Citation: Qaiser Khan, Muhammad Arif, Bakhtiar Ahmad, Huo Tang. On analytic multivalent functions associated with lemniscate of Bernoulli[J]. AIMS Mathematics, 2020, 5(3): 2261-2271. doi: 10.3934/math.2020149
[1] | Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On $ q $-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185 |
[2] | Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by $ q $-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493 |
[3] | Ekram E. Ali, Rabha M. El-Ashwah, R. Sidaoui . Application of subordination and superordination for multivalent analytic functions associated with differintegral operator. AIMS Mathematics, 2023, 8(5): 11440-11459. doi: 10.3934/math.2023579 |
[4] | Sarem H. Hadi, Maslina Darus, Choonkil Park, Jung Rye Lee . Some geometric properties of multivalent functions associated with a new generalized $ q $-Mittag-Leffler function. AIMS Mathematics, 2022, 7(7): 11772-11783. doi: 10.3934/math.2022656 |
[5] | Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248 |
[6] | Cai-Mei Yan, Jin-Lin Liu . On second-order differential subordination for certain meromorphically multivalent functions. AIMS Mathematics, 2020, 5(5): 4995-5003. doi: 10.3934/math.2020320 |
[7] | Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent $ q $-starlike functions of order $ \alpha $. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320 |
[8] | Nazar Khan, Bilal Khan, Qazi Zahoor Ahmad, Sarfraz Ahmad . Some Convolution Properties of Multivalent Analytic Functions. AIMS Mathematics, 2017, 2(2): 260-268. doi: 10.3934/Math.2017.2.260 |
[9] | Yu-Qin Tao, Yi-Hui Xu, Rekha Srivastava, Jin-Lin Liu . Geometric properties of a certain class of multivalent analytic functions associated with the second-order differential subordination. AIMS Mathematics, 2021, 6(1): 390-403. doi: 10.3934/math.2021024 |
[10] | Wei-Mao Qian, Miao-Kun Wang . Sharp bounds for Gauss Lemniscate functions and Lemniscatic means. AIMS Mathematics, 2021, 6(7): 7479-7493. doi: 10.3934/math.2021437 |
To understand in a clear way the notions used in our main results, we need to add here some basic literature of Geometric function theory. For this we start first with the notation A which denotes the class of holomorphic or analytic functions in the region D={z∈C:|z|<1} and if a function g∈A, then the relations g(0)=g′(0)−1=0 must hold. Also, all univalent functions will be in a subfamily S of A. Next we consider to define the idea of subordinations between analytic functions g1 and g2, indicated by g1(z)≺g2(z), as; the functions g1,g2∈A are connected by the relation of subordination, if there exists an analytic function w with the restrictions w(0)=0 and |w(z)|<1 such that g1(z)=g2(w(z)). Moreover, if the function g2∈S in D, then we obtain:
g1(z)≺g2(z)⇔[g1(0)=g2(0) & g1(D)⊂g1(D)]. |
In 1992, Ma and Minda [16] considered a holomorphic function φ normalized by the conditions φ(0)=1 and φ′(0)>0 with Reφ>0 in D. The function φ maps the disc D onto region which is star-shaped about 1 and symmetric along the real axis. In particular, the function φ(z)=(1+Az)/(1+Bz), (−1≤B<A≤1) maps D onto the disc on the right-half plane with centre on the real axis and diameter end points 1−A1−B and 1+A1+B. This interesting familiar function is named as Janowski function [10]. The image of the function φ(z)=√1+z shows that the image domain is bounded by the right-half of the Bernoulli lemniscate given by |w2−1|<1, [25]. The function φ(z)=1+43z+23z2 maps D into the image set bounded by the cardioid given by (9x2+9y2−18x+5)2−16(9x2+9y2−6x+1)=0, [21] and further studied in [23]. The function φ(z)=1+sinz was examined by Cho and his coauthors in [3] while φ(z)=ez is recently studied in [17] and [24]. Further, by choosing particular φ, several subclasses of starlike functions have been studied. See the details in [2,4,5,11,12,14,19].
Recently, Ali et al. [1] have obtained sufficient conditions on α such that
1+zg′(z)/gn(z)≺√1+z⇒g(z)≺√1+z,for n=0,1,2. |
Similar implications have been studied by various authors, for example see the works of Halim and Omar [6], Haq et al [7], Kumar et al [13,15], Paprocki and Sokól [18], Raza et al [20] and Sharma et al [22].
In 1994, Hayman [8] studied multivalent (p-valent) functions which is a generalization of univalent functions and is defined as: an analytic function g in an arbitrary domain D⊂C is said to be p-valent, if for every complex number ω, the equation g(z)=ω has maximum p roots in D and for a complex number ω0 the equation g(z)=ω0 has exactly p roots in D. Let Ap (p∈N={1,2,…}) denote the class of functions, say g∈Ap, that are multivalent holomorphic in the unit disc D and which have the following series expansion:
g(z)=zp+∞∑k=p+1akzk, (z∈D). | (1.1) |
Using the idea of multivalent functions, we now introduce the class SL∗p of multivalent starlike functions associated with lemniscate of Bernoulli and as given below:
SL∗p={g(z)∈Ap:zg′(z)pg(z)≺√1+z, (z∈D)}. |
In this article, we determine conditions on α such that for each
1+αz2+p(j−1)g′(z)pgj(z), for each j=0,1,2,3, |
are subordinated to Janowski functions implies g(z)zp≺√1+z, (z∈D). These results are then utilized to show that g are in the class SL∗p.
Let w be analytic non-constant function in D with w(0)=0. If
|w(z0)|=max{|w(z)|, |z|≤|z0|}, z∈D, |
then there exists a real number m (m≥1) such that z0w′(z0)=mw(z0).
This Lemma is known as Jack's Lemma and it has been proved in [9].
Let g∈Ap and satisfying
1+αz1−pg′(z)p≺1+Az1+Bz, |
with the restriction on α is
|α|≥232p(A−B)1−|B|−4p(1+|B|). | (2.1) |
Then
g(z)zp≺√1+z. |
Proof
Let us define a function
p(z)=1+αz1−pg′(z)p, | (2.2) |
where the function p is analytic in D with p(0)=1. Also consider
g(z)zp=√1+w(z). | (2.3) |
Now to prove our result we will only require to prove that |w(z)|<1. Logarithmically differentiating (2.3) and then using (2.2), we get
p(z)=1+αzw′(z)2p√1+w(z)+α√1+w(z), |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p√1+w(z)+α√1+w(z)A−B(1+αzw′(z)2p√1+w(z)+α√1+w(z))|=|αzw′(z)+2pα(1+w(z))2p(A−B)√1+w(z)−B(αzw′(z)+2pα(1+w(z)))|. |
Now, we suppose that a point z0∈D occurs such that
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Also by Lemma 1.1, a number m≥1 exists with z0w′(z0)=mw(z0). In addition, we also suppose that w(z0)=eiθ for θ∈[−π,π]. Then we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)−2pα(1+w(z0))2p(A−B)√1+w(z0)−B(αmw(z0)+2pα(1+w(z0)))|,≥|α|m−2p|α|(|1+eiθ|)2p(A−B)√|1+eiθ|+|B|(|α|m+2pα|1+eiθ|),≥|α|m−4p|α|232p(A−B)+|B||α|(m+4p). |
Now if
ϕ(m)=|α|(m−4p)232p(A−B)+|B||α|(m+4p), |
then
ϕ′(m)=232p(A−B)|α|+8|α|2p|B|(232p(A−B)+|B||α|(m+4p))2>0, |
which illustrates that the function ϕ(m) is increasing and hence ϕ(m)≥ϕ(1) for m≥1, so
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)232p(A−B)+|B||α|(1+4p). |
Now, by using (2.1), we have
|p(z0)−1A−Bp(z0)|≥1 |
which contradicts the fact that p(z)≺1+Az1+Bz. Thus |w(z)|<1 and so we get the desired result.
Taking g(z)=zp+1f′(z)pf(z) in the last result, we obtain the following Corollary:
Let f∈Ap and satisfying
1+αzf′(z)p2f(z)(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, | (2.4) |
with the condition on α is
|α|≥232p(A−B)1−|B|−4p(1+|B|). |
Then f∈SL∗p.
If g∈Ap such that
1+αpzg′(z)g(z)≺1+Az1+Bz, | (2.5) |
with
|α|≥8p(A−B)1−|B|−4p(1+|B|), | (2.6) |
then
g(z)zp≺√1+z. |
Proof
Let us choose a function p by
p(z)=1+αzg′(z)pg(z), |
in such a way that p is analytic in D with p(0)=1. Also consider
g(z)zp=√1+w(z). |
Using some simple calculations, we obtain
p(z)=1+αzw′(z)2p(1+w(z))+α, |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p(1+w(z))+αA−B(1+αzw′(z)2p(1+w(z))+α)|=|αzw′(z)+2pα(1+w(z))2p(A−B)(1+w(z))−B(αzw′(z)+2pα(1+w(z)))|. |
Let a point z0∈D exists in such a way
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Then, by virtue of Lemma 1.1, a number m≥1 occurs such that z0w′(z0)=mw(z0). In addition, we set w(z0)=eiθ, so we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(A−B)(1+w(z0))−B(αmw(z0)+2pα(1+w(z0)))|,≥|α|m−2p|α||1+eiθ|2(A−B)|1+eiθ|+|B||α|m+2p|B||α||1+eiθ|,=|α|m−2p|α|√2+2cosθ2(2(A−B)+|B||α|)p√2+2cosθ+|B||α|m,≥|α|(m−4p)4p(2(A−B)+|B||α|)+|B||α|m. |
Now let
ϕ(m)=|α|(m−4p)4p(2(A−B)+|B||α|)+|B||α|m, |
it implies
ϕ′(m)=|α|8p((A−B)+|α||B|)(4p(2(A−B)+|B||α|)+|B||α|m)2>0, |
which illustrates that the function ϕ(m) is increasing and so ϕ(m)≥ϕ(1) for m≥1, hence
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)4p(2(A−B)+|B||α|)+|B||α|. |
Now, by using (2.6), we have
|p(z0)−1A−Bp(z0)|≥1, |
which contradicts (2.5). Thus |w(z)|<1 and so the desired proof is completed.
Putting g(z)=zp+1f′(z)pf(z) in last Theorem, we get the following Corollary:
If f∈Ap and satisfying
1+αp(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, |
with
|α|≥8p(A−B)1−|B|−4p(1+|B|), |
then f∈SL∗p.
If g∈Ap and satisfy the subordination relation
1+αz1−pg′(z)p(g(z))2≺1+Az1+Bz, | (2.7) |
with the condition on α
|α|≥252p(A−B)1−|B|−4p(1+|B|) | (2.8) |
is true, then
g(z)zp≺√1+z. |
Proof
Let us define a function
p(z)=1+αz1−pg′(z)p(g(z))2. |
Then p is analytic in D with p(0)=1. Also let us consider
g(z)zp=√1+w(z). |
Using some simplification, we obtain
p(z)=1+αzw′(z)2p(1+w(z))32+α√1+w(z), |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p(1+w(z))32+α√1+w(z)A−B(1+αzw′(z)2p(1+w(z))32+α√1+w(z))|=|αzw′(z)+2pα(1+w(z))2p(A−B)(1+w(z))32−Bαzw′(z)−2pαB(1+w(z))|. |
Let us choose a point z0∈D such a way that
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Then, by the consequences of Lemma 1.1, a number m≥1 occurs such that z0w′(z0)=mw(z0) and also put w(z0)=eiθ,for θ∈[−π,π], we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(A−B)(1+w(z0))32−Bαmw(z0)−2pαB(1+w(z0))|,≥|α|m−2p|α||1+eiθ|2p(A−B)|1+eiθ|32+|B||α|m+2p|α||B||1+eiθ|,=|α|m−4p|α|252p(A−B)+|B||α|m+4p|α||B|,≥|α|(m−4p)252p(A−B)+|B||α|m+4p|α||B|=ϕ(m) (say). |
Then
ϕ′(m)=252p(A−B)+8|α|2|B|p(252p(A−B)+B|α|m+4p|α|B)2>0, |
which demonstrates that the function ϕ(m) is increasing and thus ϕ(m)≥ϕ(1) for m≥1, hence
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)252p(A−B)+|B||α|+4p|α||B|. |
Now, using (2.8), we have
|p(z0)−1A−Bp(z0)|≥1, |
which contradicts (2.7). Thus |w(z)|<1 and so we get the required proof.
If we set g(z)=zp+1f′(z)pf(z) in last theorem, we easily have the following Corollary:
Assume that
|α|≥252p(A−B)1−|B|−4p(1+|B|), |
and if f∈Ap satisfy
1+αf(z)z2p+1f′(z)(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, |
then f∈SL∗p.
If g∈Ap satisfy the subordination
1+αz1−2pg′(z)p(g(z))3≺1+Az1+Bz, |
with restriction on α is
|α|≥8p(A−B)1−|B|−4p(1+|B|). | (2.9) |
then
g(z)zp≺√1+z. |
Proof. Let us define a function
p(z)=1+αz1−2pg′(z)p(g(z))3, |
where p is analytic in D with p(0)−1=0. Also let
g(z)zp=√1+w(z). |
Using some simple calculations, we obtain
p(z)=1+αzw′(z)2p(1+w(z))2+α1+w(z), |
and so
|p(z)−1A−Bp(z)|=|αzw′(z)2p(1+w(z))2+α1+w(z)A−B(1+αzw′(z)2p(1+w(z))2+α1+w(z))|=|αzw′(z)+2pα(1+w(z))2p(A−B)(1+w(z))2−Bαzw′(z)−2pαB(1+w(z))|. |
Let us pick a point z0∈D in such a way that
max|z|≤|z0||w(z)|=|w(z0)|=1. |
Then, by using Lemma 1.1, a number m≥1 exists such that z0w′(z0)=mw(z0) and put w(z0)=eiθ, for θ∈[−π,π], we have
|p(z0)−1A−Bp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(A−B)(1+w(z0))2−Bαmw(z0)−2pαB(1+w(z0))|≥|α|m−2p|α||1+eiθ|2p(A−B)|1+eiθ|2+|B||α|m+2p|α||B||1+eiθ|=|α|m−2p|α|√2+2cosθ2p(A−B)(√2+2cosθ)2+|B||α|m+2p|α||B|√2+2cosθ≥|α|(m−4p)8p(A−B)+|B||α|m+4p|α||B|, |
Now let
ϕ(m)=|α|(m−4p)8p(A−B)+|B||α|m+4p|α||B|, |
then
ϕ′(m)=8p|α|(A−B)+8|α|2|B|p(8p(A−B)+|B||α|m+4p|α||B|)2>0 |
which shows that ϕ(m) is an increasing function and hence it will have its minimum value at m=1, so
|p(z0)−1A−Bp(z0)|≥|α|(1−4p)8p(A−B)+|B||α|+4p|α||B|. |
Using (2.9), we easily obtain
|p(z0)−1A−Bp(z0)|≥1, |
which is a contradiction to the fact that p(z)≺1+Az1+Bz, and so |w(z)|<1. Hence we get the desired result.
If we put g(z)=zp+1f′(z)pf(z) in last Theorem, we achieve the following result:
If f∈Ap and satisfy the condition
|α|≥8p(A−B)1−|B|−4p(1+|B|), |
and
1+αp(f(z))2z3p+2(f′(z))2(p+1+zf′′(z)f′(z)−zf′(z)f(z))≺1+Az1+Bz, |
then f∈SL∗p.
All authors declare no conflict of interest in this paper.
[1] |
R. M. Ali, N. E. Cho, V. Ravichandran, et al. Differential subordination for functions associated with the lemniscate of Bernoulli's, Taiwan. J. Math., 16 (2012), 1017-1026. doi: 10.11650/twjm/1500406676
![]() |
[2] | M. Arif, K. Ahmad, J.-L. Liu, et al. A new class of analytic functions associated with Salagean operator, Journal of Function Spaces, 2019. |
[3] |
N. E. Cho, V. Kumar, S. S. Kumar, Ravichandran. Radius problems for starlike functions associated with the sine function, B. Iran. Math. Soc., 45 (2019), 213-232. doi: 10.1007/s41980-018-0127-5
![]() |
[4] | N. E. Cho, S. Kumar, V. Kumar, et al. Starlike functions related to the Bell numbers, Symmetry, 11 (2019), 219. |
[5] |
J. Dziok, R. K. Raina, J. Sokół, On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comput. Model., 57 (2013), 1203-1211. doi: 10.1016/j.mcm.2012.10.023
![]() |
[6] | S. A. Halim, R. Omar, Applications of certain functions associated with lemniscate Bernoulli, Journal of the Indonesian Mathematical Society, 18 (2012), 93-99. |
[7] | M. Haq, M. Raza, M. Arif, et al. q-analogue of differential subordinations, Mathematics, 7 ( 2019), 724. |
[8] | W. H. Hayman, Multivalent Functions, Second Edition, Cambridge Uni. Press, 1994. |
[9] | I. S. Jack, Functions starlike and convex of order alpha, J. Lond. Math. Soc., 2 (1971), 469-474. |
[10] |
W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math., 23 (1970), 159-177. doi: 10.4064/ap-23-2-159-177
![]() |
[11] | S. Kanas, D. Răducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183-1196. |
[12] |
R. Kargar, A. Ebadian, J. Sokół, On Booth lemniscate and starlike functions, Anal. Math. Phys., 9 (2019), 143-154. doi: 10.1007/s13324-017-0187-3
![]() |
[13] | S. S. Kumar, V. Kumar, V. Ravichandran, et al. Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl., 2013 (2013), 176. |
[14] | S. Kumar, V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bulletin of Mathematics, 40 (2016), 199-212. |
[15] |
S. Kumar, V. Ravichandran, Subordinations for functions with positive real part, Complex Anal. Oper. Th., 12 (2018), 1179-1191. doi: 10.1007/s11785-017-0690-4
![]() |
[16] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceeding of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang and S. Zhang (Eds), Int. Press, 1994. |
[17] |
R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, B. Malays. Math. Sci. So., 38 (2015), 365-386. doi: 10.1007/s40840-014-0026-8
![]() |
[18] | E. Paprocki, J. Sokół, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 20 (1996), 89-94. |
[19] |
R. K. Raina, J. Sokół, On coefficient estimates for a certain class of starlike functions, Hacettepe Journal of Mathematics and Statistics, 44 (2015), 1427-1433. |
[20] |
M. Raza, J. Sokół, M. Mushtaq, Differential Subordinations for Analytic Functions, Iranian Journal of Science and Technology, Transactions A: Science, 43 (2019), 883-890. doi: 10.1007/s40995-017-0430-7
![]() |
[21] |
K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afrika Matematika, 27 (2016), 923-939. doi: 10.1007/s13370-015-0387-7
![]() |
[22] | K. Sharma, V. Ravichandran, Applications of subordination theory to starlike functions, B. Iran. Math. Soc., 42 (2016), 761-777. |
[23] | L. Shi, I. Ali, M. Arif, et al. A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain, Mathematics, 7 (2019), 418. |
[24] | L. Shi, H. M. Srivastava, M. Arif, et al. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry, 11 (2019), 598. |
[25] | J. Sokół, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk, Politech. Rzeszowskiej Mat., 19 (1996), 101-105. |
1. | Huseyin IRMAK, A variety of multivalently analytic functions with complex coefficients and some argument properties of their applications, 2021, 1016-2526, 367, 10.52280/pujm.2021.530601 | |
2. | Lei Shi, Muhammad Arif, Syed Zakar Hussain Bukhari, Malik Ali Raza, Some New Sufficient Conditions on p-Valency for Certain Analytic Functions, 2023, 12, 2075-1680, 295, 10.3390/axioms12030295 | |
3. | Khalil Ullah, Jihad Younis, Khurshid Ahmad, A Manickam, Bilal Khan, Mirajul Haq, Upper Bound of the Third Hankel Determinant for a Subclass of Multivalent Functions Associated with the Bernoulli Lemniscate, 2021, 9, 2309-0022, 37, 10.21015/vtm.v9i1.1022 |