a(1+α1Ia)+lnI∗a(1+α1Ia)Ia(1+α1I∗a)IaI∗a−1]+12σ22E∗a+12μa+γaγaσ23I∗a. | (5.6) |
Noting that x−1−lnx≥0 holds for x>0, we also have
−IaI∗a+Ia(1+α1I∗a)I∗a(1+α1Ia)+lnI∗a(1+α1Ia)Ia(1+α1I∗a)IaI∗a≤−IaI∗a+Ia(1+α1I∗a)I∗a(1+α1Ia)+I∗a(1+α1Ia)Ia(1+α1I∗a)IaI∗a−1≤I∗a(1+α1Ia)Ia(1+α1I∗a)IaI∗a(Ia(1+α1I∗a)I∗a(1+α1Ia)I∗aIa−1)(Ia(1+α1I∗a)I∗a(1+α1Ia)−1)=(1+α1Ia)(1+α1I∗a)I∗a(11+α1Ia−11+α1I∗a)(Ia1+α1Ia−I∗a1+α1I∗a)<0, | (5.7) |
substituting (5.7) into (5.6) and using SaS∗a+S∗aSa−2=(Sa−S∗a)2SaS∗a, we know that
LW3≤βae−μaτaI∗a1+α1I∗a(Sa−S∗a)(Ia(1+α1I∗a)I∗a(1+α1Ia)−1)+βae−μaτaI∗a1+α1I∗a(Sa−S∗a)2Sa+12σ22E∗a+12μa+γaγaσ23I∗a. | (5.8) |
Let W4=W1+1+α1I∗aβae−μaτaI∗a(μa+βaI∗a1+α1I∗a)W3. Applying the Itô's formula, together with (5.2) and (5.8), derives that
LW4=LW1+1+α1I∗aβae−μaτaI∗a(μa+βaI∗a1+α1I∗a)LW3≤−(μa+βaI∗a1+α1I∗a)(Sa−S∗a)2Sa−βa(Sa−S∗a)(Ia1+α1Ia−I∗a1+α1I∗a)+12σ21S∗a+1+α1I∗aβae−μaτaI∗a(μa+βaI∗a1+α1I∗a)[βae−μaτaI∗a1+α1I∗a(Sa−S∗a)(Ia(1+α1I∗a)I∗a(1+α1Ia)−1)+βae−μaτaI∗a1+α1I∗a(Sa−S∗a)2Sa+12σ22E∗a+12μa+γaγaσ23I∗a]=(μa+βaI∗a1+α1I∗a)(Sa−S∗a)(Ia(1+α1I∗a)I∗a(1+α1Ia)−1)−βa(Sa−S∗a)(Ia1+α1Ia−I∗a1+α1I∗a)+12σ21S∗a+1+α1I∗aβae−μaτaI∗a(μa+βaI∗a1+α1I∗a)(12σ22E∗a+12μa+γaγaσ23I∗a)=(Sa−S∗a)(Ia1+α1Ia−I∗a1+α1I∗a)[(μa+βaI∗a1+α1I∗a)1+α1I∗aI∗a−βa]+12σ21S∗a+1+α1I∗aβae−μaτaI∗a(μa+βaI∗a1+α1I∗a)(12σ22E∗a+12μa+γaγaσ23I∗a)=μa(1+α1I∗a)I∗a(Sa−S∗a)(Ia1+α1Ia−I∗a1+α1I∗a)+12σ21S∗a+1+α1I∗aβae−μaτaI∗a(μa+βaI∗a1+α1I∗a)(12σ22E∗a+12μa+γaγaσ23I∗a). | (5.9) |
Choose Lyapunov function W5 as W5=(Sa−S∗a)22, then its derivative is
LW5=(Sa−S∗a)[Λa−μaSa−βaSaIa1+α1Ia]+12σ21S2a=(Sa−S∗a)[μaS∗a−μaSa+βaS∗aI∗a1+α1I∗a−βaSaIa1+α1Ia]+12σ21S2a=−μa(Sa−S∗a)2−βaS∗a(Sa−S∗a)(Ia1+α1Ia−I∗a1+α1I∗a)−βa(Sa−S∗a)2Ia1+α1Ia+12σ21S2a≤−μa(Sa−S∗a)2−βaS∗a(Sa−S∗a)(Ia1+α1Ia−I∗a1+α1I∗a)+σ21(Sa−S∗a)2+σ21(S∗a)2=−(μa−σ21)(Sa−S∗a)2−βaS∗a(Sa−S∗a)(Ia1+α1Ia−I∗a1+α1I∗a)+σ21(S∗a)2. |
Let ˉW=W5+βaS∗aI∗aμa(1+α1I∗a)W4, one can derive that
LˉW≤−(μa−σ21)(Sa−S∗a)2−βaS∗a(Sa−S∗a)(Ia1+α1Ia−I∗a1+α1I∗a)+σ21(S∗a)2+βaS∗aI∗aμa(1+α1I∗a)[μa(1+α1I∗a)I∗a(Sa−S∗a)(Ia1+α1Ia−I∗a1+α1I∗a)+12σ21S∗a+1+α1I∗aβae−μaτaI∗a(μa+βaI∗a1+α1I∗a)(12σ22E∗a+12μa+γaγaσ23I∗a)]=−(μa−σ21)(Sa−S∗a)2+σ21(S∗a)2+βaS∗aI∗a2μa(1+α1I∗a)σ21S∗a+(eμaτaS∗a+βaS∗aI∗aμae−μaτa(1+α1I∗a))(12σ22E∗a+12μa+γaγaσ23I∗a). | (5.10) |
Integrating both sides of (5.10) from 0 to t and then taking expectation yields
EˉW(t)−EˉW(0)≤−(μa−σ21)E∫t0(Sa(s)−S∗a)2ds+[σ21(S∗a)2+βaS∗aI∗a2μa(1+α1I∗a)σ21S∗a+(eμaτaS∗a+βaS∗aI∗aμae−μaτa(1+α1I∗a))(12σ22E∗a+12μa+γaγaσ23I∗a)]t. |
Then, we can get
lim supt→∞1tE∫t0(Sa(s)−S∗a)2ds≤P3, |
where P3 is defined in Theorem 3. Defining W6=12[e−μaτa(Sa−S∗a)+Ea(t+τa)−E∗a]2, the use of Itô's formula yields that
LW6=−μae−2μaτa(Sa−S∗a)2−(μa+γa)(Ea(t+τa)−E∗a)2−(2μa+γa)e−μaτa(Sa−S∗a)(Ea(t+τa)−E∗a)+12e−2μaτaσ21S2a+12σ22E2a(t+τa)≤−μae−2μaτa(Sa−S∗a)2−(μa+γa)(Ea(t+τa)−E∗a)2+μa+γa2(Ea(t+τa)−E∗a)2+(2μa+γa)2e−2μaτa2(μa+γa)(Sa−S∗a)2+e−2μaτaσ21(Sa−S∗a)2+e−2μaτaσ21(S∗a)2+σ22(Ea(t+τa)−E∗a)2+σ22(E∗a)2=e−2μaτa(2μ2a+2μaγa+γ2a2(μa+γa)+σ21)(Sa−S∗a)2−(μa+γa2−σ22)(Ea(t+τa)−E∗a)2+e−2μaτaσ21(S∗a)2+σ22(E∗a)2. |
Let W7=W6+(μa+γa2−σ22)∫t+τat(Ea(s)−E∗a)2ds and W8=12(Ia−I∗a)2. We have
LW7≤e−2μaτa(2μ2a+2μaγa+γ2a2(μa+γa)+σ21)(Sa−S∗a)2−(μa+γa2−σ22)(Ea−E∗a)2+e−2μaτaσ21(S∗a)2+σ22(E∗a)2, | (5.11) |
and
LW8=(Ia−I∗a)(γaEa−(μa+δa)Ia)+12σ23I2a=γa(Ea−E∗a)(Ia−I∗a)−(μa+δa)(Ia−I∗a)2+12σ23I2a≤μa+δa2(Ia−I∗a)2+γ2a2(μa+δa)(Ea−E∗a)2−(μa+δa)(Ia−I∗a)2+σ23(Ia−I∗a)2+σ23(I∗a)2=γ2a2(μa+δa)(Ea−E∗a)2−(μa+δa2−σ23)(Ia−I∗a)2+σ23(I∗a)2. | (5.12) |
Let ˜W=W7+e−μaτaμa−σ21(2μ2a+2μaγa+γ2a2(μa+γa)+σ21)ˉW+(μa+δa)(μa+γa−2σ22)2γ2aW8. Making use of (5.10), (5.11) and (5.12) yields that
L˜W=LW7+e−μaτaμa−σ21(2μ2a+2μaγa+γ2a2(μa+γa)+σ21)LˉW+(μa+δa)(μa+γa−2σ22)2γ2aLW8≤−14(μa+γa−2σ22)(Ea−E∗a)2−(μa+δa)(μa+γa−2σ22)(μa+δa−2σ23)4γ2a(Ia−I∗a)2+L1. | (5.13) |
Integrating both sides of (5.13) from 0 to t and then taking expectation yields
E˜W(t)−E˜W(0)≤−14(μa+γa−2σ22)E∫t0(Ea(s)−E∗a)2ds−(μa+δa)(μa+γa−2σ22)(μa+δa−2σ23)4γ2aE∫t0(Ia(s)−I∗a)2ds+L1t. |
Therefore, we can obtain
lim supt→∞E∫t0[(Ea(s)−E∗a)2+(Ia(s)−I∗a)2]ds≤L1L2=:P4, |
where L1,L2 have been defined in Theorem 3. Taking U1=12(Sh−S∗h)2, we have
LU1=(Sh−S∗h)(Λh−μhSh−βhShI∗a1+α2I∗a)+12σ24S∗h=(Sh−S∗h)[μhS∗h−μhSh+βhS∗hI∗a1+α2I∗a−βhShI∗a1+α2I∗a]+12σ24S∗h=−(μh+βhI∗a1+α2I∗a)(Sh−S∗h)2+σ24(Sh−S∗h)2+σ24(S∗h)2≤−(μh−σ24)(Sh−S∗h)2+σ24(S∗h)2. | (5.14) |
Integrating both sides of (5.14) from 0 to t and then taking expectation, we get
EU1(t)−EU1(0)≤−(μh−σ24)E∫t0(Sh−S∗h)2ds+σ24(S∗h)2t. |
Therefore, we can obtain
lim supt→∞E∫t0(Sh−S∗h)2ds≤σ24(S∗h)2μh−σ24. |
Let U2=12[Ih(t+τh)−I∗h]2, we have
LU2=(Ih(t+τh)−I∗h)[βhShI∗a1+α2I∗a−(μh+δh+θh)Ih(t+τh)]+12σ25I2h(t+τh)=βhI∗a1+α2I∗a(Ih(t+τh)−I∗h)(Sh−S∗h)−(μh+δh+θh)(Ih(t+τh)−I∗h)2+12σ25I2h(t+τh)≤β2h(I∗a)22(1+α2I∗a)2(μh+δh+θh−σ25)(Sh−S∗h)2−μh+δh+θh−σ252(Ih(t+τh)−I∗h)2−(μh+δh+θh)(Ih(t+τh)−I∗h)2+σ25(Ih(t+τh)−I∗h)2+σ25(I∗h)2=β2h(I∗a)2(Sh−S∗h)22(1+α2I∗a)2(μh+δh+θh−σ25)−μh+δh+θh−σ252(Ih(t+τh)−I∗h)2+σ25(I∗h)2. |
Let ¯U=β2h(I∗a)22(μh−σ24)(1+α2I∗a)2(μh+δh+θh−σ25)U1+U2, then
L¯U=−μh+δh+θh−σ252(Ih(t+τh)−I∗h)2+β2h(I∗a)2σ24(S∗h)22(μh−σ24)(1+α2I∗a)2(μh+δh+θh−σ25)+σ25(I∗h)2. |
Let U3=μh+δh+θh−σ252∫t+τht(Ih(s)−I∗h)2ds, we obtain
LU3=μh+δh+θh−σ252[(Ih(t+τh)−I∗h)2+(Ih−I∗h)2]. |
Let ˜U=¯U+U3, then,
L˜U=−μh+δh+θh−σ252(Ih(t+τh)−I∗h)2+β2h(I∗a)2σ24(S∗h)22(μh−σ24)(1+α2I∗a)2(μh+δh+θh−σ25)+σ25(I∗h)2+μh+δh+θh−σ252[(Ih(t+τh)−I∗h)2+(Ih−I∗h)2]=−μh+δh+θh−σ252(Ih−I∗h)2+β2h(I∗a)2σ24(S∗h)22(μh−σ24)(1+α2I∗a)2(μh+δh+θh−σ25)+σ25(I∗h)2. | (5.15) |
Integrating both sides of (5.15) from 0 to t and then taking expectation, we have
E˜U(t)−E˜U(0)≤−μh+δh+θh−σ252E∫t0(Ih−I∗h)2ds+β2h(I∗a)2σ24(S∗h)22(μh−σ24)(1+α2I∗a)2(μh+δh+θh−σ25)t+σ25(I∗h)2t. |
Therefore, we can obtain
lim supt→∞E∫t0(Ih−I∗h)2ds≤P6, |
where P6 has been defined in Theorem 3. The proof is completed.
This section is devoted to illustrating the theoretical results by numerical examples. The parameters of system (2.3) are selected as in Table 2, α1 and α2 are varying parameters that is taken value from 0.001 to 0.1, and σ1=0.01,σ2=σ3=σ5=0.04,σ4=0.008. The initial conditions of system (2.3) are Sa(θ)=3,000,000,Ea(θ)=1,000,Ia(θ)=10,Sh(θ)=1,000,Ih(θ)=5,θ∈[−τ,0]. The Milstein method [25] is used to obtain the discrete form of system (2.3) as follows:
{Sa(k+1)=Sa(k)+(Λa−μaSa(k)−βaSa(k)Ia(k)1+α1Ia(k))Δt+σ1Sa(k)√Δtξ1(k)+12σ21Sa(k)(ξ21(k)−1)Δt,Ea(k+1)=Ea(k)+(βae−μaτaSa(k−τaΔt)Ia(k−τaΔt)1+α1Ia(k−τaΔt)−(μa+γa)Ea(k))Δt+σ2Ea(k)√Δtξ2(k)+12σ22Ea(k)(ξ22(k)−1)Δt,Ia(k+1)=Ia(k)+(γaEa(k)−(μa+δa)Ia(k))Δt+σ3Ia(k)√Δtξ3(k)+12σ23Ia(k)(ξ23(k)−1)Δt,Sh(k+1)=Sh(k)+(Λh−μhSh(k)−βhSh(k)Ia(k)1+α2Ia(k))Δt+σ4Sh(k)√Δtξ4(k)+12σ24Sh(k)(ξ24(k)−1)Δt,Ih(k+1)=Ih(k)+(βhe−μhτhSh(k−τhΔt)Ia(k−τhΔt)1+α2Ia(k−τhΔt)−(μh+δh+θh)Ih(k))Δt+σ5Ih(k)√Δtξ5(k)+12σ25Ih(k)(ξ25(k)−1)Δt, | (6.1) |
Parameter | Value | Source of data |
Λa | 30000 | Assumed |
Λh | μh×1000 | Assumed |
βa | (0.5---12.5)×10−6day−1 | [10] |
βh | 3×10−4 | [10] |
μa | 1/100day−1 | [10] |
μh | 200/(70×365)day−1 | Assumed |
δa | 5day−1 | [10] |
δh | 0.03day−1 | [10,11] |
γa | 0.3day−1 | [11] |
θh | 0.16day−1 | [11] |
τa | 7 day | Assumed |
τh | 14 day | Assumed |
where ξi(k)∼N(0,1)(i=1,⋯,5;k=1,2,⋯) are independent Gaussian random variables. Initially, we study the effect of R0, which, by Theorems 4.1 and 5.1, can govern the asymptotic behavior.
Example 1 Effect of basic reproduction number R0.
Choose different βa such that R0 take different values, which are shown in Table 3. Since σ21=10−4<μa=10−2,σ22=0.0016<12(μa+γa)=0.155,σ23=0.0016<12(μa+δa)=5.01,σ24=0.000064<μh=0.0078,σ25=0.0016<μh+δh+θh=0.1978, the condition (ⅰ) of Theorem 3 is satisfied. From Table 3, we see that for each R0, the inequality Pm<dE holds, which means the condition (ⅱ) of Theorem 3 is also satisfied. Thus, all the conclusions of Theorem 3 hold. It follows from Table 3 that the change of R0 can result in different values of E∗, which also illustrate the value of E∗ is related to R0. By the discrete form of system (2.3), the numerical results under different R0 are presented by Figures 2 and 3 when R0>1, which show that the solution of system (2.3) goes around the endemic equilibrium E∗. The effectiveness of Theorem 3 is also indicated by these two figures. In addition, we can see from Figures 2 and 3 and Table 3 that the number of infected poultry and humans will reduce with the decrease of R0. On the other hand, in order to explore if the results of Theorem 3 hold, we enhance the intensity of perturbation as σ=(σ1,⋯,σ5)=(0.02,0.08,0.08,0.016,0.08) (Case Ⅰ: condition (ⅰ) of Theorem 3 is satisfied but condition (ⅱ) is not satisfied), σ=(0.06,0.24,0.24,0.048,0.24) (Case Ⅱ: Both conditions (ⅰ) and (ⅱ) are not satisfied) and σ=(0.10,0.40,0.40,0.080,0.40) (Case Ⅲ: Both conditions (ⅰ) and (ⅱ) are not satisfied). The simulation results are presented in Figure 4, which are obtained by computing the average of 800 simulations. The equilibrium of corresponding deterministic model is E∗=(2.3931×106,1.8254×104,0.7812×103,227.3975,11.5855). From Figure 4, we see that the curves will move away from the equilibrium point E∗ with the increasing of intensity of perturbation, which violate the conclusions of Theorem 3.
R0 | S∗a(×106) | E∗a(×104) | I∗a(×103) | S∗h | I∗h | Pm(×105)♯ | dE(×105)♯ |
4.8269 | 0.7977 | 6.6239 | 2.8348 | 212.6795 | 11.8062 | 2.5226 | 22.033 |
3.2823 | 1.1336 | 5.6137 | 2.4024 | 213.7049 | 11.7908 | 2.7378 | 18.673 |
1.9308 | 1.7948 | 3.6249 | 1.5513 | 217.3720 | 11.7359 | 3.2294 | 12.057 |
1.3515 | 2.3931 | 1.8254 | 0.7812 | 227.3975 | 11.5855 | 3.7266 | 6.072 |
♯Pm=max(√P3,√P4,√P5,√P6), dE=d(E∗,E0). |
According to the values of σ1,⋯,σ5 and the parameters values in Table 2, we easily verify the conditions of Theorem 2 are satisfied. Therefore, from Theorem 2 we know that the solution of system (2.3) will go around the disease-free equilibrium E0 when R0<1. The numerical simulation results of R0 are presented in Figures 5 and 6. These figures show Ea,Ia and Ih all go to zero when R0<1, which illustrate the effectiveness of the theoretical results in Theorem 2. Meanwhile, Figures 5 and 6 also show that the rate of Ea,Ia and Ih converges to zero is increasing with the decrease of R0. The conditions of Theorem 2 are only a sufficient ones, so we want to know whether the conclusions of Theorem 2 hold when the intensity of perturbation increase such that these conditions are not satisfied. Thus, we choose σ=(σ1,⋯,σ5)=(0.02,0.08,0.08,0.016,0.08) (Case I), σ=(0.06,0.24,0.24,0.048,0.24) (Case II) and σ=(0.12,0.48,0.48,0.096,0.48) (Case III), and the simulation results are presented in Figure 7. Figure 7 shows Ea,Ia and Ih converge to zero for each cases, so the results of Theorem 2 also hold.
Example 2 Effect of time delays τa and τh.
In order to study the effect of time delays, we consider the average peak values of Ea, Ia and Ih, and the time of reaching average peak values by 300 simulation runs. The simulation results are shown in Figures 8 and 9. It follows from Figure 8 that the increase of time delay τa or τh can reduce the peak value of both infected poultry and human population. Meanwhile, from Figure 9, we know that the large time delay also lead to the delay of reaching peak value. Thus, we may conclude that time delays have significate influence for the spread of avian influenza. According to the practical meaning of τa and τh, related department can adopt some measures to increase the spread delay to suppress the outbreak of influenza, such as isolation. In addition, the adopting of those control measures will win time for taking drug control.
Example 3 Effect of saturation constants α1 and α2.
According to the analysis of Introduction, the saturation constants α1 and α2 are important parameters for avian influenza. We thus explore the effects of α1 and α2 in this example. In order to explore the effect of α1 under fixed α2, we run 1000 simulations and take their average values. The results are shown in Figure 10. It follows from Figure 10 that α1 can influence the rate of convergence to the equilibria of the poultry population, while it can not significantly influence the rate of convergence to the equilibria of the human population. In addition, we study the influence of α2 under fixed α1. The simulation results are presented in Figure 11, which implies that α2 can not change the rate of convergence to the equilibria of the poultry population. Figure 11 also means that α2 can not increase the rate of convergence to the equilibria of the human population, but it can evidently reduce the peak value of Ih(t). In summary, α1 and α2 have evidently influence to the spreading of avian influenza among both avian and human population.
In this paper, we establish a stochastic delayed avian influenza model with saturated incidence rate. To begin with, we investigate the existence and uniqueness of the global positive solution to the system (2.3) with any positive initial value (2.4). Since there is no equilibrium point in the system (2.3) at this time, thus, the asymptotic behaviors of the disease-free equilibrium and the endemic equilibrium are given by constructing some suitable Lyapunov functions and applying the Young's inequality and Hölder's inequality. Theorem 2 shows that if R0<1, then the solution of system (2.3) is going around E0 while from Theorem 3, we obtain that if R0>1, then the solution of system (2.3) is going around E∗. Finally, some numerical examples are given to illustrate the accuracy of the theoretical results.
There are some interesting issues deserve further investigations. On the one hand, we can formulate some more realistic but complex avian influenza models, such as considering the effects of Lévy jumps or impulsive perturbations on system (2.3). On the other hand, the coefficients in our model studied in this paper are all constants. If the coefficients are with Markov switching, how will the properties change? We leave these investigations as our future work.
The research was supported by the National Natural Science Foundation of China (11661064), Ningxia Natural Science Foundation Project (2019AAC03069) and the Funds for Improving the International Education Capacity of Ningxia University (030900001921).
The authors declare that they have no conflict of interest.
[1] |
Chen B, Kondoh K, Li JS, et al. (2020) Extraordinary reinforcing effect of carbon nanotubes in aluminium matrix composites assisted by in-situ alumina nanoparticles. Compos Part B-Eng 183: 107691. doi: 10.1016/j.compositesb.2019.107691
![]() |
[2] |
Shiju J, Al-Sagheer F, Bumajdad A, et al. (2018) In-situ preparation of aramid-multiwalled CNT nano-composites: morphology, thermal mechanical and electric properties. Nanomaterials 8: 309. doi: 10.3390/nano8050309
![]() |
[3] | Zhao D, Zhou Z (2014) Applications of lightweight composites in automotive industries. In: Yang Y, Xu H, Yu X, Lightweight Materials from Biopolymers and Biofibers, Washington: ACS Symposium Series: American Chemical Society, 143-158. |
[4] |
Gorbatikh L, Wardle BL, Lomov SV (2016) Hierarchical lightweight composite materials for structural application. MRS Bull 41: 672-677. doi: 10.1557/mrs.2016.170
![]() |
[5] | Aerospace Technology Institute (2018) Composite material applications in aerospace. INSIGHT-09-composites materials. Available from: https://www.ati.org.uk/media/lw4f212o/insight_9-composites_amended-2018-09-20.pdf. |
[6] |
Goni J, Egizabal P, Coleto J, et al. (2003) High performance automotive and railway components made from novel competitive aluminium composites. Mater Sci Technol 19: 931-934. doi: 10.1179/026708303225004413
![]() |
[7] | Liu B, Zheng Y (2010) Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater 7: 1407-1420. |
[8] |
Hao H, Ye S, Yu K, et al. (2016) The role of alloying elements on the sintering of Cu. J Alloy Compd 684: 91-97. doi: 10.1016/j.jallcom.2016.05.143
![]() |
[9] |
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354: 56-58. doi: 10.1038/354056a0
![]() |
[10] | Pitroda J, Jethwa B, Dave SK (2016) A critical review on carbon nanotubes. IJCRCE 2: 36-42. |
[11] | AZoNano (2018) Applications of carbon nanotubes. Available from: https://www.azonano.com/article.aspx?ArticleID=4842. |
[12] |
Eatemadi A, Daraee H, Karimkhanloo H, et al. (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9: 393. doi: 10.1186/1556-276X-9-393
![]() |
[13] |
Manna K, Srivastava SK (2018) Contrasting role of defect-induced carbon nanotubes in electromagnetic interference shielding. J Phys Chem C 122: 19913-19920. doi: 10.1021/acs.jpcc.8b04813
![]() |
[14] |
Kumar A, Gupta A, Sharma KV (2015) Thermal and mechanical properties of ureaformaldehyde (UF) resin combined with multiwalled carbon nanotubes (MWCNT) as nanofiller and fiberboards prepared by UF-MWCNT. Holzforschung 69: 199-205. doi: 10.1515/hf-2014-0038
![]() |
[15] | Mazov IN, Kuznetsov VL, Krasnikov DV, et al. (2011) Structure and properties of multiwall carbon nanotubes/polystyrene composites prepared via coagulation precipitation technique. J Nanotechnol 2011: 648324. |
[16] |
Ke K, Wang Y, Liu XQ, et al. (2012) A comparison of melt and solution mixing on the dispersion of carbon nanotubes in a poly(vinylidene fluoride) matrix. Compos Part B-Eng 43: 1425-1432. doi: 10.1016/j.compositesb.2011.09.007
![]() |
[17] |
Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39: 5194-5205. doi: 10.1021/ma060733p
![]() |
[18] | Choudhary V, Gupta A (2011) Polymer/carbon nanotube nanocomposites, In: Yellampalli S, Carbon Nanotubes-Polymer Nanocomposites, Croatia: Janeza Trdine 951000 Rijeka, 65-90. |
[19] |
Mansoor M, Shahid M (2016) Carbon nanotube-reinforced aluminum composite produced by induction melting. J Appl Res Technol 14: 215-224. doi: 10.1016/j.jart.2016.05.002
![]() |
[20] |
Liang F, Beach JM, Kobashi K, et al. (2006) In situ polymerization initiated by single-walled carbon nanotube salts. Chem Mater 18: 4764-4767. doi: 10.1021/cm0607536
![]() |
[21] |
Zeng H, Gao C, Wang Y, et al. (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: Mechanical properties and crystallization behavior. Polymer 47: 113-122. doi: 10.1016/j.polymer.2005.11.009
![]() |
[22] |
Funck A, Kaminsky W (2007) Polypropylene carbon nanotube composites by in situ polymerization. Compos Sci Technol 67: 906-915. doi: 10.1016/j.compscitech.2006.01.034
![]() |
[23] |
Saeed K, Park SY, Haider S, et al. (2009) In situ polymerization of multi-walled carbon nanotube/nylon-6 nanocomposites and their electrospun nanofibers. Nanoscale Res Lett 4: 39-46. doi: 10.1007/s11671-008-9199-0
![]() |
[24] |
Samal SS, Bal S (2008) Carbon nanotube reinforced ceramic matrix composites-A review. JMMCE 7: 355-370. doi: 10.4236/jmmce.2008.74028
![]() |
[25] |
Rul S, Lefèvre-schlick F, Capria E et al. (2004) Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites. Acta Mater 52: 1061-1067. doi: 10.1016/j.actamat.2003.10.038
![]() |
[26] | Elshalakany AB, Osman TA, Khattab A, et al. (2014) Microstructure and mechanical properties of MWCNTs reinforced A356 aluminum alloys cast nanocomposites fabricated by using a combination of rheocasting and squeeze casting techniques. J Nanomater 2014: 386370. |
[27] |
Esawi AMK, Morsi K, Sayed A, et al. (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70: 2237-2241. doi: 10.1016/j.compscitech.2010.05.004
![]() |
[28] |
Pérez BR, Pérez BF, Estrada GI, et al. (2011) Characterization of Al2024-CNTs composites produced by mechanical alloying. Powder Technol 212: 390-396. doi: 10.1016/j.powtec.2011.06.007
![]() |
[29] |
Rais L, Sharma DR, Sharma DV (2013) Synthesis and structural characterization of Al-CNT metal matrix composite using physical mixing method. IOSR J Appl Phys 5: 54-57. doi: 10.9790/4861-0545457
![]() |
[30] |
Liao J, Tan MJ, Ramanujan RV, et al. (2011) Carbon nanotube evolution in aluminum matrix during composite fabrication process. Mater Sci Forum 690: 294-297. doi: 10.4028/www.scientific.net/MSF.690.294
![]() |
[31] |
Kuzumaki T, Miyazawa K, Ichinose H, et al. (1998) Processing of carbon nanotube reinforced aluminum composite. J Mater Res 13: 2445-2449. doi: 10.1557/JMR.1998.0340
![]() |
[32] | Hanizam H, Salleh MS, Omar MZ, et al. (2019) Effect of magnesium surfactant on wettability of carbon nanotube in A356 alloy composite. J Adv Manuf Technol 13: 33-44. |
[33] |
Noguchi T, Magario A, Fuzukawa S, et al. (2004) Carbon nanotube/aluminium composites with uniform dispersion. Mater Trans 45: 602-604. doi: 10.2320/matertrans.45.602
![]() |
[34] |
Chen B, Umeda J, Kondoh K (2018) Study on aluminum matrix composites reinforced with singly dispersed carbon nanotubes. J Jpn Soc Powder Powder Metall 65: 139-144. doi: 10.2497/jjspm.65.139
![]() |
[35] |
Liao J, Tan MJ (2011) A simple approach to prepare Al/CNT composite: spread-dispersion (SD) method. Mater Lett 65: 2742-2744. doi: 10.1016/j.matlet.2011.05.067
![]() |
[36] |
Peng T, Chang I (2015) Uniformly dispersion of carbon nanotube in aluminum powders by wet shake-mixing approach. Powder Technol 284: 32-39. doi: 10.1016/j.powtec.2015.06.039
![]() |
[37] |
Kwon H, Leparoux M (2012) Hot extruded carbon nanotube reinforced aluminum matrix composite materials. Nanotechnology 23: 415701. doi: 10.1088/0957-4484/23/41/415701
![]() |
[38] |
Kim D, Seong B, Van G, et al. (2014) Microstructures and mechanical properties of CNT/AZ31 composites produced by mechanical alloying. Curr Nanosci 10: 40-46. doi: 10.2174/1573413709666131111225525
![]() |
[39] | Mindivan H, Efe A, Kayali ES (2014) Hot extruded carbon nanotube reinforced magnesium matrix composites and its microstructure, mechanical and corrosion properties. In: Alderman M, Manuel MV, Hort N, et al., Magnesium Technology, Springer-Cham, 2014: 429-433. |
[40] | Al-Aqeeli N (2013) Processing of CNTs reinforced Al-based nanocomposites using different consolidation techniques. J Nanomater 2013: 370785. |
[41] | Shimizu Y (2011) High strength magnesium matrix composites reinforced with carbon nanotube. In: Czerwinski F, Magnesium alloys-Design, Processing and Properties, Croatia: Janeza Trdine 951000 Rijeka, 491-500. |
[42] | Kainer KU (2011) Magnesium Alloys and Their Applications. Weinheim: WILEY-VCH Verlag GmbH. |
[43] |
Ye HZ, Liu XY (2004) Review of recent studies in magnesium matrix composites. J Mater Sci 39: 6153-6171. doi: 10.1023/B:JMSC.0000043583.47148.31
![]() |
[44] | Sardar S, Karmakar SK, Das D (2017) Ultrasonic assisted fabrication of magnesium matrix composites: a review. Mater Today 4: 3280-3289. |
[45] |
Shimizu Y, Miki S, Soga T, et al. (2008) Multi-walled carbon nanotube-reinforced magnesium alloy composites. Scripta Mater 58: 267-270. doi: 10.1016/j.scriptamat.2007.10.014
![]() |
[46] |
Muhammad WNAW, Sajuri Z, Mutoh Y, et al. (2011) Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology. J Alloy Compd 509: 6021-6029. doi: 10.1016/j.jallcom.2011.02.153
![]() |
[47] |
Straffelini G, Dione DCL, Menapace C, et al. (2013) Properties of AZ91 alloy produced by spark plasma sintering and extrusion. Powder Metall 56: 405-410. doi: 10.1179/1743290113Y.0000000060
![]() |
[48] | Shi HL, Wang XJ, Zhang CL, et al. (2016) A novel melt processing for Mg matrix composites reinforced by multiwalled carbon nanotubes. J Mater Sci Technol 32: 1303-1308. |
[49] |
Saikrishna N, Reddy GPK, Munirathinam B, et al. (2018) An investigation on the hardness and corrosion behavior of MWCNT/Mg composites and grain refined Mg. J Magnes Alloy 6: 83-89. doi: 10.1016/j.jma.2017.12.003
![]() |
[50] |
Yan Y, Zhang H, Fan J, et al. (2016) Improved mechanical properties of Mg matrix composites reinforced with Al and carbon nanotubes fabricated by spark plasma sintering followed by hot extrusion. J Mater Res 31: 3745-3756. doi: 10.1557/jmr.2016.413
![]() |
[51] |
Rashad M, Pan F, Tang A, et al. (2014) Synergetic effect of graphene nanoplatelets (CNTs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. J Alloy Compd 603: 111-118. doi: 10.1016/j.jallcom.2014.03.038
![]() |
[52] |
Liang J, Li H, Qi L, et al. (2017) Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion. J Alloy Compd 728: 282-288. doi: 10.1016/j.jallcom.2017.09.009
![]() |
[53] |
Sun F, Shi C, Rhee KY, et al. (2013) In situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites. J Alloy Compd 551: 496-501. doi: 10.1016/j.jallcom.2012.11.053
![]() |
[54] |
Li Q, Viereckl A, Rottmair CA, et al. (2009) Improved processing of carbon nanotube/magnesium alloy composites. Compos Sci Technol 69: 1193-1199. doi: 10.1016/j.compscitech.2009.02.020
![]() |
[55] |
Li Q, Turhan MC, Rottmair CA, et al. (2012) Influence of MWCNT dispersion on corrosion behaviour of their Mg composites. Mater Corros 63: 384-387. doi: 10.1002/maco.201006023
![]() |
[56] |
Rashad M, Pan F, Zhang J, et al. (2015) Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy. J Alloy Compd 646: 223-232. doi: 10.1016/j.jallcom.2015.06.051
![]() |
[57] |
Mindivan H, Efe A, Kosatepe AH, et al. (2014) Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites. Appl Surf Sci 318: 234-243. doi: 10.1016/j.apsusc.2014.04.127
![]() |
[58] |
Akinwekomi, AD, Law WC, Tang CY, et al. (2016) Rapid microwave sintering of carbon nanotube-filled AZ61 magnesium alloy composites. Compos Part B-Eng 93: 302-309. doi: 10.1016/j.compositesb.2016.03.041
![]() |
[59] |
Akinwekomi AD, Law WC, Choy MT, et al. (2018) Processing and characterisation of carbon nanotube-reinforced magnesium alloy composite foams by rapid microwave sintering. Mater Sci Eng A-Struct 726: 82-92. doi: 10.1016/j.msea.2018.04.069
![]() |
[60] | Zhou X, Su D, Wu C, et al. (2012) Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites. J Nanomater 2012: 851862. |
[61] |
Fukuda H, Kondoh K, Umeda J, et al. (2011) Fabrication of magnesium based composites reinforced with carbon nanotubes having superior mechanical properties. Mater Chem Phys 127: 451-458. doi: 10.1016/j.matchemphys.2011.02.036
![]() |
[62] |
Zhao FZ, Feng XH, Yang YS (2016) Microstructure and mechanical properties of CNT-reinforced AZ91D composites fabricated by ultrasonic processing. Acta Metall Sin-Engl 29: 652-660. doi: 10.1007/s40195-016-0438-6
![]() |
[63] |
Thakur SK, Kwee GT, Gupta M (2007) Development and characterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements. J Mater Sci 42: 10040-10046. doi: 10.1007/s10853-007-2004-0
![]() |
[64] |
Yoo SJ, Han SH, Kim WJ (2012) Magnesium matrix composites fabricated by using accumulative roll bonding of magnesium sheets coated with carbon-nanotube-containing aluminum powders. Scripta Mater 67: 129-132. doi: 10.1016/j.scriptamat.2012.03.040
![]() |
[65] |
Funatsu K, Fukuda H, Takei R, et al. (2013) Quantitative evaluation of initial galvanic corrosion behavior of CNTs reinforced Mg-Al alloy. Adv Powder Technol 24: 833-837. doi: 10.1016/j.apt.2013.02.002
![]() |
[66] |
Lou JF, Cheng AG, Zhao P, et al. (2019) The significant impact of carbon nanotubes on the electrochemical reactivity of Mg-bearing metallic glasses with high compressive strength. Materials 12: 2989. doi: 10.3390/ma12182989
![]() |
[67] |
Chen D, Chen L, Liu S, et al. (2004) Microstructure and hydrogen storage property of Mg/MWNTs composites. J Alloy Compd 372: 231-237. doi: 10.1016/j.jallcom.2003.08.104
![]() |
[68] |
Thakur SK, Srivatsan TS, Gupta M (2007) Synthesis and mechanical behavior of carbon nanotube-magnesium composites hybridized with nanoparticles of alumina. Mater Sci Eng C-Mater 466: 32-37. doi: 10.1016/j.msea.2007.02.122
![]() |
[69] |
Goh CS, Wei J, Lee LC, et al. (2006) Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnology 17: 7-12. doi: 10.1088/0957-4484/17/1/002
![]() |
[70] |
Li Q, Rottmair CA, Singer RF (2010) CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos Sci Technol 70: 2242-2247. doi: 10.1016/j.compscitech.2010.05.024
![]() |
[71] |
He CN, Zhao NQ, Shi CS, et al. (2009) Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition. J Alloy Compd 487: 258-262. doi: 10.1016/j.jallcom.2009.07.099
![]() |
[72] |
Du Z, Tan MJ, Guo JF, et al. (2016) Aluminium-carbon nanotubes composites produced from friction stir processing and selective laser melting. Materialwiss Werkst 47: 539-548. doi: 10.1002/mawe.201600530
![]() |
[73] | Simões S, Viana F, Reis MAL, et al. (2017) Aluminum and nickel matrix composites reinforced by CNTs: dispersion/mixture by ultrasonication. Metals 7: 1-11. |
[74] |
Liao J, Tan MJ, Santoso A (2011) High strength aluminum nanocomposites reinforced with multi-walled carbon nanotubes. Adv Mater Res 311-313: 80-83. doi: 10.4028/www.scientific.net/AMR.311-313.80
![]() |
[75] |
Kwon H, Park DH, Silvain JF, et al. (2010) Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos Sci Technol 70: 546-550. doi: 10.1016/j.compscitech.2009.11.025
![]() |
[76] |
Perez BR, Estrada GI, Antunez FW, et al. (2008) Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes. J Alloy Compd 450: 323-326. doi: 10.1016/j.jallcom.2006.10.146
![]() |
[77] |
Sridhar I, Narayanan KR (2009) Processing and characterization of MWCNT reinforced aluminum matrix composites. J Mater Sci 44: 1750-1756. doi: 10.1007/s10853-009-3290-5
![]() |
[78] |
Choi HJ, Kwon GB, Lee GY, et al. (2008) Reinforcement with carbon nanotubes in aluminum matrix composites. Scripta Mater 59: 360-363. doi: 10.1016/j.scriptamat.2008.04.006
![]() |
[79] |
Kwon H, Kawasaki A (2009) Extrusion of spark plasma sintered aluminum-carbon nanotube composites at various sintering temperatures. J Nanosci Nanotechnol 9: 6542-6548. doi: 10.1166/jnn.2009.1357
![]() |
[80] |
Deng CF, Wang DZ, Zhang XX, et al. (2007) Processing and properties of carbon nanotubes reinforced aluminum composites. Mater Sci Eng A-Struct 444: 138-145. doi: 10.1016/j.msea.2006.08.057
![]() |
[81] |
Kurita H, Kwon H, Estili M, et al. (2011) Multi-walled carbon nanotube-aluminum matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion. Mater Trans 52: 1960-1965. doi: 10.2320/matertrans.M2011146
![]() |
[82] |
Kumar PSSR, Smart DSR, Alexis SJ (2017) Corrosion behaviour of aluminium metal matrix reinforced with multi-wall carbon nanotube. J Asian Ceram Soc 5: 71-75. doi: 10.1016/j.jascer.2017.01.004
![]() |
[83] |
Noguchi T, Magario A, Fukazawa S, et al. (2004) Carbon nanotube/aluminium composites with uniform dispersion. Mater Trans 45: 602-604. doi: 10.2320/matertrans.45.602
![]() |
[84] |
Sun J, Gao L, Li W (2002) Colloidal processing of carbon nanotube/alumina composites. Chem Mater 14: 5169-5172. doi: 10.1021/cm020736q
![]() |
[85] |
Liao J, Tan MJ (2011) Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use. Powder Technol 208: 42-48. doi: 10.1016/j.powtec.2010.12.001
![]() |
[86] |
Kim HH, Babu JSS, Kang CG (2013) Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements. Mater Sci Eng A-Struct 573: 92-99. doi: 10.1016/j.msea.2013.02.041
![]() |
[87] |
Simões S, Viana F, Reis MAL, et al. (2015) Influence of dispersion/mixture time on mechanical properties of Al-CNTs nanocomposites. Compos Struct 126: 114-122. doi: 10.1016/j.compstruct.2015.02.062
![]() |
[88] |
Zhou W, Bang S, Kurita H, et al. (2016) Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon 96: 919-928. doi: 10.1016/j.carbon.2015.10.016
![]() |
[89] |
Yildirim M, Özyürek D, Gürü M (2016) Investigation of microstructure and wear behaviors of al matrix composites reinforced by carbon nanotube. Fuller Nanotub Car N 24: 467-473. doi: 10.1080/1536383X.2016.1182504
![]() |
[90] |
Kumar L, Nasimul AS, Sahoo SK (2017) Mechanical properties, wear behavior and crystallographic texture of Al-multiwalled carbon nanotube composites developed by powder metallurgy route. J Compos Mater 51: 1099-1117. doi: 10.1177/0021998316658946
![]() |
[91] |
Chen B, Li S, Imai H, et al. (2015) Carbon nanotube induced microstructural characteristics in powder metallurgy Al matrix composites and their effects on mechanical and conductive properties. J Alloy Compd 651: 608-615. doi: 10.1016/j.jallcom.2015.08.178
![]() |
[92] |
Chen B, Shen J, Ye X, et al. (2017) Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater 140: 317-325. doi: 10.1016/j.actamat.2017.08.048
![]() |
[93] |
Esawi AMK, Morsi K, Sayed A, et al. (2011) The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Compos Part A-Appl S 42: 234-243. doi: 10.1016/j.compositesa.2010.11.008
![]() |
[94] |
Maiti A, Reddy L, Chen F, et al. (2015) Carbon nanotube-reinforced Al alloy-based nanocomposites via spark plasma sintering. J Compos Mater 49: 1937-1946. doi: 10.1177/0021998314541304
![]() |
[95] |
Bakshi SR, Agarwal A (2011) An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49: 533-544. doi: 10.1016/j.carbon.2010.09.054
![]() |
[96] |
Kwon H, Takamichi M, Kawasaki A, et al. (2013) Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material. Mater Chem Phys 138: 787-793. doi: 10.1016/j.matchemphys.2012.12.062
![]() |
[97] |
Liu ZY, Xiao BL, Wang WG, et al. (2013) Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon 62: 35-42. doi: 10.1016/j.carbon.2013.05.049
![]() |
[98] |
Nie JH, Jia CC, Shi N, et al. (2011) Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes. Int J Min Met Mater 18: 695-702. doi: 10.1007/s12613-011-0499-5
![]() |
[99] | Maqbool A, Khalid FA, Hussain MA, et al. (2014) Synthesis of copper coated carbon nanotubes for aluminium matrix composites, IOP Conference Series: Materials Science and Engineering, Pakistan: IOP Publishing, 60: 012040. |
[100] |
Sinian L, Souzhi S, Tianqin Y, et al. (2005) Microstructure and fracture surfaces of carbon nanotubes/magnesium matrix composite. Mater Sci Forum 488-489: 893-896. doi: 10.4028/www.scientific.net/MSF.488-489.893
![]() |
[101] |
Morisada Y, Fujii H, Nagaoka T, et al. (2006) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A-Struct 419: 344-348. doi: 10.1016/j.msea.2006.01.016
![]() |
[102] |
Goh CS, Wei J, Lee LC, et al. (2006) Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater Sci Eng A-Struct 423: 153-156. doi: 10.1016/j.msea.2005.10.071
![]() |
[103] |
Yuan X, Huang S (2015) Microstructural characterization of MWCNTs/magnesium alloy composites fabricated by powder compact laser sintering. J Alloy Compd 620: 80-86. doi: 10.1016/j.jallcom.2014.09.128
![]() |
[104] |
Nai MH, Wei J, Gupta M (2014) Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites. Mater Des 60: 490-495. doi: 10.1016/j.matdes.2014.04.011
![]() |
[105] |
Park Y, Cho K, Park I, et al. (2011) Fabrication and mechanical properties of magnesium matrix composite reinforced with Si coated carbon nanotubes. Procedia Eng 10: 1446-1450. doi: 10.1016/j.proeng.2011.04.240
![]() |
[106] |
Li CD, Wang XJ, Wu K, et al. (2014) Distribution and integrity of carbon nanotubes in carbon nanotube/magnesium composites. J Alloy Compd 612: 330-336. doi: 10.1016/j.jallcom.2014.05.153
![]() |
[107] |
Li CD, Wang XJ, Liu WQ, et al. (2014) Effect of solidification on microstructures and mechanical properties of carbon nanotubes reinforced magnesium matrix composite. Mater Des 58: 204-208. doi: 10.1016/j.matdes.2014.01.015
![]() |
[108] |
Li CD, Wang XJ, Liu WQ, et al. (2014) Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite. Mater Sci Eng A-Struct 597: 264-269. doi: 10.1016/j.msea.2014.01.008
![]() |
[109] |
Deng C, Zhang X, Ma Y, et al. (2007) Fabrication of aluminum matrix composite reinforced with carbon nanotubes. Rare Metals 26: 450-455. doi: 10.1016/S1001-0521(07)60244-7
![]() |
[110] |
Salas W, Alba-Baena NG, Murr LE (2007) Explosive shock-wave consolidation of aluminum powder/carbon nanotube aggregate mixtures: optical and electron metallography. Metall Mater Trans A 38: 2928-2935. doi: 10.1007/s11661-007-9336-x
![]() |
[111] |
Laha T, Agarwal A, McKechnie T, et al. (2004) Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater Sci Eng A-Struct 381: 249-258. doi: 10.1016/j.msea.2004.04.014
![]() |
[112] |
Tokunaga T, Kaneko K, Horita Z (2008) Production of aluminum-matrix carbon nanotube composite using high pressure torsion. Mater Sci Eng A-Struct 490: 300-304. doi: 10.1016/j.msea.2008.02.022
![]() |
[113] |
Lim DK, Shibayanagi T, Gerlich AP (2009) Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Mater Sci Eng A-Struct 507: 194-199. doi: 10.1016/j.msea.2008.11.067
![]() |
[114] |
He C, Zhao N, Shi C, et al. (2007) An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater 19: 1128-1132. doi: 10.1002/adma.200601381
![]() |
[115] |
Laha T, Liu Y, Agarwal A (2007) Carbon nanotube reinforced aluminum nanocomposite via plasma and high velocity oxy-fuel spray forming. J Nanosci Nanotechnol 7: 515-524. doi: 10.1166/jnn.2007.18044
![]() |
[116] |
Laha T, Chen Y, Lahiri D, et al. (2009) Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos Part A-Appl S 40: 589-594. doi: 10.1016/j.compositesa.2009.02.007
![]() |
[117] |
Laha T, Agarwal A (2008) Effect of sintering on thermally sprayed carbon nanotube reinforced aluminum nanocomposite. Mater Sci Eng A-Struct 480: 323-332. doi: 10.1016/j.msea.2007.07.047
![]() |
[118] |
Bakshi SR, Singh V, Seal S, et al. (2009) Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf Coat Technol 203: 1544-1554. doi: 10.1016/j.surfcoat.2008.12.004
![]() |
[119] |
Bakshi SR, Singh V, Balani K, et al. (2008) Carbon nanotube reinforced aluminum composite coating via cold spraying. Surf Coat Technol 202: 5162-5169. doi: 10.1016/j.surfcoat.2008.05.042
![]() |
[120] |
Liu ZY, Xiao BL, Wang WG, et al. (2012) Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50: 1843-1852. doi: 10.1016/j.carbon.2011.12.034
![]() |
[121] |
Jiang L, Li Z, Fan G, et al. (2012) The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50: 1993-1998. doi: 10.1016/j.carbon.2011.12.057
![]() |
[122] |
Zhou M, Qu X, Ren L, et al. (2017) The effects of carbon nanotubes on the mechanical and wear properties of AZ31 alloy. Materials 10: 1385. doi: 10.3390/ma10121385
![]() |
[123] | Orowan E (1934) Zur Kristallplastizität. III. Z Phys 89: 634-659. |
[124] |
Arsenault RJ, Shi N (1986) Dislocation generation due to differences between the coefficients of thermal expansion. Mater Sci Eng 81: 175-187. doi: 10.1016/0025-5416(86)90261-2
![]() |
[125] | Clyne TW, Withers PJ (1993) An Introduction to Metal Matrix Composites, Cambridge: Cambridge University Press. |
[126] |
Paramsothy M, Gupta M (2008) Processing, microstructure, and properties of a Mg/Al bimetal macrocomposite. J Compos Mater 42: 2567-2584. doi: 10.1177/0021998308098369
![]() |
[127] |
Lloyd DJ (1994) Particle reinforced aluminum and magnesium matrix composites. Int Mater Rev 39: 1-23. doi: 10.1179/imr.1994.39.1.1
![]() |
[128] |
Torralba JM, Da CCE, Velasco F (2003) P/M aluminum matrix composites: an overview. J Mater Process Technol 133: 203-206. doi: 10.1016/S0924-0136(02)00234-0
![]() |
[129] |
Asgari M, Fereshteh SF (2016) Production of AZ80/Al composite rods employing non-equal channel lateral extrusion. T Nonferr Metal Soc 26: 1276-1283. doi: 10.1016/S1003-6326(16)64228-0
![]() |
[130] | Pedersen BD (2013) Preliminary investigations on the manufacture of Al-AZ31 bimetallic composites by the screw extrusion process [MD's Thesis]. Norwegian University of Science and Technology, Norway. |
[131] | Wong WLE, Gupta M (2010) Characteristics of aluminum and magnesium based nanocomposites processed using hybrid microwave sintering. J Microwave Power EE 44: 14-27. |
[132] |
Chen B, Li S, Imai H, et al. (2015) An approach for homogeneous carbon nanotube dispersion in Al matrix composites. Mater Des 72: 1-8. doi: 10.1016/j.matdes.2015.02.003
![]() |
[133] | Simões S, Viana F, Reis MAL, et al. (2016) Microstructural characterization of aluminum-carbon nanotube nanocomposites produced using different dispersion methods. Microsc Microanal 1: 1-8. |
[134] |
Azarniya A, Safavi MS, Sovizi S, et al. (2017) Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites. Metals 7: 384. doi: 10.3390/met7100384
![]() |
[135] |
Paramsothy M, Tan X, Chan J, et al. (2013) Carbon nanotube addition to concentrated magnesium alloy AZ81: enhanced ductility with occasional significant increase in strength. Mater Des 45: 15-23. doi: 10.1016/j.matdes.2012.09.001
![]() |
[136] |
Neubauer E, Kitzmantel M, Hulman M, et al. (2010) Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos Sci Technol 70: 2228-2236. doi: 10.1016/j.compscitech.2010.09.003
![]() |
[137] |
Tarlton T, Sullivan E, Brown J, et al. (2017) The role of agglomeration in the conductivity of carbon nanotube composites near percolation. J Appl Phys 121: 085103. doi: 10.1063/1.4977100
![]() |
[138] |
Zhang Z, Chen DL (2008) Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng A-Struct 483-484: 148-152. doi: 10.1016/j.msea.2006.10.184
![]() |
[139] |
Zhang Z, Chen DL (2006) Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scripta Mater 54: 1321-1326. doi: 10.1016/j.scriptamat.2005.12.017
![]() |
[140] |
Casati R, Vedani M (2014) Metal Matrix composites reinforced by nano-particles-a review. Metals 4: 65-83 doi: 10.3390/met4010065
![]() |
1. | Baoquan Zhou, Daqing Jiang, Yucong Dai, Tasawar Hayat, Threshold Dynamics and Probability Density Function of a Stochastic Avian Influenza Epidemic Model with Nonlinear Incidence Rate and Psychological Effect, 2023, 33, 0938-8974, 10.1007/s00332-022-09885-8 | |
2. | Ting Kang, Qimin Zhang, Dynamics of a stochastic delayed avian influenza model with mutation and temporary immunity, 2021, 14, 1793-5245, 2150029, 10.1142/S1793524521500297 | |
3. | Xubin Jiao, Xiuxiang Liu, Rich dynamics of a delayed Filippov avian-only influenza model with two-thresholds policy, 2024, 182, 09600779, 114710, 10.1016/j.chaos.2024.114710 | |
4. | Xuezhong Bao, Xiaoling Han, Dynamics and simulations of stochastic time delay avian influenza model using spectral method, 2025, 44, 2238-3603, 10.1007/s40314-025-03167-1 |
Parameter | Description |
Λa | new recruitment of the poultry populations |
Λh | new recruitment of the human population |
βa | the transmission rate from infective poultry to susceptible poultry |
βh | the transmission rate from infective poultry to susceptible human |
μa | the natural death rate of poultry populations |
μh | the natural death rate of human populations |
δa | the disease-related death rate of poultry populations |
δh | the disease-related death rate of humans populations |
γa | the transfer rate of exposed poultry to infected poultry |
θh | the recovery rate of the infective human |
αi(i=1,2) | parameters that measure the inhibitory effect |
Parameter | Value | Source of data |
Λa | 30000 | Assumed |
Λh | μh×1000 | Assumed |
βa | (0.5---12.5)×10−6day−1 | [10] |
βh | 3×10−4 | [10] |
μa | 1/100day−1 | [10] |
μh | 200/(70×365)day−1 | Assumed |
δa | 5day−1 | [10] |
δh | 0.03day−1 | [10,11] |
γa | 0.3day−1 | [11] |
θh | 0.16day−1 | [11] |
τa | 7 day | Assumed |
τh | 14 day | Assumed |
R0 | S∗a(×106) | E∗a(×104) | I∗a(×103) | S∗h | I∗h | Pm(×105)♯ | dE(×105)♯ |
4.8269 | 0.7977 | 6.6239 | 2.8348 | 212.6795 | 11.8062 | 2.5226 | 22.033 |
3.2823 | 1.1336 | 5.6137 | 2.4024 | 213.7049 | 11.7908 | 2.7378 | 18.673 |
1.9308 | 1.7948 | 3.6249 | 1.5513 | 217.3720 | 11.7359 | 3.2294 | 12.057 |
1.3515 | 2.3931 | 1.8254 | 0.7812 | 227.3975 | 11.5855 | 3.7266 | 6.072 |
♯Pm=max(√P3,√P4,√P5,√P6), dE=d(E∗,E0). |
Parameter | Description |
Λa | new recruitment of the poultry populations |
Λh | new recruitment of the human population |
βa | the transmission rate from infective poultry to susceptible poultry |
βh | the transmission rate from infective poultry to susceptible human |
μa | the natural death rate of poultry populations |
μh | the natural death rate of human populations |
δa | the disease-related death rate of poultry populations |
δh | the disease-related death rate of humans populations |
γa | the transfer rate of exposed poultry to infected poultry |
θh | the recovery rate of the infective human |
αi(i=1,2) | parameters that measure the inhibitory effect |
Parameter | Value | Source of data |
Λa | 30000 | Assumed |
Λh | μh×1000 | Assumed |
βa | (0.5---12.5)×10−6day−1 | [10] |
βh | 3×10−4 | [10] |
μa | 1/100day−1 | [10] |
μh | 200/(70×365)day−1 | Assumed |
δa | 5day−1 | [10] |
δh | 0.03day−1 | [10,11] |
γa | 0.3day−1 | [11] |
θh | 0.16day−1 | [11] |
τa | 7 day | Assumed |
τh | 14 day | Assumed |
R0 | S∗a(×106) | E∗a(×104) | I∗a(×103) | S∗h | I∗h | Pm(×105)♯ | dE(×105)♯ |
4.8269 | 0.7977 | 6.6239 | 2.8348 | 212.6795 | 11.8062 | 2.5226 | 22.033 |
3.2823 | 1.1336 | 5.6137 | 2.4024 | 213.7049 | 11.7908 | 2.7378 | 18.673 |
1.9308 | 1.7948 | 3.6249 | 1.5513 | 217.3720 | 11.7359 | 3.2294 | 12.057 |
1.3515 | 2.3931 | 1.8254 | 0.7812 | 227.3975 | 11.5855 | 3.7266 | 6.072 |
♯Pm=max(√P3,√P4,√P5,√P6), dE=d(E∗,E0). |