Citation: Gauhar Rahman, Shahid Mubeen, Kottakkaran Sooppy Nisar. On generalized k-fractional derivative operator[J]. AIMS Mathematics, 2020, 5(3): 1936-1945. doi: 10.3934/math.2020129
[1] | D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar . Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Mathematics, 2020, 5(3): 1706-1719. doi: 10.3934/math.2020115 |
[2] | Saima Naheed, Shahid Mubeen, Thabet Abdeljawad . Fractional calculus of generalized Lommel-Wright function and its extended Beta transform. AIMS Mathematics, 2021, 6(8): 8276-8293. doi: 10.3934/math.2021479 |
[3] | Reny George, Sina Etemad, Ivanka Stamova, Raaid Alubady . Existence of solutions for $ [\mathtt{p},\mathtt{q}] $-difference initial value problems: application to the $ [\mathtt{p},\mathtt{q}] $-based model of vibrating eardrums. AIMS Mathematics, 2025, 10(2): 2321-2346. doi: 10.3934/math.2025108 |
[4] | J. Kayalvizhi, A. G. Vijaya Kumar, Ndolane Sene, Ali Akgül, Mustafa Inc, Hanaa Abu-Zinadah, S. Abdel-Khalek . An exact solution of heat and mass transfer analysis on hydrodynamic magneto nanofluid over an infinite inclined plate using Caputo fractional derivative model. AIMS Mathematics, 2023, 8(2): 3542-3560. doi: 10.3934/math.2023180 |
[5] | Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao . Hadamard and Fejér-Hadamard inequalities for generalized $ k $-fractional integrals involving further extension of Mittag-Leffler function. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043 |
[6] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482 |
[7] | Sabbavarapu Nageswara Rao, Mahammad Khuddush, Ahmed H. Msmali, Ali H. Hakami . Persistence and stability in an SVIR epidemic model with relapse on timescales. AIMS Mathematics, 2025, 10(2): 4173-4204. doi: 10.3934/math.2025194 |
[8] | Muajebah Hidan, Mohamed Akel, Hala Abd-Elmageed, Mohamed Abdalla . Solution of fractional kinetic equations involving extended $ (k, \tau) $-Gauss hypergeometric matrix functions. AIMS Mathematics, 2022, 7(8): 14474-14491. doi: 10.3934/math.2022798 |
[9] | Hadjer Belbali, Maamar Benbachir, Sina Etemad, Choonkil Park, Shahram Rezapour . Existence theory and generalized Mittag-Leffler stability for a nonlinear Caputo-Hadamard FIVP via the Lyapunov method. AIMS Mathematics, 2022, 7(8): 14419-14433. doi: 10.3934/math.2022794 |
[10] | D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh . Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096 |
The classical beta function
B(δ1,δ2)=∞∫0tδ1−1(1−t)δ2−1dt,(ℜ(δ1)>0,ℜ(δ2)>0) | (1.1) |
and its relation with well known gamma function is given by
B(δ1,δ2)=Γ(δ1)Γ(δ2)Γ(δ1+δ2),ℜ(δ1)>0,ℜ(δ2)>0. |
The Gauss hypergeometric, confluent hypergeometric and Appell's functions which are respectively defined by(see [27])
2F1(δ1,δ2;δ3;z)=∞∑n=0(δ1)n(δ2)n(δ3)nznn!,(|z|<1), (δ1,δ2,δ3∈C and δ3≠0,−1,−2,−3,⋯), | (1.2) |
and
1Φ1(δ2;δ3;z)=∞∑n=0(δ2)n(δ3)nznn!,(|z|<1), (δ2,δ3∈C and δ3≠0,−1,−2,−3,⋯). | (1.3) |
The Appell's series or bivariate hypergeometric series is defined by
F1(δ1,δ2,δ3;δ4;x,y)=∞∑m,n=0(δ1)m+n(δ2)m(δ3)nxmyn(δ4)m+nm!n!; | (1.4) |
for all δ1,δ2,δ3,δ4∈C,δ4≠0,−1,−2,−3,⋯,|x|,|y|<1<1.
The integral representation of hypergeometric, confluent hypergeometric and Appell's functions are respectively defined by
2F1(δ1,δ2;δ3;z)=Γ(δ3)Γ(δ2)Γ(δ3−δ2)∫10tδ2−1(1−t)δ3−δ2−1(1−zt)−δ1dt, | (1.5) |
(ℜ(δ3)>ℜ(δ2)>0,|arg(1−z)|<π), |
and
1Φ1(δ2;δ3;z)=Γ(δ3)Γ(δ2)Γ(δ3−δ2)∫10tδ2−1(1−t)δ3−δ2−1eztdt, | (1.6) |
(ℜ(δ3)>ℜ(δ2)>0). |
F1(δ1,δ2,δ3;δ4;x,y)=Γ(δ4)Γ(δ1)Γ(δ4−δ1)1∫0tδ1−1(1−t)δ4−δ1−1(1−xt)−δ2(1−yt)−δ3dt. | (1.7) |
The k-gamma function, k-beta function and the k-Pochhammer symbol introduced and studied by Diaz and Pariguan [5]. The integral representation of k-gamma function and k-beta function respectively given by
Γk(z)=kzk−1Γ(zk)=∞∫0tz−1e−zkkdt,ℜ(z)>0,k>0 | (1.8) |
Bk(x,y)=1k1∫0txk−1(1−t)yk−1dt,ℜ(x)>0,ℜ(y)>0. | (1.9) |
Here, we recall the following relations (see [5]).
Bk(x,y)=Γk(x)Γk(y)Γk(x+y), | (1.10) |
(z)n,k=Γk(z+nk)Γk(z), | (1.11) |
where (z)n,k=(z)(z+k)(z+2k)⋯(z+(n−1)k);(z)0,k=1 and k>0
and
∞∑n=0(α)n,kznn!=(1−kz)−αk. | (1.12) |
These studies were followed by Mansour [16], Kokologiannaki [13], Krasniqi [14] and Merovci [17]. In 2012, Mubeen and Habibullah [18] defined the k-hypergeometric function as
2F1,k(δ1,δ2;δ3;z)=∞∑n=0(δ1)n,k(δ2)n,k(δ3)n,kznn!, | (1.13) |
where δ1,δ2,δ3∈C and δ3≠0,−1,−2,⋯ and its integral representation is given by
2F1,k(δ1,δ2;δ3;z)=1kBk(δ2,δ3−δ2)×∫10tδ2k−1(1−t)δ3−δ2k−1(1−ktz)−δ1kdt. | (1.14) |
The k-Riemann-Liouville (R-L) fractional integral using k-gamma function introduced in [19]:
(Iαkf(t))(x)=1kΓk(α)∫x0f(t)(x−t)αk−1dt,k,α∈R+. | (1.15) |
Later on Mubeen and Iqbal [11] established the improved version of Gruss type inequalities by utilizing k-fractional integrals. In [1], Agarwal et al. presented certain Hermite-Hadamard type inequalities for generalized k-fractional integrals. Set et al. [29] presented an integral identity and generalized Hermite–Hadamard type inequalities for Riemann–Liouville fractional integral. Mubeen et al. [24] established integral inequalities of Ostrowski type for k-fractional Riemann–Liouville integrals. Recently, many researchers have introduced generalized version of k-fractional integrals and investigated a large bulk of various inequalities via the said fractional integrals. The interesting readers are referred to see the work of [9,10,26,30]. Farid et al. [7] introduced Hadamard k-fractional integrals. In [8] introduced Hadamard-type inequalities for k-fractional Riemann-Liouville integrals. In [12,31], the authors established certain inequalities by utilizing Hadamard-type inequalities for k-fractional Riemann-Liouville integrals. In [25], Nisar et al. established certain Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives and their applications. In [25], they presented dependence solutions of certain k-fractional differential equations of arbitrary real order with initial conditions. Recently, Samraiz et al. [28] defined an extension of Hadamard k-fractional derivative and proved its various properties.
The solution of some integral equations involving confluent k-hypergeometric functions and k-analogue of Kummer's first formula are given in [22,23]. While the k-hypergeometric and confluent k-hypergeometric differential equations are introduced in [20]. In 2015, Mubeen et al. [21] introduced k-Appell hypergeometric function as
F1,k(δ1,δ2,δ3;δ4;z1,z2)=∞∑m,n=0(δ1)m+n,k(δ2)m,k(δ3)m,k(δ4)m+n,kzm1zn2m!n! | (1.16) |
for all δ1,δ2,δ3,δ4∈C,δ4≠0,−1,−2,−3,⋯,max{|z1|,|z2|}<1k and k>0. Also, Mubeen et al. defined its integral representation as
F1,k(δ1,δ2,δ3;δ4;z1,z2)=1kBk(δ1,δ4−δ1)1∫0tδ1k−1(1−t)δ4−δ1k−1(1−kz1t)−δ2k(1−kz2t)−δ3kdt, | (1.17) |
(ℜ(δ4)>ℜ(δ1)>0). |
In this section, we recall the following definition of fractional derivatives from and give a new extension called Riemann-Liouville k-fractional derivative.
Definition 2.1. The well-known R-L fractional derivative of order μ is defined by
Dμx{f(x)}=1Γ(−μ)∫x0f(t)(x−t)−μ−1dt,ℜ(μ)<0. | (2.1) |
For the case m−1<ℜ(μ)<m where m=1,2,⋯, it follows
Dμx{f(x)}=dmdxmDμ−mx{f(x)}=dmdxm{1Γ(−μ+m)∫x0f(t)(x−t)−μ+m−1dt}. | (2.2) |
For further study and applications, we refer the readers to the work of [2,3,4,15,32]. In the following, we define Riemann-Liouville k-fractional derivative of order μ as
Definition 2.2.
kDμx{f(x)}=1kΓk(−μ)∫x0f(t)(x−t)−μk−1dt,ℜ(μ)<0,k∈R+. | (2.3) |
For the case m−1<ℜ(μ)<m where m=1,2,⋯, it follows
kDμx{f(x)}=dmdxmkDμ−mkx{f(x)}=dmdxm{1kΓk(−μ+mk)∫x0f(t)(x−t)−μk+m−1dt}. | (2.4) |
Note that for k=1, definition 2.2 reduces to the classical R-L fractional derivative operator given in definition 2.1.
Now, we are ready to prove some theorems by using the new definition 2.2.
Theorem 1. The following formula holds true,
kDμz{zηk}=zη−μkΓk(−μ)Bk(η+k,−μ),ℜ(μ)<0. | (2.5) |
Proof. From (2.3), we have
kDμz{zηk}=1kΓk(−μ)∫z0tηk(z−t)−μk−1dt. | (2.6) |
Substituting t=uz in (2.6), we get
kDμz{zηk}=1kΓk(−μ)∫10(uz)ηk(z−uz)−μk−1zdu=zη−μkkΓk(−μ)∫10uηk(1−u)−μk−1du. |
Applying definition (1.9) to the above equation, we get the desired result.
Theorem 2. Let ℜ(μ)>0 and suppose that the function f(z) is analytic at the origin with its Maclaurin expansion given by f(z)=∑∞n=0anzn where |z|<ρ for some ρ∈R+. Then
kDμz{f(z)}=∞∑n=0ankDμz{zn}. | (2.7) |
Proof. Using the series expansion of the function f(z) in (2.3) gives
kDμz{f(z)}=1kΓk(−μ)∫z0∞∑n=0antn(z−t)−μk−1dt. |
As the series is uniformly convergent on any closed disk centered at the origin with its radius smaller then ρ, therefore the series so does on the line segment from 0 to a fixed z for |z|<ρ. Thus it guarantee terms by terms integration as follows
kDμz{f(z)}=∞∑n=0an{1kΓk(−μ)∫z0tn(z−t)−μk−1dt=∞∑n=0ankDμz{zn}, |
which is the required proof.
Theorem 3. The following result holds true:
kDη−μz{zηk−1(1−kz)−βk}=Γk(η)Γk(μ)zμk−12F1,k(β,η;μ;z), | (2.8) |
where ℜ(μ)>ℜ(η)>0 and |z|<1.
Proof. By direct calculation, we have
kDη−μz{zηk−1(1−kz)−βk}=1kΓk(μ−η)∫z0tηk−1(1−kt)−βk(z−t)μ−ηk−1dt=zμ−ηk−1kΓk(μ−η)∫z0tηk−1(1−kt)−βk(1−tz)μ−ηk−1dt. |
Substituting t=zu in the above equation, we get
kDη−μz{zηk−1(1−kz)−βk}=zμk−1kΓk(μ−η)∫10uηk−1(1−kuz)−βk(1−u)μ−ηk−1zdu. |
Applying (1.14) and after simplification we get the required proof.
Theorem 4. The following result holds true:
kDη−μz{zηk−1(1−kaz)−αk(1−kbz)−βk}=Γk(η)Γk(μ)zμk−1F1,k(η,α,β;μ;az,bz), | (2.9) |
where ℜ(μ)>ℜ(η)>0, ℜ(α)>0, ℜ(β)>0, max{|az|,|bz|}<1k.
Proof. To prove (2.9), we use the power series expansion
(1−kaz)−αk(1−kbz)−βk=∞∑m=0∞∑n=0(α)m,k(β)n,k(az)mm!(bz)nn!. |
Now, applying Theorem 1, we obtain
kDη−μz{zηk−1(1−kaz)−αk(1−kbz)−βk}=∞∑m=0∞∑n=0(α)m,k(β)n,k(a)mm!(b)nn!kDη−μz{zηk+m+n−1}=∞∑m=0∞∑n=0(α)m,k(β)n,k(a)mm!(b)nn!βk(η+mk+nk,μ−η)Γk(μ−η)zμk+m+n−1=∞∑m=0∞∑n=0(α)m,k(β)n,k(a)mm!(b)nn!Γk(η+mk+nk)Γk(μ+mk+nk)zμk+m+n−1. |
In view of (1.16), we get
kDη−μz{zηk−1(1−kaz)−αk(1−kbz)−βk}=Γk(η)Γk(μ)zμk−1F1,k(η,α,β;μ;az,bz). |
Theorem 5. The following Mellin transform formula holds true:
M{e−xkDμz(zηk);s}=Γ(s)Γk(−μ)Bk(η+k,−μ)zη−μk, | (2.10) |
where ℜ(η)>−1, ℜ(μ)<0, ℜ(s)>0.
Proof. Applying the Mellin transform on definition (2.3), we have
M{e−xkDμz(zηk);s}=∫∞0xs−1e−xkDμz(zη);s}dx=1kΓk(−μ)∫∞0xs−1e−x{∫z0tηk(z−t)−μk−1dt}dx=z−μk−1kΓk(−μ)∫∞0xs−1e−x{∫z0tηk(1−tz)−μk−1dt}dx=zη−μkkΓk(−μ)∫∞0xs−1e−x{∫10uηk(1−u)−μk−1du}dx |
Interchanging the order of integrations in above equation, we get
M{e−xkDμz(zηk);s}=zη−μkkΓk(−μ)∫10uηk(1−u)−μk−1(∫∞0xs−1e−xdx)du.=zη−μkkΓk(−μ)Γ(s)∫10uηk(1−u)−μk−1du=Γ(s)Γk(−μ)Bk(η+k,−μ)zη−μk, |
which completes the proof.
Theorem 6. The following Mellin transform formula holds true:
M{e−xkDμz((1−kz)−αk);s}=z−μkΓ(s)Γk(−μ)Bk(k,−μ)2F1,k(α,k;−μ+k;z), | (2.11) |
where ℜ(α)>0, ℜ(μ)<0, ℜ(s)>0, and |z|<1.
Proof. Using the power series for (1−kz)−αk and applying Theorem 5 with η=nk, we can write
M{e−xkDμz((1−kz)−αk);s}=∞∑n=0(α)n,kn!M{e−xkDμz(zn);s}=Γ(s)kΓk(−μ)∞∑n=0(α)n,kn!Bk(nk+k,−μ)zn−μk=Γ(s)z−μkΓk(−μ)∞∑n=0Bk(nk+k,−μ)(α)n,kznn!=Γ(s)z−μk∞∑n=0Γk(k+nk)Γk(−μ+k+nk)(α)n,kznn!=Γ(s)Γk(−μ+k)z−μk∞∑n=0(k)n,k(−μ+k)n,k(α)n,kznn!=Γ(s)z−μkΓk(−μ)Bk(k,−μ)2F1,k(α,k;−μ+k;z), |
which is the required proof.
Theorem 7. The following result holds true:
kDη−μz[zηk−1Eμk,γ,δ(z)]=zμk−1kΓk(μ−η)∞∑n=0(μ)n,kΓk(γn+δ)Bk(η+nk,μ−η)znn!, | (2.12) |
where γ,δ,μ∈C, ℜ(p)>0, ℜ(q)>0, ℜ(μ)>ℜ(η)>0 and Eμk,γ,δ(z) is k-Mittag-Leffler function (see [6]) defined as:
Eμk,γ,δ(z)=∞∑n=0(μ)n,kΓk(γn+δ)znn!. | (2.13) |
Proof. Using (2.13), the left-hand side of (2.12) can be written as
kDη−μz[zηk−1Eμk,γ,δ(z)]=kDη−μz[zηk−1{∞∑n=0(μ)n,kΓk(γn+δ)znn!}]. |
By Theorem 2, we have
kDη−μz[zηk−1Eμk,γ,δ(z)]=∞∑n=0(μ)n,kΓk(γn+δ){kDμz[zηk+n−1]}. |
In view of Theorem 1, we get the required proof.
Theorem 8. The following result holds true:
kDη−μz{zηk−1mΨn[(αi,Ai)1,m;|z(βj,Bj)1,n;]}=zμk−1kΓk(μ−η)×∞∑n=0∏mi=1Γ(αi+Ain)∏nj=1Γ(βj+BjnBk(η+nk,μ−η)znn!, | (2.14) |
where ℜ(p)>0, ℜ(q)>0, ℜ(μ)>ℜ(η)>0 and mΨn(z) is the Fox-Wright function defined by (see [15], pages 56–58)
mΨn(z)=mΨn[(αi,Ai)1,m;|z(βj,Bj)1,n;]=∞∑n=0∏mi=1Γ(αi+Ain)∏nj=1Γ(βj+Bjnznn!. | (2.15) |
Proof. Applying Theorem 1 and followed the same procedure used in Theorem 7, we get the desired result.
Recently, many researchers have introduced various generalizations of fractional integrals and derivatives. In this line, we have established a k-fractional derivative and its various properties. If we letting k→1 then all the results established in this paper will reduce to the results related to the classical Reimann-Liouville fractional derivative operator.
The author K.S. Nisar thanks to Deanship of Scientific Research (DSR), Prince Sattam bin Abdulaziz University for providing facilities and support.
The authors declare no conflict of interest.
[1] | P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., 2017 (2017), 55. |
[2] | B. Acay, E. Bas, T. Abdeljawad, Non-local fractional calculus from different view point generated by truncated M-derivative, J. Comput. Appl. Math., 366 (2020), 112410. |
[3] | B. Acay, E. Bas, T. Abdeljawad, Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos Soliton. Fract., 130 (2020), 109438. |
[4] | E. Bas, R. Ozarslan, D. Baleanu, Comparative simulations for solutions of fractional Sturm-Liouville problems with non-singular operators, Adv. Differ. Equ., 2018 (2018), 350. |
[5] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulgaciones Math., 15 (2007), 179-192. |
[6] | G. A. Dorrego, R. A. Cerutti, The k-Mittag-Leffler function, Int. J. Contemp. Math. Sci., 7 (2012), 705-716. |
[7] |
G. Farid, G. M. Habullah, An extension of Hadamard fractional integral, Int. J. Math. Anal., 9 (2015), 471-482. doi: 10.12988/ijma.2015.5118
![]() |
[8] | G. Farid, A. U. Rehman, M. Zahra, On Hadamard-type inequalities for k-fractional integrals, Konuralp J. Math., 4 (2016), 79-86. |
[9] |
S. Habib, S. Mubeen, M. N. Naeem, et al. Generalized k-fractional conformable integrals and related inequalities, AIMS Mathematics, 4 (2019), 343-358. doi: 10.3934/math.2019.3.343
![]() |
[10] | C. J. Huang, G. Rahman, K. S. Nisar, et al. Some inequalities of the Hermite-Hadamard type for k-fractional conformable integrals, Aust. J. Math. Anal. Appl., 16 (2019), 7. |
[11] | S. Mubeen, S. Iqbal, Grüss type integral inequalities for generalized Riemann-Liouville kfractional integrals, J. Inequal. Appl., 2016 (2016), 109. |
[12] | S. Iqbal, S. Mubeen, M. Tomar, On Hadamard k-fractional integrals, J. Fract. Calc. Appl., 9 (2018), 255-267. |
[13] | C. G. Kokologiannaki, Properties and inequalities of generalized k-gamma, beta and zeta functions, Int. J. Contemp. Math. Sci., 5 (2010), 653-660. |
[14] | V. Krasniqi, A limit for the k-gamma and k-beta function, Int. Math. Forum., 5 (2010), 1613-1617. |
[15] | A. A. Kilbas, H. M. Sarivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equation, Elsevier Sciences B.V., Amsterdam, 2006. |
[16] | M. Mansour, Determining the k-generalized gamma function Γk(x) by functional equations, Int. J. Contemp. Math. Sci., 4 (2009), 1037-1042. |
[17] | F. Merovci, Power product inequalities for the Γk function, Int. J. Math. Anal., 4 (2010), 1007-1012. |
[18] | S. Mubeen, k-Analogue of Kummer's first formula, J. Inequal. Spec. Funct., 3 (2012), 41-44. |
[19] |
S. Mubeen, Solution of some integral equations involving confluent k-hypergeometric functions, Appl. Math., 4 (2013), 9-11. doi: 10.4236/am.2013.47A003
![]() |
[20] | S. Mubeen, G. M. Habibullah, An integral representation of k-hypergeometric functions, Int. Math. Forum, 7 (2012), 203-207. |
[21] | S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89-94. |
[22] |
S. Mubeen, S. Iqbal, G. Rahman, Contiguous function relations and an integral representation for Appell k-series F1,k, Int. J. Math. Res., 4 (2015), 53-63. doi: 10.18488/journal.24/2015.4.2/24.2.53.63
![]() |
[23] | S. Mubeen, M. Naz, M, G. Rahman, A note on k-hypergeometric differential equations, J. Inequal. Spec. Funct., 4 (2013), 38-43. |
[24] | S. Mubeen, S. Iqbal, Z. Iqbal, On Ostrowski type inequalities for generalized k-fractional integrals, J. Inequ. Spec. Funct., 8 (2017), 3. |
[25] | K. S. Nisar, G. Rahman, J. Choi, et al. Certain Gronwall type inequalities associated with riemann-liouville k- and hadamard k-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249-263. |
[26] | F. Qi, G. Rahman, S. M. Hussain, et al. Some inequalities of Chebyšev Type for conformable k-Fractional integral operators, Symmetry, 10 (2018), 614. |
[27] | E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960. |
[28] | M. Samraiz, E. Set, M. Hasnain, et al. On an extension of Hadamard fractional derivative, J. Inequal. Appl., 2019 (2019), 263. |
[29] | E. Set, M. A. Noor, M. U. Awan, et al. Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 169. |
[30] | G. Rahman, K. S. Nisar, A. Ghaffar, et al. Some inequalities of the Grüss type for conformable k-fractional integral operators, RACSAM, 114 (2020), 9. |
[31] | M. Tomar, S. Mubeen, J. Choi, Certain inequalities associated with Hadamard k-fractional integral operators, J. Inequal. Appl., 2016 (2016), 234. |
[32] |
D. Valerio, J. J. Trujillo, M. Rivero, Fractional calculus: A survey of useful formulas, Eur. Phys. J. Spec. Top., 222 (2013), 1827-1846. doi: 10.1140/epjst/e2013-01967-y
![]() |
1. | Yu-Ming Chu, Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Khalida Inayat Noor, Generalizations of Hermite–Hadamard like inequalities involving $\chi _{{\kappa }}$-Hilfer fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03059-0 | |
2. | Muhammad Samraiz, Zahida Perveen, Gauhar Rahman, Kottakkaran Sooppy Nisar, Devendra Kumar, On the (k,s)-Hilfer-Prabhakar Fractional Derivative With Applications to Mathematical Physics, 2020, 8, 2296-424X, 10.3389/fphy.2020.00309 | |
3. | Saima Naheed, Shahid Mubeen, Gauhar Rahman, M. R. Alharthi, Kottakkaran Sooppy Nisar, Some new inequalities for the generalized Fox-Wright functions, 2021, 6, 2473-6988, 5452, 10.3934/math.2021322 | |
4. | Övgü Gürel Yılmaz, Rabia Aktaş, Fatma Taşdelen, On Some Formulas for the k-Analogue of Appell Functions and Generating Relations via k-Fractional Derivative, 2020, 4, 2504-3110, 48, 10.3390/fractalfract4040048 | |
5. | Muajebah Hidan, Salah Mahmoud Boulaaras, Bahri-Belkacem Cherif, Mohamed Abdalla, A. M. Nagy, Further Results on the p , k − Analogue of Hypergeometric Functions Associated with Fractional Calculus Operators, 2021, 2021, 1563-5147, 1, 10.1155/2021/5535962 | |
6. | Muhammad Uzair Awan, Muhammad Zakria Javed, Michael Th. Rassias, Muhammad Aslam Noor, Khalida Inayat Noor, Simpson type inequalities and applications, 2021, 0971-3611, 10.1007/s41478-021-00319-4 | |
7. | Mohamed Abdalla, Muajebah Hidan, Investigation of the k-Analogue of Gauss Hypergeometric Functions Constructed by the Hadamard Product, 2021, 13, 2073-8994, 714, 10.3390/sym13040714 | |
8. | Shahid MUBEEN, Syed SHAH, Kottakkaran NİSAR, Thabet ABDELJAWAD, Some Generalized Special Functions and their Properties, 2021, 2587-2648, 10.31197/atnaa.768532 | |
9. | Mohamed Abdalla, Muajebah Hidan, Salah Mahmoud Boulaaras, Bahri-Belkacem Cherif, A. M. Nagy, Investigation of Extended k-Hypergeometric Functions and Associated Fractional Integrals, 2021, 2021, 1563-5147, 1, 10.1155/2021/9924265 | |
10. | Mohamed Abdalla, Salah Boulaaras, Mohamed Akel, Sahar Ahmed Idris, Shilpi Jain, Certain fractional formulas of the extended k-hypergeometric functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03612-5 | |
11. | Yasemin Başcı, Adil Mısır, Süleyman Öğrekçi, Generalized derivatives and Laplace transform in (k,ψ)$$ \left(k,\psi \right) $$‐Hilfer form, 2023, 0170-4214, 10.1002/mma.9129 | |
12. | Firas Ghanim, Hiba Fawzi Al-Janaby, Some analytical merits of Kummer-Type function associated with Mittag-Leffler parameters, 2021, 28, 2576-5299, 255, 10.1080/25765299.2021.1930637 | |
13. | Hala Abd-Elmageed, Muajebah Hidan, Mohamed Abdalla, Investigation for the k-analogue of τ-Gauss hypergeometric matrix functions and associated fractional calculus, 2022, 0308-1087, 1, 10.1080/03081087.2022.2161459 | |
14. | Muhammad Samraiz, Muhammad Umer, Saima Naheed, Dumitru Baleanu, 2023, Chapter 3, 978-3-031-29958-2, 53, 10.1007/978-3-031-29959-9_3 | |
15. | Maham Abdul Qayyum, Aya Mohammed Dhiaa, Abid Mahboob, Muhammad Waheed Rasheed, Abdu Alameri, Manuel de León, Extended Conformable K-Hypergeometric Function and Its Application, 2024, 2024, 1687-9139, 1, 10.1155/2024/5709319 | |
16. | Ahmed Bakhet, Mohamed Fathi, Mohammed Zakarya, Ghada AlNemer, Mohammed A. Saleem, Extensions of Bicomplex Hypergeometric Functions and Riemann–Liouville Fractional Calculus in Bicomplex Numbers, 2024, 8, 2504-3110, 508, 10.3390/fractalfract8090508 | |
17. | Muneera Abdullah Qadha, Sarah Abdullah Qadha, Ahmed Bakhet, On the two variables κ -Appell hypergeometric matrix functions , 2023, 31, 2769-0911, 10.1080/27690911.2023.2272862 | |
18. | Muneera Abdullah Qadha, Sarah Abdullah Qadha, Yusuf Gurefe, Solution of Fractional Kinetic Equations Involving New Extended Incomplete Second Appell Hypergeometric Matrix Functions, 2025, 2025, 2314-8896, 10.1155/jofs/9578749 |