Citation: Bashir Ahmad, P. Karthikeyan, K. Buvaneswari. Fractional differential equations with coupled slit-strips type integral boundary conditions[J]. AIMS Mathematics, 2019, 4(6): 1596-1609. doi: 10.3934/math.2019.6.1596
[1] | M. Latha Maheswari, K. S. Keerthana Shri, Mohammad Sajid . Analysis on existence of system of coupled multifractional nonlinear hybrid differential equations with coupled boundary conditions. AIMS Mathematics, 2024, 9(6): 13642-13658. doi: 10.3934/math.2024666 |
[2] | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463 |
[3] | Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059 |
[4] | M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045 |
[5] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
[6] | Manal Elzain Mohamed Abdalla, Hasanen A. Hammad . Solving functional integrodifferential equations with Liouville-Caputo fractional derivatives by fixed point techniques. AIMS Mathematics, 2025, 10(3): 6168-6194. doi: 10.3934/math.2025281 |
[7] | Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015 |
[8] | Abdelkader Amara . Existence results for hybrid fractional differential equations with three-point boundary conditions. AIMS Mathematics, 2020, 5(2): 1074-1088. doi: 10.3934/math.2020075 |
[9] | Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112 |
[10] | Abdulwasea Alkhazzan, Wadhah Al-Sadi, Varaporn Wattanakejorn, Hasib Khan, Thanin Sitthiwirattham, Sina Etemad, Shahram Rezapour . A new study on the existence and stability to a system of coupled higher-order nonlinear BVP of hybrid FDEs under the p-Laplacian operator. AIMS Mathematics, 2022, 7(8): 14187-14207. doi: 10.3934/math.2022782 |
Widespread applications of fractional calculus significantly contributed to the popularity of the subject. Fractional order operators are nonlocal in nature and give rise to more realistice and informative mathematical modeling of many real world phenomena, in contrast to their integer-order counterparts, for instance, see [13,21,31].
Nonlinear fractional order boundary value problems appear in a variety of fields such as applied mathematics, physical sciences, engineering, control theory, etc. Several aspects of these problems, such as existence, uniqueness and stability, have been explored in recent studies [5,6,7,14,22,24,26,28,32].
Coupled nonlinear fractional differential equations find their applications in various applied and technical problems such as disease models [8,10,29], ecological models [18], synchronization of chaotic systems [11,33], nonlocal thermoelasticity [30], etc. Hybrid fractional differential equations also received significant attention in the recent years, for example, see [2,3,9,15,16,17,19,20,23].
The concept of slits-strips conditions introduced by Ahmad et al. in [1] is a new idea and has useful applications in imaging via strip-detectors [25] and acoustics [27].
In [1], the authors investigated the following strips-slit problem:
cDpx(t)=f1(t,x(t)), n−1<p≤n, t∈[0,1]x(0)=0, x′(0)=0, x′′(0)=0,.... x(n−2)(0)=0,x(ξ)=a1∫η0x(s)ds+a2∫1ξ1x(s)ds, 0<η<ξ<ξ1<1, |
where cDp denotes the Caputo fractional derivative of order p,f1 is a given continuous function and a1,a2∈R.
In 2017, Ahmad et al. [4] studied a coupled system of nonlinear fractional differential equations
cDαx(t)=f1(t,x(t),y(t)), t∈[0,1], 1<α≤2,cDβy(t)=f2(t,x(t),y(t)), t∈[0,1], 1<β≤2, |
supplemented with the coupled and uncoupled boundary conditions of the form:
x(0)=0, x(a1)=d1∫η0y(s)ds+d2∫1ξ1y(s)ds, 0<η<a1<ξ1<1,y(0)=0, y(a1)=d1∫η0x(s)ds+d2∫1ξ1x(s)ds, 0<η<a1<ξ1<1, |
and
x(0)=0, x(a1)=d1∫η0x(s)ds+d2∫1ξ1x(s)ds, 0<η<a1<ξ1<1,y(0)=0, y(a1)=d1∫η0y(s)ds+d2∫1ξ1y(s)ds, 0<η<a1<ξ1<1, |
where cDα and cDβ denote the Caputo fractional derivatives of orders α and β respectively, f1,f2:[0,1]×R×R→R are given continuous functions and d1,d2 are real constants.
In this article, motivated by aforementioned works, we introduce and study the following hybrid nonlinear fractional differential equations:
cDγ[u(t)−h1(t,u(t),v(t))]=θ1(t,u(t),v(t)), t∈[0,1], 1<γ≤2,cDδ[v(t)−h2(t,u(t),v(t))]=θ2(t,u(t),v(t)), t∈[0,1], 1<δ≤2, | (1.1) |
equipped with coupled slit-strips-type integral boundary conditions:
u(0)=0, u(η)=ω1∫ξ10v(s)ds+ω2∫1ξ2v(s)ds, 0<ξ1<η<ξ2<1,v(0)=0, v(η)=ω1∫ξ10u(s)ds+ω2∫1ξ2u(s)ds, 0<ξ1<η<ξ2<1, | (1.2) |
where cDγ, cDδ denote the Caputo fractional derivatives of orders γ and δ respectively, θi,hi:[0,1]×R×R→R are given continuous functions with hi(0,u(0),v(0))=0,i=1,2 and ω1,ω2 are real constants.
We arrange the rest of the paper as follows. In section 2, we present some definitions and obtain an auxiliary result, while section 3 contains the main results for the problems (1.1) and (1.2). Section 4 is devoted to the illustrative examples for the derived results.
Let us first recall some related definitions [21].
Definition 2.1. For a locally integrable real-valued function g1:[a,∞)⟶R, we define the Riemann-Liouville fractional integral of order σ>0 as
Iσg1(t)=1Γ(σ)∫t0g1(τ)(t−τ)1−σdτ, σ>0, |
where Γ is the Euler's gamma function.
Definition 2.2. The Caputo derivative of order σ for an n-times continuously differentiable function g1:[0,∞)→R is defined by
cDσg1(t)=1Γ(n−σ)∫t0(t−τ)n−σ−1g(n)1(τ)dτ, n−1<σ<n, n=[σ]+1 |
where [σ] is the integer part of a real number.
Lemma 2.1. For χi,Φi∈C([0,1],R) with χi(0)=0,i=1,2, the following linear system of equations:
cDγ[u(t)−χ1(t)]=Φ1(t), t∈[0,1], 1<γ≤2,cDδ[v(t)−χ2(t)]=Φ2(t), t∈[0,1], 1<δ≤2, | (2.1) |
equipped with coupled slit-strips-type integral boundary conditions (1.2), is equivalent to the integral equations:
u(t)=tη2−Δ2[η{ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ2(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ2(s))ds−∫η0(η−s)γ−1Γ(γ)Φ1(s)ds−χ1(η)}+Δ{ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ1(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ1(s))ds−∫η0(η−s)δ−1Γ(δ)Φ2(s)ds−χ2(η)}]+∫t0(t−s)γ−1Γ(γ)Φ1(s)ds+χ1(t), | (2.2) |
v(t)=tη2−Δ2[Δ{ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ1(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ1(s))ds−∫η0(η−τ)γ−1Γ(γ)Φ1(s)ds−χ2(η)}+η{ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ2(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ2(s))ds−∫η0(η−s)δ−1Γ(δ)Φ2(s)ds−χ2(η)}]+∫t0(t−s)δ−1Γ(δ)Φ2(s)ds+χ2(t), | (2.3) |
where it is assumed that
Δ=12(ω1ξ21+ω2(1−ξ22))≠0. | (2.4) |
Proof. Solving the fractional differential equations in (2.1), we get
u(t)=c0+c1t+∫t0(t−s)γ−1Γ(γ)Φ1(s)ds+χ1(t) | (2.5) |
and
v(t)=c2+c3t+∫t0(t−s)δ−1Γ(δ)Φ2(s)ds+χ2(t), | (2.6) |
where c0,c1,c2,c3 ∈R are arbitrary constants.
Using the conditions u(0)=0 and v(0)=0 in (2.5) and (2.6), we find that c0=0 and c2=0. Thus (2.5) and (2.6) become
u(t)=c1t+∫t0(t−s)γ−1Γ(γ)Φ1(s)ds+χ1(t), | (2.7) |
v(t)=c3t+∫t0(t−s)δ−1Γ(δ)Φ2(s)ds+χ2(t), | (2.8) |
Making use of the coupled slit-strips-type integral boundary conditions given by (1.2) in (2.7) and (2.8) together with the notation (2.4), we obtain a system of equations:
ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ2(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ2(s))ds−∫η0(η−s)γ−1Γ(γ)Φ1(s)ds−χ1(η))=c1η−Δc3, | (2.9) |
ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ1(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ1(s))ds−∫η0(η−s)δ−1Γ(δ)Φ2(s)ds−χ2(η)=c3η−Δc1. | (2.10) |
Solving the systems (2.9)–(2.10) for c1 and c3, we find that
c1=tη2−Δ2[η{ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ2(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ2(s))ds−∫η0(η−s)γ−1Γ(γ)Φ1(s)ds−χ1(η)}+Δ{ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ1(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ1(s))ds−∫η0(η−s)δ−1Γ(δ)Φ2(s)ds−χ2(η)}] |
and
c3=tη2−Δ2[Δ{ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ1(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)Φ2(τ)dτ+χ1(s))ds−∫η0(η−s)γ−1Γ(γ)Φ1(s)ds−χ2(η)}+η{ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ2(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)Φ1(τ)dτ+χ2(s))ds−∫η0(η−s)δ−1Γ(δ)Φ2(s)ds−χ1(η)}] |
Inserting the values of c1 and c3 in (2.7) and (2.8) leads to the integral equations (2.2) and (2.3). By direct computation, one can obtain the converse of the lemma. The proof is finished.
Let W={˜w(t):˜w(t)∈C([0,1])} be a Banach space equipped with the norm ‖˜w‖=max{|˜w(t)|,t∈[0,1]}, Then the product space (W×W,‖(u,v)‖) endowed with the norm ‖(u,v)‖=‖u‖+‖v‖, (u,v)∈W×W is also a Banach space.
We need the following assumptions to derive the main results.
(A1) Let θ1,θ2:[0,1]×R2→R be continuous and bounded functions and there exists constants mi,ni such that, for all t∈[0,1] and xi,yi∈R,i=1,2,
|θ1(t,x1,x2)−θ1(t,y1,y2)|≤m1|x1−y1|+m2|x2−y2|,|θ2(t,x1,x2)−θ2(t,y1,y2)|≤n1|x1−y1|+n2|x2−y2|. |
(A2) For continuous and bounded functions hi, i = 1, 2, there exist real constants μi,βi,σi>0 such that, for all xi,yi∈R, |hi(t,x,y)|≤μi for all (t,x,y)∈[0,1]×R×R and
|h1(t,x1,x2)−h1(t,y1,y2)|≤β1|x1−y1|+β2|x2−y2|,|h2(t,x1,x2)−h2(t,y1,y2)|≤σ1|x1−y1|+σ2|x2−y2|. |
(A3) supt∈[0,1]θ1(t,0,0)=N1<∞ andsupt∈[0,1]θ2(t,0,0)=N2<∞.
(A4) For the sake of computational convenience, we set
M1=1Γ(γ+1)+1|η2−Δ2|[ηγ+1Γ(γ+1)+|Δ||ω1|ξγ+11Γ(γ+2)+Δ|ω2|1−ξγ+12Γ(γ+2)],M2=1|η2−Δ2|[η|ω1|ξδ+11Γ(δ+2)+η|ω2|1−ξδ+12Γ(δ+2)+|Δ|ηδΓ(δ+1)],M3=1|η2−Δ2|[η|ω1|ξγ+11Γ(γ+2)+η|ω2|1−ξγ+12Γ(γ+2)+|Δ|ηγΓ(γ+1)],M4=1Γ(δ+1)+1|η2−Δ2|[ηδ+1Γ(δ+1)+|Δ||ω1|ξδ+11Γ(δ+2)+Δ|ω2|1−ξδ+12Γ(δ+2)],N3=η|η2−Δ2|[|ω1|ξ1μ2+|ω2|μ2(1−ξ2)+μ1]+|Δ|[|ω1|μ1ξ1+μ1|ω2|(1−ξ2)+μ2]+μ1,N4=1|η2−Δ2|[|Δ||ω1|μ1ξ1+|ω2|(1−ξ2)μ1+μ2]+|η|[|ω1|μ2ξ1+|ω2|(1−ξ2)μ2+μ1]+μ2,N5=1|η2−Δ2|[η|ω1|ξ1+|ω2|η(1−ξ2)+|Δ|],N6=1|η2−Δ2|[|Δ|ξ1|ω1|+|Δ||ω2|(1−ξ2)+η]+1,N7=1|η2−Δ2|[|Δ|+|η||ω1|ξ1+|η||ω2|(1−ξ2)+|ω2|+|Δ|], |
and
Mk=min{1−(M1+M3)k1−(M2+M4)λ1,1−(M1+M3)k2−(M2+M4)λ2},ki,λi≥0, i=1,2. | (3.1) |
(A5) (M1+M3)(m1+m2)+(M2+M4)(n1+n2)+(N5+N6)(σ1+σ2)+(N7+N8)(β1+β2)<1.
In view of Lemma 1, we define an operator T:W×W→W×W associated with the problems (1.1) and (1.2) as follows:
T(u,v)(t)=(T1(u,v)(t)T2(u,v)(t)), | (3.2) |
where
T1(u,v)(t)=tη2−Δ2[η{ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)θ2(τ,u(τ),v(τ))dτ+h2(s,u(s),v(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)θ2(τ,u(τ),v(τ))dτ+h2(s,u(s),v(s))ds−∫η0(η−s)γ−1Γ(γ)θ1(s,u(s),v(s))ds−h1(η,u(η),v(η))}+Δ{ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)θ1(τ,u(τ),v(τ))dτ+h1(s,u(s),v(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)θ1(τ,u(τ),v(τ))dτ+h1(s,u(s),v(s))ds−∫η0(η−s)δ−1Γ(δ)θ2(s,u(s),v(s))ds−h2(η,u(η),v(η))}]+∫t0(t−s)γ−1Γ(γ)θ1(s,u(s),v(s))ds+h1(t,u(t),v(t)) |
and
T2(u,v)(t)=tη2−Δ2[Δ{ω1∫ξ10(∫s0(s−τ)δ−1Γ(δ)θ2(τ,u(τ),v(τ))dτ+h1(s,u(s),v(s))ds+ω2∫1ξ2(∫s0(s−τ)δ−1Γ(δ)θ2(τ,u(τ),v(τ))dτ+h1(s,u(s),v(s))ds−∫η0(η−τ)γ−1Γ(γ)θ1(s,u(s),v(s))ds−h2(η,u(η),v(η))}+η{ω1∫ξ10(∫s0(s−τ)γ−1Γ(γ)θ1(τ,u(τ),v(τ))dτ+h2(s,u(s),v(s))ds+ω2∫1ξ2(∫s0(s−τ)γ−1Γ(γ)θ1(τ,u(τ),v(τ))dτ+h2(s,u(s),v(s))ds−∫η0(η−s)δ−1Γ(δ)θ2(s,u(s),v(s))ds−h1(η,u(η),v(η))}]+∫t0(t−s)γ−1Γ(γ)θ2(s,u(s),v(s))ds+h2(t,u(t),v(t)). |
Theorem 3.1. Assume that conditions (A1) to (A5) are satisfied. Then there exists a unique solution for the problems (1.1) and (1.2) on [0,1].
Proof. In the first step, we establish that TˉBr⊂ˉBr, where ˉBr={(u,v)∈W×W:‖(u,v)‖≤r} is a closed ball with
r≥(M1+M3)N1+(M2+M4)N2+N3μ1−[(M1+M3)(m1+m2)+(M2+M4)(n1+n2)+N3(β1+β2)], |
and the operator T:W×W→W×W is defined by (3.2). For (u,v)∈ˉBr and t∈[0,1], it follows by (A1) that
|θ1(t,u(t),v(t))|≤|θ1(t,u(t),v(t))−θ1(t,0,0)|≤m1||u||+m2||v||. |
Similarly one can find that |θ2(t,u(t),v(t))|≤n1||u||+n2||v||. Then we have
|T1(u,v)(t)|≤maxt∈[0,1][t|η2−Δ2|[η{|ω1|∫ξ10(∫s0(s−τ)δ−1Γ(δ)|θ2(τ,u(τ),v(τ))|dτ+|h2(s,u(s),v(s)|)ds+|ω2|∫1ξ2(∫s0(s−τ)δ−1Γ(δ)|θ2(τ,u(τ),v(τ))|dτ+|h2(s,u(s),v(s)|)ds+∫η0(η−s)γ−1Γ(γ)|θ1(s,u(s),v(s))|ds+|h1(η,u(η),v(η))|}+|Δ|{|ω1|∫ξ10(∫s0(s−τ)γ−1Γ(γ)|θ1(τ,u(τ),v(τ))|dτ+|h1(s,u(s),v(s)|)ds+|ω2|∫1ξ2(∫s0(s−τ)γ−1Γ(γ)|θ1(τ,u(τ),v(τ))|dτ+|h1(s,u(s),v(s)|)ds+∫η0(η−s)δ−1Γ(δ)|θ2(s,u(s),v(s))|ds+|h2(η,u(η),v(η))|}]+∫t0(t−s)γ−1Γ(γ)|θ1(s,u(s),v(s))|ds+|h1(t,u(t),v(t))|]≤1|η2−Δ2|[η{|ω1|∫ξ10(∫s0(s−τ)δ−1Γ(δ)(n1||u||+n2||v||+N2)dτ+μ2)ds+|ω2|∫1ξ2(∫s0(s−τ)δ−1Γ(δ)|(n1||u||+n2||v||+N2)dτ+μ2)ds+∫η0(η−s)γ−1Γ(γ)(m1||u||+m2||v||+N1)dτ+μ1}+|Δ|{|ω1|∫ξ10(∫s0(s−τ)γ−1Γ(γ)(m1||u||+m2||v||+N1)dτ+μ1)ds+|ω2|∫1ξ2(∫s0(s−τ)γ−1Γ(γ)(m1||u||+m2||v||+N1)dτ+μ1)ds+∫η0(η−s)δ−1Γ(δ)(n1||u||+n2||v||+N2)ds+μ2}]+∫t0(t−s)γ−1Γ(γ)(m1||u||+m2||v||+N1)ds+μ1le1|η2−Δ2|[η|ω1|ξδ+11Γ(δ+2)+η|ω2|1−ξδ+12Γ(δ+2)+|Δ|ηδΓ(δ+1)](n1||u||+n2||v||+N2)+[1|η2−Δ2|(ηγ+1Γ(γ+1)+|Δ||ω1|ξγ+11Γ(γ+2)+|Δ||ω2|1−ξγ+12Γ(γ+2))+1Γ(γ+1)](m1||u||+m2||v||+N1)+η|η2−Δ2|(|ω1|μ2ξ1+|ω2|μ2(1−ξ2)+μ1)+|Δ|(|ω1|μ1ξ1+|ω2|μ1(1−ξ2)+μ2)+μ1≤(M2n1+M1m1+M2n2+M1m2)r+M2N2+M1N1+N3. |
Analogously, one can find that
|T2(u,v)(t)|≤(M4n1+M3m1+M4n2+M3m2)r+M4N2+M3N1+N4. |
From the foregoing estimates for T1 and T2, we obtain ||T(u,v)(t)||≤r.
Next, for (u1,v1),(u2,v2)∈W×W and t∈[0,1], we get
|T1(u2,v2)(t)−T1(u1,v1)(t)|≤1|η2−Δ2|[η{|ω1|(∫ξ10(∫s0(s−τ)δ−1Γ(δ)|θ2(τ,u2(τ),v2(τ))−θ2(τ,u1(τ),v1(τ))|)dτ+|h2(s,u2(s),v2(s))−h2(s,u1(s),v1(s))|ds)+|ω2|(∫1ξ2(∫s0(s−τ)δ−1Γ(δ)|θ2(τ,u2(τ),v2(τ))−θ2(τ,u1(τ),v1(τ))|)dτ+|h2(s,u2(s),v2(s))−h2(s,u1(s),v1(s))|ds)+∫η0(η−s)γ−1Γ(γ)|θ1(τ,u2(τ),v2(τ))−θ1(τ,u1(τ),v1(τ))|ds+|h1(η,u2(η),v2(η))−h1(η,u1(η),v1(η))|} |
+|Δ|{|ω1|(∫ξ10(∫s0(s−τ)γ−1Γ(γ)|θ1(τ,u2(τ),v2(τ))−θ1(τ,u1(τ),v1(τ))|)dτ+|h1(s,u2(s),v2(s))−h1(s,u1(s),v1(s))|ds)+|ω2|(∫1ξ2(∫s0(s−τ)γ−1Γ(γ)|θ1(τ,u2(τ),v2(τ))−θ1(τ,u1(τ),v1(τ))|)dτ+|h1(s,u2(s),v2(s))−h1(s,u1(s),v1(s))|ds)+∫η0(η−s)δ−1Γ(δ)|θ1(τ,u2(τ),v2(τ))−θ1(τ,u2(τ),v2(τ)|ds+|h2(η,u2(η),v2(η))−h2(η,u1(η),v1(η))|ds}]+∫t0(t−s)γ−1Γ(γ)(|θ1(s,u2(s),v2(s))−θ1(s,u1(s),v1(s))|)ds+|h1(t,u2(t),v2(t))−h1(t,u1(t),v1(t))|≤1|η2−Δ2|[η|ω1|ξδ+11Γ(δ+2)+η|ω2|1−ηδ+1Γ(δ+2)+|Δ|ηδΓ(δ+1)]×(n1||u2−u1||+n2||v2−v1||)+(1|η2−Δ2|[ηγ+1Γ(γ+1)+|Δ||ω1|ξγ+11Γ(γ+2)+|Δ||ω2|1−ξγ+12Γ(γ+2)]+1Γ(γ+1))×(m1||u2−u1||+m2||v2−v1||)+1|η2−Δ2|[(η|ω1|ξ1+η|ω2|(1−ξ2)+|Δ|)(σ1||u2−u1||+σ2||v2−v1||)+(η+|Δ||ω1|ξ1+|Δ||ω2|(1−ξ2)+1)(β1||u2−u1||+β2||v2−v1||)]leM2(n1||u2−u1||+n2||v2−v1||)+M1(m1||u2−u1||+m2||v2−v1||) +N5(σ1||u2−u1||+σ2||v2−v1||)+N6(β1||u2−u1||+β2||v2−v1||)=(M2n1+M1m1+N5σ1+N6β1)||u2−u1||+(M2n2+M1m2+N5σ2)||v2−v1||) |
which implies that
\begin{array}{l} \left\|\mathcal{T}_1(u_2, v_2)(t)-\mathcal{T}_1(u_1, v_1)(t)\right\| \\ le \left(\mathcal{M}_2n_1+\mathcal{M}_1m_1+\mathcal{N}_5\sigma_1+\mathcal{N}_6\beta_1+\mathcal{M}_2n_2+\mathcal{M}_1m_2+\mathcal{N}_5\sigma_2+\mathcal{N}_6\beta_2\right)\left(||u_2-u_1||+||v_2-v_1||\right). \end{array} | (3.3) |
Likewise, we have
\begin{array}{l} \left\|\mathcal{T}_2(u_2, v_2)(t)-\mathcal{T}_2(u_1, v_1)(t)\right\| \\ le \left(\mathcal{M}_4n_1+\mathcal{M}_3m_1+\mathcal{N}_6\sigma_1+\mathcal{N}_7\beta_1+\mathcal{M}_4n_2+\mathcal{M}_3m_2+\mathcal{N}_6\sigma_2+\mathcal{N}_7\beta_2\right)\left(||u_2-u_1||+||v_2-v_1||\right). \end{array} | (3.4) |
From (3.3) and (3.4), we deduce that
\left\|\mathcal{T}(u_2, v_2)(t)-\mathcal{T}(u_1, v_1)(t)\right\| \nonumber \\ \le \left[(\mathcal{M}_1+\mathcal{M}_3)(m_1+m_2)+(\mathcal{M}_2+\mathcal{M}_4)(n_1+n_2)+(\mathcal{N}_7+\mathcal{N}_8)(\beta_1+\beta_2)+(\mathcal{N}_5+\mathcal{N}_6)(\sigma_1+\sigma_2)\right]\\ \times\left(||u_2-u_1||+||v_2-v_1||\right), |
which shows that \mathcal{T} is a contraction by the assumption (A5) and hence it has a unique fixed point by Banach fixed point theorem. This leads to the conclusion that there exists a unique solution for the problems (1.1) and (1.2) on [0, 1] . The proof is complete.
Now, we discuss the existence of solutions for the problems (1.1) and (1.2) by means of Leray-Schauder alternative ([12], p. 4).
Theorem 3.2. Assume that there exists real constants \tilde{k}_0 > 0 , \tilde{\lambda}_0 > 0 and \tilde{k}_i, \tilde{\lambda}_i\ge 0, \ i = 1, 2 such that, for any u_i\in \mathfrak{R}, \ i = 1, 2
\left|\theta_1(t, u_1, u_2)\right| \le \tilde{k}_0+\tilde{k}_1|u_1|+\tilde{k}_2|u_2|, \, \, \left|\theta_2(t, u_1, u_2)\right| \le \tilde{\lambda}_0+\tilde{\lambda}_1|u_1|+\tilde{\lambda}_2|u_2|. |
In addition,
(\mathcal{M}_1+\mathcal{M}_3)\tilde{k}_1+(\mathcal{M}_2+\mathcal{M}_4)\tilde{\lambda}_1 \lt 1, \, \, (\mathcal{M}_1+\mathcal{M}_3)\tilde{k}_2+(\mathcal{M}_2+\mathcal{M}_4)\tilde{\lambda}_2 \lt 1, |
where \mathcal{M}_i, \ i = 1, 2, 3, 4 are given in (A4). Then the problems (1.1) and (1.2) have at least one solution on [0, 1] .
Proof. The proof consists of two steps. First we show that the operator \mathcal{T}:\mathcal{W}\times\mathcal{W}\to\mathcal{W}\times\mathcal{W} defined by (3.2) is completely continuous. Observe that continuity of the operator \mathcal{T} follows from that of \theta_1 and \theta_2 . Consider a bounded set \Omega \subset \mathcal{W}\times\mathcal{W} so that we can find positive constants l_1 and l_2 such that \left|\theta_1(t, u(t), v(t))\right|\le l_1 and \left|\theta_2(t, u(t), v(t))\right|\le l_2 for every (u, v)\in \Omega . Hence, for any (u, v)\in \Omega , we find that
\left|\mathcal{T}_1(u, v)(t)\right| \le \frac{1}{|\eta^2-\Delta^2|} \Bigg[\eta|\omega_1|\frac{\xi_1^{\delta+1}}{\Gamma(\delta+2)}+\eta|\omega_2|\frac{1-\xi_2^{\delta+1}}{\Gamma(\delta+2)}+|\Delta|\frac{\eta^{\delta}}{\Gamma(\delta+1)}\Bigg]l_2 \nonumber\\ + \Bigg\{\frac{1}{|\eta^2-\Delta^2|}\Bigg[\frac{\eta^{\gamma}}{\Gamma(\gamma+1)}+|\Delta| |\omega_1|\frac{\xi_1^{\gamma+1}}{\Gamma(\gamma+2)}+|\Delta||\omega_2|\frac{1-\xi_2^{\gamma+1}}{\Gamma(\gamma+2)}+\frac{1}{\Gamma(\gamma+1)}\Bigg]\Bigg\}l_1 \nonumber\\ +\frac{1}{|\eta^2-\Delta^2|}\Big\{\eta\left[|\omega_1|\xi_1\mu_2+|\omega_2|\mu_2(1-\xi_2)+\mu_1\right]+\eta\mu_1+|\Delta|\left[\mu_1\xi_1|\omega_1|+\mu_1|\omega_2|(1-\xi_2)+\mu_2\right]\Big\}+\mu_1 \\ = \mathcal{M}_2l_2+\mathcal{M}_1l_1+\mathcal{N}_3. |
Thus we deduce that \left\|\mathcal{T}_1(u, v)\right\|\le \mathcal{M}_2l_2+\mathcal{M}_1l_1+\mathcal{N}_3. In a similar fashion, it can be found that \left\|\mathcal{T}_2(u, v)\right\|\le \mathcal{M}_4l_2+\mathcal{M}_3l_1+\mathcal{N}_4. Hence, it follows from the foregoing inequalities that \mathcal{T}_1 and \mathcal{T}_2 are uniformly bounded and hence the operator \mathcal{T} is uniformly bounded. In order to show that \mathcal{T} is equicontinuous, we take 0 < r_1 < r_2 < 1 . Then, for any (u, v)\in \Omega , we obtain
\left|\mathcal{T}_1(u(r_2), v(r_2))-\mathcal{T}_1(u(r_1), v(r_1))\right| \nonumber \\ \le \frac{l_1}{\Gamma(\gamma)}\int_{0}^{r_1}\left[(r_2-s)^{\gamma-1}-(r_1-s)^{\gamma-1}\right]ds+\frac{l_1}{\Gamma(\gamma)}\int_{r_1}^{r_2}(r_2-s)^{\gamma-1}ds \nonumber \\ + \frac{r_2-r_1}{|\eta^2-\Delta^2|} \Bigg\{\Bigg[\eta|\omega_1|\frac{\xi_1^{\delta+1}}{\Gamma(\delta+2)}+\eta|\omega_2|\frac{1-\xi_2^{\delta+1}}{\Gamma(\delta+2)}+|\Delta|\frac{\eta^{\delta}}{\Gamma(\delta+1)}\Bigg]l_2 \nonumber\\ + \Bigg[\frac{\eta^{\gamma+1}}{\Gamma(\gamma+1)}+|\Delta| |\omega_1|\frac{\xi_1^{\gamma+1}}{\Gamma(\gamma+2)}+|\Delta||\omega_2|\frac{1-\xi_2^{\gamma+1}}{\Gamma(\gamma+2)}+\frac{1}{\Gamma(\gamma+2)}\Bigg]l_1+N_3\Bigg\}, |
\left|\mathcal{T}_2(u(r_2), v(r_2))-\mathcal{T}_2(u(r_1), v(r_1))\right| \nonumber \\ \le \frac{l_2}{\Gamma(\delta)}\int_{0}^{r_1}\left[(r_2-s)^{\delta-1}-(r_1-s)^{\delta-1}\right]ds+\frac{l_2}{\Gamma(\delta)}\int_{r_1}^{r_2}(r_2-s)^{\delta-1}ds \nonumber \\ \ \ + \frac{r_2-r_1}{|\eta^2-\Delta^2|} \Bigg\{\Bigg[\eta|\omega_1|\frac{\xi_1^{\delta+1}}{\Gamma(\delta+2)}+\eta|\omega_2|\frac{1-\xi_2^{\delta+1}}{\Gamma(\delta+2)}+\frac{\eta\dot{.}\eta^{\delta+1}}{\Gamma(\delta+1)}\Bigg]l_2 \nonumber\\ + \Bigg[|\Delta|\frac{\eta^{\gamma}}{\Gamma(\gamma+1)}+\eta |\omega_1|\frac{\xi_1^{\gamma+1}}{\Gamma(\gamma+2)}+\eta|\omega_2|\frac{1-\xi_2^{\gamma+1}}{\Gamma(\gamma+2)}\Bigg]l_1+\mathcal{N}_4\Bigg\}, |
which imply that the operator \mathcal{T}(u, v) is equicontinuous. In view of the foregoing arguments, we deduce that operator \mathcal{T}(u, v) is completely continuous.
Next, we consider a set \mathcal{P} = \{(u, v)\in \mathcal{W}\times\mathcal{W} : (u, v) = \lambda\mathcal{T}(u, v), \ 0\le \lambda\le 1\} and show that it is bounded. Let us take (u, v)\in \mathcal{P} and t\in [0, 1] . Then it follows from u(t) = \lambda \mathcal{T}_1(u, v)(t) and v(t) = \lambda \mathcal{T}_2(u, v)(t) , together with the given assumptions that
\|u\|\le \mathcal{M}_1\left(\tilde{k}_0+\tilde{k}_1||u||+\tilde{k}_2||v||\right) +\mathcal{M}_2\left(\tilde{\lambda}_0+\tilde{\lambda}_1||u||+\tilde{\lambda}_2||v||\right)+\mathcal{N}_3, \\ |v\| \le \mathcal{M}_3\left(\tilde{k}_0+\tilde{k}_1||u||+\tilde{k}_2||v||\right)+\mathcal{M}_4\left(\tilde{\lambda}_0+\tilde{\lambda}_1||u||+\tilde{\lambda}_2||v||\right)+\mathcal{N}_4, |
which lead to
\|u\|+\|v\| \le \left[(\mathcal{M}_1+\mathcal{M}_3)\tilde{k}_0+(\mathcal{M}_2+\mathcal{M}_4)\tilde{\lambda}_0 +\mathcal{N}_3+\mathcal{N}_4\right] \nonumber \\ + \left[(\mathcal{M}_1+\mathcal{M}_3)\tilde{k}_1+(\mathcal{M}_2+\mathcal{M}_4)\tilde{\lambda}_1\right]\|u\|+ \left[(\mathcal{M}_1+\mathcal{M}_3)\tilde{k}_2+(\mathcal{M}_2+\mathcal{M}_4)\tilde{\lambda}_2\right]\|v\|. |
Thus
\|(u, v)\| \le \frac{(\mathcal{M}_1+\mathcal{M}_3)\tilde{k}_0+(\mathcal{M}_2+\mathcal{M}_4)\tilde{\lambda}_0+\mathcal{N}_3+\mathcal{N}_4}{\mathcal{M}_k}, |
where \mathcal{M}_{k} is defined by (3.1). Consequently the set \mathcal {P} is bounded. Hence, it follows by Leray-Schauder alternative ([12], p. 4) that the operator \mathcal{T} has at least one fixed point. Therefore, the problems (1.1) and (1.2) have at least one solution on [0, 1]. This finishes the proof.
Example 4.1. Consider a coupled boundary value problem of fractional differential equations with slit-strips-type conditions given by
\begin{array}{l} ^cD^{3/2}\left(u(t)-\frac{\sin t|u(t)|}{2(2+|u(t)|)}\right) = \frac{1}{56}u(t)+\frac{2}{7}\frac{v(t)} {1+v(t)}+\frac{5}{7}, \\ ^cD^{5/4}\left(v(t)-\frac{\sin t|v(t)|} {2(2+|v(t)|)}\right) = \frac{1}{39}\frac{|\cos u(t)|} {1+|\cos u(t)|}+\frac{1}{28}\sin v(t)+\frac{3}{7}, \end{array} | (4.1) |
\begin{array}{l} u(0) = 0, \ u\left(\frac{1}{2}\right) = \int_{0}^{1/5}v(s)ds+\int_{4/5}^{1}v(s)ds, \\ v(0) = 0, \ v\left(\frac{1}{2}\right) = \int_{0}^{1/5}u(s)ds+\int_{4/5}^{1}u(s)ds. \end{array} | (4.2) |
Here \gamma = \frac{3}{2} , \delta = \frac{5}{4} , \omega_1 = 1 , \omega_2 = 1 , \eta = \frac{1}{2} , \xi_1 = \frac{1}{5} , \xi_2 = \frac{4}{5} . From the given data, we find that \Delta = -0.11 , m_1 = \frac{1}{56} , m_2 = \frac{2}{71} , n_1 = \frac{1}{39} , n_2 = \frac{1}{28} , \mathcal{M}_1\simeq 1.44716 , \mathcal{M}_2\simeq 0.51905 , \mathcal{M}_3\simeq 0.4046 , \mathcal{M}_4\simeq 2.51887 , \mathcal{N}_5\simeq 2.94238 , \mathcal{N}_6\simeq 7.3223 , \mathcal{N}_7\simeq 5.6164 , \mathcal{N}_8\simeq 5.2206 , and (\mathcal{M}_1+\mathcal{M}_3)(m_1+m_2)+(\mathcal{M}_2+\mathcal{M}_4)(n_1+n_2)+(\mathcal{N}_5+\mathcal{N}_6)(\sigma_1+\sigma_2)+(\mathcal{N}_7+\mathcal{N}_8)(\beta_1+\beta_2)\simeq 0.8030305 < 1 .
Clearly all the conditions of Theorem 3.1 are satisfied. In consequence, the conclusion of Theorem 3.1 applies to the problems (4.1)–(4.2).
Example 4.2. We consider the problems (4.1)–(4.2) with
\begin{array}{l} \theta_1(t, u(t), v(t))\ = \frac{1}{2}+\frac{2}{39}tanu(t)+\frac{2}{41}v(t), \, \, \theta_2(t, u(t), v(t))\ = \frac{2}{5}+\frac{1}{9} sinu(t)+\frac{1}{17}v(t). \end{array} | (4.3) |
Observe that
\left|\theta_1(t, u, v)\right| \le \tilde{k}_0+\tilde{k}_1|u|+\tilde{k}_2|v|, \, \, \left|\theta_2(t, u, v)\right| \le \tilde{\lambda}_0+\tilde{\lambda}_1|u|+\tilde{\lambda}_2|v| |
with \tilde{k}_0 = \frac{1}{2} , \tilde{k}_1 = \frac{2}{39} , \tilde{k}_2 = \frac{2}{41} \tilde{\lambda}_0 = \frac{2}{5} , \tilde{\lambda}_1 = \frac{1}{9} , \tilde{\lambda}_2 = \frac{1}{17} . Furthermore,
(\mathcal{M}_1+\mathcal{M}_3)\tilde{k}_1+(\mathcal{M}_2+\mathcal{M}_4)\tilde{\lambda}_1 \simeq 0.432507777 \lt 1, (\mathcal{M}_1+\mathcal{M}_3)\tilde{k}_2+(\mathcal{M}_2+\mathcal{M} _4)\tilde{\lambda}_2 \simeq 0.269030756 \lt 1. |
Thus all the conditions of Theorem 3.2 hold true and hence there exists at least one solution for the problems (4.1)–(4.2) with \theta_1(t, u, v) and \theta_2(t, u, v) given by (4.3).
The authors thank the reviewers for their useful remarks on our paper.
All authors declare no conflicts of interest in this paper.
[1] | B. Ahmad, R. P. Agarwal, Some new versions of fractional boundary value problems with slitstrips conditions, Bound.Value Probl., 2014 (2014), 175. |
[2] | B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence results for a system of coupled hybrid fractional differential equations, The Scientific World J., 2014 (2014), 426438. |
[3] |
B. Ahmad, S. K. Ntouyas, J. Tariboon, A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations, Acta Math. Sci., 36 (2016), 1631-1640. doi: 10.1016/S0252-9602(16)30095-9
![]() |
[4] |
B. Ahmad, S. K.Ntouyas, A coupled system of nonlocal fractional differential equations with coupled and uncoupled slit-strips type integral boundary conditions, J. Math. Sci., 226 (2017), 175-196. doi: 10.1007/s10958-017-3528-8
![]() |
[5] |
B. Ahmad, R. Luca, Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions, Fract. Calc. Appl. Anal., 21 (2018), 423-441. doi: 10.1515/fca-2018-0024
![]() |
[6] | B. Ahmad, S. K. Ntouyas, A. Alsaedi, Fractional order differential systems involving right Caputo and left Riemann-Liouville fractional derivatives with nonlocal coupled conditions, Bound. Value Probl., 2019 (2019), 109. |
[7] |
M. Benchohra, J. R. Graef, S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal., 87 (2008), 851-863. doi: 10.1080/00036810802307579
![]() |
[8] |
A. Carvalho, C. M. A. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS, Int. J. Dyn. Cont., 5 (2017), 168-186. doi: 10.1007/s40435-016-0224-3
![]() |
[9] | B. C. Dhage, S. B. Dhage, K. Buvaneswari, Existence of mild solutions of nonlinear boundary value problems of coupled hybrid fractional integro differential equations, J. Fract. Calc. Appl., 10 (2019), 191-206. |
[10] |
Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE Trans. Cont. Syst. Technol., 20 (2012), 763-769. doi: 10.1109/TCST.2011.2153203
![]() |
[11] |
M. Faieghi, S. Kuntanapreeda, H. Delavari, et al. LMI-based stabilization of a class of fractionalorder chaotic systems, Nonlin. Dynam., 72 (2013), 301-309. doi: 10.1007/s11071-012-0714-6
![]() |
[12] | A. Granas, J. Dugundji, Fixed Point Theory, New York: Springer-Verlag, 2005. |
[13] |
N. He, J. Wang, L. L. Zhang, et al. An improved fractional-order differentiation model for image denoising, Signal Process., 112 (2015), 180-188. doi: 10.1016/j.sigpro.2014.08.025
![]() |
[14] | J. Henderson, R. Luca, Nonexistence of positive solutions for a system of coupled fractional boundary value problems, Bound. Value Probl., 2015 (2015), 138. |
[15] | M. A. E. Herzallah, D. Baleanu, On fractional order hybrid differential equations, Abstr. Appl. Anal., 2014 (2014), 389386. |
[16] | K. Hilal, A. Kajouni, Boundary value problem for hybrid differential equations, with fractional order, Adv. Difference Eq., 2015 (2015), 183. |
[17] | M. Iqbal, Y. Li, K. Shah, et al. Application of topological degree method for solutions of coupled systems of multipoints boundary value problems of fractional order hybrid differential equations, Complexity, 2017 (2017), 7676814. |
[18] |
M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 318 (2015), 8-18. doi: 10.1016/j.ecolmodel.2015.06.016
![]() |
[19] | P. Karthikeyan, R. Arul, Existence of solutions for Hadamard fractional hybrid differential equations with impulsive and nonlocal conditions, J. Fract. Calc. Appl., 9 (2018), 232-240. |
[20] |
P. Karthikeyan, K. Buvaneswari, A note on coupled fractional hybrid differential equations involving Banach algebra, Malaya J. Mat., 6 (2018), 843-849. doi: 10.26637/MJM0604/0021
![]() |
[21] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: North-Holland Mathematics Studies, 2006. |
[22] |
C. F. Li, X. N. Luo, Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Comput. Math. Appl., 59 (2010), 1363-1375. doi: 10.1016/j.camwa.2009.06.029
![]() |
[23] |
S. Li, H. Yin, L. Li, The solution of a cooperative fractional hybrid differential system, Appl. Math. Lett., 91 (2019), 48-54. doi: 10.1016/j.aml.2018.11.008
![]() |
[24] |
Z. Liu, J. Sun, Nonlinear boundary value problems of fractional differential systems, Comput. Math. Appl., 64 (2012), 463-475. doi: 10.1016/j.camwa.2011.12.020
![]() |
[25] | M. Lundqvist, Silicon Strip Detectors for Scanned Multi-Slit X-Ray Imaging, Stockholm: Kungl Tekniska Hogskolan, 2003. |
[26] |
L. Lv, J. Wang, W. Wei, Existence and uniqueness results for fractional differential equations with boundary value conditions, Opuscula Math., 31 (2011), 629-643. doi: 10.7494/OpMath.2011.31.4.629
![]() |
[27] |
T. Mellow, L. Karkkainen, On the sound fields of infinitely long strips, J. Acoust. Soc. Am., 130 (2011), 153-167. doi: 10.1121/1.3596474
![]() |
[28] | S. K. Ntouyas, M. Obaid, A coupled system of fractional differential equations with nonlocal integral boundary conditions, Adv. Differ. Eq., 2012 (2012), 130. |
[29] | N. Nyamoradi, M. Javidi, B. Ahmad, Dynamics of SVEIS epidemic model with distinct incidence, Int. J. Biomath., 8 (2015), 1550076. |
[30] | Y. Z. Povstenko, Fractional Thermoelasticity, New York: Springer, 2015. |
[31] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Dordrecht: Springer, 2007. |
[32] |
G. Wang, K. Pei, R. P. Agarwal, et al. Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230-239. doi: 10.1016/j.cam.2018.04.062
![]() |
[33] | F. Zhang, G. Chen, C. Li, et al. Chaos synchronization in fractional differential systems, Philos. Trans. R. Soc., 371 (2013), 20120155. |
1. | Wafa Shammakh, Hadeel Z. Alzumi, Zahra Albarqi, On multi-term proportional fractional differential equations and inclusions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03104-y | |
2. | Karthikeyan Buvaneswari, Panjaiyan Karthikeyan, Dumitru Baleanu, On a system of fractional coupled hybrid Hadamard differential equations with terminal conditions, 2020, 2020, 1687-1847, 10.1186/s13662-020-02790-y | |
3. | Zhiwei Lv, Ishfaq Ahmad, Jiafa Xu, Akbar Zada, Analysis of a Hybrid Coupled System of ψ-Caputo Fractional Derivatives with Generalized Slit-Strips-Type Integral Boundary Conditions and Impulses, 2022, 6, 2504-3110, 618, 10.3390/fractalfract6100618 | |
4. | Said Mesloub, Eman Alhazzani, Hassan Eltayeb Gadain, A Two-Dimensional Nonlocal Fractional Parabolic Initial Boundary Value Problem, 2024, 13, 2075-1680, 646, 10.3390/axioms13090646 | |
5. | Haroon Niaz Ali Khan, Akbar Zada, Ioan-Lucian Popa, Sana Ben Moussa, The Impulsive Coupled Langevin ψ-Caputo Fractional Problem with Slit-Strip-Generalized-Type Boundary Conditions, 2023, 7, 2504-3110, 837, 10.3390/fractalfract7120837 | |
6. | Pengyan Yu, Guoxi Ni, Chengmin Hou, Existence and uniqueness for a mixed fractional differential system with slit-strips conditions, 2024, 2024, 1687-2770, 10.1186/s13661-024-01942-3 | |
7. | Karthikeyan Buvaneswari, Panjaiyan Karthikeyan, Kulandhivel Karthikeyan, Ozgur Ege, Existence and uniqueness results on coupled Caputo-Hadamard fractional differential equations in a bounded domain, 2024, 38, 0354-5180, 1489, 10.2298/FIL2404489B | |
8. | Haroon Niaz Ali Khan, Akbar Zada, Ishfaq Khan, Analysis of a Coupled System of \psi -Caputo Fractional Derivatives with Multipoint–Multistrip Integral Type Boundary Conditions, 2024, 23, 1575-5460, 10.1007/s12346-024-00987-0 |