Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article

Characterization of high background radiation of terrestrial naturally occurring radionuclides in a mining region of Senegal

  • A survey of natural radioactivity has been carried out to estimate the concentration of naturally occurring radionuclides and radiological risk associated in the south East mining region, which present high natural background radiation. An in-situ gamma-ray spectrometer was used to map natural environmental gamma-emitting radionuclides. A combined inferential statistical and chemometrics of naturally occurring radionuclides were used for data modelling and characterization. The radiological data surveys were explored using inferential statistical, principal component analysis and a supervised support vector machine learning. First, one-way Analysis of variance, on-parametric Kruskal Wallis test, was applied allowing pairwise comparison of radionuclides levels in sampling sites, second, data was submitted to PCA to extract noise-free data and reduced data was analyzed with support vector machine. PCA results show that 238U contribution (56%) is dominant in the first principal component with 40K (35%). The second component, with the cumulative variance explained of 88%, is dominated by 232Th (68%) and 40K (31%). Anova indicates that there is a significant difference in the mean mass concentration of samples type and soil activities are mostly lower. The best classification accuracy was 100% with the use of radial kernel density function. As potential uranium and gold mine site, these results will allow establishing both reference values for background radiation of the region and fingerprinting sources of naturally occurring radionuclides.

    Citation: Mamadou Lamine Sane, Modou MBAYE, Djicknack Dione, Ahmadou Wague. Characterization of high background radiation of terrestrial naturally occurring radionuclides in a mining region of Senegal[J]. AIMS Environmental Science, 2019, 6(6): 472-482. doi: 10.3934/environsci.2019.6.472

    Related Papers:

    [1] Ekaterina Kldiashvili, Archil Burduli, Gocha Ghortlishvili . Application of Digital Imaging for Cytopathology under Conditions of Georgia. AIMS Medical Science, 2015, 2(3): 186-199. doi: 10.3934/medsci.2015.3.186
    [2] Anuj A. Shukla, Shreya Podder, Sana R. Chaudry, Bryan S. Benn, Jonathan S. Kurman . Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. AIMS Medical Science, 2022, 9(2): 348-361. doi: 10.3934/medsci.2022016
    [3] Nicole Lavender, David W. Hein, Guy Brock, La Creis R. Kidd . Evaluation of Oxidative Stress Response Related Genetic Variants, Pro-oxidants, Antioxidants and Prostate Cancer. AIMS Medical Science, 2015, 2(4): 271-294. doi: 10.3934/medsci.2015.4.271
    [4] Masahiro Yasunaga, Shino Manabe, Masaru Furuta, Koretsugu Ogata, Yoshikatsu Koga, Hiroki Takashima, Toshirou Nishida, Yasuhiro Matsumura . Mass spectrometry imaging for early discovery and development of cancer drugs. AIMS Medical Science, 2018, 5(2): 162-180. doi: 10.3934/medsci.2018.2.162
    [5] Sherven Sharma, Pournima Kadam, Ram P Singh, Michael Davoodi, Maie St John, Jay M Lee . CCL21-DC tumor antigen vaccine augments anti-PD-1 therapy in lung cancer. AIMS Medical Science, 2021, 8(4): 269-275. doi: 10.3934/medsci.2021022
    [6] Ayomide Abe, Mpumelelo Nyathi, Akintunde Okunade . Lung cancer diagnosis from computed tomography scans using convolutional neural network architecture with Mavage pooling technique. AIMS Medical Science, 2025, 12(1): 13-27. doi: 10.3934/medsci.2025002
    [7] Timothy Hamerly, Margaret H. Butler, Steve T. Fisher, Jonathan K. Hilmer, Garth A. James, Brian Bothner . Mass Spectrometry Imaging of Chlorhexidine and Bacteria in a Model Wound. AIMS Medical Science, 2015, 2(3): 150-161. doi: 10.3934/medsci.2015.3.150
    [8] Prarthana Shrestha, Rik Kneepkens, Gijs van Elswijk, Jeroen Vrijnsen, Roxana Ion, Dirk Verhagen, Esther Abels, Dirk Vossen, and Bas Hulsken . Objective and Subjective Assessment of Digital Pathology Image Quality. AIMS Medical Science, 2015, 2(1): 65-78. doi: 10.3934/medsci.2015.1.65
    [9] Anne A. Adeyanju, Wonderful B. Adebagbo, Olorunfemi R. Molehin, Omolola R. Oyenihi . Exploring the multi-drug resistance (MDR) inhibition property of Sildenafil: phosphodiesterase 5 as a therapeutic target and a potential player in reversing MDR for a successful breast cancer treatment. AIMS Medical Science, 2025, 12(2): 145-170. doi: 10.3934/medsci.2025010
    [10] Salma M. AlDallal . Quick glance at Fanconi anemia and BRCA2/FANCD1. AIMS Medical Science, 2019, 6(4): 326-336. doi: 10.3934/medsci.2019.4.326
  • A survey of natural radioactivity has been carried out to estimate the concentration of naturally occurring radionuclides and radiological risk associated in the south East mining region, which present high natural background radiation. An in-situ gamma-ray spectrometer was used to map natural environmental gamma-emitting radionuclides. A combined inferential statistical and chemometrics of naturally occurring radionuclides were used for data modelling and characterization. The radiological data surveys were explored using inferential statistical, principal component analysis and a supervised support vector machine learning. First, one-way Analysis of variance, on-parametric Kruskal Wallis test, was applied allowing pairwise comparison of radionuclides levels in sampling sites, second, data was submitted to PCA to extract noise-free data and reduced data was analyzed with support vector machine. PCA results show that 238U contribution (56%) is dominant in the first principal component with 40K (35%). The second component, with the cumulative variance explained of 88%, is dominated by 232Th (68%) and 40K (31%). Anova indicates that there is a significant difference in the mean mass concentration of samples type and soil activities are mostly lower. The best classification accuracy was 100% with the use of radial kernel density function. As potential uranium and gold mine site, these results will allow establishing both reference values for background radiation of the region and fingerprinting sources of naturally occurring radionuclides.


    In mathematical modelling, the term diffusion is used to describe the motion of species from one region to another. Influenced by various natural factors, such as geographic, hydrological or climatic conditions and human activities, migrations occur between patches, which affects the population dynamics, for example the persistence and extinction of species [1,2,3,4,5,6,7,8]. The growth of species population is also affected by competition caused by disputing food, resources, territories and spouses, including intraspecific and interspecific competitions among populations. To see the effects of the diffusion and competition on population dynamics, we propose the following mathematical model with n species, for i,j=1,2,,n,

    dxi(t)=xi(t)[riaiixi(t)nj=1,jiaijxj(t)+nj=1,jiDijxj(t)nj=1,jiDijαijxi(t)]dt, (1)

    where xi(t) is the population size at time t of the ith species, positive constants ri, aii are the growth rate and the interspecific competition rate of the ith species respectively, aij>0(ji) is the competition rate between species i and j, Dij0 is the diffusion coefficient from species j to species i, αij0 indicates the diffusion boundary condition.

    Recently, time delays have been widely used in biological and ecological models in order to get more realistic mathematical models, for example [9,10,11,12,13,14,15,16]. In this paper, we also consider the time delay, which is accounted for the diffusion. For example, birds cannot migrate immediately after they were born, so the time delay here is the time it takes for them to learn to fly before they can migrate, and death can also occur in the process. Then, from (1) we have the model with time delays as follows

    dxi(t)=xi(t)[riaiixi(t)nj=1,jiaijxj(t)+nj=1,jiDijedjτijxj(tτij)nj=1,jiDijαijxi(t)]dt,i,j=1,2,,n, (2)

    where τij0 is the time delay and dj is the death rate of the jth species. Let τ=maxi,j=1,,n{τij} and C([τ,0];Rn+) denote the family of all bounded and continuous functions from [τ,0] to Rn+. We assume model (2) is subject to the following initial condition

    x(θ)=(x1(θ),,xn(θ))T=(ϕ1(θ),,ϕn(θ))T=ϕ(θ)C([τ,0];Rn+). (3)

    Reference [17] suggests that the growth rate of organisms is generally affected by environmental fluctuations accounted for the disturbance of ecological environment in nature, consequently parameters in biologic models will exhibit random perturbations [18]. Thus, the deterministic models, like (2) are not applicable to capture the essential characters. In the past years, researchers have suggested the use of white noises to capture the main characters of these stochastic fluctuations, see [18,19,20,21,22,23,24,25,26,27] for example. Denote by {Bi(t)}t0,(i=1,2,,n) the independent standard Brownian motions defined on a complete probability space (Ω,{Ft}tR+,P) with σ2i represents the intensity of the environment noises. Then, the growth rate subject to random perturbation can be described by

    riri+σidBi(t),

    with which the model (2) reads

    dxi(t)=xi(t)[riaiixi(t)nj=1,jiaijxj(t)+nj=1,jiDijedjτijxj(tτij)nj=1,jiDijαijxi(t)]dt+σixi(t)dBi(t),i,j=1,2,,n. (4)

    We further consider the optimal harvesting problem of model (4). The research on the optimal harvesting of the population is of great significance to the utilization and development of resources, and can also help mankind to get the optimal strategy of harvesting in order to obtain the most long-term benefits [28,29,30,31,32,33,34,35]. Then, we reach the following model accounted for harvesting:

    dxi(t)=xi(t)[riaiixi(t)nj=1,jiaijxj(t)+nj=1,jiDijedjτijxj(tτij)nj=1,jiDijαijxi(t)]dthixi(t)dt+σixi(t)dBi(t),i,j=1,2,,n, (5)

    where hi0 denotes the harvesting effort of the species i.

    In the rest of the paper, we will devote ourselves to explore the dynamics and the optimal harvesting strategy of model (5). More precisely, in Section 2, we establish necessary conditions for persistence of species in mean and extinction of the species. In Section 3, we investigate conditions of stability, and prove asymptotic stability in distribution of the model, namely, there is a unique probability measure ρ() such that for each ϕC([τ,0];Rn+), the transition probability p(t,ϕ,) of x(t) converges weekly to ρ() when t. In Section 4, by the use of the Hessian matrix and theorems of optimal harvesting due to [36], we investigate the optimal harvesting effort and gain the maximum of expectation of sustainable yield (ESY). In Section 5, we numerically illustrate our theoretical results obtained in previous sections, and then conclude our study in Section 6.

    For the convenience of the following discussion, we define some notations as follows

    bi=rihi0.5σ2i,qij=aii+nj=1,jiDijαij,ci=binj=1,jiaijqjibj,i,j=1,,n,

    and assume that nj=1,jiaijnj=1,jiDijedjτij holds in the rest of the paper.

    Following the same argument as in [37], we can prove the existence of the positive solution.

    Lemma 2.1. Given initial value (3), model (5) admits a unique global positive solution x(t)=(x1(t),,xn(t))T almost surely. Furthermore, for each p>1, there exists a positive constant K=K(p) such that

    lim supt+E|x(t)|pK. (6)

    To show our main result of this section, we consider the following auxiliary equations

    dΦi(t)=Φi(t)(rihiaiiΦi(t)nj=1,jiDijαijΦi(t))dt+σiΦi(t)dBi(t), (7)
    dΨi(t)=Ψi(t)(rihiaiiΨi(t)nj=1,jiaijΦj(t)+nj=1,jiDijedjτijΦj(tτij)nj=1,jiDijαijΨi(t))dt+σiΨi(t)dBi(t), (8)

    with initial value

    Φi(θ)=Ψi(θ)=xi(θ),θ[τ,0],i=1,2,,n.

    By [38,Stochastic Comparison Theorem], we know that for tτ,

    Ψi(θ)xi(θ)Φi(θ)a.s.,i=1,2,,n. (9)

    Remark 1. It is easy to see from [39] that the explicit solution of (7) is

    Φi(t)=exp{bit+σiBi(t)}Φ1i(0)+(aii+nj=1,jiDijαij)t0exp{bis+σiBi(s)}ds,i=1,2,,n. (10)

    Similar calculation gives

    Ψi(t)=exp{bitnj=1,jiaijt0Φj(s)ds+nj=1,jiDijedjτijt0Φj(sτij)ds+σidBi(t)}×{Ψ1i(0)+(aii+nj=1,jiDijαij)t0exp{bisnj=1,jiaijs0Φj(u)du+nj=1,jiDijedjτijs0Φj(uτij)du+σiBi(s)}ds}1,i=1,2,,n. (11)

    Then, by using [40], we obtain the following.

    Lemma 2.2. Let bi>0. Then, from (7) we have

    limt+t1lnΦi(t)=0,limt+t1t0Φi(s)ds=biqij,a.s.,i=1,2,,n. (12)

    Based on Lemma 2, we assume:

    Assumption 2.1. bi>0,ci>0,i=1,2,,n.

    Remark 2. A result due to Golpalsamy [10] and Assumption 2.1 imply that there exists a unique positive solution (det(A1)/det(A),,det(An)/det(A))T for the following system

    {(a11+nj=2D1jα1j)x1+(a12D12ed2τ12)x2++(a1nD1nednτ1n)xn=b1 (13)

    in which

    A = \left( \begin{array}{cccc} a_{11}+\sum_{j = 2}^{n}D_{1j}\alpha_{1j} & a_{12}-D_{12}e^{-d_{2}\tau_{12}} & \cdots & a_{1n}-D_{1n}e^{-d_{n}\tau_{1 n}} \\ a_{21}-D_{21}e^{-d_{1}\tau_{21}} & a_{22}+\sum\limits_{j = 1, j\neq 2}^{n}D_{2j}\alpha_{2j} & \cdots & a_{2 n}-D_{2 n}e^{-d_{n}\tau_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}-D_{n1}e^{-d_{1}\tau_{n1}} & a_{n2}-D_{n2}e^{-d_{2}\tau_{n 2}} & \cdots &a_{nn}+\sum_{j = 1}^{n-1}D_{nj}\alpha_{nj} \end{array} \right)

    and A_{i} is the matrix given by using the (b_{1}, b_{2}, \ldots, b_{n})^{T} to replace the i th column of matrix A .

    Now we are in the position to show our main results.

    Theorem 2.1. All species in system (5) are persistent in mean a.s. , i.e. ,

    \begin{equation} \lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{i}(s) {\rm d}s = \det(A_{i})/\det(A) \gt 0\;\;a.s., \;i = 1, 2, \ldots, n. \end{equation} (14)

    when Assumption 2.1 is satisfied.

    Proof. Let b_{i}>0 , according to (12) that for i, j = 1, 2, \ldots, n, \;j\neq i , one has

    \begin{equation} \lim\limits_{t\rightarrow+\infty}t^{-1}\int_{t-\tau_{ij}}^{t}\Phi_{j}(s) {\rm d}s = \lim\limits_{t\rightarrow+\infty}\bigg(t^{-1}\int_{0} ^{t}\Phi_{j}(s) {\rm d}s-t^{-1}\int_{0}^{t-\tau_{ij}}\Phi_{j}(s) {\rm d}s\bigg) = 0, \end{equation} (15)

    which together with (9) yields

    \begin{equation} \lim\limits_{t\rightarrow+\infty}t^{-1}\int_{t-\tau_{i j}}^{t}x_{j}(s) {\rm d}s = 0, \;i, j = 1, 2, \ldots, n, \;j\neq i. \end{equation} (16)

    By using Itô's formula to (5), one can see that

    \begin{align} &t^{-1}\ln x_{i}(t)-t^{-1}\ln x_{i}(0)\\ = &b_{i}- a_{ii}t^{-1}\int_{0}^{t}x_{i}(s) {\rm d}s- \sum\limits_{j = 1, j\neq i}^{n}a_{ij}t^{-1}\int_{0}^{t}x_{j}(s) {\rm d}s +\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}t^{-1}\int_{0}^{t}x_{j}(s-\tau_{ij}) {\rm d}s\\ &-\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}t^{-1}\int_{0}^{t}x_{j}(s) {\rm d}s+\sigma_{i}t^{-1}B_{i}(t)\\ = &b_{i}-\bigg[a_{ii}t^{-1}\int_{0}^{t}x_{i}(s) {\rm d}s+ \sum\limits_{j = 1, j\neq i}^{n}a_{ij}t^{-1}\int_{0}^{t}x_{j}(s) {\rm d}s- \sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}t^{-1}\int_{0}^{t}x_{j}(s) {\rm d}s\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}t^{-1}\int_{0}^{t}x_{i}(s) {\rm d}s\bigg]+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}t^{-1}\bigg[\int_{-\tau_{ij}}^{0}x_{j}(s) {\rm d}s\ -\int_{t-\tau_{i j}}^{t}x_{j}(s) {\rm d}s\bigg]\\ &+\sigma_{i}t^{-1}B_{i}(t), \;\;\;i, j = 1, 2\ldots, n, \;i\neq j. \end{align} (17)

    According to (16) together with the property of Brownian motion, we obtain

    \lim\limits_{t\rightarrow+\infty}t^{-1}\bigg[\int_{-\tau_{i j}}^{0}x_{j}(s) {\rm d}s-\int_{t-\tau_{i j}}^{t}x_{j}(s) {\rm d}s\bigg] = 0,
    \lim\limits_{t\rightarrow+\infty}t^{-1}B_{i}(t) = 0, \;\;\lim\limits_{t\rightarrow+\infty}t^{-1}\ln x_{i}(0) = 0, \;a.s.

    We next to show that

    \lim\limits_{t\rightarrow+\infty}t^{-1}\ln x_{i}(t) = 0, \;i = 1, 2, \ldots, n.

    In view of (9) and (12), we have

    \liminf\limits_{t\rightarrow+\infty}t^{-1}\ln \Psi_{i}(t)\leq \liminf\limits_{t\rightarrow+\infty}t^{-1}\ln x_{i}(t)\leq \limsup\limits_{t\rightarrow+\infty}t^{-1}\ln x_{i}(t)\leq \limsup\limits_{t\rightarrow+\infty}t^{-1}\ln \Phi_{i}(t) = 0.

    Therefore we obtain

    \begin{equation} \liminf\limits_{t\rightarrow+\infty}t^{-1}\ln \Psi_{i}(t)\geq 0\;a.s., \;i = 1, 2, \ldots, n. \end{equation} (18)

    From (15) and (12), we get

    \begin{align} &\lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}\Phi_{j}(s-\tau_{i j}) {\rm d}s\\ & = \lim\limits_{t\rightarrow+\infty}t^{-1}\bigg(\int_{0}^{t}\Phi_{j}(s) {\rm d}s-\int_{t-\tau_{i j}}^{t}\Phi_{j}(s) {\rm d}s +\int_{\tau_{i j}}^{0}\Phi_{j}(s) {\rm d}s\bigg)\\ & = \frac{b_{j}}{q_{ji}}, \;\;a.s., \;\;i, j = 1, 2\ldots, n, \;i\neq j. \end{align}

    By using \lim_{t\rightarrow+\infty}t^{-1}B_{i}(t) = 0 together with what we have just obtained, yields that for any given \varepsilon>0 , there exists a T = T(\omega) thus for t\geq T, \;i, j = 1, 2\ldots, n, \;i\neq j,

    b_{j}/q_{ji}-\varepsilon\leq t^{-1}\int_{0}^{t}\Phi_{j}(s-\tau_{ij}) {\rm d}s\leq b_{j}/q_{ji}+\varepsilon, \;\;-\varepsilon\leq t^{-1}\sigma_{i}B_{i}(t)\leq \varepsilon.

    Applying these inequalities to (11), we have

    \begin{align} &\frac{1}{\Psi_{i}(t)}\\ = &\exp\bigg\{-b_{i}t+\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\int_{0}^{t}\Phi_{j}(s) {\rm d}s- \sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\int_{0}^{t}\Phi_{j}(s-\tau_{ij}) {\rm d}s- \sigma_{i}B_{i}(t)\bigg\}\\ &\times \bigg\{\Psi_{i}^{-1}(0)+\left(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}\right) \int_{0}^{t}\exp\bigg\{b_{i}s-\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\int_{0}^{s}\Phi_{j}(u) {\rm d}u\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\int_{0}^{s}\Phi_{j}(u-\tau_{ij}) {\rm d}u+ \sigma_{i}B_{i}(s)\bigg\} {\rm d}s\bigg\} \\ = &\exp\bigg\{-b_{i}t+\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\int_{0}^{t}\Phi_{j}(s) {\rm d}s- \sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\int_{0}^{t}\Phi_{j}(s-\tau_{ij}) {\rm d}s- \sigma_{i}B_{i}(t)\bigg\}\\ &\times \bigg\{\Psi_{i}^{-1}(0)+\left(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}\right) \int_{0}^{T}\exp\bigg\{b_{i}s-\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\int_{0}^{s}\Phi_{j}(u) {\rm d}u\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\int_{0}^{s}\Phi_{j}(u-\tau_{ij}) {\rm d}u+ \sigma_{i}B_{i}(s)\bigg\} {\rm d}s\\ &+\bigg(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}\bigg) \int_{T}^{t}\exp\bigg\{b_{i}s-\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\int_{0}^{s}\Phi_{j}(u) {\rm d}u\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\int_{0}^{s}\Phi_{j}(u-\tau_{ij}) {\rm d}u+ \sigma_{i}B_{i}(s)\bigg\} {\rm d}s\bigg\} \\ \leq& \exp\bigg\{t\bigg[-b_{i}+\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg)- \sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \varepsilon\bigg]\bigg\}\\ &\times \bigg\{\Psi_{i}^{-1}(0)+M_{ij}+\bigg(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}\bigg) \int_{T}^{t}\exp\bigg\{s\bigg[b_{i}-\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg) +\varepsilon\bigg]\bigg\} {\rm d}s\bigg\}, \;i, j = 1, \ldots, n, \end{align}

    in which M_{ij}>0 is a constant. Note that c_{i} = b_{i}-\sum_{j = 1, j\neq i}^{n}\frac{a_{ij}}{q_{ji}}b_{j}>0 , thereby for large enough t , one has that

    \begin{align} &\Psi_{i}^{-1}(0)+M_{ij}\\ &\leq \bigg(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}\bigg) \int_{T}^{t}\exp\bigg\{s\bigg[b_{i}-\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg) +\varepsilon\bigg]\bigg\} {\rm d}s. \end{align}

    Hence for sufficiently large t , we obtain

    \begin{align} &\frac{1}{\Psi_{i}(t)}\\ \leq&\exp\bigg\{t\bigg[-b_{i}+\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg)- \sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \varepsilon\bigg]\bigg\}\\ &\times 2\bigg(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\bigg) \int_{T}^{t}\exp\bigg\{s\bigg[b_{i}-\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg) +\varepsilon\bigg]\bigg\} {\rm d}s \\ = &\frac{2\bigg(a_{ii}+\sum_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\bigg)} {b_{i}-\sum_{j = 1, j\neq i}^{n}a_{i j}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \sum_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg) +\varepsilon}\\ &\times \exp\bigg\{t\bigg[-b_{i}+\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg)- \sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \varepsilon\bigg]\bigg\}\\ &\times \exp\bigg\{\bigg[b_{i}-\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg)+ \varepsilon\bigg](t-T)\bigg\}. \end{align}

    Rearranging this inequality shows that

    \begin{eqnarray} t^{-1}\ln \Psi_{i}(t)&\geq& t^{-1}\ln \frac{b_{i}-\sum_{j = 1, j\neq i}^{n}a_{i j}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \sum_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg)+ \varepsilon}{2\bigg(a_{ii}+\sum_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\bigg)}\\ &&-2\varepsilon \bigg(\sum\limits_{j = 1, j\neq i}^{n}a_{i j}+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}+1\bigg)+ \bigg[b_{i}-\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)\\ &&+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg)+ \varepsilon\bigg]\frac{T}{t}. \end{eqnarray}

    Since t is large enough and \varepsilon is arbitrary, we get (14). This completes the proof of Theorem 2.1.

    Corollary 2.1. If there is a b_{i}<0 , then according to (17), one has \limsup_{t\rightarrow+\infty}t^{-1}\ln x_{i}(t)\leq b_{i}<0, \;a.s. It is to say \lim_{t\rightarrow+\infty}x_{i}(t) = 0, \;a.s. , which means that the i th species in system (5) will die out.

    In this section, we study the stability of the model. To this end, we suppose the following holds:

    Assumption 3.1. a_{ii}+\sum_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}\geq \sum_{j = 1, j\neq i}^{n}a_{ji}+\sum_{j = 1, j\neq i}^{n}D_{ji}e^{-d_{i}\tau_{ji}}, \;i = 1, 2, \ldots, n.

    Then, we can prove the following.

    Theorem 3.1. The system (5) is asymptotically stable in distribution if Assumption 3.1 holds.

    Proof. Given two initial values \phi(\theta), \psi(\theta) \in C\left([-\tau, 0];R_{+}^{n}\right) of model (5), the corresponding solutions are x^{\phi}(t) = (x_{1}^{\phi_{1}}(t), \ldots, x_{n}^{\phi_{n}}(t))^{T} and x^{\psi}(t) = (x_{1}^{\psi_{1}}(t), \ldots, x_{n}^{\psi_{n}}(t))^{T} respectively. Let

    V(t) = \sum\limits_{i = 1}^{n}\bigg|\ln x_{i}^{\phi_{i}}(t)-\ln x_{i}^{\psi_{i}}(t)\bigg|+ \sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}} \int_{t-\tau_{i j}}^{t}\bigg|x_{j}^{\phi_{j}}(s)-x_{j}^{\psi_{j}}(s)\bigg| {\rm d}s.

    Applying Itô's formula yields

    \begin{align} & {\rm d}^{+}V(t)\\ = &\sum\limits_{i = 1}^{n} {\rm sgn}\bigg(x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg) {\rm d}\bigg(\ln x_{i}^{\phi_{i}}(t)-\ln x_{i}^{\psi_{i}}(t)\bigg) +\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\bigg|x_{j}^{\phi_{j}}(t)-x_{j}^{\psi_{j}}(t)\bigg| {\rm d}t\\ &-\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg|x_{j}^{\phi_{j}}(t-\tau_{i j})- x_{j}^{\psi_{j}}(t-\tau_{i j})\bigg| {\rm d}t\\ = &\sum\limits_{i = 1}^{n} {\rm sgn}\bigg(x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg) \bigg[-a_{ii}\bigg(x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg) -\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\bigg(x_{j}^{\phi_{j}}(t)-x_{j}^{\psi_{j}}(t)\bigg)\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(x_{j}^{\phi_{j}}(t-\tau_{i j})-x_{j}^{\psi_{j}}(t-\tau_{i j})\bigg) -\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\bigg(x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg)\bigg] {\rm d}t\\ &+\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg|x_{j}^{\phi_{j}}(t)-x_{j}^{\psi_{j}}(t)\bigg| {\rm d}t -\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg|x_{j}^{\phi_{j}}(t-\tau_{i j})- x_{j}^{\psi_{j}}(t-\tau_{i j})\bigg| {\rm d}t\\ \leq& -\sum\limits_{i = 1}^{n}a_{ii}\bigg|x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg| {\rm d}t +\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\bigg|x_{j}^{\phi_{j}}(t)-x_{j}^{\psi_{j}}(t)\bigg| {\rm d}t\\ &+\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg|x_{j}^{\phi_{j}}(t-\tau_{i j}) -x_{j}^{\psi_{j}}(t-\tau_{i j})\bigg| {\rm d}t +\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\bigg|x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg| {\rm d}t\\ &+\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg|x_{j}^{\phi_{j}}(t)-x_{j}^{\psi_{j}}(t)\bigg| {\rm d}t -\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg|x_{j}^{\phi_{j}}(t-\tau_{i j}) -x_{j}^{\psi_{j}}(t-\tau_{i j})\bigg| {\rm d}t\\ = &-\sum\limits_{i = 1}^{n}\bigg(a_{ii}-\sum\limits_{j = 1, j\neq i}^{n}a_{ji}+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j} -\sum\limits_{j = 1, j\neq i}^{n}D_{ji}e^{-d_{i}\tau_{ji}}\bigg)\bigg|x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg| {\rm d}t. \end{align}

    Therefore

    \mathbb{E}(V(t))\leq V(0)-\sum\limits_{i = 1}^{n}\bigg(a_{ii}-\sum\limits_{j = 1, j\neq i}^{n}a_{ji}+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j} -\sum\limits_{j = 1, j\neq i}^{n}D_{ji}e^{-d_{i}\tau_{ji}}\bigg)\int_{0}^{t}\mathbb{E} \bigg|x_{i}^{\phi_{i}}(s)-x_{i}^{\psi_{i}}(s)\bigg| {\rm d}s.

    Together with \mathbb{E}(V(t))\geq 0 , one has

    \sum\limits_{i = 1}^{n}\bigg(a_{ii}-\sum\limits_{j = 1, j\neq i}^{n}a_{ji}+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j} -\sum\limits_{j = 1, j\neq i}^{n}D_{ji}e^{-d_{i}\tau_{ji}}\bigg)\int_{0}^{t}\mathbb{E} \bigg|x_{i}^{\phi_{i}}(s)-x_{i}^{\psi_{i}}(s)\bigg| {\rm d}s\leq V(0) \lt \infty.

    Hence we have \mathbb{E}\bigg|x_{i}^{\phi_{i}}(s)-x_{i}^{\psi_{i}}(s)\bigg|\in L^{1}[0, \infty), \;i = 1, 2, \ldots, n. At the same time, by using (5) we obtain that

    \begin{align} &\mathbb{E}(x_{i}(t))\\ = &x_{i}(0)+\int_{0}^{t}\bigg[\mathbb{E}(x_{i}(s))(r_{i}-h_{i})-a_{ii}\mathbb{E}(x_{i}(s))^{2}- \sum\limits_{j = 1, j\neq i}^{n}a_{i j}\mathbb{E}(x_{i}(s)x_{j}(s))\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\mathbb{E}(x_{i}(s)x_{j}(s-\tau_{i j})) -\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\mathbb{E}(x_{i}(s))^{2}\bigg] {\rm d}s \\ = &x_{i}(0)+\int_{0}^{t}\bigg[\mathbb{E}(x_{i}(s))(r_{i}-h_{i})-a_{ii}\mathbb{E}(x_{i}(s))^{2}- \sum\limits_{j = 1, j\neq i}^{n}a_{i j}\mathbb{E}(x_{i}(s)x_{j}(s))\\ &-\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\mathbb{E}(x_{i}(s))^{2}\bigg] {\rm d}s +\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg[\int_{-\tau_{ij}}^{0}\mathbb{E}(x_{i}(s)x_{j}(s)) {\rm d}s\\ &+\int_{0}^{t}\mathbb{E}(x_{i}(s)x_{j}(s)) {\rm d}s- \int_{t-\tau_{ij}}^{t}\mathbb{E}(x_{i}(s)x_{j}(s)) {\rm d}s\bigg]\\ \leq& x_{i}(0)+\int_{0}^{t}\bigg[\mathbb{E}x_{i}(s)(r_{i}-h_{i})-a_{ii}\mathbb{E}(x_{i}(s))^{2}- \sum\limits_{j = 1, j\neq i}^{n}a_{i j}\mathbb{E}(x_{i}(s)x_{j}(s))\\ &-\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\mathbb{E}(x_{i}(s))^{2}\bigg] {\rm d}s +\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg[\int_{-\tau_{ij}}^{0}\mathbb{E}(x_{i}(s)x_{j}(s)) {\rm d}s\\ &+\int_{0}^{t}\mathbb{E}(x_{i}(s)x_{j}(s)) {\rm d}s\bigg]. \end{align}

    That is to say \mathbb{E}(x_{i}(t)) is continuously differentiable with respect of t . Computing by (5) leads to

    \begin{align} &\frac{ {\rm d}\mathbb{E}(x_{i}(t))}{ {\rm d}t}\\ \leq& \mathbb{E}(x_{i}(t))(r_{i}-h_{i})-\bigg(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\bigg)\mathbb{E}(x_{i}(t))^{2} -\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\mathbb{E}(x_{i}(t)x_{j}(t))\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\mathbb{E}(x_{i}(t)x_{j}(t))\\ \leq& \mathbb{E}(x_{i}(t))r_{i}\leq r_{i}K, \end{align}

    in which K>0 is a constant. It implies that \mathbb{E}(x_{i}(t)) is uniformly continuous. Using [41], we get

    \begin{equation} \lim\limits_{t\rightarrow+\infty}\mathbb{E}|x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)| = 0, \;a.s., \;i = 1, 2, \ldots, n. \end{equation} (19)

    Denote p(t, \phi, {\rm d} y) as the transition probability density of the process x(t) and P(t, \phi, A) represents the probability of event x(t)\in A . By (6) and [42,Chebyshev's inequality], we can obtain that the family of p(t, \phi, {\rm d} y) is tight. Now define \Gamma\left(C\left([-\tau, 0];R^n_+\right)\right) as the probability measures on C\left([-\tau, 0];R^n_+\right) . For arbitrary two measures P_1, P_2\in \Gamma , we define the metric

    \begin{equation*} d_\mathbb{L}(P_1, P_2) = \sup\limits_{v\in \mathbb{L}}\bigg|\int_{R^n_+}v(x)P_1(\mathrm{d}x)-\int_{R^n_+}v(x)P_2(\mathrm{d}x)\bigg|, \end{equation*}

    where

    \begin{equation*} \mathbb{L} = \left\{v:C\left([-\tau, 0];R^3_+\right)\rightarrow R:||v(x)-v(y)||\leq\parallel x-y\parallel, | v(\cdot)|\leq1\right\}. \end{equation*}

    Since \{p(t, \phi, {\rm d} y)\} is tight, then according to (19) we know that for any \varepsilon>0 , there is a T>0 satisfies that for t\geq T, s>0 ,

    \begin{equation*} \sup\limits_{v\in \mathbb{L}}\bigg|\mathbb{E}v(x(t+s))-\mathbb{E}v(x(t))\bigg|\leq\varepsilon. \end{equation*}

    Therefore \{p(t, \xi, \cdot)\} is Cauchy in \Gamma with metric d_\mathbb{L} , in which \xi\in C\left([-\tau, 0];R^n_+\right) is arbitrary given. Hence there exists a unique \kappa(\cdot)\in \Gamma(C([-\tau, 0];R^n_+)) such that \lim\limits_{t\rightarrow\infty}d_\mathbb{L}(p(t, \xi, \cdot), \kappa(\cdot)) = 0 . At the same time, it follows from (19) that

    \begin{equation*} \lim\limits_{t\rightarrow\infty}d_\mathbb{L}(p(t, \phi, \cdot), p(t, \xi, \cdot)) = 0. \end{equation*}

    Consequently,

    \begin{equation*} \lim\limits_{t\rightarrow\infty}d_\mathbb{L}(p(t, \phi, \cdot), \kappa(\cdot))\leq\lim\limits_{t\rightarrow \infty}d_\mathbb{L}(p(t, \phi, \cdot), p(t, \xi, \cdot))+\lim\limits_{t\rightarrow\infty}d_\mathbb{L} (p(t, \xi, \cdot), \kappa(\cdot)) = 0. \end{equation*}

    This completes the proof of Theorem 3.1.

    In this section, we consider the optimal harvesting problem of system (5). Our purpose is to find the optimal harvesting effort H^{*} = (h_{1}^{*}, \ldots, h_{n}^{*}) such that:

    (ⅰ) Y(H) = \lim_{t\rightarrow+\infty}\sum_{i = 1}^{n}\mathbb{E}(h_{i}x_{i}(t)) is maximum;

    (ⅱ) Every x_{i}(i = 1, 2, \ldots, n) is persistent in the mean.

    Before we give our main results, we define

    \begin{equation} \Theta = (\theta_{1}, \theta_{2}, \ldots, \theta_{n})^{T} = [A(A^{-1})^{T}+I]^{-1}G, \end{equation} (20)

    in which G = (r_{1}-0.5\sigma_{1}^{2}, r_{2}-0.5\sigma_{2}^{2}, \ldots, r_{n}-0.5\sigma_{n}^{2})^{T} and I is the unit matrix, and make an assumption:

    Assumption 4.1. A^{-1}+(A^{-1})^{T} is positive definite,

    Theorem 4.1. Suppose Assumptions 3.1 and 4.1 hold, and If these following inequalities

    \begin{equation} \theta_{i}\geq 0, \;b_{i}\mid_{h_{i} = \theta_{i}} \gt 0, \;c_{i}\mid_{h_{m} = \theta_{m}, \;m = 1, 2, \ldots, n} \gt 0, i = 1, \cdots, n \end{equation} (21)

    are satisfied. Then, for system (5) the optimal harvesting effort is

    \begin{equation*} H^{*} = \Theta = [A(A^{-1})^{T}+I]^{-1}G \end{equation*}

    and the maximum of ESY is

    \begin{equation} Y^{*} = \Theta^{T}A^{-1}(G-\Theta). \end{equation} (22)

    Proof. Denote W = \{H = (h_{1}, \ldots, h_{n})^{T}\in R^{n}\mid b_{i}>0, \;c_{i}>0, \;h_{i}>0, \;i = 1, \ldots, n\} . Easily we can see that for any H\in W , (14) is satisfied. Note that \Theta\in W , then W is not empty. According to (14), we have that for every H\in W ,

    \begin{equation} \lim\limits_{t\to+\infty} t^{-1}\int_0^tH^\mathrm{T}x(s)\mathrm{d}s = \sum\limits_{i = 1}^n h_i\lim\limits_{t\to+\infty} t^{-1}\int_0^tx_{i}(s)\mathrm{d}s = H^\mathrm{T}A^{-1}(G-H). \end{equation} (23)

    Applying Theorem 4.1, there is a unique invariant measure \rho(\cdot) for model (5). By [43,Corollary 3.4.3], we obtain that \rho(\cdot) is strong mixing. Meanwhile, it is ergodic according to [43,Theorem 3.2.6]. It means

    \begin{equation} \lim\limits_{t\to+\infty} t^{-1}\int_0^tH^\mathrm{T}x(s)\mathrm{d}s = \int_{R^n_+}H^\mathrm{T}x\rho(\mathrm{d}x). \end{equation} (24)

    Let \mu(x) represent the stationary probability density of system (5), then we have

    \begin{equation} Y(H) = \lim\limits_{t\to+\infty}\sum\limits_{i = 1}^n\mathbb{E}(h_ix_{i}(t)) = \lim\limits_{t\to+\infty}\mathbb{E}(H^\mathrm{T}x(t)) = \int_{R^n_+}H^\mathrm{T}x\mu(x)\mathrm{d}x. \end{equation} (25)

    Since the invariant measure of model (9) is unique, one has

    \begin{equation} \int_{R^n_+}H^\mathrm{T}x\mu(x)\mathrm{d}x = \int_{R^n_+}H^\mathrm{T}x\rho(\mathrm{d}x). \end{equation} (26)

    In other words,

    \begin{equation} Y(H) = H^\mathrm{T}A^{-1}(G-H). \end{equation} (27)

    Assume that \Theta = (\theta_{1}, \theta_{2}, \ldots, \theta_{n})^{T} is the solution of the following equation

    \begin{equation} \begin{aligned} \frac{\mathrm{d}Y(H)}{\mathrm{d}H}& = \frac{\mathrm{d}H^\mathrm{T}}{\mathrm{d}H}A^{-1}(G-H)+ \frac{\mathrm{d}}{\mathrm{d}H}\left[(G-H)^\mathrm{T}(A^{-1})^\mathrm{T}\right]H\\ & = A^{-1}G-\left[A^{-1}+(A^{-1})^\mathrm{T}\right]H\\ & = 0. \end{aligned} \end{equation} (28)

    Thus, \Theta = [A(A^{-1})^\mathrm{T}+I]^{-1}G . By using of the Hessian matrix (see [44,45]),

    \begin{equation*} \begin{aligned} \frac{\mathrm{d}}{\mathrm{d}H^\mathrm{T}}\left[\frac{\mathrm{d}Y(H)}{\mathrm{d}H}\right] & = \left(\frac{\mathrm{d}}{\mathrm{d}H}\left[\left(\frac{\mathrm{d}Y(H)}{\mathrm{d}H}\right)^\mathrm{T}\right]\right) ^\mathrm{T} \\ & = \left(\frac{\mathrm{d}}{\mathrm{d}H}\left[G^\mathrm{T}(A^{-1})^\mathrm{T}-H^\mathrm{T}[A^{-1}+(A^{-1})^\mathrm {\mathrm{T}}]\right]\right)^\mathrm{T}\\ & = -A^{-1}-(A^{-1})^\mathrm{T} \end{aligned} \end{equation*}

    is negative defined, then \Theta is the unique extreme point of Y(H) . That is to say, if \Theta\in W and under the condition of (21), the optimal harvesting effort is H^* = \Theta and Y^* is the maximum value of ESY. This completes the proof of Theorem 4.1.

    To see our analytical results more clearly, we shall give some numerical simulations in this section. Without loss of generality, we consider the following system

    \begin{equation} \left\{\begin{aligned} {\rm d}x_{1}(t) = &x_{1}(t)\bigg[r_{1}-h_{1}-a_{11}x_{1}(t)-a_{12}x_{2}(t)+ D_{12}e^{-d_{2}\tau_{12}}x_{2}(t-\tau_{12})-D_{12}\alpha_{12}x_{1}(t)\bigg] {\rm d}t\\ &+\sigma_{1}x_{1}(t) {\rm d}B_{1}(t), \\ {\rm d}x_{2}(t)& = x_{2}(t)\bigg[r_{2}-h_{2}-a_{22}x_{2}(t)-a_{21}x_{1}(t)+ D_{21}e^{-d_{1}\tau_{21}}x_{1}(t-\tau_{21})-D_{21}\alpha_{21}x_{2}(t)\bigg] {\rm d}t\\ &+\sigma_{2}x_{2}(t) {\rm d}B_{2}(t), \end{aligned} \right. \end{equation} (29)

    which is the case when n = 2 in (5), with initial value

    x(\theta) = \phi(\theta)\in C\left([-\tau, 0];R_{+}^{2}\right), \;\tau = \max\{\tau_{1}, \tau_{2}\},

    where r_{i}>0, \;a_{ij}>0, \;\tau_{i}\geq 0, \;i, j = 1, 2 .

    Firstly, we discuss the persistence in mean of x_{1} and x_{2} . For that, we take the parameter values as follows:

    Table 1.  Parameter Values for Figure 13.
    Parameter Value Parameter Value Parameter Value
    r_{1} 0.9 h_{1} 0.1 \alpha_{12} 0.6
    r_{2} 0.8 h_{2} 0.05 \alpha_{21} 0.3
    a_{11} 0.6 a_{12} 0.2 a_{21} 0.35
    a_{22} 0.23 \sigma_{1} 0.05 \sigma_{2} 0.05
    d_{1} 1 d_{2} 1 D_{12} 4
    D_{21} 3 \tau_{12} 8 \tau_{21} 5

     | Show Table
    DownLoad: CSV

    The initial values are x_{1}(\theta) = 0.5+0.01\sin\theta , x_{2}(\theta) = 0.5+0.02\sin\theta , \theta\in[-\tau, 0] . Simple calculations show that b_{1} = 0.7988>0, \;b_{2} = 0.7488>0, \;c_{1} = 0.6662>0, \;c_{2} = 0.6556>0 implying Assumption 2.1 is satisfied. Then by Theorem 2.1, we can obtain that in (29)

    Figure 1.  Time series of species x_{1} and x_{2} of system (29) with initial values x_{1}(\theta) = 0.5+0.01\sin\theta , x_{2}(\theta) = 0.5+0.02\sin\theta , \theta\in[-\tau, 0] and parameter values in Table 1.
    \lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{1}(s) {\rm d}s = \det(A_{1})/\det(A) = 0.2268 \gt 0\;\;a.s.,
    \lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{2}(s) {\rm d}s = \det(A_{2})/\det(A) = 0.5964 \gt 0\;\;a.s..

    Applying the Milstein numerical method in [47], we then obtained the numerical solution of system (29), see Figure 1. It shows that x_{1} and x_{2} respectively asymptotical approach to 0.2268 and 0.5964 time averagely. And this agrees well with our results in Theorem 2.1. Then we research the distributions of x_{1} and x_{2} under the same conditions. Obviously, we have a_{11}+D_{12}\alpha_{12}\geq a_{21}+D_{21}e^{-d_{1}\tau_{21}}, \;a_{22}+D_{21}\alpha_{21}\geq a_{12}+D_{12}e^{-d_{2}\tau_{12}} , it is to say Assumption 3.1 is satisfied. Thus by Theorem 3.1, system (29) is asymptotically stable in distribution as suggested by Figure 2.

    Figure 2.  Distributions of species x_{1} and x_{2} of system (29) with initial values x_{1}(\theta) = 0.5+0.01\sin\theta , x_{2}(\theta) = 0.5+0.02\sin\theta , \theta\in[-\tau, 0] and parameter values in Table 1.

    Lastly, we consider the optimal harvesting strategy of system (29). It is easy to see that the Assumption 2.1 and Assumption 3.1 are satisfied. Furthermore, we have

    \Theta = (\theta_{1}, \theta_{2})^{T} = [A(A^{-1})^{T}+I]^{-1}(r_{1}-0.5\sigma_{1}^{2}, r_{2} -0.5\sigma_{2}^{2})^{T} = (0.4817, 0.3820)^{T},

    in which I = \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) . Since condition (21) is satisfied, by Theorem 4.1, the optimal harvesting effort is

    H^{*} = \Theta = (\theta_{1}, \theta_{2})^{T} = [A(A^{-1})^{T}+I]^{-1}(r_{1}-0.5\sigma_{1}^{2}, r_{2} -0.5\sigma_{2}^{2})^{T} = (0.4817, 0.3820)^{T},

    on the other hand, the maximum of ESY is

    Y^{*} = \Theta^{T}A^{-1}(r_{1}-0.5\sigma_{1}^{2}-\theta_{1}, r_{2}- 0.5\sigma_{2}^{2}-\theta_{2})^{T} = 0.1789.

    By using the Monte Carlo method (see [48]) and the parameters in Table 1, we can obtain Figure 3, showing our results in Theorem 4.1.

    Figure 3.  The harvesting policies E[h_{1}x_{1}(t)+h_{2}x_{2}(t)] of system (29) with initial values x_{1}(\theta) = 0.5+0.01\sin\theta , x_{2}(\theta) = 0.5+0.02\sin\theta , \theta\in[-\tau, 0] and parameter values in Table 1. The red line is with h_{1} = h_{1}^{*} = 0.4817, \;h_{2} = h_{2}^{*} = 0.3820 , the green line is with h_{1} = 0.53, \;h_{2} = 0.2 , the blue line is with h_{1} = 0.1, \;h_{2} = 0.2 .
    Table 2.  Parameter Values for Figure 4-6.
    ParameterValueParameterValueParameterValue
    r_{1}2 h_{1}0.4452 \alpha_{12}0.8
    r_{2}1.12 h_{2}0.3307 \alpha_{13}0.67
    r_{3}0.6 h_{3}0.3307 \alpha_{21}0.56
    \alpha_{23}0.8 \alpha_{31}0.6 \alpha_{32}0.77
    a_{11}0.18 a_{12}0.35 a_{13}0.3
    a_{21}0.45 a_{22}0.22 a_{23}0.6
    a_{31}0.4 a_{32}0.3 a_{33}0.2
    \sigma_{1}0.05 \sigma_{2}0.05 \sigma_{3}0.05
    d_{1}0.39 d_{2}0.57 d_{3}0.37
    \tau_{12}3 \tau_{13}3 \tau_{21}5
    \tau_{22}5 \tau_{31}4 \tau_{32}5.5
    D_{12}4 D_{13}5 D_{21}2.4
    D_{23}4 D_{31}2 D_{32}2.5

     | Show Table
    DownLoad: CSV

    Next, we consider a case of three species.

    \begin{equation} \left\{\begin{aligned} {\rm d}x_{1}(t) = &x_{1}(t)\bigg[r_{1}-h_{1}-a_{11}x_{1}(t)-\bigg(a_{12}x_{2}(t)+a_{13}x_{3}(t)\bigg)+ \bigg(D_{12}e^{-d_{2}\tau_{12}}x_{2}(t-\tau_{12})\\ &+D_{13}e^{-d_{3}\tau_{13}}x_{3}(t-\tau_{13})\bigg) -\bigg(D_{12}\alpha_{12}x_{1}(t)+D_{13}\alpha_{13}x_{1}(t)\bigg)\bigg] {\rm d}t\\ &+\sigma_{1}x_{1}(t) {\rm d}B_{1}(t), \\ {\rm d}x_{2}(t) = &x_{2}(t)\bigg[r_{2}-h_{2}-a_{22}x_{2}(t)-\bigg(a_{21}x_{1}(t)+a_{23}x_{3}(t)\bigg)+ \bigg(D_{21}e^{-d_{1}\tau_{21}}x_{1}(t-\tau_{21})\\ &+D_{23}e^{-d_{3}\tau_{23}}x_{3}(t-\tau_{23})\bigg) -\bigg(D_{21}\alpha_{21}x_{2}(t)+D_{23}\alpha_{23}x_{2}(t)\bigg)\bigg] {\rm d}t\\ &+\sigma_{2}x_{2}(t) {\rm d}B_{2}(t), \\ {\rm d}x_{3}(t) = &x_{3}(t)\bigg[r_{3}-h_{3}-a_{33}x_{3}(t)-\bigg(a_{31}x_{1}(t)+a_{32}x_{2}(t)\bigg)+ \bigg(D_{31}e^{-d_{1}\tau_{31}}x_{1}(t-\tau_{31})\\ &+D_{32}e^{-d_{2}\tau_{32}}x_{2}(t-\tau_{32})\bigg) -\bigg(D_{31}\alpha_{31}x_{3}(t)+D_{32}\alpha_{32}x_{3}(t)\bigg)\bigg] {\rm d}t\\ &+\sigma_{3}x_{3}(t) {\rm d}B_{3}(t). \end{aligned} \right. \end{equation} (30)

    We use the following parameter values:

    The initial values are x_{1}(\theta) = 0.5+0.01\sin\theta , x_{2}(\theta) = 0.5+0.02\sin\theta , x_{3}(\theta) = 0.5+0.001\sin\theta , \theta\in[-\tau, 0] . Easily we get that b_{1} = 0.1.5536>0, \;b_{2} = 0.7881>0, \;b_{3} = 0.2681>0, \;c_{1} = 1.4502>0, \;c_{2} = 0.0552>0, \;c_{3} = 0.0229>0. Thus Assumption 2.1 is hold. By Theorem 2.1, we have for (30)

    \lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{1}(s) {\rm d}s = \det(A_{1})/\det(A) = 0.2543 \gt 0\;\;a.s.,
    \lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{2}(s) {\rm d}s = \det(A_{2})/\det(A) = 0.1601 \gt 0\;\;a.s.,
    \lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{3}(s) {\rm d}s = \det(A_{3})/\det(A) = 0.0730 \gt 0\;\;a.s..

    The numerical results of Theorem 2.1 when n = 3 are shown in Figure 4.

    Figure 4.  Time series of species x_{1} , x_{2} and x_{3} of system (30) with initial values x_{1}(\theta) = 0.5+0.01\sin\theta , x_{2}(\theta) = 0.5+0.02\sin\theta , x_{3}(\theta) = 0.5+0.001\sin\theta , \theta\in[-\tau, 0] and parameter values in Table 2.

    The stable distribution for n = 3 are shown in Figure 5.

    Figure 5.  Distributions of species x_{1}, \;x_{2} and x_{3} of system (30) with initial values x_{1}(\theta) = 0.5+0.01\sin\theta , x_{2}(\theta) = 0.5+0.02\sin\theta , x_{3}(\theta) = 0.5+0.001\sin\theta and parameter values in Table 2.

    To numerical illustrate the optimal harvesting effort of (30), we set

    \Theta = (\theta_{1}, \theta_{2}, \theta_{3})^{T} = [A(A^{-1})^{T}+I]^{-1}(r_{1}-0.5\sigma_{1}^{2}, r_{2} -0.5\sigma_{2}^{2}, r_{3}-0.5\sigma_{3}^{2})^{T} = (1.1052, 0.5537, 0.1663)^{T},

    which yield H^{*} = \Theta = (1.1052, 0.5537, 0.1663)^{T} , and the maximum of ESY is Y^{*} = 0.2263 , see Figure-6.

    Figure 6.  The harvesting policies E[h_{1}x_{1}(t)+h_{2}x_{2}(t)+h_{3}x_{3}(t)] of system (29) with initial values x_{1}(\theta) = 0.5+0.01\sin\theta, x_{2}(\theta) = 0.5+0.02\sin\theta, x_{3}(\theta) = 0.5+0.001\sin\theta and parameter values in Table 2. The red line is with h_{1} = h_{1}^{*} = 1.1052, \;h_{2} = h_{2}^{*} = 0.5537, \;h_{3} = h_{3}^{*} = 0.1663, the green line is with h_{1} = 0.1, \;h_{2} = 0.6, \;h_{3} = 0.6, the blue line is with h_{1} = 0.35, \;h_{2} = 0.4, \;h_{3} = 0.1.

    In this paper, a stochastic n-species competitive model with delayed diffusions and harvesting has been considered. We studied the persistence in mean of every population, which is biologically significant because it shows that all populations can coexist in the community. Since the model (5) does not have a positive equilibrium point and its solution can not approach a positive value, we considered its asymptotically stable distribution. By using ergodic method, we obtained the optimal harvesting policy and the maximum harvesting yield of system (5). We have also done some numerical simulations of the situations for n = 2 and n = 3 in model (5) to illustrate our theoretical results as it is very useful whether in terms of mathematics or biology to visualize our conclusions.

    Our studies showed some interesting results

    (a) Both environmental disturbance and diffused time delay can effect the persistence and optimal harvesting effort of system (5)..

    (b) Environmental noises have no effect on asymptotic stability in distribution of system (5), but the time delays have.

    There are other meaningful aspects that can be studied further since our paper only consider the effects of white noises on population growth rate. In future, for example, we can consider the situation when white noises also have influences over harvesting (see [45]) and non-autonomous system (see [46]); the time delay will also be reflected in competition (see [49]). Furthermore, we can consider something more complex models such as the ones with regime-switching (see [50,51]) or Lévy jumps (see [14,42]).

    This work was supported by the Research Fund for the Taishan Scholar Project of Shandong Province of China, and the SDUST Research Fund (2014TDJH102).

    The authors declare that there is no conflict of interest regarding the publication of this paper.



    [1] UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly, with Scientific Annexes. Sources and effects and risks of ionizing radiation. United Nations. New York.
    [2] Latife S, Nurgül H, Hakan Ç (2017) Assessment of radiological hazard parameters due to natural radioactivity in soils from granite-rich regions in Kütahya Province, Turkey. Isot Environ Healt S 53: 212-221. doi: 10.1080/10256016.2016.1207640
    [3] Alam M, Miah M, Chowdhury M, et al. (2016) Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276-1332 keV. Appl Radiat Isotopes 54: 973-6.
    [4] Faheem M, Mujahid S, Matiullah M (2008) Assessment of radiological hazards due to the natural radioactivity in soil and building material samples collected from six districts of the Punjab province, Pakistan. Radiat Meas 43: 1443-7. doi: 10.1016/j.radmeas.2008.02.014
    [5] Kapdan E, Altinsoy N, Karahan G (2011) Determination of the health hazards due to background radiation sources in the city of Adapazari, Northwestern Turkey. Isot Environ Healt S 47: 93-100. doi: 10.1080/10256016.2011.557499
    [6] Khan HM, Ismail M, Zia MA (2012) Measurement of radionuclides and absorbed dose rates in soil samples of Peshawar, Pakistan, using gamma ray spectrometry. Isot Environ Healt S 48: 295-301. doi: 10.1080/10256016.2012.641963
    [7] Yang Y, Wu X, Jiang Z (2005) Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl Radiat Isotopes 63: 255-9. doi: 10.1016/j.apradiso.2005.02.011
    [8] Dione D, Mbaye M, Sané ML, et al. (2018) Survey of Activity Concentration and Dose Estimation of Naturally Occurring Radionuclides (232Th, 238U and 40K) in the Coastal area of Dakar, Senegal. Indian J Sci Tech 11: 1-7.
    [9] Krstic D, Nikezic D, Stevanovic N, et al. (2007) Radioactivity of some domestic and imported building materials from South Eastern Europe. Radiat Meas 47: 1731-1736.
    [10] El-Arabi A, Abbady A, El-Hussein A (2011) Gamma-ray measurements of natural radioactivity in sedimentary rocks from Egypt. Nucl Sci Tech 17: 123-8.
    [11] Msaki P, Banzi FP (2000) Radioactivity in products derived from gypsum in Tanzania spectrometry. Radiat Prot Dosim 91: 409-12. doi: 10.1093/oxfordjournals.rpd.a033251
    [12] Navas A, Gaspar L, López-Vicente M, et al. (2011) Spatial distribution of Natural and artificial radionuclides at the catchment scale (South Central Pyrenees). Radiat Meas 46: 261-9. doi: 10.1016/j.radmeas.2010.11.008
    [13] Prakash MM, Kaliprasad CS, Narayana Y (2017) Study on natural radioactivity in the rocks of Coorg District, Karnataka State. Radia Res J Appl Sci 10: 128-134.
    [14] Safarov AA, Safarov AN, Azimov AN, et al. (2017) Rapid assessment methodology in NORM measurements from building materials of Uzbekistan. J Environ Radioactiv 169: 186-191.
    [15] Chiozzi P, Pasquale V, Verdoya M (2002) naturally occurring radioactivity at the Alpsapennines transition. Radia Meas 35: 147-154. doi: 10.1016/S1350-4487(01)00288-8
    [16] Gongàlez-Fernàndez AB, Marcelo V, Valenciano JB, et al. (2012) Relationship between physical and chemical parameters for four commercial grape varieties from the Bierzo region (Spain). Sci Hortic 147: 111-117. doi: 10.1016/j.scienta.2012.09.009
    [17] Mbaye M, Traore A, Ndao AS, et al. (2015) Multivariate Statistical Techniques to Determine Essential and Toxic Elements in Biological Samples by X-Ray Fluorescence. Instrum Sci Technol 43: 369-378. doi: 10.1080/10739149.2014.991967
    [18] Varmuza K, Filzmoser P (2016) Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Florida.
    [19] Mabit L, Gibbs M, Mbaye M, et al. (2018) Novel application of Compound Specific Stable Isotope (CSSI) techniques to investigate on-site sediment origins across arable fields. Geoderma 316: 19-26. doi: 10.1016/j.geoderma.2017.12.008
    [20] Vapnik VN (1995) The Nature of Statistical Learning Theory, Springer-Verlag, New York.
    [21] Husson F, Lê S, Pagès J (2017) Exploratory Multivariate Data Analysis by Example Using R. Chapman & Hall/CRC Computer Science & Data Analysis (2nd edition).
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3886) PDF downloads(446) Cited by(2)

Figures and Tables

Figures(4)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog