Loading [MathJax]/jax/output/SVG/jax.js
Research article

Fractional physical models based on falling body problem

  • This article is devoted to investigate the fractional falling body problem relied on Newton's second law. We analyze this physical model by means of Atangana-Baleanu fractional derivative in the sense of Caputo (ABC), generalized fractional derivative introduced by Katugampola and generalized ABC containing the Mittag-Leffler function with three parameters Eγα,μ(.). For that purpose, the Laplace transform (LT) is utilized to obtain fractional solutions. In order to maintain the dimensionality of the physical parameter in the model, we employ an auxiliary parameter σ having a relation with the order of fractional operator. Moreover, simulation analysis is carried out by comparing the underlying fractional derivatives with traditional one to grasp the virtue of the results.

    Citation: Bahar Acay, Ramazan Ozarslan, Erdal Bas. Fractional physical models based on falling body problem[J]. AIMS Mathematics, 2020, 5(3): 2608-2628. doi: 10.3934/math.2020170

    Related Papers:

    [1] Sitalakshmi Venkatraman, Ramanathan Venkatraman . Big data security challenges and strategies. AIMS Mathematics, 2019, 4(3): 860-879. doi: 10.3934/math.2019.3.860
    [2] Atiqe Ur Rahman, Muhammad Saeed, Mazin Abed Mohammed, Alaa S Al-Waisy, Seifedine Kadry, Jungeun Kim . An innovative fuzzy parameterized MADM approach to site selection for dam construction based on sv-complex neutrosophic hypersoft set. AIMS Mathematics, 2023, 8(2): 4907-4929. doi: 10.3934/math.2023245
    [3] Pengyu Liu, Jie Jian . Effects of network topology and trait distribution on collective decision making. AIMS Mathematics, 2023, 8(5): 12287-12320. doi: 10.3934/math.2023619
    [4] Shahryar Sorooshian, Seyedh Mahboobeh Jamali, Nader Ale Ebrahim . Performance of the decision-making trial and evaluation laboratory. AIMS Mathematics, 2023, 8(3): 7490-7514. doi: 10.3934/math.2023376
    [5] Erdal Bayram, Gülşah Çelik, Mustafa Gezek . An advanced encryption system based on soft sets. AIMS Mathematics, 2024, 9(11): 32232-32256. doi: 10.3934/math.20241547
    [6] Esmail Hassan Abdullatif Al-Sabri, Muhammad Rahim, Fazli Amin, Rashad Ismail, Salma Khan, Agaeb Mahal Alanzi, Hamiden Abd El-Wahed Khalifa . Multi-criteria decision-making based on Pythagorean cubic fuzzy Einstein aggregation operators for investment management. AIMS Mathematics, 2023, 8(7): 16961-16988. doi: 10.3934/math.2023866
    [7] Muhammad Arshad, Muhammad Saeed, Khuram Ali Khan, Nehad Ali Shah, Wajaree Weera, Jae Dong Chung . A robust MADM-approach to recruitment-based pattern recognition by using similarity measures of interval-valued fuzzy hypersoft set. AIMS Mathematics, 2023, 8(5): 12321-12341. doi: 10.3934/math.2023620
    [8] Muhammad Ihsan, Muhammad Saeed, Atiqe Ur Rahman, Hüseyin Kamacı, Nehad Ali Shah, Wajaree Weera . An MADM-based fuzzy parameterized framework for solar panels evaluation in a fuzzy hypersoft expert set environment. AIMS Mathematics, 2023, 8(2): 3403-3427. doi: 10.3934/math.2023175
    [9] Esra Korkmaz . An innovative algorithm based on weighted fuzzy soft multisets and its application in selecting optimal construction materials. AIMS Mathematics, 2024, 9(10): 27512-27534. doi: 10.3934/math.20241336
    [10] Jia-Bao Liu, Rashad Ismail, Muhammad Kamran, Esmail Hassan Abdullatif Al-Sabri, Shahzaib Ashraf, Ismail Naci Cangul . An optimization strategy with SV-neutrosophic quaternion information and probabilistic hesitant fuzzy rough Einstein aggregation operator. AIMS Mathematics, 2023, 8(9): 20612-20653. doi: 10.3934/math.20231051
  • This article is devoted to investigate the fractional falling body problem relied on Newton's second law. We analyze this physical model by means of Atangana-Baleanu fractional derivative in the sense of Caputo (ABC), generalized fractional derivative introduced by Katugampola and generalized ABC containing the Mittag-Leffler function with three parameters Eγα,μ(.). For that purpose, the Laplace transform (LT) is utilized to obtain fractional solutions. In order to maintain the dimensionality of the physical parameter in the model, we employ an auxiliary parameter σ having a relation with the order of fractional operator. Moreover, simulation analysis is carried out by comparing the underlying fractional derivatives with traditional one to grasp the virtue of the results.


    Fractional differential equations with various types of fractional derivatives arise in modeling some dynamical processes (see, for example, [15] for the globally projective synchronization of Caputo fractional-order quaternion-valued neural networks with discrete and distributed delays, [18] for the quasi-uniform synchronization issue for fractional-order neural networks with leakage and discrete delays and [11] for Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field). In contrast to the classical derivative the fractional derivative is nonlocal and it depends significantly on its lower limit. As it is mentioned in [13], this leads to some obstacles for studying impulsive fractional differential equations.

    Since many phenomena are characterized by abrupt changes at certain moments it is important to consider differential equations with impulses. In the literature there are two main approaches used to introduce impulses to fractional equations:

    (i) With a fixed lower limit of the fractional derivative at the initial time- the fractional derivative of the unknown function has a lower limit equal to the initial time point over the whole interval of study;

    (ii) With a changeable lower limit of the fractional derivative at each time of impulse- the fractional derivative on each interval between two consecutive impulses is changed because the lower limit of the fractional derivative is equal to the time of impulse.

    Both interpretations of impulses are based on corresponding interpretations of impulses in ordinary differential equation, which coincide in the case of integer derivatives. However this is not the case for fractional derivatives. In the literature both types of interpretations are discussed and studied for Caputo fractional differential equations of order α(0,1). We refer the reader to the papers [6,7,12,13,16] as well as the monograph [3].

    We note in the case of the Caputo fractional derivative there is a similarity between both the initial conditions and the impulsive condition between fractional equations and ordinary equations (see, for example, [10] concerning the impulsive control law for the Caputo delay fractional-order neural network model). However for Riemann-Liouville fractional differential equations both the initial condition and impulsive conditions have to be appropriately given (which is different in the case of ordinary derivatives as well as the case of Caputo fractional derivatives). Riemann-Liouville fractional differential equations are considered, for example, in [1,2] for integral presentation of solutions in the case of the fractional order α(0,1), [5,8,17] for the case of the fractional order α(1,2).

    In [14] the authors studied the following coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives of the form

    {{Dαu(t)ϕ1(t,Iαu(t),Iβv(t))=0   for tI, tti,  i=1,2,,p,Δu(tj)Ej(u(tj))=0,      Δu(tj)Ej(u(tj))=0,  j=1,2,,p,ν1Dα2u(t)|t=0=u1,     μ1u(t)|t=T+ν2Iα1u(t)|t=T=u2,{Dβv(t)ϕ2(t,Iαu(t),Iβv(t))=0   for tI, ttk,  k=1,2,,q,Δv(tk)Ek(v(tk))=0,      Δv(tk)Ej(v(tk))=0,  k=1,2,,q,ν3Dβ2v(t)|t=0=v1,     μ2v(t)|t=T+ν4Iβ1v(t)|t=T=v2, (1.1)

    where α,β(1,2], I=[0,T], ϕ1,ϕ2:I×R×RR are continuous functions, Δu(tj)=u(t+j)u(tj),  Δu(tj)=u(t+j)u(tj), Δv(tk)=v(t+k)v(tk),  Δv(tj)=v(t+k)v(tk), where u(t+j),v(t+k) and v(tj),v(tk) are the right limits and left limits respectively, Ej,Ej,Ek,Ek:RR are continuous functions, and Dα,Iα are the α-order Riemann-Liouville fractional derivative and integral operators respectively and Dβ2=I2β.

    Since fractional integrals and derivatives have memories, and their lower limits are very important we will use the notations RLDαa,t and Iβa,t, respectively, instead of Dα and Iβ, i.e. the Riemann-Liouville fractional derivative is defined by (see, for example [9])

    RLDαa,tu(t)=1Γ(2α)(ddt)2tau(s)(ts)α1ds,   t>a,  α(1,2), (1.2)

    and the Riemann-Liouville fractional integral Iβa,t of order α>0 is defined by (see, for example, [9])

    Iβa,tu(t)=1Γ(β)ta(ts)β1u(s)ds,t>a, (1.3)

    where a0, β>0 are given numbers.

    Note there are some unclear parts in the statement of coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives (1.1), such as:

    a). The presence of two different integers p and q in (1.1) leads to different domains of both the unknown functions u and v. For example, in Corollary 1 [14] the solutions u(t) and v(t) are defined on [0,tp+1] and [0,tq+1] respectively, which causes some problems in the definitions of formulas (3.7) or (3.8) ([14]);

    b). The impulsive functions Ej,Ek, j=1,2,,p, k=1,2,,q are assumed different but they are not (it is clear for example, for j=k=1). The same is about the functions Ej,Ek, j=1,2,,p, k=1,2,,q.

    In this paper we sort out the above mentioned points by setting up the cleared statement of the boundary value problem with the Riemann-Liouville (RL) fractional integral for the impulsive Riemann-Liouville fractional differential equation studied in [14], and we prove a new the integral presentations of the solutions. To be more general, we study two different interpretations for the presence of impulses in fractional differential equations. The first one is the case of the fixed lower limit of the RL fractional derivative at the initial time 0 and the second one is the case of the changed lower limit of the fractional RL derivative at any point of impulse. In both cases the integral presentation of the solution is provided.

    Define two different sequences of points of impulses

    0=t0<t1<t2<<tp<tp+1=T  and   0=τ0<τ1<τ2<<τq<τq+1=T,

    where p,q are given natural numbers.

    We will consider the following nonlinear boundary value problem for the coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives with a lower limit at 0

    {{RLDα0,tu(t)ϕ1(t,Iα0,tu(t),Iβ0,tv(t))=0   for tI, tti,  i=1,2,,p,Δu(tj)Ej(u(tj))=0,      Δu(tj)Ej(u(tj))=0,  j=1,2,,p,I2α0,tu(t)|t=0=u1,     μ1u(t)|t=T+ν1Iα10,tu(t)|t=T=u2,{RLDβ0,tv(t)ϕ2(t,Iα0,tu(t),Iβ0,tv(t))=0   for tI, tτk,  k=1,2,,q,Δv(τk)Sk(v(τk))=0,      Δv(τk)Sk(v(τk))=0,  k=1,2,,q,I2β0,tv(t)|t=0=v1,     μ2v(t)|t=T+ν2Iβ10,tv(t)|t=T=v2, (2.1)

    where α,β(1,2], I=[0,T], ϕ1,ϕ2:I×R×RR are continuous functions, Δu(tj)=u(t+j)u(tj),  Δu(tj)=u(t+j)u(tj), Δv(τk)=v(τ+k)v(τk),  Δv(τk)=v(τ+k)v(τk), where u(t+j),v(τ+k),u(t+j),v(τ+k) and u(tj), v(tk), u(tj), v(tk) are the right limits and left limits respectively, Ej,Ej,Sk,Sk:RR are continuous functions, and RLDβ0,t,Iα0,t are the α-order Riemann-Liouville fractional derivative and integral operators, respectively, μi,νi,uk,vk, i=1,2, are given constants.

    In the statement of the problem (2.1) some parts of (1.1) are cleared: there are two different points of impulses; the lower limits of the fractional integrals and fractional integrals are written; different functions at different points of impulses are used.

    In our proofs we will use the following well known properties for fractional integrals (see, for example [9]).

    Iαa,tIβa,tu(t)=Iα+βa,tu(t),   α,β>0,Iαa,t(ta)q=Γ(q+1)Γ(q+α+1)(ta)q+α,  α>0, q>1.  t>a. (2.2)

    We will apply the following auxiliary result which is a generalization of the result in [4] for an arbitrary lower limit of the fractional derivative:

    Lemma 1. ([4]). The general solution of the Riemann-Liouville fractional differential equation

    RLDαa,tw(t)=g(t),   t(a,T],   α(1,2) (2.3)

    is given by

    w(t)=c1(ta)α1+c0(ta)α2+Iαa,t g(t)=c1(ta)α1+c0(ta)α2+1Γ(α)ta(ts)α1g(s)ds, t(a,T], (2.4)

    where c0,c1,a0 are arbitrary real constants.

    We will consider an appropriate boundary value problem for a scalar impulsive linear equation, we will prove a formula for its solution and later we will apply it to obatin the main result.

    Consider the following boundary value problem for the linear impulsive fractional differential equation with Riemann-Liouville derivatives of the form

    RLDα0,tu(t)=f(t),   t(0,T],  ttj, j=1,2,p,  α(1,2),Δu(tj)=Ej(u(tj)),      Δu(tj)=Ej(u(tj))  j=1,2,,p,I2α0,tu(t)|t=0=u1,     μ1u(t)|t=T+ν1Iα10,tu(t)|t=T=u2, (2.5)

    where f: [0,T]R is a continuous function, Ej,Ej:RR are continuous functions, u1,u2R.

    Lemma 2. The solution of (2.5) satisfies the integral equation

    u(t)={c0tα1+u1Γ(α1)tα2+1Γ(α)t0(ts)α1f(s)ds,t(0,t1],c0tα1+(jk=1[t2αkEk(u(tk))](α2)jk=1[t1αkEk(u(tk))])tα1     +(u1Γ(α1)+(α1)jk=1t2αkEk(u(tk))jk=1t3αkEk(u(tk)))tα2     +1Γ(α)t0(ts)α1f(s)ds,t(tj,tj+1],

    where

    c0=(p+1k=1[t2αkEk(u(tk))](α2)p+1k=1[t1αkEk(u(tk))])     (u1Γ(α1)+(α1)p+1k=1t2αkEk(u(tk))p+1k=1t3αkEk(u(tk)))T1     1Tα1Γ(α)T0(Ts)α1f(s)ds      ν1μ1Tα1Γ(α1)T0(Ts)α2u(s)ds+u2μ1. (2.6)

    Proof. We will use induction.

    For t(0,t1] we apply Lemma 1 with a=0 and we get

    u(t)=c0tα1+c1tα2+1Γ(α)t0(ts)α1f(s)ds (2.7)

    and

    u(t)=c0(α1)tα2+c1(α2)tα3+α1Γ(α)t0(ts)α2f(s)ds. (2.8)

    From the initial condition I2α0,tu(t)|t=0=u1 and equalities (2.2), (2.7) we get

    I2α0,tu(t)|t=0=c0Γ(α)Γ(1)t|t=0+c1Γ(α1)Γ(0)|t=0+I20,tf(t)|t=0=c1Γ(α1),

    i.e. c1=u1Γ(α1).

    For t(t1,t2] by Lemma 1 with a=0 we get

    u(t)=b0tα1+b1tα2+1Γ(α)t0(ts)α1f(s)ds (2.9)

    and

    u(t)=b0(α1)tα2+b1(α2)tα3+1Γ(α1)t0(ts)α2f(s)ds. (2.10)

    From the impulsive condition u(t1+0)u(t10)=E1(u(t1)) we obtain

    u(t+1)=b0tα11+b1tα21+1Γ(α)t10(t1s)α1f(s)dsc0tα11u1Γ(α1)tα211Γ(α)t10(t1s)α1f(s)ds=(b0c0)tα11+(b1u1Γ(α1))tα21=E1(u(t1)). (2.11)

    and from the impulsive condition u(t1+0)u(t1)=E1(u(t1)) we get

    u(t+1)=b0(α1)tα21+b1(α2)tα31+1Γ(α1)t10(t1s)α2f(s)dsc0(α1)tα21u1Γ(α1)(α2)tα311Γ(α1)t10(t1s)α2f(s)ds=(b0c0)(α1)tα21+(b1u1Γ(α1))(α2)tα31=E1(u(t1)). (2.12)

    Thus we get the linear system w.r.t. b0 and b1

    (b0c0)(α1)tα21+(b1u1Γ(α1))(α2)tα31=E1(u(t1))(b0c0)tα11+(b1u1Γ(α1))tα21=E1(u(t1))

    or

    b0=c0+t2α1E1(u(t1))(α2)t1α1E1(u(t1))
    b1=(α1)t2α1E1(u(t1))t3α1E1(u(t1))+u1Γ(α1).

    Therefore,

    u(t)=c0tα1+(t2α1E1(u(t1))(α2)t1α1E1(u(t1)))tα1     +((α1)t2α1E1(u(t1))t3α1E1(u(t1))+u1Γ(α1))tα2     +1Γ(α)t0(ts)α1f(s)ds,   t(t1,t2]. (2.13)

    Assume the integral presentation of u(t) is correct on (tj1,tj], i.e

    u(t)=c0tα1+(j1k=1t2αkEk(u(tk))(α2)j1k=1t1αkEk(u(tk)))tα1     +((α1)j1k=1t2αkEk(u(tk))j1k=1t3αkEk(u(tk))+u1Γ(α1))tα2     +1Γ(α)t0(ts)α1f(s)ds,   t(tj1,tj]. (2.14)

    Denote

    m0=c0+j1k=1t2αkEk(u(tk))(α2)j1k=1t1αkEk(u(tk))

    and

    m1=(α1)j1k=1t2αkEk(u(tk))j1k=1t3αkEk(u(tk))+u1Γ(α1).

    Let t(tj,tj+1], j=2,,p,. By Lemma 1 with a=0 we get

    u(t)=k0tα1+k1tα2+1Γ(α)t0(ts)α1f(s)ds, (2.15)

    and

    u(t)=k0(α1)tα2+k1(α2)tα3+1Γ(α1)t0(ts)α2f(s)ds. (2.16)

    From the impulsive conditions and the equality (2.14) we obtain the linear system w.r.t. k0 and k1

    (k0m0)(α1)tα2j+(k1m1)(α2)tα3j=E2(u(t2))(k0m0)tα1j+(k1m1)tα2j=Ej(u(tj))

    or

    k0=c0+jk=1[t2αkEk(u(tk))](α2)jk=1[t1αkEk(u(tk))]
    k1=u1Γ(α1)+(α1)jk=1t2αkEk(u(tk))jk=1t3αkEk(u(tk)).

    Therefore,

    u(t)=c0tα1+(jk=1[t2αkEk(u(tk))](α2)jk=1[t1αkEk(u(tk))])tα1     +(u1Γ(α1)+(α1)jk=1t2αkEk(u(tk))jk=1t3αkEk(u(tk)))tα2     +1Γ(α)t0(ts)α1f(s)ds,   t(tj,tj+1], j=1,2,,p. (2.17)

    From the boundary condition μ1u(t)|t=T+ν1Iα1u(t)|t=T=u2 we get

    Iα1u(t)|t=T=1Γ(α1)T0(Ts)α2u(s)ds

    and

    μ1u(t)|t=T+ν1Iα1u(t)|t=T=μ1c0Tα1+μ1(p+1k=1[t2αkEk(u(tk))](α2)p+1k=1[t1αkEk(u(tk))])Tα1     +μ1(u1Γ(α1)+(α1)p+1k=1t2αkEk(u(tk))p+1k=1t3αkEk(u(tk)))Tα2     +μ11Γ(α)T0(Ts)α1ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds      +ν11Γ(α1)T0(Ts)α2u(s)ds=u2. (2.18)

    From (2.18) we have (2.6).

    We will give an example to illustrate the claim of Lemma 2.

    Example 1. Consider the following boundary value problem for the scalar RL fractional differential equation with an impulse at t=1

    RLD1.50,tu(t)=t,   t(0,1](1,2],Δu(1)=1,      Δu(1)=0,I0.50,tu(t)|t=0=0,     u(t)|t=2+I0.50,tu(t)|t=2=1. (2.19)

    The solution of (2.19) satisfies the integral equation

    u(t)={c0t0.5+t0.5Γ(0.5)+0.266667t2.5Γ(1.5),t(0,1]c0t0.5+0.5t0.5+(1Γ(0.5)+0.5)t0.5+0.266667t2.5Γ(1.5),t(1,2],

    where

    c0=0.251.5084920.5Γ(1.5)120.5Γ(0.5)20(2s)0.5u(s)ds. (2.20)

    Consider the boundary value problem for the nonlinear impulsive fractional integro-differential equations with Riemann-Liouville derivatives of the form

    RLDα0,tu(t)=ϕ1(t,Iα0,tu(t)),   t(0,T],  ttj, j=1,2,p,  α(1,2)Δu(tj)=Ej(u(tj)),      Δu(tj)=Ej(u(tj))  j=1,2,,p,I2α0,tu(t)|t=0=u1,     μ1u(t)|t=T+ν1Iα10,tu(t)|t=T=u2, (2.21)

    where ϕ1: [0,T]×RR is a continuous function, Ej,Ej:RR are continuous functions, u1,u2R.

    Corollary 1. The solution of (2.21) satisfies the integral equation

    u(t)={c0tα1+u1Γ(α1)tα2+1Γ(α)t0(ts)α1ϕ1(s,Iα0,su(s),)ds,  t(0,t1]c0tα1+(jk=1[t2αkEk(u(tk))](α2)jk=1[t1αkEk(u(tk))])tα1     +(u1Γ(α1)+(α1)jk=1t2αkEk(u(tk))jk=1t3αkEk(u(tk)))tα2     +1Γ(α)t0(ts)α1ϕ1(s,Iα0,su(s))ds,      t(tj,tj+1], (2.22)

    where

    c0=(p+1k=1[t2αkEk(u(tk))](α2)p+1k=1[t1αkEk(u(tk))])     (u1Γ(α1)+(α1)p+1k=1t2αkEk(u(tk))p+1k=1t3αkEk(u(tk)))T1     1Tα1Γ(α)T0(Ts)α1ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds      ν1μ1Tα1Γ(α1)T0(Ts)α2u(s)ds+u2μ1. (2.23)

    The proof of Corollary 1 is similar to the one of Lemma 2 with f(t)=ϕ1(t,Iα0,tu(t)) and we omit it.

    Remark 1. Corollary 1 and the integral presentation (2.22) correct Theorem 3.1 and the formula (3.2) [14]. The main mistake in the proof of formula (3.2) [14] is the incorrect application of Lemma 1 with a=0 on (t1,t2] and taking the lower limit of the integral in (3.5) [14] incorrectly at t1(σ1) instead of 0. A similar comment applies to all the other intervals (tj,tj+1].

    Following the proof of Lemma 2 and the integral presentation (2.22) of problem (2.21), we have the following result:

    Theorem 1. The solution of (2.1) satisfies the integral equations

    u(t)={c0tα1+u1Γ(α1)tα2+1Γ(α)t0(ts)α1ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds,  t(0,t1],c0tα1+(jk=1[t2αkEk(u(tk))](α2)jk=1[t1αkEk(u(tk))])tα1     +(u1Γ(α1)+(α1)jk=1t2αkEk(u(tk))jk=1t3αkEk(u(tk)))tα2     +1Γ(α)t0(ts)α1ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds,    t(tj,tj+1], (2.24)

    and

    v(t)={b0tα1+v1Γ(α1)tα2+1Γ(α)t0(ts)α1ϕ2(s,Iα0,su(s),Iβ0,sv(s))ds,  t(0,t1]b0tα1+(jk=1[t2αkSk(v(tk))](α2)jk=1[t1αkSk(v(tk))])tα1     +(u1Γ(α1)+(α1)jk=1t2αkSk(v(tk))jk=1t3αkSk(v(tk)))tα2     +1Γ(α)t0(ts)α1ϕ2(s,Iα0,su(s),Iβ0,sv(s))ds,    t(tj,tj+1], (2.25)

    where

    c0=(p+1k=1[t2αkEk(u(tk))](α2)p+1k=1[t1αkEk(u(tk))])     (u1Γ(α1)+(α1)p+1k=1t2αkEk(u(tk))p+1k=1t3αkEk(u(tk)))T1     1Tα1Γ(α)T0(Ts)α1ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds      ν1μ1Tα1Γ(α1)T0(Ts)α2u(s)ds+u2μ1b0=(p+1k=1[t2αkSk(v(tk))](α2)p+1k=1[t1αkSk(v(tk))])     (v1Γ(α1)+(α1)p+1k=1t2αkSk(v(tk))p+1k=1t3αkSk(v(tk)))T1     1Tα1Γ(α)T0(Ts)α1ϕ2(s,Iα0,su(s),Iβ0,sv(s))ds      ν2μ2Tα1Γ(α1)T0(Ts)α2v(s)ds+v2μ2. (2.26)

    The proof is similar to the one of Lemma 2 applied twice to each of the both components u and v of the coupled system (2.1) for impulsive points ti, i=1,2,,p and τi, i=1,2,,p and the functions f(t)=ϕ1(t,Iα0,tu(t),Iβ0,tv(t)) and f(t)=ϕ2(t,Iα0,tu(t),Iβ0,tv(t)) respectively.

    Remark 2. Note the integral presentation (2.24), (2.25) of the solutions of the coupled system is the correction of Corollary 1 and integral presentation (3.7), (3.8) in [14].

    Consider the following nonlinear boundary value problem for the coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives with lower limits at impulsive points ti, i=0,1,2,,p1 and τk, k=0,1,2,,q1, respectively,

    {{RLDαti,tu(t)ϕ1(t,Iα0,tu(t),Iβ0,tv(t))=0   for t(ti,ti+1]  i=0,1,2,,p,I2αtj,tu(t)|t=tj=Pju(tj)+Qj,  j=1,2,,p,I2α0,tu(t)|t=0=u1,     μ1u(t)|t=T+ν1Iα10,tu(t)|t=T=u2,{RLDβτk,tv(t)ϕ2(t,Iα0,tu(t),Iβ0,tv(t))=0   for t(τk,τk+1]  k=0,1,2,,q,I2ατk,tu(t)|t=τk=Pkv(τk)+Qjk,  k=1,2,,q,I2β0,tv(t)|t=0=v1,     μ2v(t)|t=T+ν2Iβ10,tv(t)|t=T=v2, (3.1)

    where α,β(1,2], ϕ1,ϕ2:I×R×RR are continuous functions, Pj,Qj, j=1,2,,p, and Pj,Qj, j=1,2,,q, are real numbers, RLDαti,t and RLDβτk,t are the α-order Riemann-Liouville fractional derivatives with lower limits at ti and τk, respectively, μk,νk,uk,vk, i=1,2, are given constants.

    Remark 3. Note problem (3.1) differs from problem (2.1):

    The lower limits of the RL fractional derivatives RLDαtj,t and RLDβτk,t in (3.1) are changed at any time of impulse tj and τk, respectively.

    The impulsive conditions are changed in (3.1). This is because the values of the unknown functions after the impulse, u(tj+0) and v(τk+0), respectively, are considered as initial values at that point. But the RL fractional derivative has a singularity at its lower limit. It requires the chang of the impulsive conditions for the unknown functions.

    Consider the following boundary value problem for the scalar linear impulsive fractional equation with Riemann-Liouville derivatives of the form

    RLDαti,tu(t)=f(t),   for t(ti,ti+1],  i=0,1,2,,p,  α(1,2)I2αtj,tu(t)|t=tj=Pju(tj)+Qj,  j=1,2,,p,I2α0,tu(t)|t=0=u1,     μ1u(t)|t=T+ν1Iα10,tu(t)|t=T=u2, (3.2)

    where the function f: [0,T]R is a continuous function, Pj,Qj, j=1,2,,p are real numbers, u1,u2R.

    Now we will provide an integral presentation of the solution of (3.2).

    Lemma 3. The solution of (3.2) satisfies the integral equation

    u(t)={c0tα1+u1Γ(α1)tα2+Iα0,tf(t),   t(0,t1](c0+u1t1Γ(α1))(ttm)α1mk=1Pk(tktk1)α1(α1)Γ(α1)    +Iαtm,tf(t)+(ttm)α1mk=1PkIαtk1,tf(t)|t=tk+Qk(α1)Γ(α1)mj=k+1Pj(tjtj1)α1(α1)Γ(α1),     for    t(tm,tm+1],m=1,2,,p,

    where

    c0=u2μ1(Ttp)1αMu1t1Γ(α1)(Ttp)1αMIαtp,tf(t)|t=TMpk=1PkIαtk1,tf(t)|t=tk+Qk(α1)Γ(α1)mj=k+1Pj(tjtj1)α1(α1)Γ(α1)      ν1μ1(Ttp)1αM1Γ(α1)T0(Ts)α2u(s)ds,M=(α1)pΓp(α1)pk=1Pk(tktk1)1α. (3.3)

    Proof. We will use induction.

    For t(0,t1] similar to Lemma 2 we get

    u(t)=c0tα1+c1tα2+1Γ(α)t0(ts)α1f(s)ds (3.4)

    where c1=u1Γ(α1).

    For t(t1,t2] by Lemma 1 with a=t1 we get

    u(t)=b0(tt1)α1+b1(tt1)α2+1Γ(α)tt1(ts)α1f(s)ds (3.5)

    and

    u(t)=b0(α1)(tt1)α2+b1(α2)(tt1)α3+1Γ(α1)tt1(ts)α2f(s)ds. (3.6)

    From the impulsive condition I2αt1,tu(t)|t=t1=P1u(t1)+Q1, equalities (2.2) and Iαt1,tf(t))|t=t1=0 we obtain

    I2αt1,tu(t)=b0(α1)I2αt1,t(tt1)α2+b1(α2)I2αt1,t(tt1)α3+I2αt1,tIα1t1,tf(t)=b0(α1)Γ(α1)+b1(α2)I2αt1,t(tt1)α3+I1t1,tf(t) (3.7)

    and

    I2αt1,tu(t)|t=t1=b0(α1)Γ(α1)+b1(α2)I2αt1,t(tt1)α3|t=t1=P1u(t1)+Q1<. (3.8)

    Since the integral I2αt1,t(tt1)α3 does not converge, it follows that b1=0 and

    b0=P1(α1)Γ(α1)(c0(t1t0)α1+u1t1Γ(α1)(t1t0)α1+Iαt0,tf(t)|t=t1)+Q1(α1)Γ(α1).

    Thus,

    u(t)=(c0+u1t1Γ(α1))P1(t1t0)α1(α1)Γ(α1)(tt1)α1   +P1(α1)Γ(α1)Iαt0,tf(t)|t=t1(tt1)α1   +Q1(α1)Γ(α1)(tt1)α1+Iαt1,tf(t). (3.9)

    Similarly, for t(tj,tj+1], j=1,2,,p, by Lemma 1 with a=tj we get

    u(t)=k0(ttj)α1+k1(ttj)α2+1Γ(α)ttj(ts)α1ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds (3.10)

    and

    u(t)=k0(α1)(ttj)α2+k1(α2)(ttj)α3+1Γ(α1)ttj(ts)α2ϕ1(s,Iα0,su(s),Iβ0,sv(s))ds. (3.11)

    From the impulsive conditions we obtain k1=0 and

    k0=Pj(α1)Γ(α1)u(tj)+Qj(α1)Γ(α1).

    From the boundary condition μ1u(t)|t=T+ν1Iα1u(t)|t=T=u2 we get

    Iα1u(t)|t=T=1Γ(α1)T0(Ts)α2u(s)ds

    and

    μ1u(t)|t=T+ν1Iα1u(t)|t=T=μ1(c0+u1t1Γ(α1))(Ttp)α1pk=1Pk(tktk1)α1(α1)Γ(α1)    +μ1Iαtp,tf(t)|t=T+μ1(Ttp)α1pk=1PkIαtk1,tf(t)|t=tk+Qk(α1)Γ(α1)mj=k+1Pj(tjtj1)α1(α1)Γ(α1)      +ν11Γ(α1)T0(Ts)α2u(s)ds=u2 (3.12)

    and we obtain (3.3).

    Example 2. Consider the equation

    RLD1.50,tu(t)=t,   t(0,1],       RLD1.51,tu(t)=t, t(1,2],I0.51,tu(t)|t=1=1,I0.50,tu(t)|t=0=0,     u(t)|t=2+I0.50,tu(t)|t=2=1. (3.13)

    Note the Eq (3.13) is similar to (2.19) but the lower limit of the fractional derivative is changed at the point of the impulse. The solution of (3.13) satisfies the integral equation

    u(t)={0.266667t2.5Γ(1.5),t(0,1],1Γ(1.5)(0.4(t1)2.5+2(t1)1.5t3)+(t1)0.5(0.5)Γ(0.5),t(1,2].

    It is clear the change of the lower limits of the fractional derivatives has a huge influence on the solution of the equation.

    Based on the integral presentation of the linear problem (3.2) and Lemma 3, we obtain the following result:

    Theorem 2. The solution of (3.1) satisfies the integral equations

    u(t)={c0tα1+u1Γ(α1)tα2+Iα0,tϕ1(t,Iα0,tu(t),Iβ0,tv(t)),   t(0,t1](c0+u1t1Γ(α1))(ttm)α1mk=1Pk(tktk1)α1(α1)Γ(α1)    +Iαtm,tϕ1(t,Iα0,tu(t),Iβ0,tv(t))    +(ttm)α1mk=1Pk Iαtk1,tϕ1(t,Iα0,tu(t),Iβ0,tv(t))|t=tk+Qk(α1)Γ(α1)mj=k+1Pj(tjtj1)α1(α1)Γ(α1),     for    t(tm,tm+1],m=1,2,,p,

    and

    v(t)={b0tα1+v1Γ(α1)tα2+Iα0,tϕ2(t,Iα0,tu(t),Iβ0,tv(t)),   t(0,τ1](b0+v1τ1Γ(α1))(tτm)α1mk=1Pk(τkτk1)α1(α1)Γ(α1)    +Iατm,tϕ2(t,Iα0,tu(t),Iβ0,tv(t))    +(tτm)α1mk=1Pk Iατk1,tϕ2(t,Iα0,tu(t),Iβ0,tv(t))|t=τk+Qk(α1)Γ(α1)mj=k+1Pj(τjτj1)α1(α1)Γ(α1),     for    t(τm,τm+1],m=1,2,,q,

    where

    c0=u2μ1(Ttp)1αMu1t1Γ(α1)   (Ttp)1αMIαtq,tϕ1(t,Iα0,tu(t),Iβ0,tv(t))|t=T   Mpk=1PkIαtk1,tϕ1(t,Iα0,tu(t),Iβ0,tv(t))|t=tk+Qk(α1)Γ(α1)pj=k+1Pj(tjtj1)α1(α1)Γ(α1)      ν1μ1(Ttp)1αM1Γ(α1)T0(Ts)α2u(s)ds,M=(α1)pΓp(α1)pk=1Pk(tktk1)1α,
    b0=v2μ2(Tτq)1αCv1τ1Γ(α1)   (Tτq)1αC Iατq,tϕ2(t,Iα0,tu(t),Iβ0,tv(t))t=T   Cqk=1Pk Iατk1,tϕ2(t,Iα0,tu(t),Iβ0,tv(t))|t=τk+Qk(α1)Γ(α1)qj=k+1Pj(τjτj1)α1(α1)Γ(α1)      ν2μ2(Ttq)1αC1Γ(α1)T0(Ts)α2u(s)ds,C=(α1)qΓq(α1)qk=1Pk(τkτk1)1α.

    The proof is similar to the one of Lemma 3 applied twice to each of the both components u and v of the coupled system (3.1) for impulsive points ti, i=1,2,,p and τi, i=1,2,,p and the functions f(t)=ϕ1(t,Iα0,tu(t),Iβ0,tv(t)) and f(t)=ϕ2(t,Iα0,tu(t),Iβ0,tv(t)) respectively.

    In this paper we set up and study a scalar nonlinear integro-differential equation with Riemann-Liouville fractional derivative and impulses. We consider a boundary value problem for the studied equation with Riemann-Liouville fractional derivative of order in (1,2). Note for Riemann-Liouville fractional differential equations both the initial condition and impulsive conditions have to be appropriately given (which is different in the case of ordinary derivatives as well as the case of Caputo fractional derivatives). We consider both interpretations in the literature on the presence of impulses in fractional differential equations: With fixed lower limit of the fractional derivative at the initial time point and with lower limits changeable at each impulsive time point. In both cases we set up in an appropriate way impulsive conditions which are dependent on the Riemann-Liouville fractional derivative. We obtain integral presentations of the solutions in both cases. These presentations could be successfully used for furure studies of existence, stability and other qualitative properties of the solutions of the integro-differential equations with Riemann-Liouville fractional derivative of order in (1,2) and impulses.

    S. H. is partially supported by the Bulgarian National Science Fund under Project KP-06-N32/7.

    The authors declare that they have no competing interests.



    [1] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 204 (2006).
    [2] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst.-S, 13 (2020), 709-722. doi: 10.3934/dcdss.2020039
    [3] F. Jarad, T. Abdeljawad, A modified Laplace transform for certain generalized fractional operators, Results Nonlinear Anal., 1 (2018), 88-98.
    [4] E. Bonyah, A. Atangana, M. Chand, Analysis of 3D IS-LM macroeconomic system model within the scope of fractional calculus, Chaos, Solitons Fractals: X, 2 (2019), 100007.
    [5] M. Yavuz, N. Ozdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal Fractional, 2 (2018), 1-11.
    [6] A. Atangana, S. I. Araz, Fractional stochastic modelling illustration with modified Chua attractor, Eur. Phys. J. Plus, 134 (2019), 1-23. doi: 10.1140/epjp/i2019-12286-x
    [7] S. Qureshi, A. Yusuf, Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu Chaos, Solitons Fractals, 122 (2019), 111-118.
    [8] S. Qureshi, A. Yusuf, Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator, Chaos, Solitons Fractals, 126 (2019), 32-40. doi: 10.1016/j.chaos.2019.05.037
    [9] M. Yavuz, E. Bonyah, New approaches to the fractional dynamics of schistosomiasis disease model, Phys. A: Stat. Mech. Appl., 525 (2019), 373-393. doi: 10.1016/j.physa.2019.03.069
    [10] F. A. Rihan, Q. M. Al-Mdallal, H. J. AlSakaji, et al. A fractional-order epidemic model with time-delay and nonlinear incidence rate, Solitons Fractals, 126 (2019), 97-105. doi: 10.1016/j.chaos.2019.05.039
    [11] E. Bas, R. Ozarslan, Real world applications of fractional models by Atangana-Baleanu fractional derivative, Chaos, Solitons Fractals, 116 (2018), 121-125. doi: 10.1016/j.chaos.2018.09.019
    [12] E. Bas, B. Acay, R. Ozarslan, Fractional models with singular and non-singular kernels for energy efficient buildings, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 023110.
    [13] A. Atangana, E. Bonyah, Fractional stochastic modeling: New approach to capture more heterogeneity, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 013118.
    [14] T. Abdeljawad, Fractional operators with boundary points dependent kernels and integration by parts, Discrete Contin. Dyn. Syst.-S, 13 (2019), 1098-1107.
    [15] Q. M. Al-Mdallal, On fractional-Legendre spectral Galerkin method for fractional Sturm-Liouville problems, Chaos, Solitons Fractals, 116 (2018), 261-267. doi: 10.1016/j.chaos.2018.09.032
    [16] B. Acay, E. Bas, T. Abdeljawad, Non-local fractional calculus from different viewpoint generated by truncated M-derivative, J. Comput. Appl. Math., 366 (2019), 112410.
    [17] E. Bas, B. Acay, R. Ozarslan, The price adjustment equation with different types of conformable derivatives in market equilibrium, AIMS Math., 4 (2019), 805-820. doi: 10.3934/math.2019.3.805
    [18] N. Sene, Stability analysis of the generalized fractional differential equations with and without exogenous inputs, J. Nonlinear Sci. Appl., 12 (2019), 562-572. doi: 10.22436/jnsa.012.09.01
    [19] M. Al-Refai, M. A. Hajji, Analysis of a fractional eigenvalue problem involving Atangana-Baleanu fractional derivative: A maximum principle and applications, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 013135.
    [20] E. Bas, R. Yilmazer, E. Panakhov, Fractional Solutions of Bessel Equation with N-Method, Sci. World J., 2013 (2013), 1-9.
    [21] M. G. Sakar, O. Saldır, Improving variational iteration method with auxiliary parameter for nonlinear time-fractional partial differential equations, J. Optim. Theory Appl., 174 (2017), 530-549. doi: 10.1007/s10957-017-1127-y
    [22] M. G. Sakar, Numerical solution of neutral functional-differential equations with proportional delays, Int. J. Optim. Control: Theory Appl. (IJOCTA), 7 (2017), 186-194. doi: 10.11121/ijocta.01.2017.00360
    [23] E. Bas, R. Ozarslan, D. Baleanu, et al. Comparative simulations for solutions of fractional Sturm-Liouville problems with non-singular operators, Adv. Differ. Equations, 2018 (2018), 1-19. doi: 10.1186/s13662-017-1452-3
    [24] S. A. A. Shah, M. A. Khan, M. Farooq, et al., A fractional order model for Hepatitis B virus with treatment via Atangana-Baleanu derivative, Phys. A: Stat. Mech. Appl., 538 (2020), 122636.
    [25] E. O. Alzahrani, M. A. Khan, Comparison of numerical techniques for the solution of a fractional epidemic model, Eur. Phys. J. Plus, 135 (2020), 1-28. doi: 10.1140/epjp/s13360-019-00059-2
    [26] M. A. Khan, O. Kolebaje, A. Yildirim, et al. Fractional investigations of zoonotic visceral leishmaniasis disease with singular and non-singular kernel, Eur. Phys. J. Plus, 134 (2019), 1-29. doi: 10.1140/epjp/i2019-12286-x
    [27] M. A. Khan, A. Khan, A. Elsonbaty, et al. Modeling and simulation results of a fractional dengue model, Eur. Phy. J. Plus, 134 (2019), 1-15. doi: 10.1140/epjp/i2019-12286-x
    [28] S. Ullah, M. A. Khan, M. Farooq, et al. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative, Discrete Contin. Dyn. Syst.-S, 13 (2019), 937-956.
    [29] M. A. Khan, S. Ullah, M. Farhan, The dynamics of Zika virus with Caputo fractional derivative, AIMS Math., 4 (2019), 134-146. doi: 10.3934/Math.2019.1.134
    [30] J. R. Garcia, M. G. Calderon, J. M. Ortiz, et al. Motion of a particle in a resisting medium using fractional calculus approach, Proc. Romanian Acad. A, 14 (2013), 42-47.
    [31] S. Salahshour, A. Ahmadian, F. Ismail, et al. A fractional derivative with non-singular kernel for interval-valued functions under uncertainty, Optik, 130 (2017), 273-286. doi: 10.1016/j.ijleo.2016.10.044
    [32] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87-92.
    [33] T. Abdeljawad, Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals, Chaos: Interdiscip. J. Nonlinear Sci., 29 (2019), 023102.
    [34] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 1-13.
    [35] A. Atangana, D. Baleanu, New fractional derivatives with non-local and nonsingular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A
    [36] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.
    [37] F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619. doi: 10.22436/jnsa.010.05.27
    [38] S. Liang, R. Wu, L. Chen, Laplace transform of fractional order differential equations. Electron. J. Differ. Equations, 139 (2015), 1-15.
    [39] A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), 1-5.
    [40] T. Abdeljawad, Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos, Solitons Fractals, 126 (2019), 315-324. doi: 10.1016/j.chaos.2019.06.012
  • This article has been cited by:

    1. Vitor Miguel Ribeiro, Pioneering paradigms: unraveling niche opportunities in green finance through bibliometric analysis of nation brands and brand culture, 2024, 6, 2643-1092, 287, 10.3934/GF.2024012
    2. Manuel Mojica, Pedro R. Palos-Sanchez, Edgar Cabanas, Is there innovation management of emotions or just the commodification of happiness? A sentiment analysis of happiness apps, 2024, 1460-1060, 10.1108/EJIM-11-2023-0963
    3. Pedro R. Palos-Sanchez, Raúl J. Chang-Tam, José A. Folgado-Fernández, The Role of Neobanks and FinTech in Sustainable Finance and Technology. The Customer/User Perspective for Entrepreneurs, 2025, 27730328, 100109, 10.1016/j.stae.2025.100109
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5186) PDF downloads(499) Cited by(19)

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog