Research article

On analytic multivalent functions associated with lemniscate of Bernoulli

  • Received: 25 October 2019 Accepted: 07 February 2020 Published: 02 March 2020
  • MSC : 30C45, 30C50

  • In this paper, we establish some sufficient conditions for analytic functions associated with lemniscate of Bernoulli. In particular, we determine conditions on α such that 1+αz2+p(j1)g(z)pgj(z), for each j=0,1,2,3, are subordinated by Janowski function, then g(z)zp1+z, (zD). By choosing particular values of functions g, we obtain some sufficient conditions for multivalent starlike functions associated with lemniscate of Bernoulli.

    Citation: Qaiser Khan, Muhammad Arif, Bakhtiar Ahmad, Huo Tang. On analytic multivalent functions associated with lemniscate of Bernoulli[J]. AIMS Mathematics, 2020, 5(3): 2261-2271. doi: 10.3934/math.2020149

    Related Papers:

    [1] Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On $ q $-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185
    [2] Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by $ q $-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493
    [3] Ekram E. Ali, Rabha M. El-Ashwah, R. Sidaoui . Application of subordination and superordination for multivalent analytic functions associated with differintegral operator. AIMS Mathematics, 2023, 8(5): 11440-11459. doi: 10.3934/math.2023579
    [4] Sarem H. Hadi, Maslina Darus, Choonkil Park, Jung Rye Lee . Some geometric properties of multivalent functions associated with a new generalized $ q $-Mittag-Leffler function. AIMS Mathematics, 2022, 7(7): 11772-11783. doi: 10.3934/math.2022656
    [5] Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248
    [6] Cai-Mei Yan, Jin-Lin Liu . On second-order differential subordination for certain meromorphically multivalent functions. AIMS Mathematics, 2020, 5(5): 4995-5003. doi: 10.3934/math.2020320
    [7] Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent $ q $-starlike functions of order $ \alpha $. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320
    [8] Nazar Khan, Bilal Khan, Qazi Zahoor Ahmad, Sarfraz Ahmad . Some Convolution Properties of Multivalent Analytic Functions. AIMS Mathematics, 2017, 2(2): 260-268. doi: 10.3934/Math.2017.2.260
    [9] Yu-Qin Tao, Yi-Hui Xu, Rekha Srivastava, Jin-Lin Liu . Geometric properties of a certain class of multivalent analytic functions associated with the second-order differential subordination. AIMS Mathematics, 2021, 6(1): 390-403. doi: 10.3934/math.2021024
    [10] Wei-Mao Qian, Miao-Kun Wang . Sharp bounds for Gauss Lemniscate functions and Lemniscatic means. AIMS Mathematics, 2021, 6(7): 7479-7493. doi: 10.3934/math.2021437
  • In this paper, we establish some sufficient conditions for analytic functions associated with lemniscate of Bernoulli. In particular, we determine conditions on α such that 1+αz2+p(j1)g(z)pgj(z), for each j=0,1,2,3, are subordinated by Janowski function, then g(z)zp1+z, (zD). By choosing particular values of functions g, we obtain some sufficient conditions for multivalent starlike functions associated with lemniscate of Bernoulli.


    To understand in a clear way the notions used in our main results, we need to add here some basic literature of Geometric function theory. For this we start first with the notation A which denotes the class of holomorphic or analytic functions in the region D={zC:|z|<1} and if a function gA, then the relations g(0)=g(0)1=0 must hold. Also, all univalent functions will be in a subfamily S of A. Next we consider to define the idea of subordinations between analytic functions g1 and g2, indicated by g1(z)g2(z), as; the functions g1,g2A are connected by the relation of subordination, if there exists an analytic function w with the restrictions w(0)=0 and |w(z)|<1 such that g1(z)=g2(w(z)). Moreover, if the function g2S in D, then we obtain:

    g1(z)g2(z)[g1(0)=g2(0)   g1(D)g1(D)].

    In 1992, Ma and Minda [16] considered a holomorphic function φ normalized by the conditions φ(0)=1 and φ(0)>0 with Reφ>0 in D. The function φ maps the disc D onto region which is star-shaped about 1 and symmetric along the real axis. In particular, the function φ(z)=(1+Az)/(1+Bz), (1B<A1) maps D onto the disc on the right-half plane with centre on the real axis and diameter end points 1A1B and 1+A1+B. This interesting familiar function is named as Janowski function [10]. The image of the function φ(z)=1+z shows that the image domain is bounded by the right-half of the Bernoulli lemniscate given by |w21|<1, [25]. The function φ(z)=1+43z+23z2 maps D into the image set bounded by the cardioid given by (9x2+9y218x+5)216(9x2+9y26x+1)=0, [21] and further studied in [23]. The function φ(z)=1+sinz was examined by Cho and his coauthors in [3] while φ(z)=ez is recently studied in [17] and [24]. Further, by choosing particular φ, several subclasses of starlike functions have been studied. See the details in [2,4,5,11,12,14,19].

    Recently, Ali et al. [1] have obtained sufficient conditions on α such that

    1+zg(z)/gn(z)1+zg(z)1+z,for n=0,1,2.

    Similar implications have been studied by various authors, for example see the works of Halim and Omar [6], Haq et al [7], Kumar et al [13,15], Paprocki and Sokól [18], Raza et al [20] and Sharma et al [22].

    In 1994, Hayman [8] studied multivalent (p-valent) functions which is a generalization of univalent functions and is defined as: an analytic function g in an arbitrary domain DC is said to be p-valent, if for every complex number ω, the equation g(z)=ω has maximum p roots in D and for a complex number ω0 the equation g(z)=ω0 has exactly p roots in D. Let Ap (pN={1,2,}) denote the class of functions, say gAp, that are multivalent holomorphic in the unit disc D and which have the following series expansion:

    g(z)=zp+k=p+1akzk, (zD). (1.1)

    Using the idea of multivalent functions, we now introduce the class SLp of multivalent starlike functions associated with lemniscate of Bernoulli and as given below:

    SLp={g(z)Ap:zg(z)pg(z)1+z, (zD)}.

    In this article, we determine conditions on α such that for each

    1+αz2+p(j1)g(z)pgj(z), for each j=0,1,2,3,

    are subordinated to Janowski functions implies g(z)zp1+z, (zD). These results are then utilized to show that g are in the class SLp.

    Let w be analytic non-constant function in D with w(0)=0. If

    |w(z0)|=max{|w(z)|,   |z||z0|},  zD,

    then there exists a real number m (m1) such that z0w(z0)=mw(z0).

    This Lemma is known as Jack's Lemma and it has been proved in [9].

    Let gAp and satisfying

    1+αz1pg(z)p1+Az1+Bz,

    with the restriction on α is

    |α|232p(AB)1|B|4p(1+|B|). (2.1)

    Then

    g(z)zp1+z.

    Proof

    Let us define a function

    p(z)=1+αz1pg(z)p, (2.2)

    where the function p is analytic in D with p(0)=1. Also consider

    g(z)zp=1+w(z). (2.3)

    Now to prove our result we will only require to prove that |w(z)|<1. Logarithmically differentiating (2.3) and then using (2.2), we get

    p(z)=1+αzw(z)2p1+w(z)+α1+w(z),

    and so

    |p(z)1ABp(z)|=|αzw(z)2p1+w(z)+α1+w(z)AB(1+αzw(z)2p1+w(z)+α1+w(z))|=|αzw(z)+2pα(1+w(z))2p(AB)1+w(z)B(αzw(z)+2pα(1+w(z)))|.

    Now, we suppose that a point z0D occurs such that

    max|z||z0||w(z)|=|w(z0)|=1.

    Also by Lemma 1.1, a number m1 exists with z0w(z0)=mw(z0). In addition, we also suppose that w(z0)=eiθ for θ[π,π]. Then we have

    |p(z0)1ABp(z0)|=|αmw(z0)2pα(1+w(z0))2p(AB)1+w(z0)B(αmw(z0)+2pα(1+w(z0)))|,|α|m2p|α|(|1+eiθ|)2p(AB)|1+eiθ|+|B|(|α|m+2pα|1+eiθ|),|α|m4p|α|232p(AB)+|B||α|(m+4p).

    Now if

    ϕ(m)=|α|(m4p)232p(AB)+|B||α|(m+4p),

    then

    ϕ(m)=232p(AB)|α|+8|α|2p|B|(232p(AB)+|B||α|(m+4p))2>0,

    which illustrates that the function ϕ(m) is increasing and hence ϕ(m)ϕ(1) for m1, so

    |p(z0)1ABp(z0)||α|(14p)232p(AB)+|B||α|(1+4p).

    Now, by using (2.1), we have

    |p(z0)1ABp(z0)|1

    which contradicts the fact that p(z)1+Az1+Bz. Thus |w(z)|<1 and so we get the desired result.

    Taking g(z)=zp+1f(z)pf(z) in the last result, we obtain the following Corollary:

    Let fAp and satisfying

    1+αzf(z)p2f(z)(p+1+zf(z)f(z)zf(z)f(z))1+Az1+Bz, (2.4)

    with the condition on α is

    |α|232p(AB)1|B|4p(1+|B|).

    Then fSLp.

    If gAp such that

    1+αpzg(z)g(z)1+Az1+Bz, (2.5)

    with

    |α|8p(AB)1|B|4p(1+|B|), (2.6)

    then

    g(z)zp1+z.

    Proof

    Let us choose a function p by

    p(z)=1+αzg(z)pg(z),

    in such a way that p is analytic in D with p(0)=1. Also consider

    g(z)zp=1+w(z).

    Using some simple calculations, we obtain

    p(z)=1+αzw(z)2p(1+w(z))+α,

    and so

    |p(z)1ABp(z)|=|αzw(z)2p(1+w(z))+αAB(1+αzw(z)2p(1+w(z))+α)|=|αzw(z)+2pα(1+w(z))2p(AB)(1+w(z))B(αzw(z)+2pα(1+w(z)))|.

    Let a point z0D exists in such a way

    max|z||z0||w(z)|=|w(z0)|=1.

    Then, by virtue of Lemma 1.1, a number m1 occurs such that z0w(z0)=mw(z0). In addition, we set w(z0)=eiθ, so we have

    |p(z0)1ABp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(AB)(1+w(z0))B(αmw(z0)+2pα(1+w(z0)))|,|α|m2p|α||1+eiθ|2(AB)|1+eiθ|+|B||α|m+2p|B||α||1+eiθ|,=|α|m2p|α|2+2cosθ2(2(AB)+|B||α|)p2+2cosθ+|B||α|m,|α|(m4p)4p(2(AB)+|B||α|)+|B||α|m.

    Now let

    ϕ(m)=|α|(m4p)4p(2(AB)+|B||α|)+|B||α|m,

    it implies

    ϕ(m)=|α|8p((AB)+|α||B|)(4p(2(AB)+|B||α|)+|B||α|m)2>0,

    which illustrates that the function ϕ(m) is increasing and so ϕ(m)ϕ(1) for m1, hence

    |p(z0)1ABp(z0)||α|(14p)4p(2(AB)+|B||α|)+|B||α|.

    Now, by using (2.6), we have

    |p(z0)1ABp(z0)|1,

    which contradicts (2.5). Thus |w(z)|<1 and so the desired proof is completed.

    Putting g(z)=zp+1f(z)pf(z) in last Theorem, we get the following Corollary:

    If fAp and satisfying

    1+αp(p+1+zf(z)f(z)zf(z)f(z))1+Az1+Bz,

    with

    |α|8p(AB)1|B|4p(1+|B|),

    then fSLp.

    If gAp and satisfy the subordination relation

    1+αz1pg(z)p(g(z))21+Az1+Bz, (2.7)

    with the condition on α

    |α|252p(AB)1|B|4p(1+|B|) (2.8)

    is true, then

    g(z)zp1+z.

    Proof

    Let us define a function

    p(z)=1+αz1pg(z)p(g(z))2.

    Then p is analytic in D with p(0)=1. Also let us consider

    g(z)zp=1+w(z).

    Using some simplification, we obtain

    p(z)=1+αzw(z)2p(1+w(z))32+α1+w(z),

    and so

    |p(z)1ABp(z)|=|αzw(z)2p(1+w(z))32+α1+w(z)AB(1+αzw(z)2p(1+w(z))32+α1+w(z))|=|αzw(z)+2pα(1+w(z))2p(AB)(1+w(z))32Bαzw(z)2pαB(1+w(z))|.

    Let us choose a point z0D such a way that

    max|z||z0||w(z)|=|w(z0)|=1.

    Then, by the consequences of Lemma 1.1, a number m1 occurs such that z0w(z0)=mw(z0) and also put w(z0)=eiθ,for θ[π,π], we have

    |p(z0)1ABp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(AB)(1+w(z0))32Bαmw(z0)2pαB(1+w(z0))|,|α|m2p|α||1+eiθ|2p(AB)|1+eiθ|32+|B||α|m+2p|α||B||1+eiθ|,=|α|m4p|α|252p(AB)+|B||α|m+4p|α||B|,|α|(m4p)252p(AB)+|B||α|m+4p|α||B|=ϕ(m) (say).

    Then

    ϕ(m)=252p(AB)+8|α|2|B|p(252p(AB)+B|α|m+4p|α|B)2>0,

    which demonstrates that the function ϕ(m) is increasing and thus ϕ(m)ϕ(1) for m1, hence

    |p(z0)1ABp(z0)||α|(14p)252p(AB)+|B||α|+4p|α||B|.

    Now, using (2.8), we have

    |p(z0)1ABp(z0)|1,

    which contradicts (2.7). Thus |w(z)|<1 and so we get the required proof.

    If we set g(z)=zp+1f(z)pf(z) in last theorem, we easily have the following Corollary:

    Assume that

    |α|252p(AB)1|B|4p(1+|B|),

    and if fAp satisfy

    1+αf(z)z2p+1f(z)(p+1+zf(z)f(z)zf(z)f(z))1+Az1+Bz,

    then fSLp.

    If gAp satisfy the subordination

    1+αz12pg(z)p(g(z))31+Az1+Bz,

    with restriction on α is

    |α|8p(AB)1|B|4p(1+|B|). (2.9)

    then

    g(z)zp1+z.

    Proof. Let us define a function

    p(z)=1+αz12pg(z)p(g(z))3,

    where p is analytic in D with p(0)1=0. Also let

    g(z)zp=1+w(z).

    Using some simple calculations, we obtain

    p(z)=1+αzw(z)2p(1+w(z))2+α1+w(z),

    and so

    |p(z)1ABp(z)|=|αzw(z)2p(1+w(z))2+α1+w(z)AB(1+αzw(z)2p(1+w(z))2+α1+w(z))|=|αzw(z)+2pα(1+w(z))2p(AB)(1+w(z))2Bαzw(z)2pαB(1+w(z))|.

    Let us pick a point z0D in such a way that

    max|z||z0||w(z)|=|w(z0)|=1.

    Then, by using Lemma 1.1, a number m1 exists such that z0w(z0)=mw(z0) and put w(z0)=eiθ, for θ[π,π], we have

    |p(z0)1ABp(z0)|=|αmw(z0)+2pα(1+w(z0))2p(AB)(1+w(z0))2Bαmw(z0)2pαB(1+w(z0))||α|m2p|α||1+eiθ|2p(AB)|1+eiθ|2+|B||α|m+2p|α||B||1+eiθ|=|α|m2p|α|2+2cosθ2p(AB)(2+2cosθ)2+|B||α|m+2p|α||B|2+2cosθ|α|(m4p)8p(AB)+|B||α|m+4p|α||B|,

    Now let

    ϕ(m)=|α|(m4p)8p(AB)+|B||α|m+4p|α||B|,

    then

    ϕ(m)=8p|α|(AB)+8|α|2|B|p(8p(AB)+|B||α|m+4p|α||B|)2>0

    which shows that ϕ(m) is an increasing function and hence it will have its minimum value at m=1, so

    |p(z0)1ABp(z0)||α|(14p)8p(AB)+|B||α|+4p|α||B|.

    Using (2.9), we easily obtain

    |p(z0)1ABp(z0)|1,

    which is a contradiction to the fact that p(z)1+Az1+Bz, and so |w(z)|<1. Hence we get the desired result.

    If we put g(z)=zp+1f(z)pf(z) in last Theorem, we achieve the following result:

    If fAp and satisfy the condition

    |α|8p(AB)1|B|4p(1+|B|),

    and

    1+αp(f(z))2z3p+2(f(z))2(p+1+zf(z)f(z)zf(z)f(z))1+Az1+Bz,

    then fSLp.

    All authors declare no conflict of interest in this paper.



    [1] R. M. Ali, N. E. Cho, V. Ravichandran, et al. Differential subordination for functions associated with the lemniscate of Bernoulli's, Taiwan. J. Math., 16 (2012), 1017-1026. doi: 10.11650/twjm/1500406676
    [2] M. Arif, K. Ahmad, J.-L. Liu, et al. A new class of analytic functions associated with Salagean operator, Journal of Function Spaces, 2019.
    [3] N. E. Cho, V. Kumar, S. S. Kumar, Ravichandran. Radius problems for starlike functions associated with the sine function, B. Iran. Math. Soc., 45 (2019), 213-232. doi: 10.1007/s41980-018-0127-5
    [4] N. E. Cho, S. Kumar, V. Kumar, et al. Starlike functions related to the Bell numbers, Symmetry, 11 (2019), 219.
    [5] J. Dziok, R. K. Raina, J. Sokół, On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comput. Model., 57 (2013), 1203-1211. doi: 10.1016/j.mcm.2012.10.023
    [6] S. A. Halim, R. Omar, Applications of certain functions associated with lemniscate Bernoulli, Journal of the Indonesian Mathematical Society, 18 (2012), 93-99.
    [7] M. Haq, M. Raza, M. Arif, et al. q-analogue of differential subordinations, Mathematics, 7 ( 2019), 724.
    [8] W. H. Hayman, Multivalent Functions, Second Edition, Cambridge Uni. Press, 1994.
    [9] I. S. Jack, Functions starlike and convex of order alpha, J. Lond. Math. Soc., 2 (1971), 469-474.
    [10] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math., 23 (1970), 159-177. doi: 10.4064/ap-23-2-159-177
    [11] S. Kanas, D. Răducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183-1196.
    [12] R. Kargar, A. Ebadian, J. Sokół, On Booth lemniscate and starlike functions, Anal. Math. Phys., 9 (2019), 143-154. doi: 10.1007/s13324-017-0187-3
    [13] S. S. Kumar, V. Kumar, V. Ravichandran, et al. Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl., 2013 (2013), 176.
    [14] S. Kumar, V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bulletin of Mathematics, 40 (2016), 199-212.
    [15] S. Kumar, V. Ravichandran, Subordinations for functions with positive real part, Complex Anal. Oper. Th., 12 (2018), 1179-1191. doi: 10.1007/s11785-017-0690-4
    [16] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceeding of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang and S. Zhang (Eds), Int. Press, 1994.
    [17] R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, B. Malays. Math. Sci. So., 38 (2015), 365-386. doi: 10.1007/s40840-014-0026-8
    [18] E. Paprocki, J. Sokół, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 20 (1996), 89-94.
    [19] R. K. Raina, J. Sokół, On coefficient estimates for a certain class of starlike functions, Hacettepe

    Journal of Mathematics and Statistics, 44 (2015), 1427-1433.

    [20] M. Raza, J. Sokół, M. Mushtaq, Differential Subordinations for Analytic Functions, Iranian Journal of Science and Technology, Transactions A: Science, 43 (2019), 883-890. doi: 10.1007/s40995-017-0430-7
    [21] K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afrika Matematika, 27 (2016), 923-939. doi: 10.1007/s13370-015-0387-7
    [22] K. Sharma, V. Ravichandran, Applications of subordination theory to starlike functions, B. Iran. Math. Soc., 42 (2016), 761-777.
    [23] L. Shi, I. Ali, M. Arif, et al. A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain, Mathematics, 7 (2019), 418.
    [24] L. Shi, H. M. Srivastava, M. Arif, et al. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry, 11 (2019), 598.
    [25] J. Sokół, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk, Politech. Rzeszowskiej Mat., 19 (1996), 101-105.
  • This article has been cited by:

    1. Huseyin IRMAK, A variety of multivalently analytic functions with complex coefficients and some argument properties of their applications, 2021, 1016-2526, 367, 10.52280/pujm.2021.530601
    2. Lei Shi, Muhammad Arif, Syed Zakar Hussain Bukhari, Malik Ali Raza, Some New Sufficient Conditions on p-Valency for Certain Analytic Functions, 2023, 12, 2075-1680, 295, 10.3390/axioms12030295
    3. Khalil Ullah, Jihad Younis, Khurshid Ahmad, A Manickam, Bilal Khan, Mirajul Haq, Upper Bound of the Third Hankel Determinant for a Subclass of Multivalent Functions Associated with the Bernoulli Lemniscate, 2021, 9, 2309-0022, 37, 10.21015/vtm.v9i1.1022
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4184) PDF downloads(380) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog