Parameter | Value | Parameter | Value | Parameter | Value |
0.9 | 0.1 | 0.6 | |||
0.8 | 0.05 | 0.3 | |||
0.6 | 0.2 | 0.35 | |||
0.23 | 0.05 | 0.05 | |||
1 | 1 | 4 | |||
3 | 8 | 5 |
Citation: Mamadou Lamine Sane, Modou MBAYE, Djicknack Dione, Ahmadou Wague. Characterization of high background radiation of terrestrial naturally occurring radionuclides in a mining region of Senegal[J]. AIMS Environmental Science, 2019, 6(6): 472-482. doi: 10.3934/environsci.2019.6.472
[1] | Ekaterina Kldiashvili, Archil Burduli, Gocha Ghortlishvili . Application of Digital Imaging for Cytopathology under Conditions of Georgia. AIMS Medical Science, 2015, 2(3): 186-199. doi: 10.3934/medsci.2015.3.186 |
[2] | Anuj A. Shukla, Shreya Podder, Sana R. Chaudry, Bryan S. Benn, Jonathan S. Kurman . Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. AIMS Medical Science, 2022, 9(2): 348-361. doi: 10.3934/medsci.2022016 |
[3] | Nicole Lavender, David W. Hein, Guy Brock, La Creis R. Kidd . Evaluation of Oxidative Stress Response Related Genetic Variants, Pro-oxidants, Antioxidants and Prostate Cancer. AIMS Medical Science, 2015, 2(4): 271-294. doi: 10.3934/medsci.2015.4.271 |
[4] | Masahiro Yasunaga, Shino Manabe, Masaru Furuta, Koretsugu Ogata, Yoshikatsu Koga, Hiroki Takashima, Toshirou Nishida, Yasuhiro Matsumura . Mass spectrometry imaging for early discovery and development of cancer drugs. AIMS Medical Science, 2018, 5(2): 162-180. doi: 10.3934/medsci.2018.2.162 |
[5] | Sherven Sharma, Pournima Kadam, Ram P Singh, Michael Davoodi, Maie St John, Jay M Lee . CCL21-DC tumor antigen vaccine augments anti-PD-1 therapy in lung cancer. AIMS Medical Science, 2021, 8(4): 269-275. doi: 10.3934/medsci.2021022 |
[6] | Ayomide Abe, Mpumelelo Nyathi, Akintunde Okunade . Lung cancer diagnosis from computed tomography scans using convolutional neural network architecture with Mavage pooling technique. AIMS Medical Science, 2025, 12(1): 13-27. doi: 10.3934/medsci.2025002 |
[7] | Timothy Hamerly, Margaret H. Butler, Steve T. Fisher, Jonathan K. Hilmer, Garth A. James, Brian Bothner . Mass Spectrometry Imaging of Chlorhexidine and Bacteria in a Model Wound. AIMS Medical Science, 2015, 2(3): 150-161. doi: 10.3934/medsci.2015.3.150 |
[8] | Prarthana Shrestha, Rik Kneepkens, Gijs van Elswijk, Jeroen Vrijnsen, Roxana Ion, Dirk Verhagen, Esther Abels, Dirk Vossen, and Bas Hulsken . Objective and Subjective Assessment of Digital Pathology Image Quality. AIMS Medical Science, 2015, 2(1): 65-78. doi: 10.3934/medsci.2015.1.65 |
[9] | Anne A. Adeyanju, Wonderful B. Adebagbo, Olorunfemi R. Molehin, Omolola R. Oyenihi . Exploring the multi-drug resistance (MDR) inhibition property of Sildenafil: phosphodiesterase 5 as a therapeutic target and a potential player in reversing MDR for a successful breast cancer treatment. AIMS Medical Science, 2025, 12(2): 145-170. doi: 10.3934/medsci.2025010 |
[10] | Salma M. AlDallal . Quick glance at Fanconi anemia and BRCA2/FANCD1. AIMS Medical Science, 2019, 6(4): 326-336. doi: 10.3934/medsci.2019.4.326 |
In mathematical modelling, the term diffusion is used to describe the motion of species from one region to another. Influenced by various natural factors, such as geographic, hydrological or climatic conditions and human activities, migrations occur between patches, which affects the population dynamics, for example the persistence and extinction of species [1,2,3,4,5,6,7,8]. The growth of species population is also affected by competition caused by disputing food, resources, territories and spouses, including intraspecific and interspecific competitions among populations. To see the effects of the diffusion and competition on population dynamics, we propose the following mathematical model with
dxi(t)=xi(t)[ri−aiixi(t)−n∑j=1,j≠iaijxj(t)+n∑j=1,j≠iDijxj(t)−n∑j=1,j≠iDijαijxi(t)]dt, | (1) |
where
Recently, time delays have been widely used in biological and ecological models in order to get more realistic mathematical models, for example [9,10,11,12,13,14,15,16]. In this paper, we also consider the time delay, which is accounted for the diffusion. For example, birds cannot migrate immediately after they were born, so the time delay here is the time it takes for them to learn to fly before they can migrate, and death can also occur in the process. Then, from (1) we have the model with time delays as follows
dxi(t)=xi(t)[ri−aiixi(t)−n∑j=1,j≠iaijxj(t)+n∑j=1,j≠iDije−djτijxj(t−τij)−n∑j=1,j≠iDijαijxi(t)]dt,i,j=1,2,…,n, | (2) |
where
x(θ)=(x1(θ),…,xn(θ))T=(ϕ1(θ),…,ϕn(θ))T=ϕ(θ)∈C([−τ,0];Rn+). | (3) |
Reference [17] suggests that the growth rate of organisms is generally affected by environmental fluctuations accounted for the disturbance of ecological environment in nature, consequently parameters in biologic models will exhibit random perturbations [18]. Thus, the deterministic models, like (2) are not applicable to capture the essential characters. In the past years, researchers have suggested the use of white noises to capture the main characters of these stochastic fluctuations, see [18,19,20,21,22,23,24,25,26,27] for example. Denote by
ri→ri+σidBi(t), |
with which the model (2) reads
dxi(t)=xi(t)[ri−aiixi(t)−n∑j=1,j≠iaijxj(t)+n∑j=1,j≠iDije−djτijxj(t−τij)−n∑j=1,j≠iDijαijxi(t)]dt+σixi(t)dBi(t),i,j=1,2,…,n. | (4) |
We further consider the optimal harvesting problem of model (4). The research on the optimal harvesting of the population is of great significance to the utilization and development of resources, and can also help mankind to get the optimal strategy of harvesting in order to obtain the most long-term benefits [28,29,30,31,32,33,34,35]. Then, we reach the following model accounted for harvesting:
dxi(t)=xi(t)[ri−aiixi(t)−n∑j=1,j≠iaijxj(t)+n∑j=1,j≠iDije−djτijxj(t−τij)−n∑j=1,j≠iDijαijxi(t)]dt−hixi(t)dt+σixi(t)dBi(t),i,j=1,2,…,n, | (5) |
where
In the rest of the paper, we will devote ourselves to explore the dynamics and the optimal harvesting strategy of model (5). More precisely, in Section 2, we establish necessary conditions for persistence of species in mean and extinction of the species. In Section 3, we investigate conditions of stability, and prove asymptotic stability in distribution of the model, namely, there is a unique probability measure
For the convenience of the following discussion, we define some notations as follows
bi=ri−hi−0.5σ2i,qij=aii+n∑j=1,j≠iDijαij,ci=bi−n∑j=1,j≠iaijqjibj,i,j=1,…,n, |
and assume that
Following the same argument as in [37], we can prove the existence of the positive solution.
Lemma 2.1. Given initial value (3), model (5) admits a unique global positive solution
lim supt→+∞E|x(t)|p≤K. | (6) |
To show our main result of this section, we consider the following auxiliary equations
dΦi(t)=Φi(t)(ri−hi−aiiΦi(t)−n∑j=1,j≠iDijαijΦi(t))dt+σiΦi(t)dBi(t), | (7) |
dΨi(t)=Ψi(t)(ri−hi−aiiΨi(t)−n∑j=1,j≠iaijΦj(t)+n∑j=1,j≠iDije−djτijΦj(t−τij)−n∑j=1,j≠iDijαijΨi(t))dt+σiΨi(t)dBi(t), | (8) |
with initial value
Φi(θ)=Ψi(θ)=xi(θ),θ∈[−τ,0],i=1,2,…,n. |
By [38,Stochastic Comparison Theorem], we know that for
Ψi(θ)≤xi(θ)≤Φi(θ)a.s.,i=1,2,…,n. | (9) |
Remark 1. It is easy to see from [39] that the explicit solution of (7) is
Φi(t)=exp{bit+σiBi(t)}Φ−1i(0)+(aii+n∑j=1,j≠iDijαij)∫t0exp{bis+σiBi(s)}ds,i=1,2,…,n. | (10) |
Similar calculation gives
Ψi(t)=exp{bit−n∑j=1,j≠iaij∫t0Φj(s)ds+n∑j=1,j≠iDije−djτij∫t0Φj(s−τij)ds+σidBi(t)}×{Ψ−1i(0)+(aii+n∑j=1,j≠iDijαij)∫t0exp{bis−n∑j=1,j≠iaij∫s0Φj(u)du+n∑j=1,j≠iDije−djτij∫s0Φj(u−τij)du+σiBi(s)}ds}−1,i=1,2,…,n. | (11) |
Then, by using [40], we obtain the following.
Lemma 2.2. Let
limt→+∞t−1lnΦi(t)=0,limt→+∞t−1∫t0Φi(s)ds=biqij,a.s.,i=1,2,…,n. | (12) |
Based on Lemma 2, we assume:
Assumption 2.1.
Remark 2. A result due to Golpalsamy [10] and Assumption 2.1 imply that there exists a unique positive solution
{(a11+n∑j=2D1jα1j)x1+(a12−D12e−d2τ12)x2+…+(a1n−D1ne−dnτ1n)xn=b1≜ | (13) |
in which
A = \left( \begin{array}{cccc} a_{11}+\sum_{j = 2}^{n}D_{1j}\alpha_{1j} & a_{12}-D_{12}e^{-d_{2}\tau_{12}} & \cdots & a_{1n}-D_{1n}e^{-d_{n}\tau_{1 n}} \\ a_{21}-D_{21}e^{-d_{1}\tau_{21}} & a_{22}+\sum\limits_{j = 1, j\neq 2}^{n}D_{2j}\alpha_{2j} & \cdots & a_{2 n}-D_{2 n}e^{-d_{n}\tau_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}-D_{n1}e^{-d_{1}\tau_{n1}} & a_{n2}-D_{n2}e^{-d_{2}\tau_{n 2}} & \cdots &a_{nn}+\sum_{j = 1}^{n-1}D_{nj}\alpha_{nj} \end{array} \right) |
and
Now we are in the position to show our main results.
Theorem 2.1. All species in system (5) are persistent in mean
\begin{equation} \lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{i}(s) {\rm d}s = \det(A_{i})/\det(A) \gt 0\;\;a.s., \;i = 1, 2, \ldots, n. \end{equation} | (14) |
when Assumption 2.1 is satisfied.
Proof. Let
\begin{equation} \lim\limits_{t\rightarrow+\infty}t^{-1}\int_{t-\tau_{ij}}^{t}\Phi_{j}(s) {\rm d}s = \lim\limits_{t\rightarrow+\infty}\bigg(t^{-1}\int_{0} ^{t}\Phi_{j}(s) {\rm d}s-t^{-1}\int_{0}^{t-\tau_{ij}}\Phi_{j}(s) {\rm d}s\bigg) = 0, \end{equation} | (15) |
which together with (9) yields
\begin{equation} \lim\limits_{t\rightarrow+\infty}t^{-1}\int_{t-\tau_{i j}}^{t}x_{j}(s) {\rm d}s = 0, \;i, j = 1, 2, \ldots, n, \;j\neq i. \end{equation} | (16) |
By using Itô's formula to (5), one can see that
\begin{align} &t^{-1}\ln x_{i}(t)-t^{-1}\ln x_{i}(0)\\ = &b_{i}- a_{ii}t^{-1}\int_{0}^{t}x_{i}(s) {\rm d}s- \sum\limits_{j = 1, j\neq i}^{n}a_{ij}t^{-1}\int_{0}^{t}x_{j}(s) {\rm d}s +\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}t^{-1}\int_{0}^{t}x_{j}(s-\tau_{ij}) {\rm d}s\\ &-\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}t^{-1}\int_{0}^{t}x_{j}(s) {\rm d}s+\sigma_{i}t^{-1}B_{i}(t)\\ = &b_{i}-\bigg[a_{ii}t^{-1}\int_{0}^{t}x_{i}(s) {\rm d}s+ \sum\limits_{j = 1, j\neq i}^{n}a_{ij}t^{-1}\int_{0}^{t}x_{j}(s) {\rm d}s- \sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}t^{-1}\int_{0}^{t}x_{j}(s) {\rm d}s\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}t^{-1}\int_{0}^{t}x_{i}(s) {\rm d}s\bigg]+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}t^{-1}\bigg[\int_{-\tau_{ij}}^{0}x_{j}(s) {\rm d}s\ -\int_{t-\tau_{i j}}^{t}x_{j}(s) {\rm d}s\bigg]\\ &+\sigma_{i}t^{-1}B_{i}(t), \;\;\;i, j = 1, 2\ldots, n, \;i\neq j. \end{align} | (17) |
According to (16) together with the property of Brownian motion, we obtain
\lim\limits_{t\rightarrow+\infty}t^{-1}\bigg[\int_{-\tau_{i j}}^{0}x_{j}(s) {\rm d}s-\int_{t-\tau_{i j}}^{t}x_{j}(s) {\rm d}s\bigg] = 0, |
\lim\limits_{t\rightarrow+\infty}t^{-1}B_{i}(t) = 0, \;\;\lim\limits_{t\rightarrow+\infty}t^{-1}\ln x_{i}(0) = 0, \;a.s. |
We next to show that
\lim\limits_{t\rightarrow+\infty}t^{-1}\ln x_{i}(t) = 0, \;i = 1, 2, \ldots, n. |
In view of (9) and (12), we have
\liminf\limits_{t\rightarrow+\infty}t^{-1}\ln \Psi_{i}(t)\leq \liminf\limits_{t\rightarrow+\infty}t^{-1}\ln x_{i}(t)\leq \limsup\limits_{t\rightarrow+\infty}t^{-1}\ln x_{i}(t)\leq \limsup\limits_{t\rightarrow+\infty}t^{-1}\ln \Phi_{i}(t) = 0. |
Therefore we obtain
\begin{equation} \liminf\limits_{t\rightarrow+\infty}t^{-1}\ln \Psi_{i}(t)\geq 0\;a.s., \;i = 1, 2, \ldots, n. \end{equation} | (18) |
From (15) and (12), we get
\begin{align} &\lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}\Phi_{j}(s-\tau_{i j}) {\rm d}s\\ & = \lim\limits_{t\rightarrow+\infty}t^{-1}\bigg(\int_{0}^{t}\Phi_{j}(s) {\rm d}s-\int_{t-\tau_{i j}}^{t}\Phi_{j}(s) {\rm d}s +\int_{\tau_{i j}}^{0}\Phi_{j}(s) {\rm d}s\bigg)\\ & = \frac{b_{j}}{q_{ji}}, \;\;a.s., \;\;i, j = 1, 2\ldots, n, \;i\neq j. \end{align} |
By using
b_{j}/q_{ji}-\varepsilon\leq t^{-1}\int_{0}^{t}\Phi_{j}(s-\tau_{ij}) {\rm d}s\leq b_{j}/q_{ji}+\varepsilon, \;\;-\varepsilon\leq t^{-1}\sigma_{i}B_{i}(t)\leq \varepsilon. |
Applying these inequalities to (11), we have
\begin{align} &\frac{1}{\Psi_{i}(t)}\\ = &\exp\bigg\{-b_{i}t+\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\int_{0}^{t}\Phi_{j}(s) {\rm d}s- \sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\int_{0}^{t}\Phi_{j}(s-\tau_{ij}) {\rm d}s- \sigma_{i}B_{i}(t)\bigg\}\\ &\times \bigg\{\Psi_{i}^{-1}(0)+\left(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}\right) \int_{0}^{t}\exp\bigg\{b_{i}s-\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\int_{0}^{s}\Phi_{j}(u) {\rm d}u\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\int_{0}^{s}\Phi_{j}(u-\tau_{ij}) {\rm d}u+ \sigma_{i}B_{i}(s)\bigg\} {\rm d}s\bigg\} \\ = &\exp\bigg\{-b_{i}t+\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\int_{0}^{t}\Phi_{j}(s) {\rm d}s- \sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\int_{0}^{t}\Phi_{j}(s-\tau_{ij}) {\rm d}s- \sigma_{i}B_{i}(t)\bigg\}\\ &\times \bigg\{\Psi_{i}^{-1}(0)+\left(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}\right) \int_{0}^{T}\exp\bigg\{b_{i}s-\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\int_{0}^{s}\Phi_{j}(u) {\rm d}u\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\int_{0}^{s}\Phi_{j}(u-\tau_{ij}) {\rm d}u+ \sigma_{i}B_{i}(s)\bigg\} {\rm d}s\\ &+\bigg(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}\bigg) \int_{T}^{t}\exp\bigg\{b_{i}s-\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\int_{0}^{s}\Phi_{j}(u) {\rm d}u\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\int_{0}^{s}\Phi_{j}(u-\tau_{ij}) {\rm d}u+ \sigma_{i}B_{i}(s)\bigg\} {\rm d}s\bigg\} \\ \leq& \exp\bigg\{t\bigg[-b_{i}+\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg)- \sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \varepsilon\bigg]\bigg\}\\ &\times \bigg\{\Psi_{i}^{-1}(0)+M_{ij}+\bigg(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}\bigg) \int_{T}^{t}\exp\bigg\{s\bigg[b_{i}-\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg) +\varepsilon\bigg]\bigg\} {\rm d}s\bigg\}, \;i, j = 1, \ldots, n, \end{align} |
in which
\begin{align} &\Psi_{i}^{-1}(0)+M_{ij}\\ &\leq \bigg(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{ij}\alpha_{ij}\bigg) \int_{T}^{t}\exp\bigg\{s\bigg[b_{i}-\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg) +\varepsilon\bigg]\bigg\} {\rm d}s. \end{align} |
Hence for sufficiently large
\begin{align} &\frac{1}{\Psi_{i}(t)}\\ \leq&\exp\bigg\{t\bigg[-b_{i}+\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg)- \sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \varepsilon\bigg]\bigg\}\\ &\times 2\bigg(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\bigg) \int_{T}^{t}\exp\bigg\{s\bigg[b_{i}-\sum\limits_{j = 1, j\neq i}^{n}a_{ij}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg) +\varepsilon\bigg]\bigg\} {\rm d}s \\ = &\frac{2\bigg(a_{ii}+\sum_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\bigg)} {b_{i}-\sum_{j = 1, j\neq i}^{n}a_{i j}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \sum_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg) +\varepsilon}\\ &\times \exp\bigg\{t\bigg[-b_{i}+\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg)- \sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \varepsilon\bigg]\bigg\}\\ &\times \exp\bigg\{\bigg[b_{i}-\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg)+ \varepsilon\bigg](t-T)\bigg\}. \end{align} |
Rearranging this inequality shows that
\begin{eqnarray} t^{-1}\ln \Psi_{i}(t)&\geq& t^{-1}\ln \frac{b_{i}-\sum_{j = 1, j\neq i}^{n}a_{i j}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)+ \sum_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg)+ \varepsilon}{2\bigg(a_{ii}+\sum_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\bigg)}\\ &&-2\varepsilon \bigg(\sum\limits_{j = 1, j\neq i}^{n}a_{i j}+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}+1\bigg)+ \bigg[b_{i}-\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\bigg(\frac{b_{j}}{q_{ji}}-\varepsilon\bigg)\\ &&+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(\frac{b_{j}}{q_{ji}}+\varepsilon\bigg)+ \varepsilon\bigg]\frac{T}{t}. \end{eqnarray} |
Since
Corollary 2.1. If there is a
In this section, we study the stability of the model. To this end, we suppose the following holds:
Assumption 3.1.
Then, we can prove the following.
Theorem 3.1. The system (5) is asymptotically stable in distribution if Assumption 3.1 holds.
Proof. Given two initial values
V(t) = \sum\limits_{i = 1}^{n}\bigg|\ln x_{i}^{\phi_{i}}(t)-\ln x_{i}^{\psi_{i}}(t)\bigg|+ \sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}} \int_{t-\tau_{i j}}^{t}\bigg|x_{j}^{\phi_{j}}(s)-x_{j}^{\psi_{j}}(s)\bigg| {\rm d}s. |
Applying Itô's formula yields
\begin{align} & {\rm d}^{+}V(t)\\ = &\sum\limits_{i = 1}^{n} {\rm sgn}\bigg(x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg) {\rm d}\bigg(\ln x_{i}^{\phi_{i}}(t)-\ln x_{i}^{\psi_{i}}(t)\bigg) +\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{ij}e^{-d_{j}\tau_{ij}}\bigg|x_{j}^{\phi_{j}}(t)-x_{j}^{\psi_{j}}(t)\bigg| {\rm d}t\\ &-\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg|x_{j}^{\phi_{j}}(t-\tau_{i j})- x_{j}^{\psi_{j}}(t-\tau_{i j})\bigg| {\rm d}t\\ = &\sum\limits_{i = 1}^{n} {\rm sgn}\bigg(x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg) \bigg[-a_{ii}\bigg(x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg) -\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\bigg(x_{j}^{\phi_{j}}(t)-x_{j}^{\psi_{j}}(t)\bigg)\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg(x_{j}^{\phi_{j}}(t-\tau_{i j})-x_{j}^{\psi_{j}}(t-\tau_{i j})\bigg) -\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\bigg(x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg)\bigg] {\rm d}t\\ &+\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg|x_{j}^{\phi_{j}}(t)-x_{j}^{\psi_{j}}(t)\bigg| {\rm d}t -\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg|x_{j}^{\phi_{j}}(t-\tau_{i j})- x_{j}^{\psi_{j}}(t-\tau_{i j})\bigg| {\rm d}t\\ \leq& -\sum\limits_{i = 1}^{n}a_{ii}\bigg|x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg| {\rm d}t +\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\bigg|x_{j}^{\phi_{j}}(t)-x_{j}^{\psi_{j}}(t)\bigg| {\rm d}t\\ &+\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg|x_{j}^{\phi_{j}}(t-\tau_{i j}) -x_{j}^{\psi_{j}}(t-\tau_{i j})\bigg| {\rm d}t +\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\bigg|x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg| {\rm d}t\\ &+\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg|x_{j}^{\phi_{j}}(t)-x_{j}^{\psi_{j}}(t)\bigg| {\rm d}t -\sum\limits_{i = 1}^{n}\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg|x_{j}^{\phi_{j}}(t-\tau_{i j}) -x_{j}^{\psi_{j}}(t-\tau_{i j})\bigg| {\rm d}t\\ = &-\sum\limits_{i = 1}^{n}\bigg(a_{ii}-\sum\limits_{j = 1, j\neq i}^{n}a_{ji}+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j} -\sum\limits_{j = 1, j\neq i}^{n}D_{ji}e^{-d_{i}\tau_{ji}}\bigg)\bigg|x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)\bigg| {\rm d}t. \end{align} |
Therefore
\mathbb{E}(V(t))\leq V(0)-\sum\limits_{i = 1}^{n}\bigg(a_{ii}-\sum\limits_{j = 1, j\neq i}^{n}a_{ji}+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j} -\sum\limits_{j = 1, j\neq i}^{n}D_{ji}e^{-d_{i}\tau_{ji}}\bigg)\int_{0}^{t}\mathbb{E} \bigg|x_{i}^{\phi_{i}}(s)-x_{i}^{\psi_{i}}(s)\bigg| {\rm d}s. |
Together with
\sum\limits_{i = 1}^{n}\bigg(a_{ii}-\sum\limits_{j = 1, j\neq i}^{n}a_{ji}+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j} -\sum\limits_{j = 1, j\neq i}^{n}D_{ji}e^{-d_{i}\tau_{ji}}\bigg)\int_{0}^{t}\mathbb{E} \bigg|x_{i}^{\phi_{i}}(s)-x_{i}^{\psi_{i}}(s)\bigg| {\rm d}s\leq V(0) \lt \infty. |
Hence we have
\begin{align} &\mathbb{E}(x_{i}(t))\\ = &x_{i}(0)+\int_{0}^{t}\bigg[\mathbb{E}(x_{i}(s))(r_{i}-h_{i})-a_{ii}\mathbb{E}(x_{i}(s))^{2}- \sum\limits_{j = 1, j\neq i}^{n}a_{i j}\mathbb{E}(x_{i}(s)x_{j}(s))\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\mathbb{E}(x_{i}(s)x_{j}(s-\tau_{i j})) -\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\mathbb{E}(x_{i}(s))^{2}\bigg] {\rm d}s \\ = &x_{i}(0)+\int_{0}^{t}\bigg[\mathbb{E}(x_{i}(s))(r_{i}-h_{i})-a_{ii}\mathbb{E}(x_{i}(s))^{2}- \sum\limits_{j = 1, j\neq i}^{n}a_{i j}\mathbb{E}(x_{i}(s)x_{j}(s))\\ &-\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\mathbb{E}(x_{i}(s))^{2}\bigg] {\rm d}s +\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg[\int_{-\tau_{ij}}^{0}\mathbb{E}(x_{i}(s)x_{j}(s)) {\rm d}s\\ &+\int_{0}^{t}\mathbb{E}(x_{i}(s)x_{j}(s)) {\rm d}s- \int_{t-\tau_{ij}}^{t}\mathbb{E}(x_{i}(s)x_{j}(s)) {\rm d}s\bigg]\\ \leq& x_{i}(0)+\int_{0}^{t}\bigg[\mathbb{E}x_{i}(s)(r_{i}-h_{i})-a_{ii}\mathbb{E}(x_{i}(s))^{2}- \sum\limits_{j = 1, j\neq i}^{n}a_{i j}\mathbb{E}(x_{i}(s)x_{j}(s))\\ &-\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\mathbb{E}(x_{i}(s))^{2}\bigg] {\rm d}s +\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\bigg[\int_{-\tau_{ij}}^{0}\mathbb{E}(x_{i}(s)x_{j}(s)) {\rm d}s\\ &+\int_{0}^{t}\mathbb{E}(x_{i}(s)x_{j}(s)) {\rm d}s\bigg]. \end{align} |
That is to say
\begin{align} &\frac{ {\rm d}\mathbb{E}(x_{i}(t))}{ {\rm d}t}\\ \leq& \mathbb{E}(x_{i}(t))(r_{i}-h_{i})-\bigg(a_{ii}+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}\alpha_{i j}\bigg)\mathbb{E}(x_{i}(t))^{2} -\sum\limits_{j = 1, j\neq i}^{n}a_{i j}\mathbb{E}(x_{i}(t)x_{j}(t))\\ &+\sum\limits_{j = 1, j\neq i}^{n}D_{i j}e^{-d_{j}\tau_{i j}}\mathbb{E}(x_{i}(t)x_{j}(t))\\ \leq& \mathbb{E}(x_{i}(t))r_{i}\leq r_{i}K, \end{align} |
in which
\begin{equation} \lim\limits_{t\rightarrow+\infty}\mathbb{E}|x_{i}^{\phi_{i}}(t)-x_{i}^{\psi_{i}}(t)| = 0, \;a.s., \;i = 1, 2, \ldots, n. \end{equation} | (19) |
Denote
\begin{equation*} d_\mathbb{L}(P_1, P_2) = \sup\limits_{v\in \mathbb{L}}\bigg|\int_{R^n_+}v(x)P_1(\mathrm{d}x)-\int_{R^n_+}v(x)P_2(\mathrm{d}x)\bigg|, \end{equation*} |
where
\begin{equation*} \mathbb{L} = \left\{v:C\left([-\tau, 0];R^3_+\right)\rightarrow R:||v(x)-v(y)||\leq\parallel x-y\parallel, | v(\cdot)|\leq1\right\}. \end{equation*} |
Since
\begin{equation*} \sup\limits_{v\in \mathbb{L}}\bigg|\mathbb{E}v(x(t+s))-\mathbb{E}v(x(t))\bigg|\leq\varepsilon. \end{equation*} |
Therefore
\begin{equation*} \lim\limits_{t\rightarrow\infty}d_\mathbb{L}(p(t, \phi, \cdot), p(t, \xi, \cdot)) = 0. \end{equation*} |
Consequently,
\begin{equation*} \lim\limits_{t\rightarrow\infty}d_\mathbb{L}(p(t, \phi, \cdot), \kappa(\cdot))\leq\lim\limits_{t\rightarrow \infty}d_\mathbb{L}(p(t, \phi, \cdot), p(t, \xi, \cdot))+\lim\limits_{t\rightarrow\infty}d_\mathbb{L} (p(t, \xi, \cdot), \kappa(\cdot)) = 0. \end{equation*} |
This completes the proof of Theorem 3.1.
In this section, we consider the optimal harvesting problem of system (5). Our purpose is to find the optimal harvesting effort
(ⅰ)
(ⅱ) Every
Before we give our main results, we define
\begin{equation} \Theta = (\theta_{1}, \theta_{2}, \ldots, \theta_{n})^{T} = [A(A^{-1})^{T}+I]^{-1}G, \end{equation} | (20) |
in which
Assumption 4.1.
Theorem 4.1. Suppose Assumptions 3.1 and 4.1 hold, and If these following inequalities
\begin{equation} \theta_{i}\geq 0, \;b_{i}\mid_{h_{i} = \theta_{i}} \gt 0, \;c_{i}\mid_{h_{m} = \theta_{m}, \;m = 1, 2, \ldots, n} \gt 0, i = 1, \cdots, n \end{equation} | (21) |
are satisfied. Then, for system (5) the optimal harvesting effort is
\begin{equation*} H^{*} = \Theta = [A(A^{-1})^{T}+I]^{-1}G \end{equation*} |
and the maximum of ESY is
\begin{equation} Y^{*} = \Theta^{T}A^{-1}(G-\Theta). \end{equation} | (22) |
Proof. Denote
\begin{equation} \lim\limits_{t\to+\infty} t^{-1}\int_0^tH^\mathrm{T}x(s)\mathrm{d}s = \sum\limits_{i = 1}^n h_i\lim\limits_{t\to+\infty} t^{-1}\int_0^tx_{i}(s)\mathrm{d}s = H^\mathrm{T}A^{-1}(G-H). \end{equation} | (23) |
Applying Theorem 4.1, there is a unique invariant measure
\begin{equation} \lim\limits_{t\to+\infty} t^{-1}\int_0^tH^\mathrm{T}x(s)\mathrm{d}s = \int_{R^n_+}H^\mathrm{T}x\rho(\mathrm{d}x). \end{equation} | (24) |
Let
\begin{equation} Y(H) = \lim\limits_{t\to+\infty}\sum\limits_{i = 1}^n\mathbb{E}(h_ix_{i}(t)) = \lim\limits_{t\to+\infty}\mathbb{E}(H^\mathrm{T}x(t)) = \int_{R^n_+}H^\mathrm{T}x\mu(x)\mathrm{d}x. \end{equation} | (25) |
Since the invariant measure of model (9) is unique, one has
\begin{equation} \int_{R^n_+}H^\mathrm{T}x\mu(x)\mathrm{d}x = \int_{R^n_+}H^\mathrm{T}x\rho(\mathrm{d}x). \end{equation} | (26) |
In other words,
\begin{equation} Y(H) = H^\mathrm{T}A^{-1}(G-H). \end{equation} | (27) |
Assume that
\begin{equation} \begin{aligned} \frac{\mathrm{d}Y(H)}{\mathrm{d}H}& = \frac{\mathrm{d}H^\mathrm{T}}{\mathrm{d}H}A^{-1}(G-H)+ \frac{\mathrm{d}}{\mathrm{d}H}\left[(G-H)^\mathrm{T}(A^{-1})^\mathrm{T}\right]H\\ & = A^{-1}G-\left[A^{-1}+(A^{-1})^\mathrm{T}\right]H\\ & = 0. \end{aligned} \end{equation} | (28) |
Thus,
\begin{equation*} \begin{aligned} \frac{\mathrm{d}}{\mathrm{d}H^\mathrm{T}}\left[\frac{\mathrm{d}Y(H)}{\mathrm{d}H}\right] & = \left(\frac{\mathrm{d}}{\mathrm{d}H}\left[\left(\frac{\mathrm{d}Y(H)}{\mathrm{d}H}\right)^\mathrm{T}\right]\right) ^\mathrm{T} \\ & = \left(\frac{\mathrm{d}}{\mathrm{d}H}\left[G^\mathrm{T}(A^{-1})^\mathrm{T}-H^\mathrm{T}[A^{-1}+(A^{-1})^\mathrm {\mathrm{T}}]\right]\right)^\mathrm{T}\\ & = -A^{-1}-(A^{-1})^\mathrm{T} \end{aligned} \end{equation*} |
is negative defined, then
To see our analytical results more clearly, we shall give some numerical simulations in this section. Without loss of generality, we consider the following system
\begin{equation} \left\{\begin{aligned} {\rm d}x_{1}(t) = &x_{1}(t)\bigg[r_{1}-h_{1}-a_{11}x_{1}(t)-a_{12}x_{2}(t)+ D_{12}e^{-d_{2}\tau_{12}}x_{2}(t-\tau_{12})-D_{12}\alpha_{12}x_{1}(t)\bigg] {\rm d}t\\ &+\sigma_{1}x_{1}(t) {\rm d}B_{1}(t), \\ {\rm d}x_{2}(t)& = x_{2}(t)\bigg[r_{2}-h_{2}-a_{22}x_{2}(t)-a_{21}x_{1}(t)+ D_{21}e^{-d_{1}\tau_{21}}x_{1}(t-\tau_{21})-D_{21}\alpha_{21}x_{2}(t)\bigg] {\rm d}t\\ &+\sigma_{2}x_{2}(t) {\rm d}B_{2}(t), \end{aligned} \right. \end{equation} | (29) |
which is the case when
x(\theta) = \phi(\theta)\in C\left([-\tau, 0];R_{+}^{2}\right), \;\tau = \max\{\tau_{1}, \tau_{2}\}, |
where
Firstly, we discuss the persistence in mean of
Parameter | Value | Parameter | Value | Parameter | Value |
0.9 | 0.1 | 0.6 | |||
0.8 | 0.05 | 0.3 | |||
0.6 | 0.2 | 0.35 | |||
0.23 | 0.05 | 0.05 | |||
1 | 1 | 4 | |||
3 | 8 | 5 |
The initial values are
\lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{1}(s) {\rm d}s = \det(A_{1})/\det(A) = 0.2268 \gt 0\;\;a.s., |
\lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{2}(s) {\rm d}s = \det(A_{2})/\det(A) = 0.5964 \gt 0\;\;a.s.. |
Applying the Milstein numerical method in [47], we then obtained the numerical solution of system (29), see Figure 1. It shows that
Lastly, we consider the optimal harvesting strategy of system (29). It is easy to see that the Assumption 2.1 and Assumption 3.1 are satisfied. Furthermore, we have
\Theta = (\theta_{1}, \theta_{2})^{T} = [A(A^{-1})^{T}+I]^{-1}(r_{1}-0.5\sigma_{1}^{2}, r_{2} -0.5\sigma_{2}^{2})^{T} = (0.4817, 0.3820)^{T}, |
in which
H^{*} = \Theta = (\theta_{1}, \theta_{2})^{T} = [A(A^{-1})^{T}+I]^{-1}(r_{1}-0.5\sigma_{1}^{2}, r_{2} -0.5\sigma_{2}^{2})^{T} = (0.4817, 0.3820)^{T}, |
on the other hand, the maximum of ESY is
Y^{*} = \Theta^{T}A^{-1}(r_{1}-0.5\sigma_{1}^{2}-\theta_{1}, r_{2}- 0.5\sigma_{2}^{2}-\theta_{2})^{T} = 0.1789. |
By using the Monte Carlo method (see [48]) and the parameters in Table 1, we can obtain Figure 3, showing our results in Theorem 4.1.
Parameter | Value | Parameter | Value | Parameter | Value |
| 2 | | 0.4452 | | 0.8 |
| 1.12 | | 0.3307 | | 0.67 |
| 0.6 | | 0.3307 | | 0.56 |
| 0.8 | | 0.6 | | 0.77 |
| 0.18 | | 0.35 | | 0.3 |
| 0.45 | | 0.22 | | 0.6 |
| 0.4 | | 0.3 | | 0.2 |
| 0.05 | | 0.05 | | 0.05 |
| 0.39 | | 0.57 | | 0.37 |
| 3 | | 3 | | 5 |
| 5 | | 4 | | 5.5 |
| 4 | | 5 | | 2.4 |
| 4 | | 2 | | 2.5 |
Next, we consider a case of three species.
\begin{equation} \left\{\begin{aligned} {\rm d}x_{1}(t) = &x_{1}(t)\bigg[r_{1}-h_{1}-a_{11}x_{1}(t)-\bigg(a_{12}x_{2}(t)+a_{13}x_{3}(t)\bigg)+ \bigg(D_{12}e^{-d_{2}\tau_{12}}x_{2}(t-\tau_{12})\\ &+D_{13}e^{-d_{3}\tau_{13}}x_{3}(t-\tau_{13})\bigg) -\bigg(D_{12}\alpha_{12}x_{1}(t)+D_{13}\alpha_{13}x_{1}(t)\bigg)\bigg] {\rm d}t\\ &+\sigma_{1}x_{1}(t) {\rm d}B_{1}(t), \\ {\rm d}x_{2}(t) = &x_{2}(t)\bigg[r_{2}-h_{2}-a_{22}x_{2}(t)-\bigg(a_{21}x_{1}(t)+a_{23}x_{3}(t)\bigg)+ \bigg(D_{21}e^{-d_{1}\tau_{21}}x_{1}(t-\tau_{21})\\ &+D_{23}e^{-d_{3}\tau_{23}}x_{3}(t-\tau_{23})\bigg) -\bigg(D_{21}\alpha_{21}x_{2}(t)+D_{23}\alpha_{23}x_{2}(t)\bigg)\bigg] {\rm d}t\\ &+\sigma_{2}x_{2}(t) {\rm d}B_{2}(t), \\ {\rm d}x_{3}(t) = &x_{3}(t)\bigg[r_{3}-h_{3}-a_{33}x_{3}(t)-\bigg(a_{31}x_{1}(t)+a_{32}x_{2}(t)\bigg)+ \bigg(D_{31}e^{-d_{1}\tau_{31}}x_{1}(t-\tau_{31})\\ &+D_{32}e^{-d_{2}\tau_{32}}x_{2}(t-\tau_{32})\bigg) -\bigg(D_{31}\alpha_{31}x_{3}(t)+D_{32}\alpha_{32}x_{3}(t)\bigg)\bigg] {\rm d}t\\ &+\sigma_{3}x_{3}(t) {\rm d}B_{3}(t). \end{aligned} \right. \end{equation} | (30) |
We use the following parameter values:
The initial values are
\lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{1}(s) {\rm d}s = \det(A_{1})/\det(A) = 0.2543 \gt 0\;\;a.s., |
\lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{2}(s) {\rm d}s = \det(A_{2})/\det(A) = 0.1601 \gt 0\;\;a.s., |
\lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{3}(s) {\rm d}s = \det(A_{3})/\det(A) = 0.0730 \gt 0\;\;a.s.. |
The numerical results of Theorem 2.1 when
The stable distribution for
To numerical illustrate the optimal harvesting effort of (30), we set
\Theta = (\theta_{1}, \theta_{2}, \theta_{3})^{T} = [A(A^{-1})^{T}+I]^{-1}(r_{1}-0.5\sigma_{1}^{2}, r_{2} -0.5\sigma_{2}^{2}, r_{3}-0.5\sigma_{3}^{2})^{T} = (1.1052, 0.5537, 0.1663)^{T}, |
which yield
In this paper, a stochastic n-species competitive model with delayed diffusions and harvesting has been considered. We studied the persistence in mean of every population, which is biologically significant because it shows that all populations can coexist in the community. Since the model (5) does not have a positive equilibrium point and its solution can not approach a positive value, we considered its asymptotically stable distribution. By using ergodic method, we obtained the optimal harvesting policy and the maximum harvesting yield of system (5). We have also done some numerical simulations of the situations for
Our studies showed some interesting results
(a) Both environmental disturbance and diffused time delay can effect the persistence and optimal harvesting effort of system (5)..
(b) Environmental noises have no effect on asymptotic stability in distribution of system (5), but the time delays have.
There are other meaningful aspects that can be studied further since our paper only consider the effects of white noises on population growth rate. In future, for example, we can consider the situation when white noises also have influences over harvesting (see [45]) and non-autonomous system (see [46]); the time delay will also be reflected in competition (see [49]). Furthermore, we can consider something more complex models such as the ones with regime-switching (see [50,51]) or Lévy jumps (see [14,42]).
This work was supported by the Research Fund for the Taishan Scholar Project of Shandong Province of China, and the SDUST Research Fund (2014TDJH102).
The authors declare that there is no conflict of interest regarding the publication of this paper.
[1] | UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly, with Scientific Annexes. Sources and effects and risks of ionizing radiation. United Nations. New York. |
[2] |
Latife S, Nurgül H, Hakan Ç (2017) Assessment of radiological hazard parameters due to natural radioactivity in soils from granite-rich regions in Kütahya Province, Turkey. Isot Environ Healt S 53: 212-221. doi: 10.1080/10256016.2016.1207640
![]() |
[3] | Alam M, Miah M, Chowdhury M, et al. (2016) Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276-1332 keV. Appl Radiat Isotopes 54: 973-6. |
[4] |
Faheem M, Mujahid S, Matiullah M (2008) Assessment of radiological hazards due to the natural radioactivity in soil and building material samples collected from six districts of the Punjab province, Pakistan. Radiat Meas 43: 1443-7. doi: 10.1016/j.radmeas.2008.02.014
![]() |
[5] |
Kapdan E, Altinsoy N, Karahan G (2011) Determination of the health hazards due to background radiation sources in the city of Adapazari, Northwestern Turkey. Isot Environ Healt S 47: 93-100. doi: 10.1080/10256016.2011.557499
![]() |
[6] |
Khan HM, Ismail M, Zia MA (2012) Measurement of radionuclides and absorbed dose rates in soil samples of Peshawar, Pakistan, using gamma ray spectrometry. Isot Environ Healt S 48: 295-301. doi: 10.1080/10256016.2012.641963
![]() |
[7] |
Yang Y, Wu X, Jiang Z (2005) Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl Radiat Isotopes 63: 255-9. doi: 10.1016/j.apradiso.2005.02.011
![]() |
[8] | Dione D, Mbaye M, Sané ML, et al. (2018) Survey of Activity Concentration and Dose Estimation of Naturally Occurring Radionuclides (232Th, 238U and 40K) in the Coastal area of Dakar, Senegal. Indian J Sci Tech 11: 1-7. |
[9] | Krstic D, Nikezic D, Stevanovic N, et al. (2007) Radioactivity of some domestic and imported building materials from South Eastern Europe. Radiat Meas 47: 1731-1736. |
[10] | El-Arabi A, Abbady A, El-Hussein A (2011) Gamma-ray measurements of natural radioactivity in sedimentary rocks from Egypt. Nucl Sci Tech 17: 123-8. |
[11] |
Msaki P, Banzi FP (2000) Radioactivity in products derived from gypsum in Tanzania spectrometry. Radiat Prot Dosim 91: 409-12. doi: 10.1093/oxfordjournals.rpd.a033251
![]() |
[12] |
Navas A, Gaspar L, López-Vicente M, et al. (2011) Spatial distribution of Natural and artificial radionuclides at the catchment scale (South Central Pyrenees). Radiat Meas 46: 261-9. doi: 10.1016/j.radmeas.2010.11.008
![]() |
[13] | Prakash MM, Kaliprasad CS, Narayana Y (2017) Study on natural radioactivity in the rocks of Coorg District, Karnataka State. Radia Res J Appl Sci 10: 128-134. |
[14] | Safarov AA, Safarov AN, Azimov AN, et al. (2017) Rapid assessment methodology in NORM measurements from building materials of Uzbekistan. J Environ Radioactiv 169: 186-191. |
[15] |
Chiozzi P, Pasquale V, Verdoya M (2002) naturally occurring radioactivity at the Alpsapennines transition. Radia Meas 35: 147-154. doi: 10.1016/S1350-4487(01)00288-8
![]() |
[16] |
Gongàlez-Fernàndez AB, Marcelo V, Valenciano JB, et al. (2012) Relationship between physical and chemical parameters for four commercial grape varieties from the Bierzo region (Spain). Sci Hortic 147: 111-117. doi: 10.1016/j.scienta.2012.09.009
![]() |
[17] |
Mbaye M, Traore A, Ndao AS, et al. (2015) Multivariate Statistical Techniques to Determine Essential and Toxic Elements in Biological Samples by X-Ray Fluorescence. Instrum Sci Technol 43: 369-378. doi: 10.1080/10739149.2014.991967
![]() |
[18] | Varmuza K, Filzmoser P (2016) Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Florida. |
[19] |
Mabit L, Gibbs M, Mbaye M, et al. (2018) Novel application of Compound Specific Stable Isotope (CSSI) techniques to investigate on-site sediment origins across arable fields. Geoderma 316: 19-26. doi: 10.1016/j.geoderma.2017.12.008
![]() |
[20] | Vapnik VN (1995) The Nature of Statistical Learning Theory, Springer-Verlag, New York. |
[21] | Husson F, Lê S, Pagès J (2017) Exploratory Multivariate Data Analysis by Example Using R. Chapman & Hall/CRC Computer Science & Data Analysis (2nd edition). |
Parameter | Value | Parameter | Value | Parameter | Value |
| 2 | | 0.4452 | | 0.8 |
| 1.12 | | 0.3307 | | 0.67 |
| 0.6 | | 0.3307 | | 0.56 |
| 0.8 | | 0.6 | | 0.77 |
| 0.18 | | 0.35 | | 0.3 |
| 0.45 | | 0.22 | | 0.6 |
| 0.4 | | 0.3 | | 0.2 |
| 0.05 | | 0.05 | | 0.05 |
| 0.39 | | 0.57 | | 0.37 |
| 3 | | 3 | | 5 |
| 5 | | 4 | | 5.5 |
| 4 | | 5 | | 2.4 |
| 4 | | 2 | | 2.5 |
Parameter | Value | Parameter | Value | Parameter | Value |
0.9 | 0.1 | 0.6 | |||
0.8 | 0.05 | 0.3 | |||
0.6 | 0.2 | 0.35 | |||
0.23 | 0.05 | 0.05 | |||
1 | 1 | 4 | |||
3 | 8 | 5 |
Parameter | Value | Parameter | Value | Parameter | Value |
| 2 | | 0.4452 | | 0.8 |
| 1.12 | | 0.3307 | | 0.67 |
| 0.6 | | 0.3307 | | 0.56 |
| 0.8 | | 0.6 | | 0.77 |
| 0.18 | | 0.35 | | 0.3 |
| 0.45 | | 0.22 | | 0.6 |
| 0.4 | | 0.3 | | 0.2 |
| 0.05 | | 0.05 | | 0.05 |
| 0.39 | | 0.57 | | 0.37 |
| 3 | | 3 | | 5 |
| 5 | | 4 | | 5.5 |
| 4 | | 5 | | 2.4 |
| 4 | | 2 | | 2.5 |