Research article Special Issues

Tumor necrosis factor-related apoptosis-inducing ligand regulate the accumulation of extracelluar matrix in pulmonary artery by activating the phosphorylation of Smad2/3

  • Received: 01 April 2019 Accepted: 17 June 2019 Published: 21 November 2019
  • Introduction Previous studies have found that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was involved in the progression of pulmonary hypertension (PH), and TRAIL knocking (KO) has an inhibitory effect on PH, but its mechanism is not completely clear.
    Methods The effects of TRAIL on the accumulation of extracelluar matrix (ECM), which is one of the most important processes of vascular remodeling, were observed in mice and isolated pulmonary artery smooth muscle cells (PASMCs). In vivo, mice were divided into four groups: Control group (n = 5), hypoxia-induced PH mice group (n = 8), anti-TRAIL antibody (TRAIL-Ab) treatment group (n = 8) and IgG antibody (IgG) group (n = 8). The effects of TRAIL-Ab on ECM expression in hypoxic induced PH were researched; in vivo, PASMCs were divided into three groups: Control group, hypoxia-induced group, TRAIL-Ab group. Expressions of p-Smad2/3 and p-Smad1/5/8 were compared among the three groups.
    Results Hypoxia-induced PH mice had significant increases in right ventricle systolic pressure (RVSP) (P < 0.001), right ventricular hypertrophy (RVH) (P = 0.007), vascular stenosis (P < 0.001) compared with controls. Mice with anti-TRAIL antibody had lower levels in RVSP (P < 0.001), RVH (P < 0.001), vascular stenosis (P < 0.001) than PH mice. Besides, the TRAIL-Ab significantly inhibited the phosphorylation of Smad2/3 compared with hypoxia-induced group.
    Conclusion TRAIL regulates the accumulation of ECM in pulmonary artery by activating pSmad2/3.

    Citation: Erli Yang, Xiaobei Zhang, Qiangsheng Chen, Chandong Ding. Tumor necrosis factor-related apoptosis-inducing ligand regulate the accumulation of extracelluar matrix in pulmonary artery by activating the phosphorylation of Smad2/3[J]. Mathematical Biosciences and Engineering, 2020, 17(2): 1372-1380. doi: 10.3934/mbe.2020069

    Related Papers:

    [1] Longxing Qi, Shoujing Tian, Jing-an Cui, Tianping Wang . Multiple infection leads to backward bifurcation for a schistosomiasis model. Mathematical Biosciences and Engineering, 2019, 16(2): 701-712. doi: 10.3934/mbe.2019033
    [2] Yingke Li, Zhidong Teng, Shigui Ruan, Mingtao Li, Xiaomei Feng . A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1279-1299. doi: 10.3934/mbe.2017066
    [3] Chunhua Shan, Hongjun Gao, Huaiping Zhu . Dynamics of a delay Schistosomiasis model in snail infections. Mathematical Biosciences and Engineering, 2011, 8(4): 1099-1115. doi: 10.3934/mbe.2011.8.1099
    [4] Conrad Ratchford, Jin Wang . Multi-scale modeling of cholera dynamics in a spatially heterogeneous environment. Mathematical Biosciences and Engineering, 2020, 17(2): 948-974. doi: 10.3934/mbe.2020051
    [5] Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024
    [6] Wahyudin Nur, Trisilowati, Agus Suryanto, Wuryansari Muharini Kusumawinahyu . Schistosomiasis model with treatment, habitat modification and biological control. Mathematical Biosciences and Engineering, 2022, 19(12): 13799-13828. doi: 10.3934/mbe.2022643
    [7] Maghnia Hamou Maamar, Matthias Ehrhardt, Louiza Tabharit . A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission. Mathematical Biosciences and Engineering, 2024, 21(1): 924-962. doi: 10.3934/mbe.2024039
    [8] Long-xing Qi, Yanwu Tang, Shou-jing Tian . Parameter estimation of modeling schistosomiasis transmission for four provinces in China. Mathematical Biosciences and Engineering, 2019, 16(2): 1005-1020. doi: 10.3934/mbe.2019047
    [9] Yuyi Xue, Yanni Xiao . Analysis of a multiscale HIV-1 model coupling within-host viral dynamics and between-host transmission dynamics. Mathematical Biosciences and Engineering, 2020, 17(6): 6720-6736. doi: 10.3934/mbe.2020350
    [10] Xinli Hu, Wenjie Qin, Marco Tosato . Complexity dynamics and simulations in a discrete switching ecosystem induced by an intermittent threshold control strategy. Mathematical Biosciences and Engineering, 2020, 17(3): 2164-2178. doi: 10.3934/mbe.2020115
  • Introduction Previous studies have found that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was involved in the progression of pulmonary hypertension (PH), and TRAIL knocking (KO) has an inhibitory effect on PH, but its mechanism is not completely clear.
    Methods The effects of TRAIL on the accumulation of extracelluar matrix (ECM), which is one of the most important processes of vascular remodeling, were observed in mice and isolated pulmonary artery smooth muscle cells (PASMCs). In vivo, mice were divided into four groups: Control group (n = 5), hypoxia-induced PH mice group (n = 8), anti-TRAIL antibody (TRAIL-Ab) treatment group (n = 8) and IgG antibody (IgG) group (n = 8). The effects of TRAIL-Ab on ECM expression in hypoxic induced PH were researched; in vivo, PASMCs were divided into three groups: Control group, hypoxia-induced group, TRAIL-Ab group. Expressions of p-Smad2/3 and p-Smad1/5/8 were compared among the three groups.
    Results Hypoxia-induced PH mice had significant increases in right ventricle systolic pressure (RVSP) (P < 0.001), right ventricular hypertrophy (RVH) (P = 0.007), vascular stenosis (P < 0.001) compared with controls. Mice with anti-TRAIL antibody had lower levels in RVSP (P < 0.001), RVH (P < 0.001), vascular stenosis (P < 0.001) than PH mice. Besides, the TRAIL-Ab significantly inhibited the phosphorylation of Smad2/3 compared with hypoxia-induced group.
    Conclusion TRAIL regulates the accumulation of ECM in pulmonary artery by activating pSmad2/3.




    [1] A. B. Waxman and R. T. Zamanian, Pulmonary arterial hypertension: New insights into the optimal role of current and emerging prostacyclin therapies, Am. J. Cardiol., 111 (2013), 1A-16A.
    [2] L. J. Rubin, Primary pulmonary hypertension, N. Engl. J. Med., 336 (1997), 111-117.
    [3] J. R. Runo and J. E. Loyd, Primary pulmonary hypertension, Lancet, 361 (2003), 1533-1544.
    [4] J. Hänze, N. Weissmann, F. Grimminger, et al., Cellular and molecular mechanisms of hypoxia inducible factor driven vascular remodeling, Thromb. Haemostasis, 97 (2007), 774-787.
    [5] P. M. Hassoun, Deciphering the "matrix" in pulmonary vascular remodeling, Eur. Respir. J., 25 (2005), 778-779.
    [6] E. Arciniegas, M. G. Frid, I. S. Douglas, et al., Perspectives on endothelial to mesenchymal transition: Potential contribution to vascular remodeling in chronic pulmonary hypertension, Am. J. Physiol. Lung Cell. Mol. Physiol., 293 (2007), L1-L8.
    [7] G. Burgstaller, B. Oehrle, M. Gerckens, et al., The instructive extracellular matrix of the lung: Basic composition and alterations in chronic lung disease, Eur. Respir. J., 50 (2017), 1601805. doi: 10.1183/13993003.01805-2016
    [8] V. Jurisic, T. Srdic-Rajic, G. Konjevic, et al., TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells, J. Membr. Biol., 293 (2011), 115-122.
    [9] V. Jurisic, T. Terzic, S. Colic, et al., The concentration of TNF-α correlate with number of inflammatory cells and degree of vascularization in radicular cysts, Oral Dis., 14 (2008), 600-605.
    [10] A. Lawrie, A. G. Hameed, J. Chamberlain, et al., Paigen diet-fed apolipoprotein E knockout mice develop severe pulmonary hypertension in an interleukin-1-dependent manner, Am. J. Pathol., 179 (2011), 1693-1705.
    [11] N. M. Robertson, M. Rosemiller, R. G. Lindemeyer, et al., TRAIL in the Airways, Vitam. Horm., 67 (2004), 149-167.
    [12] B. R. Gochuico, J. Zhang, B. Y. Ma, et al., TRAIL expression in vascular smooth muscle, Am. J. Physiol. Lung Cell. Mol. Physiol., 278 (2000), L1045-L1050. doi: 10.1152/ajplung.2000.278.5.L1045
    [13] A. Lawrie, E. Waterman, M. Southwood, et al., Evidence of a role for osteoprotrgerin in the pathogenesis of pulmonary arterial hypertension, Am. J. Pathol., 172 (2008), 256-264.
    [14] X. D. Zhang, T. Nguyen, W. D. Thomas, et al., Mechanisms of resistance of normal cells to TRAIL induced apoptosis vary between different cell types, FEBS Lett., 482 (2000), 193-199.
    [15] R. Di Pietro, M. A. Mariggio, S. Guarnieri, et al., Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Regulates Endothelial Nitric Oxide Synthase (eNOS) Activity and Its Localization Within the Human Vein Endothelial Cells (HUVEC) in Culture, J. Cell. Biochem., 97 (2006), 782-794. doi: 10.1002/jcb.20686
    [16] H. Liu, E. Yang, X. Lu, et al., Serum levels of tumor necrosis factor-related apoptosis-inducing ligand correlate with the severity of pulmonary hypertension, Pulm. Pharmacol. Ther., 33 (2015), 39-46.
    [17] A. G. Hameed, N. D. Arnold, J. Chamberlain, et al., Inhibition of tumor necrosis factor-related Apoptosis-inducing ligand reverses experimental pulmonary hypertension, J. Exp. Med., 216 (2012), 1919-1935.
    [18] G. S. Wu, TRAIL as a target in anti-cancer therapy, Cancer Lett., 285 (2009), 1-5.
    [19] S. R. Wiley, K. Schooley, P. J. Smolak, et al., Identification and characterization of a new member of the TNF family that induces apoptosis, Immunity, 3 (1995), 673-682.
    [20] H. B. Schiller, I. E. Fernandez, G. Burgstaller, et al., Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair, Mol. Syst. Biol., 11 (2015), 819.
    [21] H. N. LeBlanc, A. Ashkenazi, Apo2L/TRAIL and its death and decoy receptors, Cell Death Differ., 10 (2003), 66-75.
    [22] P. Secchiero, F. Corallini, M. G. di Iasio, et al., TRAIL counteracts the proadhesive activity of inflammatory cytokines in endothelial cells by down-modulating CCL8 and CXCL10 chemokine expression and release, Blood, 105 (2005), 3413-3419. doi: 10.1182/blood-2004-10-4111
    [23] A. Almasan and A. Ashkenazi, Apo2L/TRAIL: Apoptosis signaling, biology, and potential for cancer therapy, Cytokine Growth Factor Rev., 14 (2003), 337-348.
    [24] P. Secchiero, A. Gonelli, E. Carnevale, et al., TRAIL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and Erk pathway, Circulation, 107 (2003), 2250-2256.
    [25] J. P. Sheridan, S. A. Marsters, R. M. Pitti, et al., Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors, Science, 277 (1997), 818-821.
    [26] C. Falschlehner, C. H. Emmerich, B. Gerlach, et al., TRAIL signalling: Decisions between life and death, Int. J. Biochem. Cell Biol., 39 (2007), 1462-1475.
    [27] S. M. Mariani and P. H. Krammer, Differential regulation of TRAIL and CD95 ligand in transformed cells of the T and B lymphocyte lineage, Eur. J. Immunol., 28 (1998), 973-982.
    [28] P. Secchiero, R. Candido, F. Corallini, et al., Systemic tumor necrosis factor-related apoptosis-inducing ligand delivery shows antiatherosclerotic activity in apolipoprotein E-null diabetic mice, Circulation, 114 (2006), 1522-1530. doi: 10.1161/CIRCULATIONAHA.106.643841
    [29] X. Liu, V. R. Winrow, M. Horrocks, et al., Differential expression of TRAIL and its receptors relative to calcification in AAA, Biochem. Biophys. Res. Commun., 358 (2007), 18-23.
    [30] S. P. Cartland, S. W. Genner, A. Zahoor, et al., Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo, Int. J. Mol. Sci., 17 (2016), 2025.
    [31] J. R. Jackson, M. P. Seed, C. H. Kircher, et al., The codependence of angiogenesis and chronic inflammation, FASEB J., 11 (1997), 457-465.
    [32] A. A. Eddy and C. M. Giachelli, Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria, Kidney Int., 47 (1995), 1546-1557.
    [33] F. Verrecchia, and A. Mauviel, Transforming growth factor-beta signaling through the Smad pathway: Role in extracellular matrix gene expression and regulation, J. Invest. Dermatol., 118 (2002), 211-215.
    [34] A. Leask, D. J. Abraham, D. R. Finlay, et al., Dysregulation of transforming growth factor beta signaling in scleroderma: Overexpression of endoglin in cutaneous scleroderma fibroblasts, Arthritis Rheumatol., 46 (2002), 1857-1865.
    [35] K. J. Gordon, M. Dong, E. M. Chislock, et al., Loss of type III transforming growth factor beta receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression, Carcinogenesis, 29 (2008), 252-262.
    [36] G. Sánchez-Duffhues, C. Hiepen, P. Knaus, et al., Bone morphogenetic protein signaling in bone homeostasis, Bone, 80 (2015), 43-59.
    [37] A. G. de Vinuesa, S. Abdelilah-Seyfried, P. Knaus, et al., BMP signaling in vascular biology and dysfunction, Cytokine Growth Factor Rev., 27 (2016), 65-79.
    [38] C. H. Heldin, K. Miyazono and P. Ten Dijke, TGF-beta signaling from cell membrane to nucleus through SMAD proteins, Nature, 390 (1997), 465-471.
    [39] K. Miyazono, K. Kusanagi and H. Inoue, Divergence and convergence of TGF-beta/BMP signaling, J. Cell. Physiol., 187 (2001), 265-276.
    [40] H. Yagita, K. Takeda, Y. Hayakawa, et al., TRAIL and its receptors as targets for cancer therapy, Cancer Sci., 95 (2004), 777-783..
    [41] T. Kunieda, N. Nakanishi, T. Satoh, et al., Prognoses of primary pulmonary hypertension and chronic majorvessel thromboembolic pulmonary hypertension determined from cumulative survival curves, Intern. Med., 38 (1999), 543-546.
  • This article has been cited by:

    1. Chunxiao Ding, Yun Sun, Yuanguo Zhu, A schistosomiasis compartment model with incubation and its optimal control, 2017, 40, 01704214, 5079, 10.1002/mma.4372
    2. Chunxiao Ding, Nana Tao, Yun Sun, Yuanguo Zhu, The effect of time delays on transmission dynamics of schistosomiasis, 2016, 91, 09600779, 360, 10.1016/j.chaos.2016.06.017
    3. Chunxiao Ding, Wenjian Liu, Yun Sun, Yuanguo Zhu, A delayed Schistosomiasis transmission model and its dynamics, 2019, 118, 09600779, 18, 10.1016/j.chaos.2018.11.005
    4. Tailei Zhang, Xiao-Qiang Zhao, Mathematical Modeling for Schistosomiasis with Seasonal Influence: A Case Study in Hubei, China, 2020, 19, 1536-0040, 1438, 10.1137/19M1280259
    5. M. A. Aziz-Alaoui, Jean M.-S. Lubuma, Berge Tsanou, Prevalence-based modeling approach of schistosomiasis: global stability analysis and integrated control assessment, 2021, 40, 2238-3603, 10.1007/s40314-021-01414-9
    6. François M. Castonguay, Susanne H. Sokolow, Giulio A. De Leo, James N. Sanchirico, Cost-effectiveness of combining drug and environmental treatments for environmentally transmitted diseases, 2020, 287, 0962-8452, 20200966, 10.1098/rspb.2020.0966
    7. Chunxiao Ding, Yun Sun, Yuanguo Zhu, A NN-Based Hybrid Intelligent Algorithm for a Discrete Nonlinear Uncertain Optimal Control Problem, 2017, 45, 1370-4621, 457, 10.1007/s11063-016-9536-8
    8. Xi-Chao Duan, I Hyo Jung, Xue-Zhi Li, Maia Martcheva, Dynamics and optimal control of an age-structured SIRVS epidemic model, 2020, 43, 01704214, 4239, 10.1002/mma.6190
    9. Zhipeng Qiu, Xuerui Wei, Chunhua Shan, Huaiping Zhu, Monotone dynamics and global behaviors of a West Nile virus model with mosquito demographics, 2020, 80, 0303-6812, 809, 10.1007/s00285-019-01442-4
    10. Tao Feng, Zhipeng Qiu, Yi Song, Global analysis of a vector-host epidemic model in stochastic environments, 2019, 356, 00160032, 2885, 10.1016/j.jfranklin.2019.01.033
    11. Yujiang Liu, Shujing Gao, Zhenzhen Liao, Di Chen, Dynamical behavior of a stage-structured Huanglongbing model with time delays and optimal control, 2022, 156, 09600779, 111830, 10.1016/j.chaos.2022.111830
    12. S. KADALEKA, S. ABELMAN, P. M. MWAMTOBE, J. M. TCHUENCHE, OPTIMAL CONTROL ANALYSIS OF A HUMAN–BOVINE SCHISTOSOMIASIS MODEL, 2021, 29, 0218-3390, 1, 10.1142/S0218339021500017
    13. Linghui Yu, Zhipeng Qiu, Ting Guo, Modeling the effect of activation of CD4+ T cells on HIV dynamics, 2022, 27, 1531-3492, 4491, 10.3934/dcdsb.2021238
    14. Chinwendu E. Madubueze, Z. Chazuka, I. O. Onwubuya, F. Fatmawati, C. W. Chukwu, On the mathematical modeling of schistosomiasis transmission dynamics with heterogeneous intermediate host, 2022, 8, 2297-4687, 10.3389/fams.2022.1020161
    15. Lei Shi, Longxing Qi, Dynamic analysis and optimal control of a class of SISP respiratory diseases, 2022, 16, 1751-3758, 64, 10.1080/17513758.2022.2027529
    16. Wei Wang, Robert Bergquist, Charles H. King, Kun Yang, Joanne P. Webster, Elimination of schistosomiasis in China: Current status and future prospects, 2021, 15, 1935-2735, e0009578, 10.1371/journal.pntd.0009578
    17. Liming Cai, Peixia Yue, Mini Ghosh, Xuezhi Li, Assessing the impact of agrochemicals on schistosomiasis transmission: A mathematical study, 2021, 14, 1793-5245, 10.1142/S1793524521500492
    18. Solomon Kadaleka, Shirley Abelman, Jean M. Tchuenche, A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding, 2021, 69, 0001-5342, 511, 10.1007/s10441-021-09416-0
    19. Tailei Zhang, Xiao-Qiang Zhao, A multi-host schistosomiasis model with seasonality and time-dependent delays, 2023, 28, 1531-3492, 2927, 10.3934/dcdsb.2022198
    20. Xinjie Hao, Lin Hu, Linfei Nie, Stability and Global Hopf Bifurcation Analysis of a Schistosomiasis Transmission Model with Multi-Delays, 2025, 35, 0218-1274, 10.1142/S0218127425500397
    21. Lele Fan, Zhipeng Qiu, Qi Deng, Ting Guo, Libin Rong, Modeling SARS-CoV-2 Infection Dynamics: Insights into Viral Clearance and Immune Synergy, 2025, 87, 0092-8240, 10.1007/s11538-025-01442-0
    22. Yan Zhao, Qi Deng, Zhipeng Qiu, Ting Guo, Shigui Ruan, Modeling the Interaction of Cytotoxic T-Lymphocytes and Oncolytic Viruses in a Tumor Microenvironment, 2025, 85, 0036-1399, 983, 10.1137/23M1613608
    23. Chang-Yuan Cheng, Feng-Bin Wang, A nonlocal reaction-diffusion system modeling the Schistosomiasis transmission with multiple hosts and periodic delays, 2025, 91, 0303-6812, 10.1007/s00285-025-02238-5
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4947) PDF downloads(531) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog