Research article

Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping

  • Received: 14 November 2019 Accepted: 01 February 2020 Published: 12 March 2020
  • MSC : 35B40, 35B41

  • Based on the abstract theory of pullback attractors of non-autonomous non-compact dynamical systems by differential equations with both dependent-time deterministic and stochastic forcing terms, which introduced by B. Wang, we investigate existence of pullback attractors for the non-autonomous stochastic plate equations with multiplicative noise defined in the entire space Rn.

    Citation: Xiaobin Yao. Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping[J]. AIMS Mathematics, 2020, 5(3): 2577-2607. doi: 10.3934/math.2020169

    Related Papers:

    [1] Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering . Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295
    [2] Markus Dick, Martin Gugat, Günter Leugering . Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Networks and Heterogeneous Media, 2010, 5(4): 691-709. doi: 10.3934/nhm.2010.5.691
    [3] Mapundi K. Banda, Michael Herty, Axel Klar . Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1(2): 295-314. doi: 10.3934/nhm.2006.1.295
    [4] Mapundi K. Banda, Michael Herty, Axel Klar . Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41
    [5] Michael Herty . Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97. doi: 10.3934/nhm.2007.2.81
    [6] Michael Herty, Veronika Sachers . Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media, 2007, 2(4): 733-750. doi: 10.3934/nhm.2007.2.733
    [7] Martin Gugat, Rüdiger Schultz, Michael Schuster . Convexity and starshapedness of feasible sets in stationary flow networks. Networks and Heterogeneous Media, 2020, 15(2): 171-195. doi: 10.3934/nhm.2020008
    [8] Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025
    [9] Magali Tournus, Aurélie Edwards, Nicolas Seguin, Benoît Perthame . Analysis of a simplified model of the urine concentration mechanism. Networks and Heterogeneous Media, 2012, 7(4): 989-1018. doi: 10.3934/nhm.2012.7.989
    [10] Klaus-Jochen Engel, Marjeta Kramar Fijavž, Rainer Nagel, Eszter Sikolya . Vertex control of flows in networks. Networks and Heterogeneous Media, 2008, 3(4): 709-722. doi: 10.3934/nhm.2008.3.709
  • Based on the abstract theory of pullback attractors of non-autonomous non-compact dynamical systems by differential equations with both dependent-time deterministic and stochastic forcing terms, which introduced by B. Wang, we investigate existence of pullback attractors for the non-autonomous stochastic plate equations with multiplicative noise defined in the entire space Rn.




    [1] L. Arnold, Random Dynamical Systems, 1998.
    [2] A. R. A. Barbosaa, T. F. Ma, Long-time dynamics of an extensible plate equation with thermal memory, J. Math. Anal. Appl., 416 (2014), 143-165. doi: 10.1016/j.jmaa.2014.02.042
    [3] P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017
    [4] P. W. Bates, H. Lisei, K. Lu, Attractors for stochastic lattic dynamical systems, Stoch. Dynam., 6 (2006), 1-21. doi: 10.1142/S0219493706001621
    [5] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, American Math. Soc., 2002.
    [6] I. Chueshov, Monotone Random Systems Theory and Applications, 2002.
    [7] H. Crauel, Random Probability Measure on Polish Spaces, CRC press, 2002.
    [8] H. Crauel, A. Debussche, F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307-341. doi: 10.1007/BF02219225
    [9] H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Theory, Rel., 100 (1994), 365-393. doi: 10.1007/BF01193705
    [10] H. Cui, J. A. Langa, Uniform attractors for non-automous random dynamical systems, J. Differ. Equ., 263 (2017), 1225-1268. doi: 10.1016/j.jde.2017.03.018
    [11] X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793. doi: 10.1080/07362990600751860
    [12] F. Flandoli, B. Schmalfuss, Random attractors for the 3D stochastic Navier- Stokes equation with multiplicative white noise, Stochastics and Stochastics Reports, 59 (1996), 21-45. doi: 10.1080/17442509608834083
    [13] C. Gao, L. Lv, Y. Wang, Spectra of a discrete Sturm-Liouville problem with eigenparameter-dependent boundary conditions in Pontryagin space, Quaest. Math., 2019 (2019), 1-26.
    [14] J. Huang, W. Shen, Pullback attractors for non-autonomous and random parabolic equations on non-smooth domains, Discrete Cont. Dyn. S., 24 (2009), 855-882. doi: 10.3934/dcds.2009.24.855
    [15] A. K. Khanmamedov, A global attractor for the plate equation with displacement-dependent damping, Nonlinear Analysis: Theory, Methods and Applications, 74 (2011), 1607-1615. doi: 10.1016/j.na.2010.10.031
    [16] A. K. Khanmamedov, Existence of a global attractor for the plate equation with a critical exponent in an unbounded domain, Appl. Math. Lett., 18 (2005), 827-832. doi: 10.1016/j.aml.2004.08.013
    [17] A. K. Khanmamedov, Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain, J. Differ. Equ., 225 (2006), 528-548. doi: 10.1016/j.jde.2005.12.001
    [18] P. E. Kloeden, J. A. Langa, Flattening, squeezing and the existence of random attractors, P. Roy. Soc. Lond. A. Mat., 463 (2007), 163-181. doi: 10.1098/rspa.2006.1753
    [19] Q. Ma, S. Wang, C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana U. Math. J., 51 (2002), 1541-1559. doi: 10.1512/iumj.2002.51.2255
    [20] W. J. Ma, Q. Z. Ma, Attractors for stochastic strongly damped plate equations with additive noise, Electron. J. Differ. Equ., 111 (2013), 1-12.
    [21] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
    [22] B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Dresden, 1992.
    [23] X. Shen, Q. Ma, The existence of random attractors for plate equations with memory and additive white noise, Korean J. Math., 24 (2016), 447-467. doi: 10.11568/kjm.2016.24.3.447
    [24] X. Shen, Q. Ma, Existence of random attractors for weakly dissipative plate equations with memory and additive white noise, Comput. Math. Appl., 73 (2017), 2258-2271. doi: 10.1016/j.camwa.2017.03.009
    [25] Z. Shen, S. Zhou, W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differ. Equ., 248 (2010), 1432-1457. doi: 10.1016/j.jde.2009.10.007
    [26] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 1997.
    [27] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015
    [28] B. Wang, X. Gao, Random attractors for wave equations on unbounded domains, Conference Publications, 2009.
    [29] Z. Wang, S. Zhou, A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Analysis: Real World Applications, 12 (2011), 3468-3482. doi: 10.1016/j.nonrwa.2011.06.008
    [30] Z. Wang, S. Zhou, Random attractor for non-autonomous stochastic strongly damped wave equation on unbounded domains, J. Appl. Anal. Comput., 5 (2015), 363-387.
    [31] B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on R3, T. Am. Math. Soc., 363 (2011), 3639-3663.
    [32] Z. Wang, S. Zhou, Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise, Discrete Cont. Dyn. S., 38 (2018), 4767-4817. doi: 10.3934/dcds.2018210
    [33] B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1-31.
    [34] L. Yang, Uniform attractor for non-autonomous plate equations with a localized damping and a critical nonlinearity, J. Math. Anal. Appl., 338 (2008), 1243-1254. doi: 10.1016/j.jmaa.2007.06.011
    [35] L. Yang, C. K. Zhong, Global attractor for plate equation with nonlinear damping, Nonlinear Analysis: Theory, Methods and Applications, 69 (2008), 3802-3810. doi: 10.1016/j.na.2007.10.016
    [36] M. Yang, J. Duan, P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Analysis: Real World Applications, 12 (2011), 464-478. doi: 10.1016/j.nonrwa.2010.06.032
    [37] X. Yao, Q. Ma, T. Liu, Asymptotic behavior for stochastic plate equations with rotational inertia and kelvin-voigt dissipative term on unbounded domains, Discrete Cont. Dyn-B, 24 (2019), 1889-1917.
    [38] X. Yao, Q. Ma, L. Xu, Global attractors for a Kirchhoff type plate equation with memory, Kodai Math. J., 40 (2017), 63-78. doi: 10.2996/kmj/1490083224
    [39] X. Yao, Q. Ma, Global attractors of the extensible plate equations with nonlinear damping and memory, J. Funct. Space., 2017 (2017), 1-10.
    [40] X. Yao, X. Liu, Asymptotic behavior for non-autonomous stochastic plate equation on unbounded domains, Open Math., 17 (2019), 1281-1302. doi: 10.1515/math-2019-0092
    [41] G. Yue, C. Zhong, Global attractors for plate equations with critical exponent in locally uniform spaces, Nonlinear Analysis: Theory, Methods and Applications, 71 (2009), 4105-4114. doi: 10.1016/j.na.2009.02.089
  • This article has been cited by:

    1. Falk M. Hante, Günter Leugering, Alexander Martin, Lars Schewe, Martin Schmidt, 2017, Chapter 5, 978-981-10-3757-3, 77, 10.1007/978-981-10-3758-0_5
    2. Tatsien Li, Lei Yu, Local Exact One-Sided Boundary Null Controllability of Entropy Solutions to a Class of Hyperbolic Systems of Balance Laws, 2019, 57, 0363-0129, 610, 10.1137/18M1187052
    3. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    4. Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang, Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks, 2015, 10, 1556-181X, 749, 10.3934/nhm.2015.10.749
    5. Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002
    6. Martin Gugat, Rüdiger Schultz, David Wintergerst, Networks of pipelines for gas with nonconstant compressibility factor: stationary states, 2018, 37, 0101-8205, 1066, 10.1007/s40314-016-0383-z
    7. Michael Hintermüller, Nikolai Strogies, Identification of the friction function in a semilinear system for gas transport through a network, 2020, 35, 1055-6788, 576, 10.1080/10556788.2019.1692206
    8. Martin Gugat, Michael Herty, 2020, Chapter 6, 978-981-15-0927-8, 147, 10.1007/978-981-15-0928-5_6
    9. Martin Gugat, Richard Krug, Alexander Martin, Transient gas pipeline flow: analytical examples, numerical simulation and a comparison to the quasi-static approach, 2021, 1389-4420, 10.1007/s11081-021-09690-4
    10. Martin Gugat, Günter Leugering, Alexander Martin, Martin Schmidt, Mathias Sirvent, David Wintergerst, Towards simulation based mixed-integer optimization with differential equations, 2018, 72, 00283045, 60, 10.1002/net.21812
    11. Martin Gugat, Günter Leugering, Ke Wang, Neumann boundary feedback stabilization for a nonlinear wave equation: A strict H2-lyapunov function, 2017, 7, 2156-8499, 419, 10.3934/mcrf.2017015
    12. Michael Schuster, Elisa Strauch, Martin Gugat, Jens Lang, Probabilistic constrained optimization on flow networks, 2022, 23, 1389-4420, 1, 10.1007/s11081-021-09619-x
    13. Andrea Corli, Magdalena Figiel, Anna Futa, Massimiliano D. Rosini, Coupling conditions for isothermal gas flow and applications to valves, 2018, 40, 14681218, 403, 10.1016/j.nonrwa.2017.09.005
    14. Martin Gugat, Günter Leugering, Alexander Martin, Martin Schmidt, Mathias Sirvent, David Wintergerst, MIP-based instantaneous control of mixed-integer PDE-constrained gas transport problems, 2018, 70, 0926-6003, 267, 10.1007/s10589-017-9970-1
    15. Martin Gugat, Michael Herty, Hui Yu, 2018, Chapter 50, 978-3-319-91544-9, 651, 10.1007/978-3-319-91545-6_50
    16. Martin Schmidt, Mathias Sirvent, Winnifried Wollner, A decomposition method for MINLPs with Lipschitz continuous nonlinearities, 2019, 178, 0025-5610, 449, 10.1007/s10107-018-1309-x
    17. Amaury Hayat, Peipei Shang, Exponential stability of density-velocity systems with boundary conditions and source term for the H2 norm, 2021, 153, 00217824, 187, 10.1016/j.matpur.2021.07.001
    18. Günter Leugering, 2020, Chapter 4, 978-981-15-0927-8, 77, 10.1007/978-981-15-0928-5_4
    19. Martin Gugat, Jens Habermann, Michael Hintermüller, Olivier Huber, Constrained exact boundary controllability of a semilinear model for pipeline gas flow, 2023, 0956-7925, 1, 10.1017/S0956792522000389
    20. Martin Gugat, Rüdiger Schultz, Boundary Feedback Stabilization of the Isothermal Euler Equations with Uncertain Boundary Data, 2018, 56, 0363-0129, 1491, 10.1137/16M1090156
    21. Georges Bastin, Jean-Michel Coron, 2016, Chapter 1, 978-3-319-32060-1, 1, 10.1007/978-3-319-32062-5_1
    22. Martin Gugat, Falk M. Hante, Li Jin, Closed loop control of gas flow in a pipe: stability for a transient model, 2020, 68, 2196-677X, 1001, 10.1515/auto-2020-0071
    23. Martin Gugat, David Wintergerst, Transient Flow in Gas Networks: Traveling waves, 2018, 28, 2083-8492, 341, 10.2478/amcs-2018-0025
    24. Daniel Rose, Martin Schmidt, Marc C. Steinbach, Bernhard M. Willert, Computational optimization of gas compressor stations: MINLP models versus continuous reformulations, 2016, 83, 1432-2994, 409, 10.1007/s00186-016-0533-5
    25. Lars Schewe, Martin Schmidt, 2019, Chapter 13, 978-3-662-58538-2, 173, 10.1007/978-3-662-58539-9_13
    26. Martin Gugat, Michael Schuster, Stationary Gas Networks with Compressor Control and Random Loads: Optimization with Probabilistic Constraints, 2018, 2018, 1024-123X, 1, 10.1155/2018/7984079
    27. Michael Herty, Hui Yu, Feedback boundary control of linear hyperbolic equations with stiff source term, 2018, 91, 0020-7179, 230, 10.1080/00207179.2016.1276635
    28. Martin Gugat, Stefan Ulbrich, The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, 2017, 454, 0022247X, 439, 10.1016/j.jmaa.2017.04.064
    29. Volker Mehrmann, Martin Schmidt, Jeroen J. Stolwijk, Model and Discretization Error Adaptivity Within Stationary Gas Transport Optimization, 2018, 46, 2305-221X, 779, 10.1007/s10013-018-0303-1
    30. Martin Schmidt, Falk M. Hante, 2023, Chapter 872-1, 978-3-030-54621-2, 1, 10.1007/978-3-030-54621-2_872-1
    31. Martin Gugat, Jan Giesselmann, An Observer for Pipeline Flow with Hydrogen Blending in Gas Networks: Exponential Synchronization, 2024, 62, 0363-0129, 2273, 10.1137/23M1563840
    32. Martin Gugat, Michael Schuster, Jan Sokołowski, The location problem for compressor stations in pipeline networks, 2024, 12, 2325-3444, 507, 10.2140/memocs.2024.12.507
    33. Ariane Fazeny, Martin Burger, Jan-F. Pietschmann, Optimal transport on gas networks, 2025, 0956-7925, 1, 10.1017/S0956792525000051
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4230) PDF downloads(325) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog