Loading [MathJax]/jax/output/SVG/jax.js

On a vorticity-based formulation for reaction-diffusion-Brinkman systems

  • Received: 01 May 2017 Revised: 01 November 2017
  • Primary: 65M60, 35K57; Secondary: 35Q35, 76S05

  • We are interested in modelling the interaction of bacteria and certain nutrient concentration within a porous medium admitting viscous flow. The governing equations in primal-mixed form consist of an advection-reaction-diffusion system representing the bacteria-chemical mass exchange, coupled to the Brinkman problem written in terms of fluid vorticity, velocity and pressure, and describing the flow patterns driven by an external source depending on the local distribution of the chemical species. A priori stability bounds are derived for the uncoupled problems, and the solvability of the full system is analysed using a fixed-point approach. We introduce a primal-mixed finite element method to numerically solve the model equations, employing a primal scheme with piecewise linear approximation of the reaction-diffusion unknowns, while the discrete flow problem uses a mixed approach based on Raviart-Thomas elements for velocity, Nédélec elements for vorticity, and piecewise constant pressure approximations. In particular, this choice produces exactly divergence-free velocity approximations. We establish existence of discrete solutions and show their convergence to the weak solution of the continuous coupled problem. Finally, we report several numerical experiments illustrating the behaviour of the proposed scheme.

    Citation: Verónica Anaya, Mostafa Bendahmane, David Mora, Ricardo Ruiz Baier. 2018: On a vorticity-based formulation for reaction-diffusion-Brinkman systems, Networks and Heterogeneous Media, 13(1): 69-94. doi: 10.3934/nhm.2018004

    Related Papers:

    [1] Yali Zhao, Qixin Dong, Xiaoqing Huang . A self-adaptive viscosity-type inertial algorithm for common solutions of generalized split variational inclusion and paramonotone equilibrium problem. AIMS Mathematics, 2025, 10(2): 4504-4523. doi: 10.3934/math.2025208
    [2] Pongsakorn Yotkaew, Nopparat Wairojjana, Nuttapol Pakkaranang . Accelerated non-monotonic explicit proximal-type method for solving equilibrium programming with convex constraints and its applications. AIMS Mathematics, 2021, 6(10): 10707-10727. doi: 10.3934/math.2021622
    [3] Mohammad Dilshad, Fahad Maqbul Alamrani, Ahmed Alamer, Esmail Alshaban, Maryam G. Alshehri . Viscosity-type inertial iterative methods for variational inclusion and fixed point problems. AIMS Mathematics, 2024, 9(7): 18553-18573. doi: 10.3934/math.2024903
    [4] Lu-Chuan Ceng, Li-Jun Zhu, Tzu-Chien Yin . Modified subgradient extragradient algorithms for systems of generalized equilibria with constraints. AIMS Mathematics, 2023, 8(2): 2961-2994. doi: 10.3934/math.2023154
    [5] Mohammad Dilshad, Aysha Khan, Mohammad Akram . Splitting type viscosity methods for inclusion and fixed point problems on Hadamard manifolds. AIMS Mathematics, 2021, 6(5): 5205-5221. doi: 10.3934/math.2021309
    [6] Saud Fahad Aldosary, Mohammad Farid . A viscosity-based iterative method for solving split generalized equilibrium and fixed point problems of strict pseudo-contractions. AIMS Mathematics, 2025, 10(4): 8753-8776. doi: 10.3934/math.2025401
    [7] Yu Zhang, Xiaojun Ma . An accelerated conjugate method for split variational inclusion problems with applications. AIMS Mathematics, 2025, 10(5): 11465-11487. doi: 10.3934/math.2025522
    [8] Bancha Panyanak, Chainarong Khunpanuk, Nattawut Pholasa, Nuttapol Pakkaranang . A novel class of forward-backward explicit iterative algorithms using inertial techniques to solve variational inequality problems with quasi-monotone operators. AIMS Mathematics, 2023, 8(4): 9692-9715. doi: 10.3934/math.2023489
    [9] Jun Yang, Prasit Cholamjiak, Pongsakorn Sunthrayuth . Modified Tseng's splitting algorithms for the sum of two monotone operators in Banach spaces. AIMS Mathematics, 2021, 6(5): 4873-4900. doi: 10.3934/math.2021286
    [10] Yasir Arfat, Supak Phiangsungnoen, Poom Kumam, Muhammad Aqeel Ahmad Khan, Jamshad Ahmad . Some variant of Tseng splitting method with accelerated Visco-Cesaro means for monotone inclusion problems. AIMS Mathematics, 2023, 8(10): 24590-24608. doi: 10.3934/math.20231254
  • We are interested in modelling the interaction of bacteria and certain nutrient concentration within a porous medium admitting viscous flow. The governing equations in primal-mixed form consist of an advection-reaction-diffusion system representing the bacteria-chemical mass exchange, coupled to the Brinkman problem written in terms of fluid vorticity, velocity and pressure, and describing the flow patterns driven by an external source depending on the local distribution of the chemical species. A priori stability bounds are derived for the uncoupled problems, and the solvability of the full system is analysed using a fixed-point approach. We introduce a primal-mixed finite element method to numerically solve the model equations, employing a primal scheme with piecewise linear approximation of the reaction-diffusion unknowns, while the discrete flow problem uses a mixed approach based on Raviart-Thomas elements for velocity, Nédélec elements for vorticity, and piecewise constant pressure approximations. In particular, this choice produces exactly divergence-free velocity approximations. We establish existence of discrete solutions and show their convergence to the weak solution of the continuous coupled problem. Finally, we report several numerical experiments illustrating the behaviour of the proposed scheme.



    It is known that variational inequality, as a very important tool, has already been studied for a wide class of unilateral, obstacle, and equilibrium problems arising in several branches of pure and applied sciences in a unified and general framework. Many numerical methods have been developed for solving variational inequalities and some related optimization problems; see [1,2,3,4,5,6] and the references therein.

    Let $ H $ be a real Hilbert space whose inner product and norm are denoted by $ \langle \cdot, \cdot \rangle $ and $ \| \cdot \|, $ respectively. Let $ C $ be a nonempty, closed and convex subset of $ H $ and $ A: C \rightarrow H $ be a nonlinear mapping. The variational inequality problem (VIP) associated with the set $ C $ and the mapping $ A $ is stated as follows:

    $ findxCsuch thatAx,xx0,xC. $ (1.1)

    In particular, the $ VIP \; (1.1) $ in the case $ C $ is the set $ Fix (T) $ of fixed points of a nonexpansive self-mapping $ T $ of $ C $ and $ A $ is of the form $ A = I-S $, with $ S $ another nonexpansive self-mapping of $ C $. In other words, $ VIP $ is of the form

    $ findxFix(T)such thatxSx,xx0,xFix(T). $ (1.2)

    This problem, introduced by Mainge and Moudafi [8], is called hierarchical fixed point problem (HFPP).

    Subsequently, Moudafi and Mainge [7] studied the explicit scheme for computing a solution of $ VIP\; (1.2) $ by introducing the following iterative algorithm:

    $ xn+1=λnf(xn)+(1λn)(αnSxn+(1αn)Txn), $ (1.3)

    where $ f:C \rightarrow C $ and $ \{ \alpha_n \}, \{ \lambda_n \} \subset (0, 1) $. They also proved the strong convergence of the sequence $ \{ x_n \} $ generalized by $ (1.3) $ to a solution of $ VIP\; (1.2) $.

    Yao et al. [9] introduced and analyzed the following two-step iterative algorithm that generates a sequence $ \{ x_n \} $ by the following explicit scheme:

    $ {yn=βnSxn+(1βn)xn,xn+1=αnf(xn)+(1αn)Tyn,n1. $ (1.4)

    Under appropriate conditions, the above iterative sequence $ \{x_n\} $ converges strongly to some fixed point of $ T $ where $ T $ is nonexpansive mapping and $ \{x_n\} $ is solves $ VIP\; (1.2) $.

    Marino et al. [10] introduced a multistep iterative method that generalizes the two-step method studied in [9] from two nonexpansive mappings to a finite family of nonexpansive mappings that generates a sequence $ \{ x_n \} $ by the following iterative scheme:

    $ {F(un,y)+h(un,y)+1rnyun,unxn,yC,yn,1=βn,1S1un+(1βn,1)un,yn,i=βn,iSiun+(1βn,i)yn,i1,i=2,,N,xn+1=αnf(xn)+(1αn)Tyn,N],n1. $ (1.5)

    They prove that strong convergence of the method to a common fixed point of a finite number of nonexpansive mappings that also solves a suitable equilibrium problem.

    On the other hand, by combining the regularization method, the hybrid steepest descent method, and the projection method, Ceng et al. [11] proposed an iterative algorithm that generates a sequence via the explicit scheme and proved that this sequence converges strongly to a unique solution of the following problem.

    Problem 1.1 Let $ F:C \rightarrow H $ be $ k $-Lipschitzian and $ \eta $-strongly monotone on the nonempty, closed and convex subset $ C $ of $ H $, where $ k $ and $ \eta $ are positive constants, that is,

    $ FxFykxyandFxFy,xyηxy2,x,yC. $ (1.6)

    Let $ f:C \rightarrow H $ be a $ \rho $-contraction with a coefficient $ \rho \in [0, 1) $ and $ S, T: C \rightarrow C $ be two nonexpansive mappings with $ Fix(T) \neq \emptyset. $ Let $ 0 < \mu < \frac{2\eta}{k^2} $ and $ 0 < \gamma \leq \tau $, where $ \tau = 1- \sqrt{1-\mu (2 \eta -\mu k^2)}. $ Consider the following triple hierarchical variational inequality problem (THVI): find $ x^* \in \Xi $ such that

    $ (μFγf)x,xx0,xΞ, $ (1.7)

    where $ \Xi $ denotes the solution set of the following hierarchical variational inequality problem (HVIP): find $ z^* \in Fix(T) $ such that

    $ (μFγS)z,zz0,zFix(T), $ (1.8)

    where the solution set $ \Xi $ is assumed to be nonempty.

    Since Problem 1.1 has a triple hierarchical structure, in contrast to bilevel programming problems [12,13], that is, a variational inequality problem with a variational inequality constraint over the fixed point set $ Fix(T) $, we also call (1.8) a triple hierarchical variational inequality problem (THVIP), which is a generalization of the triple hierarchical constrained optimization problem (THCOP) considered by [14,15].

    Recently, many authors introduced the split monotone variational inequality inclusion problem, which is the core of the modeling of many inverse problems arising in phase retrieval and other real-world problems. It has been widely studied in sensor networks, intensity-modulated radiation therapy treatment planning, data compression, and computerized tomography in recent years; see, e.g., [18,19,21,26,27] and the references therein.

    The split monotone variational inclusion problem (SMVIP) was first introduced by Moudafi [20] as follows: find $ x^{*} \in H_1 $ such that

    $ {0f1x+B1x,y=AxH2:0f2y+B2y, $ (1.9)

    where $ f_1 : H_1 \rightarrow H_1 $ and $ f_2: H_2 \rightarrow H_2 $ are two given single-valued mappings, $ A:H_1 \rightarrow H_2 $ is a bounded linear operator, and $ B_1 : H_1 \rightarrow 2^{H_1} $ and $ B_2 : H_2 \rightarrow 2^{H_2} $ are multivalued maximal monotone mappings.

    If $ f_1 = f_2 \equiv 0 $, then (1.9) reduces to the following split variational inclusion problem (SVIP): find $ x^{*} \in H_1 $ such that

    $ {0B1x,y=AxH2:0B2y. $ (1.10)

    Additionally, if $ f_1 \equiv 0 $, then (1.9) reduces to the following split monotone variational inclusion problem ($ SMVIP $): find $ x^* \in H_1 $ such that

    $ {0B1x,y=AxH2:0fy+B2y. $ (1.11)

    We denote the solution sets of variational inclusion $ 0\in B_1 x^{*} $ and $ 0\in f y^{*} + B_2 y^{*} $ by $ SOLVIP(B_1) $ and $ SOLVIP(f+B_2) $, respectively. Thus, the solution set of $ (1.11) $ can denoted by $ \Gamma = \{x^*\in H_1 : x^{*} \in SOLVIP(B_1), Ax^{*} \in SOLVIP(f+B_2) \} $.

    In 2012, Byrne et al. [21] studied the following iterative scheme for $ SVIP \; (1.10) $: for a given $ x_0 \in H_1 $ and $ \lambda > 0 $,

    $ xn+1=JB1λ[xn+ϵA(JB2λI)Axn]. $ (1.12)

    In 2014, Kazmi and Rizvi [22] introduced a new iterative scheme for $ SVIP \; (1.10) $ and the fixed point problem of a nonexpansive mapping:

    $ {un=JB1λ[xn+ϵA(JB2λI)Axn],xn+1=αnf(xn)+(1αn)Tun, $ (1.13)

    where $ A $ is a bounded linear operator, $ A^{*} $ is the adjoint of $ A $, $ f $ is a contraction on $ H_1 $, and $ T $ is a nonexpansive mapping of $ H_1 $. They obtained a strong convergence theorem under some mild restrictions on the parameters.

    Jitsupa et al. [1] modified algorithm (1.13) for $ SVIP \; (1.10) $ and the fixed point problem of a family of strict pseudo-contractions:

    $ {un=JB1λ[xn+γA(JB2λI)Axn],yn=βnun+(1βn)n=1η(n)iTiun,xn+1=αnτf(xn)+(IαnD)yn,n1, $ (1.14)

    where $ A $ is a bounded linear operator, $ A^{*} $ is the adjoint of $ A $, $ \{ T_i \}_{i = 1}^{N} $ is a family of $ k_i $-strictly pseudo-contractions, $ f $ is a contraction, and $ D $ is a strong positive linear bounded operator. In [1], they prove under certain appropriate assumptions on the sequences $ \{ \alpha_{n } \}, \{ \beta_{n } \} $ and $ \{ \eta_{i}^{(n)} \}_{i = 1}^{N} $ that $ \{x_n\} $, defined by (1.14), converges strongly to a common solution of $ SVIP \; (1.10) $ and a fixed point of a finite family of $ k_i $-strictly pseudo-contractions, which solve a variational inequality problem (1.1).

    In this paper, we consider the following system of variational inequalities defined over a set consisting of the set of solutions of split monotone variational inclusion, the set of common fixed points of nonexpansive mappings, and the set of fixed points of a mapping.

    Problem 1.2 Let $ F:C \rightarrow H $ be $ k $-Lipschitzian and $ \eta $-strongly monotone on the nonempty closed and convex subset $ C $ of $ H $, $ \psi:C \rightarrow H $ be a $ \rho $-contraction with coefficient $ \rho \in [0, 1) $ and $ S_i, S, T: C \rightarrow C $ be nonexpansive mappings for all $ i\in \{ 1, \ldots, N \} $. Let $ 0 < \mu < \frac{2 \eta}{k^2} $ and $ 0 < \xi \leq \tau $, where $ \tau = 1-\sqrt{1-\mu(2 \eta - \mu k^2)} $. Then, the objective is to find $ x^* \in \Omega $ such that

    $ {(μFξψ)x,xx0,xΩ,(μFξS)x,yx0,yΩ, $ (1.15)

    where $ \Omega = Fix(T)\cap(\bigcap_i Fix (S_i))\cap \Gamma \neq \emptyset. $

    Motivated and inspired by the Moudafi and Mainge [7], Marino et al. [10], Ceng et al. [11] and Kazmi and Rizvi [22], in this paper, we consider a multistep which difference from (1.5). It is proven that under appropriate assumptions the proposed iterative method, the sequence $ \{ x_n \} $ converges strongly to a unique solution to Problem 1.2 and which is solve $ THVI (1.7) $. Finally, we give some example and numerical results to illustrate our main results.

    In this section, we collect some notations and lemmas. Let $ C $ be a nonempty closed convex subset of a real Hilbert space $ H $. We denote the strong convergence and the weak convergence of the sequence $ \{ x_n \} $ to a point $ x \in H $ by $ x_n \rightarrow x $ and $ x_n \rightharpoonup x $, respectively. It is also well known [24] that the Hilbert space $ H $ satisfies $ Opail's \; condition $, that is, for any sequence $ \{ x_n \} $ with $ x_n \rightharpoonup x $, the inequality

    $ lim supnxnx<lim supnxny $ (2.1)

    holds for every $ y\in H $ with $ y \neq x $.

    In the sequel, given a sequence $ \{ z_n \} $, we denote with $ \omega_w (z_n) $ the set of cluster points of $ \{ z_n \} $ with respect to the weak topology, that is,

    $ ωw(zn)={zH:there existsnkfor whichznkz}. $

    Analogously, we denote by $ \omega_s (z_n) $ the set of cluster points of $ \{ z_n \} $ with respect to the norm topology, that is,

    $ ωs(zn)={zH:there existsnkfor whichznkz}. $

    Lemma 2.1. In a real Hilbert space $ H $, the following inequalities hold:

    (1) $ \|x-y\|^2 = \|x\|^2-\|y\|^2-2 \langle x-y, y\rangle, \forall x, y \in H $;

    (2) $ \|x+y\|^2 \leq \|x\|^2+2 \langle y, x+y\rangle, \forall x, y \in H $;

    (3) $ \|\lambda x+(1-\lambda) y\|^2 = \lambda \|x\|^2+(1-\lambda)\|y\|^2-\lambda(1-\lambda)\|x-y\|^2, \forall \lambda \in [0, 1], \forall x, y \in H $;

    An element $ x \in C $ is called a $ fixed \; point $ of $ S $ if $ x\in Sx $. The set of all fixed point of $ S $ is denoted by $ Fix(S) $, that is, $ Fix(S) = \{ x\in C: x\in S x \} $.

    Recall the following definitions. Moreover, $ S:H_1 \rightarrow H_1 $ is called

    $ (1) $ a nonexpansive mapping if

    $ SxSyxy,x,yH1. $ (2.2)

    A nonexpansive mapping with $ k = 1 $ can be strengthened to a firmly nonexpansive mapping in $ H_1 $ if the following holds:

    $ SxSy2xy,SxSy,x,yH1. $ (2.3)

    We note that every nonexpansive operator $ S:H_1\rightarrow H_1 $ satisfies, for all $ (x, y)\in H_1 \times H_1 $, the inequality

    $ (xSx)(ySy),SySx)12(Sxx)(Syy)2, $ (2.4)

    and therefore, we obtain, for all $ (x, y)\in H_1\times Fix(S) $,

    $ xSx,ySx12Sxx2 $ (2.5)

    (see, e.g., Theorem 3 in [16] and Theorem 1 in [17]).

    $ (2) $ a contractive if there exists a constant $ \alpha \in (0, 1) $ such that

    $ SxSyαxy,x,yH1. $ (2.6)

    $ (3) $ an $ L $-Lipschitzian if there exists a positive constant $ L $ such that

    $ SxSyLxy,x,yH1. $ (2.7)

    $ (4) $ an $ \eta $-strongly monotone if there exists a positive constant $ \eta $ such that

    $ SxSy,xyηxy2,x,yH1. $ (2.8)

    $ (5) $ an $ \beta $-inverse strongly monotone ($ \beta-ism $) if there exists a positive constant $ \beta $ such that

    $ SxSy,xyβSxSy2,x,yH1. $ (2.9)

    $ (6) $ averaged if it can be expressed as the average of the identity mapping and a nonexpansive mapping, i.e.,

    $ S:=(1α)I+αT, $ (2.10)

    where $ \alpha \in (0, 1), I $ is the identity operator on $ H_1 $ and $ T:H_1 \rightarrow H_1 $ is nonexpansive.

    It is easily seen that averaged mappings are nonexpansive. In the meantime, firmly nonexpansive mappings are averaged.

    $ (7) $ A linear operator $ D $ is said to be a strongly positive bounded linear operator on $ H_1 $ if there exists a positive constant $ \bar{\tau} > 0 $ such that

    $ Dx,xˉτx2,xH1. $ (2.11)

    From the definition above, we easily find that a strongly positive bounded linear operator $ D $ is $ \bar{\tau} $-strongly monotone and $ \|D\| $-Lipschitzian.

    $ (8) $ A multivalued mapping $ M : D(M) \subseteq H_1 \rightarrow 2^{H_1} $ is called monotone if for all $ x, y \in D(M), u\in Mx $ and $ v \in My $,

    $ xy,uv0. $ (2.12)

    A monotone mapping $ M $ is maximal if the $ Graph(M) $ is not properly contained in the graph of any other monotone mapping. It is well known that a monotone mapping $ M $ is maximal if and only if for $ x\in D(M), u\in H_1, \langle x-y, u-v \rangle \geq 0 $ for each $ (y, v) \in Graph (M) $, $ u\in Mx $.

    $ (9) $ Let $ M:D(M) \subseteq H_1 \rightarrow 2^{H_1} $ be a multivalued maximal monotone mapping. Then, the resolvent operator $ J_{\lambda}^{M}: H_1 \rightarrow D(M) $ is defined by

    $ JMλx:=(I+λM)1(x),xH1, $ (2.13)

    for $ \forall \lambda > 0 $, where $ I $ stands for the identity operator on $ H_1 $. We observe that $ J_{\lambda}^{M} $ is single-valued, nonexpansive, and firmly nonexpansive.

    We recall some concepts and results that are needed in the sequel. A mapping $ P_C $ is said to be a metric projection of $ H_1 $ onto $ C $ if for every point $ x\in H_1 $, there exists a unique nearest point in $ C $ denoted by $ P_C x $ such that

    $ xPCxxy,yC. $ (2.14)

    It is well known that $ P_C $ is a nonexpansive mapping and is characterized by the following property:

    $ PCxPCy2xy,PCxPCy,x,yH1. $ (2.15)

    Moreover, $ P_C x $ is characterized by the following properties:

    $ xPCx,yPCx0,xH1,yC, $ (2.16)
    $ xy2xPCx2+yPCx2,xH1,yC, $ (2.17)

    and

    $ (xy)(PCxPCy)2xy2PCxPCy2,x,yH1. $ (2.18)

    Proposition 2.2. [20]

    (1) If $ T = (1-\alpha) S + \alpha V, $ where $ S: H_1 \rightarrow H_1 $ is averaged, $ V: H_1 \rightarrow H_1 $ is nonexpansive, and if $ \alpha \in [0, 1], $ then $ T $ is averaged.

    (2) The composite of finitely many averaged mappings is averaged.

    (3) If the mappings $ \{ T_i \}_{i = 1}^{N} $ are averaged and have a nonempty common fixed point, then

    $ Ni=1F(Ti)=F(T1T2TN). $ (2.19)

    (4) If $ T $ is a $ v-ism $, then for $ \gamma > 0, \gamma T $ is a $ \frac{v}{\gamma}-ism. $

    (5) $ T $ is averaged if and only if its complement $ I-T $ is a $ v-ism $ for some $ v > \frac{1}{2} $.

    Proposition 2.3. [20] Let $ \lambda > 0, h $ be an $ \alpha-ism $ operator, and $ B $ be a maximal monotone operator. If $ \lambda \in (0, 2\alpha) $, then it is easy to see that the operator $ J_{\lambda}^{B}(I-\lambda h) $ is averaged.

    Proposition 2.4. [20] Let $ \lambda > 0 $ and $ B_1 $ be a maximal monotone operator. Then,

    $ xsolves(1.9)x=JB1λ(Iλf1)xandAx=JB2λ(Iλf2)Ax. $ (2.20)

    Lemma 2.5. [23] Let $ \{s_n\} $ be a sequence of nonnegative numbers satisfying the condition

    $ sn+1(1γn)sn+γnδn,n1, $

    where $ \{ \gamma_n \}, \{ \delta_n \} $ are the sequences of real numbers such that

    (i) $ \{ \gamma_n \} \subset [0, 1] $ and $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 1} \gamma_n = \infty $, or equivalently,

    $ Πn=1(1γn):=limnΠk=1(1γk)=0; $

    (ii) $ \underset{n \rightarrow \infty}{\limsup} \delta_n \leq 0 $, or

    (iii) $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 1} \gamma_n \delta_n $ is convergent.

    Then, $ \underset{n \rightarrow \infty}{\lim} s_n = 0 $.

    Lemma 2.6. [23] Let $ \lambda $ be a number $ (0, 1] $, and let $ \mu > 0. $ Let $ F:C \rightarrow H $ be an operator on $ C $ such that for some constant $ k, \eta > 0, F $ is $ k $-Lipschitzian and $ \eta $-strongly monotone. Associating with a nonexpansive mapping $ T:C \rightarrow C $, we define the following the mapping $ T^{\lambda}:C \rightarrow H $ by

    $ Tλx:=TxλμF(Tx),xC. $ (2.21)

    Then, $ T^{\lambda} $ is a contraction provided $ \mu < \frac{2\eta }{k^2} $, that is,

    $ TλxTλy(1λτ)xy,x,yC, $ (2.22)

    where $ \tau = 1- \sqrt{1-\mu (2\eta - \mu k^2)} \in (0, 1] $.

    Lemma 2.7. [25] Let $ \{ \alpha_n \} $ be a sequence of nonnegative real numbers with $ \underset{n \rightarrow \infty}{\limsup} \alpha_n < \infty $ and $ \{ \beta_n \} $ be a sequence of real numbers with $ \underset{n \rightarrow \infty}{\limsup} \beta_n \leq 0 $. Then, $ \underset{n \rightarrow \infty}{\limsup} \alpha_n \beta_n \leq 0 $.

    Lemma 2.8. [28] Assume that $ T $ is nonexpansive self-mapping of a closed convex subset $ C $ of a Hilbert space $ H_1 $. If $ T $ has a fixed point, then $ I-T $ is demiclosed, i.e., whenever $ \{ x_n \} $ weakly converges to some $ x $ and $ \{ (I-T) x_n \} $ converges strongly to $ y $, it follows that $ (I-T)x = y $. Here, $ I $ is the identity mapping on $ H_1. $

    Theorem 3.1. Let $ C $ be a nonempty closed convex subset of a real Hilbert space $ H_1 $ and $ Q $ be a nonempty closed convex subset of a real Hilbert space $ H_2 $. Let $ A:H_1\rightarrow H_2 $ be a bounded linear operator, $ A^* $ be the adjoint of $ A $, and $ r $ be the spectral radius of the operator $ A^* A $. Let $ f: H_2 \rightarrow H_2 $ be a $ \varsigma $-inverse strongly monotone operator, $ B_1:C \rightarrow 2^{H_1}, B_2: H_2 \rightarrow 2^{H_2} $ be two multivalued maximal monotone operators, and $ F:C \rightarrow H_1 $ be $ k $-Lipschitzian and $ \eta $-strongly monotone. Let $ \psi: C \rightarrow H_1 $ be a $ \rho $-contraction with a coefficient $ \rho \in [0, 1) $ and $ S_i, S, T:C \rightarrow C $ be nonexpansive mappings for all $ i\in \{ 1, \ldots, N \} $. Let $ \{ \lambda_n \}, \{ \alpha_n \}, \{ \beta_{n, i} \}, i = 1, \ldots, N $ be sequences in $ (0, 1) $ such that $ \beta_{n, i} \rightarrow \beta_i \in (0, 1) $ as $ n \rightarrow \infty $ for all $ i\in \{ 1, \ldots, N \} $, $ 0 < \mu < \frac{2 \eta}{k^2} $ and $ 0 < \xi \leq \tau $, where $ \tau = 1- \sqrt{1-\mu(2\eta - \mu k^2)} $. Then, the sequence $ \{ x_n \} $ is generated from an arbitrary initial point $ x_1 \in C $ by the following:

    $ {un=JB1λ1[xn+γA(JB2λ2(Iλ2f)I)Axn],yn,1=βn,1S1un+(1βn,1)un,yn,i=βn,iSiun+(1βn,i)yn,i1,i=2,,N,xn+1=PC[λnξ(αnψ(xn)+(1αn)Sxn)+(IλnμF)Tyn,N],n1. $ (3.1)

    Assume that Problem 1.2 has a solution. Suppose that the following conditions are satisfied:

    (C1) $ 0 < \underset{n \rightarrow \infty}{\liminf}\alpha_n \leq \underset{n \rightarrow \infty}{\limsup}\alpha_n < 1 $;

    (C2) $ \underset{n \rightarrow \infty}{\lim}\lambda_n = 0 $ and $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 1} \lambda_n = \infty $;

    (C3) $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 2} | \alpha_{n }\lambda_{n}-\alpha_{n-1}\lambda_{n-1}| < \infty $ or $ \underset{n \rightarrow \infty}{\lim} \frac{ |\alpha_{n }\lambda_{n}-\alpha_{n-1}\lambda_{n-1} |}{\lambda_n} = 0 $;

    (C4) $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 2} | \lambda_{n}-\lambda_{n-1}| < \infty $ or $ \underset{n \rightarrow \infty}{\lim} \frac{ |\lambda_{n}-\lambda_{n-1} |}{\lambda_n} = 0 $;

    (C5) $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 2} | \beta_{n, i}-\beta_{n-1, i}| < \infty $ or $ \underset{n \rightarrow \infty}{\lim} \frac{ |\beta_{n, i}-\beta_{n-1, i} |}{\lambda_n} = 0 $ for all $ i\in \{ 1, \ldots, N \} $;

    (C6) $ \lambda_1 > 0, 0 < \lambda_2 < 2 \varsigma, 0 < \gamma < \frac{1}{r} $.

    Then, $ \{ x_n \} $ converges strongly to a unique solution $ x^{*} \in \Omega $ of Problem 1.2.

    Proof. Let $ \{ x_n \} $ be a sequence generated by scheme (4.1). First, note that $ 0 < \xi \leq \tau $ and

    $ μητμη11μ(2ημk2)1μ(2ημk2)1μη12μη+μ2k212μη+μ2η2k2η2kη. $

    Then, it follows from the $ \rho $-contractiveness of $ \psi $ that

    $ (μFξψ)x(μFξψ)y,xy(μηξρ)xy2,x,yC. $

    Hence, from $ \xi \rho < \xi \leq \tau \leq \mu \eta $, we deduce that $ \mu F - \xi \psi $ is $ (\mu \eta - \xi \rho) $-strongly monotone. Since it is clear that $ \mu F - \xi \psi $ is Lipshitz continuous, there exists a unique solution to the VIP:

    $ findxΩsuch that(μFξψ)x,xx0,xΩ. $

    Additionally, since Problem 1.2 has a solution, it is easy to see that Problem 1.2 has a unique solution. In addition, taking into account condition $ (C1) $, without loss of generality, we may assume that $ \{ \alpha_n \} \subset [a, b] $ for some $ a, b \in (0, 1). $

    Let $ \mathcal{U} : = J_{\lambda_2}^{B_2}(I-\lambda_2 f) $; the iterative scheme (4.1) can be rewritten as

    $ {un=JB1λ1[xn+γA(UI)Axn],yn,1=βn,1S1un+(1βn,1)un,yn,i=βn,iSiun+(1βn,i)yn,i1,i=2,,N,xn+1=PC[λnξ(αnψ(xn)+(1αn)Sxn)+(IλnμF)Tyn,N],n1. $ (3.2)

    The rest of the proof is divided into several steps.

    Step 1. We show that the sequences $ \{ x_n\}, \{ y_{n, i} \} $ for all $ i, \{ u_n \} $ are bounded.

    Indeed, take a point $ p\in \Omega $ arbitrarily. Then, $ J_{\lambda_1}^{B_1}p = p, \mathcal{U}(Ap) = Ap $, and it is easily seen that $ Wp = p $, where $ W: = I+\gamma A^{*}(\mathcal{U}-I)A. $ From the definition of firm nonexpansion and Proposition 2.3, we have that $ J_{\lambda_1}^{B_1} $ and $ \mathcal{U} $ are averaged. Likewise, $ W $ is also averaged because it is a $ \frac{v}{r}-ism $ for some $ v > \frac{1}{2} $. Actually, by Proposition 2.2 (5), we know that $ I-\mathcal{U} $ is a $ v-ism $ with $ v > \frac{1}{2} $. Hence, we have

    $ A(IU)AxA(IU)Ay,xy=(IU)Ax(IU)Ay,AxAyv(IU)Ax(IU)Ay2vrA(IU)AxA(IU)Ay2. $

    Thus, $ \gamma A^{*} (I-\mathcal{U})A $ is a $ \frac{v}{\gamma r}-ism. $ Due to the condition $ 0 < \gamma < \frac{1}{r} $, the complement $ I-\gamma A^{*}(I-\mathcal{U})A $ is averaged, as well as $ M: = J_{\lambda_1}^{B_1}[I+\gamma A^{*}(\mathcal{U}-I)A] $. Therefore, $ J_{\lambda_1}^{B_1}, \mathcal{U}, W, $ and $ M $ are nonexpansive mappings.

    From $ (3.2) $, we estimate

    $ unp2=JB1λ1[xn+γA(UI)Axn]JB1λ1p2xn+γA(UI)Axnp2=xnp2+γ2A(UI)Axn2+2γxnp,A(UI)Axn. $ (3.3)

    Thus, we obtain

    $ unp2xnp2+γ2(UI)Axn,AA(UI)Axn+2γxnp,A(UI)Axn. $ (3.4)

    Next, setting $ \vartheta_1: = \gamma^2 \langle (\mathcal{U}-I)A x_n, A A^{*} (\mathcal{U} - I)A x_n \rangle $, we estimate

    $ ϑ1=γ2(UI)Axn,AA(UI)Axnrγ2(UI)Axn,(UI)Axn=rγ2(UI)Axn2. $ (3.5)

    Setting $ \vartheta_2: = 2\gamma \langle x_n-p, A^{*}(\mathcal{U} - I) A x_n \rangle $, we obtain from (2.5) the following:

    $ ϑ2=2γxnp,A(UI)Axn=2γA(xnp),(UI)Axn=2γA(xnp)+(UI)Axn(UI)Axn,(UI)Axn=2γ(UAxnAp,(UI)Axn(UI)Axn2)2γ(12(UI)Axn2(UI)Axn2)γ(UI)Axn2. $ (3.6)

    In view of (3.4)-(3.6), we have

    $ unp2xnp2+γ(rγ1)(UI)Axn2. $ (3.7)

    From $ 0 < \gamma < \frac{1}{r} $, we obtain

    $ unpxnp. $ (3.8)

    Thus, we have from $ (3.2) $ and $ (3.8) $ that

    $ yn,1pβn,1S1unp+(1βn,1)unpunpxnp. $ (3.9)

    For all $ i $ from $ i = 2 $ to $ i = N $, by induction, one proves that

    $ yn,ipβn,iunp+(1βn,i)yn,i1punpxnp. $ (3.10)

    Hence, we obtain that for all $ i\in \{ 1, \ldots, N \} $,

    $ yn,ipunpxnp. $ (3.11)

    In addition, utilizing Lemma 2.6 and (3.2), we have

    $ xn+1p=PC[λnξ(αnψ(xn)+(1αn)Sxn)+(IλnμF)Tyn,N]PCpλnξ(αnψ(xn)+(1αn)Sxn)+(IλnμF)Tyn,Np=λnξ(αnψ(xn)+(1αn)Sxn)λnμFTp+(IλnμF)Tyn,N(IλnμF)Tpλnξ(αnψ(xn)+(1αn)Sxn)λnμFTp+(IλnμF)Tyn,N(IλnμF)Tp=λnαn(ξψ(xn)μFp)+(1αn)(ξSxnμFp)+(IλnμF)Tyn,N(IλnμF)Tpλn[αnξψ(xn)μFp+(1αn)ξSxnμFp]+(1λnτ)yn,Npλn[αn(ξψ(xn)ξψ(p)+ξψ(p)μFp)+(1αn)(ξSxnξSp+ξSpμFp)]+(1λnτ)yn,Npλn[αnξρxnp+αnξψ(p)μFp+(1αn)ξxnp+(1αn)ξSpμFp]+(1λnτ)xnpλn[ξ(1αn(1ρ))xnp+max{ξψ(p)μFp,ξSpμFp}]+(1λnτ)xnp(1λnξαn(1ρ))xnp+λnmax{ξψ(p)μFp,ξSpμFp}(1λnξa(1ρ))xnp+λnmax{ξψ(p)μFp,ξSpμFp}, $ (3.12)

    due to $ 0 < \xi \leq \tau. $ Thus, calling

    $ M=max{x1p,ξψ(p)μFpξa(1ρ),ξSpμFpξa(1ρ)}, $

    by induction, we derive $ \| x_n-p\| \leq M $ for all $ n \geq 1 $. We thus obtain the claim.

    Step 2. We show that $ \underset{n \rightarrow \infty}{\lim} \| x_{n+1} - x_n \| = 0 $.

    Indeed, for each $ n\geq 1, $ we set

    $ zn=λnξ(αnψ(xn)+(1αn)Sxn)+(IλnμF)Tyn,N. $

    Then, we observe that

    $ znzn1=αnλnξ[ψ(xn)ψ(xn1)]+λn(1αn)ξ(SxnSxn1)+[(IλnμF)Tyn,N(IλnμF)Tyn1,N]+(αnλnαn1λn1)ξ[ψ(xn1)Sxn1]+(λnλn1)(ξSxn1μFTyn1,N). $ (3.13)

    Let $ M_{0} > 0 $ be a constant such that

    $ supn1{ξψ(xn)Sxn+ξSxnμFTyn,N}M0. $

    It follows from (3.2) and (3.13) that

    $ xn+1xn=PCznPCzn1znzn1αnλnξψ(xn)ψ(xn1)+λn(1αn)ξSxnSxn1+(IλnμF)Tyn,N(IλnμF)Tyn1,N+|αnλnαn1λn1|ξψ(xn1)Sxn1+|λnλn1|ξSxn1μFTyn1,Nαnλnξρxnxn1+λn(1αn)ξxnxn1+(1λnτ)yn,Nyn1,N+|αnλnαn1λn1|M0+|λnλn1|M0=λn(1αn(1ρ))ξxnxn1+(1λnτ)yn,Nyn1,N+[|αnλnαn1λn1|+|λnλn1|]M0λnξ(1a(1ρ))xnxn1+(1λnτ)yn,Nyn1,N+[|αnλnαn1λn1|+|λnλn1|]M0. $ (3.14)

    By the definition of $ y_{n, i} $, we obtain that for all $ i = N, \ldots, 2 $,

    $ yn,iyn1,iβn,iunun1+Siun1yn1,i1|βn,iβn1,i|+(1βn,i)yn,i1yn1,i1. $ (3.15)

    In this case $ i = 1 $, we have

    $ yn,1yn1,1βn,1unun1+S1un1un1|βn,1βn1,1|+(1βn,1)unun1=unun1+S1un1un1|βn,1βn1,1|. $ (3.16)

    Substituting (3.16) in all (3.15)-type inequalities, we find that for $ i = 2, \ldots, N $,

    $ yn,iyn1,i unun1+Nk=2Skun1yn1,k1|βn,kβn1,k|+S1un1un1|βn,1βn1,1|. $

    Thus, we conclude that

    $ xn+1xnλnξ(1a(1ρ))xnxn1+(1λnτ)yn,Nyn1,N+[|αnλnαn1λn1|+|λnλn1||]M0λnξ(1a(1ρ))xnxn1+[|αnλnαn1λn1|+|λnλn1|]M0+(1λnτ)unun1+Nk=2Skun1yn1,k1|βn,kβn1,k|+S1un1un1|βn,1βn1,1|. $ (3.17)

    Since $ J_{\lambda_1}^{B_1}[I + \gamma A^{*}(\mathcal{U}-I)A] $ is nonexpansive, we obtain

    $ unun1=JB1λ1[I+γA(UI)A]xnJB1λ1[I+γA(UI)A]xn1xnxn1. $ (3.18)

    Substituting (3.18) into (3.17), we have

    $ xn+1xnλnξ(1a(1ρ))xnxn1+[|αnλnαn1λn1|+|λnλn1|]M0+(1λnτ)xnxn1+Nk=2Skun1yn1,k1|βn,kβn1,k|+S1un1un1|βn,1βn1,1|. $ (3.19)

    If we call $ M_{1} : = \max \bigg \{ M_0, \underset{n \geq 2, i = 2, \ldots, N}\sup \| S_i u_{n-1} - y_{n-1, i-1}\|, \underset{n\geq 2} \sup \|S_1 u_{n-1}-u_{n-1} \| \bigg \} $, we have

    $ xn+1xn(1λnξa(1ρ))xnxn1+M1[|αnλnαn1λn1|+|λnλn1|+Nk=2|βn,kβn1,k|], $ (3.20)

    due to $ 0 < \xi < \tau $. By condition $ (C2)-(C5) $ and Lemma 2.5, we obtain that

    $ limnxn+1xn=0. $ (3.21)

    Step 3. We show that $ \underset{n \rightarrow \infty}{\lim} \| x_{n} - u_{n} \| = 0 $.

    From (3.2) and (3.7), we have

    $ xn+1p2λnξ(αnψ(xn)+(1αn)Sxn)+(IλnμF)Tyn,Np2=λnξ(αnψ(xn)+(1αn)Sxn)λnμFTp+(IλnμF)Tyn,N(IλnμF)Tp2{λnξ(αnψ(xn)+(1αn)Sxn)λnμFTp+(IλnμF)Tyn,N(IλnμF)Tp}2{λnαn(ξψ(xn)μFp)+(1αn)(ξSxnμFp)+(1λnτ)yn,Np}2λn1τ[αnξψ(xn)μFp+(1αn)ξSxnμFp]2+(1λnτ)yn,Np2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)unp2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)[xnp2+γ(rγ1)(UI)Axn2]=λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)xnp2γ(1rγ)(1λnτ)(UI)Axn2, $ (3.22)

    which implies that

    $ (1λnτ)γ(1rγ)(UI)Axn2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)xnp2xn+1p2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+xnp2xn+1p2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+xn+1xn(xnp+xn+1p). $ (3.23)

    Since $ \gamma (1-r \gamma) > 0, \|x_{n+1}-x_n\| \rightarrow 0, \lambda_{n} \rightarrow 0 $ as $ n \rightarrow \infty $, and by the boundedness of $ \{ x_n \} $, we conclude that

    $ limn(UI)Axn=0. $ (3.24)

    In addition, by the firm nonexpansion of $ J_{\lambda_1}^{B_1}, (3.3), (3.7), $ and $ \gamma \in (0, \frac{1}{r}) $, we estimate

    $ unp2=JB1λ1[xn+γA(UI)Axn]JB1λ1p2JB1λ1[xn+γA(UI)Axn]JB1λ1p,xn+γA(UI)Axnp=unp,xn+γA(UI)Axnp=12(unp2+xn+γA(UI)Axnp2(unp)[xn+γA(UI)Axnp]2)12[unp2+xnp2+γ(rγ1)(UI)Axn2unxnγA(UI)Axn2]12[unp2+xnp2unxnγA(UI)Axn2]=12[unp2+xnp2unxn2γ2A(UI)Axn2+2γunxn,A(UI)Axn]12[unp2+xnp2unxn2+2γunxn,A(UI)Axn]=12[unp2+xnp2unxn2+2γA(unxn),(UI)Axn]12[unp2+xnp2unxn2+2γA(unxn)(UI)Axn], $

    and hence,

    $ unp2xnp2unxn2+2γA(unxn)(UI)Axn. $ (3.25)

    In view of (3.22) and (3.25),

    $ xn+1p2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)unp2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)[xnp2unxn2+2γA(unxn)(UI)Axn]=λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)xnp2(1λnτ)unxn2+2γ(1λnτ)A(unxn)(UI)Axn, $ (3.26)

    which implies that

    $ (1λnτ)unxn2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)xnp2+2γ(1λnτ)A(unxn)(UI)Axnxn+1p2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+2γ(1λnτ)A(unxn)(UI)Axn+xnp2xn+1p2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+2γ(1λnτ)A(unxn)(UI)Axn+xn+1xn(xnp+xn+1p). $ (3.27)

    Since $ \|x_{n+1}-x_n\| \rightarrow 0, \| (\mathcal{U}-I)Ax_n \| \rightarrow 0, $ and $ \lambda_n \rightarrow 0 $ as $ n \rightarrow \infty $, and owing to the boundedness of $ \{ x_n \} $, we conclude that

    $ limnxnun=0. $ (3.28)

    Step 4. We show that $ \underset{n\rightarrow \infty}{\lim} \| S_i u_n-u_{n}\| = 0 $ for $ i\in \{ 1, \ldots, N \} $.

    Take a point $ p\in \Omega $ arbitrarily. When $ i = N, $ utilizing Lemma 2.8 and (3.2), we have

    $ xn+1p2λnξ(αnψ(xn)+(1αn)Sxn)+(IλnμF)Tyn,Np2=λnξ(αnψ(xn)+(1αn)Sxn)λnμFTp+(IλnμF)Tyn,N(IλnμF)Tp2{λnξ(αnψ(xn)+(1αn)Sxn)λnμFTp+(IλnμF)Tyn,N(IλnμF)Tp}2{λnαn(ξψ(xn)μFp)+(1αn)(ξSxnμFp)+(1λnτ)yn,Np}2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)yn,Np2=λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)βn,NSNuNp2+(1λnτ)(1βn,N)yn,N1p2(1λnτ)(1βn,N)βn,NSNunyn,N12λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)unp2(1λnτ)(1βn,N)βn,NSNunyn,N12λn1τ[ξψ(xn)μFp+ξSxnμFp]2+xnp2(1λnτ)(1βn,N)βn,NSNunyn,N12. $ (3.29)

    Thus, we have

    $ (1λnτ)(1βn,N)βn,NSNunyn,N12λn1τ[ξψ(xn)μFp+ξSxnμFp]2+xnp2xn+1p2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+xn+1xn(xnp+xn+1p). $ (3.30)

    Since $ \beta_{n, N} \rightarrow \beta_N \in (0, 1), \|x_{n+1} - x_n\| \rightarrow 0 $ and $ \lambda_n \rightarrow 0 $ as $ n \rightarrow \infty $, by the boundedness of $ \{ x_n \} $, we conclude that

    $ limnSNunyn,N1=0. $ (3.31)

    Take $ i\in \{ 1, \ldots, N-1 \} $ arbitrarily. Then, we obtain

    $ xn+1p2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)yn,Np2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)[βn,NSNunp2+(1βn,N)yn,N1p2]λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)βn,Nxnp2+(1λnτ)(1βn,N)yn,N1p2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)βn,Nxnp2+(1λnτ)(1βn,N)[βn,N1SN1unp2+(1βn,N1)yn,N2p2]λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)(βn,N+(1βn,N)βn,N1)xnp2+(1λnτ)Nk=N1(1βn,k)yn,N2p2. $ (3.32)

    Hence, after $ (N-i+1) $-iterations,

    $ xn+1p2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)(βn,N+Nj=i+2(Np=j(1βn,p)βn,j1)×xnp2+(1λnτ)Nk=i+1(1βn,k)yn,ip2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)(βn,N+Nj=i+2(Np=j(1βn,p))βn,j1)×xnp2+(1λnτ)Nk=i+1(1βn,k)×[βn,iSiunp2+(1βn,i)yn,i1p2βn,i(1βn,i)Siunyn,i12]λn1τ[ξψ(xn)μFp+ξSxnμFp]2+(1λnτ)xnp2βn,i(1λnτ)Nk=i(1βn,k)Siunyn,i12. $ (3.33)

    Again, we obtain

    $ βn,i(1λnτ)Nk=i(1βn,k)Siunyn,i12λn1τ[ξψ(xn)μFp+ξSxnμFp]2+xnp2xn+1p2λn1τ[ξψ(xn)μFp+ξSxnμFp]2+xn+1xn(xnp+xn+1p). $ (3.34)

    Since for all $ k\in \{ 1, \ldots, N \}, \beta_{n, k} \rightarrow \beta_k \in (0, 1), \|x_{n+1} - x_n\| \rightarrow 0 $ and $ \lambda_n \rightarrow 0 $ as $ n \rightarrow \infty $, by the boundedness of $ \{ x_n\} $, we conclude that

    $ limnSiunyn,i1=0. $ (3.35)

    Obviously, for $ i = 1 $, we have $ \underset{n\rightarrow \infty}{\lim} \| S_1 u_n-u_{n}\| = 0 $. To conclude, we have that

    $ S2ununS2unyn,1+yn,1un=S2unyn,1+βn,1S1unun, $ (3.36)

    which implies that $ \underset{n\rightarrow \infty}{\lim} \| S_2 u_n-u_{n}\| = 0 $. Consequently, by induction, we obtain

    $ limnSiunun=0for alli=2,,N. $ (3.37)

    It is enough to observe that

    $ SiununSiunyn,i1+yn,i1Si1un+Si1ununSiunyn,i1+(1βn,i1)Si1unyn,i2+Si1unun. $ (3.38)

    Step 5. We show that $ \underset{n\rightarrow \infty}{\lim} \| y_{n, N}-x_n\| = \underset{n\rightarrow \infty}{\lim} \|x_n-T x_n\| = 0 $ and $ \omega_w (x_n) \subset \Omega $.

    Indeed, since $ \|x_n-u_n\| \rightarrow 0 $ as $ n\rightarrow \infty $, we have $ \omega_w(x_n) = \omega_w(u_n) $ and $ \omega_s(x_n) = \omega_s(u_n) $. Now, we observe that

    $ xnyn,1xnun+yn,1un=xnun+βn,1S1unun. $ (3.39)

    By Step 4, $ \| S_1 u_n - u_n\| \rightarrow 0 $ as $ n\rightarrow \infty $. Hence, we obtain

    $ limnxnyn,1=0. $ (3.40)

    This implies that $ \omega_w (x_n) = \omega_w (y_{n, 1}) $ and $ \omega_s (x_n) = \omega_s (y_{n, 1}) $.

    Take a point $ q\in \omega_w (x_n) $ arbitrarily. Since $ q\in \omega_w (u_n) $, by Step 4 and the demiclosedness principle, we have $ q\in Fix (S_i) $ for all $ i \in \{ 1, \ldots, N \} $, that is, $ q\in \underset{i}{\cap} Fix (S_i) $. Moreover, note that

    $ yn,NxnNk=2yn,kyn,k1+yn,1xn=Nk=2βn,kSkunyn,k1+yn,1xn; $ (3.41)

    hence,

    $ xnTxnxnxn+1+xn+1Tyn,N+Tyn,NTxnxnxn+1+λnξ(αnψ(xn)+(1αn)Sxn)+(IλnμF)Tyn,NTyn,N+yn,Nxn=xnxn+1+λnαn(ξψ(xn)μFTyn,N)+(1αn)(ξSxnμFTyn,N)+yn,Nxnxnxn+1+λn[ξψ(xn)μFTyn,N+ξSxnμFTyn,N]+yn,Nxnxnxn+1+λn[ξψ(xn)μFTyn,N+ξSxnμFTyn,N]+Nk=2βn,kSkunyn,k1+yn,1xn. $ (3.42)

    Since $ \|x_n-x_{n+1}\| \rightarrow 0, \lambda_n \rightarrow 0, \|y_{n, 1}-x_n\| \rightarrow 0, \beta_{n, k} \rightarrow \beta_k $ and $ \|S_k u_n - y_{n, k-1}\| \rightarrow 0 $ for all $ k\in \{1, \ldots, N \} $, we obtain

    $ limnyn,Nxn=limnxnTxn=0. $ (3.43)

    Thus, by the demiclosedness principle, we have $ q\in Fix (T) $.

    In addition, we rewrite $ u_{n_k} = J_{\lambda_1}^{B_1}[x_{n_k} + \gamma A^{*}(\mathcal{U}-I)Ax_{n_k}] $ as

    $ xnkunk+γA(UI)Axnkλ1B1unk. $ (3.44)

    Taking $ k \rightarrow \infty $ in (3.44) and using (3.24), (3.28) and the fact that the graph of a maximal monotone operator is weakly strongly closed, we have $ 0 \in B_{1} q, $ i.e., $ q\in SOLVIP(B_1) $. Furthermore, since $ x_n $ and $ u_n $ have the same asymptotical behavior, $ A x_{n_k} $ weakly converges to $ Aq $. It follows from (3.24), the nonexpansion of $ \mathcal{U} $, and Lemma 2.8 that $ (I-\mathcal{U})A q = 0 $. Thus, by Proposition 2.4, we have $ 0\in f(Aq) + B_2 (Aq), $ i.e., $ Aq \in SOLVIP(B_2). $ As a result, $ q\in \Gamma $. This shows that $ q \in \Omega $. Therefore, we obtain the claim.

    Step 6. We show that $ \{ x_n \} $ converges strongly to a unique solution $ x^* $ to Problem 1.2.

    Indeed, according to $ \|x_{n+1} - x_n\| \rightarrow 0, $ we can take a subsequence $ \{ x_{n_j}\} $ of $ \{ x_n \} $ satisfying

    $ lim supn(ξψμF)x,xn+1x=lim supn(ξψμF)x,xnx=limj(ξψμF)x,xnjx. $ (3.45)

    Without loss of generality, we may further assume that $ x_{n_j} \rightharpoonup \tilde{x}; $ then, $ \tilde{x} \in \Omega $, as we have just proved. Since $ x^* $ is a solution to Problem 1.2, we obtain

    $ lim supn(ξψμF)x,xn+1x=(ξψμF)x,˜xx0. $ (3.46)

    Repeating the same argument as that of (3.46), we have

    $ lim supn(ξSμF)x,xn+1x0. $ (3.47)

    From (3.2) and (3.9), it follows (noticing that $ x_{n+1} = P_C z_n $ and $ 0 < \xi \leq \tau $) that

    $ xn+1x2=znx,xn+1x+PCznzn,PCznxznx,xn+1x=(IλnμF)Tyn,N(IλnμF)x,xn+1x+αnλnξψ(xn)ψ(x),xn+1x+λn(1αn)ξSxnSx,xn+x+αnλn(ξψμF)x,xn+1x+λn(1αn)(ξSμF)x,xn+1x[1λnτ+αnλnξρ+λn(1αn)ξ]xnxxn+1x+αnλn(ξψμF)x,xn+1x+λn(1αn)(ξSμF)x,xn+1x[1αnλnξ(1ρ)]xnxxn+1x+αnλn(ξψμF)x,xn+1x+λn(1αn)(ξSμF)x,xn+1x[1αnλnξ(1ρ)]12(xnx2+xn+1x2)+αnλn(ξψμF)x,xn+1x+λn(1αn)(ξSμF)x,xn+1x. $ (3.48)

    It turns out that

    $ xn+1x21αnλnξ(1ρ)1+αnλnξ(1ρ)xnx2+21+αnλnξ(1ρ)[αnλn(ξψμF)x,xn+1x+λn(1αn)(ξSμF)x,xn+1x][1αnλnξ(1ρ)]xnx2+21+αnλnξ(1ρ)[αnλn(ξψμF)x,xn+1x+λn(1αn)(ξSμF)x,xn+1x]=[1αnλnξ(1ρ)]xnx2+αnλnξ(1ρ){2ξ(1ρ)[1+αnλnξ(1ρ)]×(ξψμF)x,xn+1x+2(1αn)αnξ(1ρ)[1+αnλnξ(1ρ)](ξSμF)x,xn+1x}. $ (3.49)

    Put $ s_{n} = \|x_n-x^*\|^2, \xi_n = \alpha_n \lambda_n \xi (1-\rho) $ and

    $ δn=2ξ(1ρ)[1+αnλnξ(1ρ)](ξψμF)x,xn+1x+2(1αn)αnξ(1ρ)[1+αnλnξ(1ρ)](ξSμF)x,xn+1x. $

    Then, (3.49) can be rewritten as

    $ sn+1(1γn)sn+ξnδn. $

    From conditions $ (C1) $ and $ (C2) $, we conclude from $ 0 < 1-\rho \leq 1 $ that

    $ {ξn}[0,1]andn=1ξn=. $

    Note that

    $ 2ξ(1ρ)[1+αnλnξ(1ρ)]2ξ(1ρ) $

    and

    $ 2(1αn)αnξ(1ρ)[1+αnλnξ(1ρ)]2aξ(1ρ). $

    Consequently, utilizing Lemma 2.5, we find that

    $ lim supnδnlim supn2ξ(1ρ)[1+αnλnξ(1ρ)](ξψμF)x,xn+1x+lim supn2(1αn)αnξ(1ρ)[1+αnλnξ(1ρ)](ξψμF)x,xn+1x0. $

    Thus, this, together with Lemma 2.5, leads to $ \underset{n \rightarrow \infty}{\lim} \|x_n-x^*\| = 0 $. The proof is complete.

    In Theorem 3.1, if $ \lambda_1 = \lambda_2 = \lambda $ and $ f = 0 $, the we obtain the following corollary immediately.

    Corollary 3.2. Let $ C $ be a nonempty closed convex subset of a real Hilbert space $ H_1 $ and $ Q $ be a nonempty closed convex subset of a real Hilbert space $ H_2 $. Let $ A:H_1\rightarrow H_2 $ be a bounded linear operator, $ A^* $ be the adjoint of $ A $, and $ r $ be the spectral radius of the operator $ A^* A $. Let $ B_1:C \rightarrow 2^{H_1}, B_2: H_2 \rightarrow 2^{H_2} $ be two multivalued maximal monotone operators, and $ F:C \rightarrow H_1 $ be $ k $-Lipschitzian and $ \eta $-strongly monotone. Let $ \psi: C \rightarrow H_1 $ be a $ \rho $-contraction with a coefficient $ \rho \in [0, 1) $ and $ S_i, S, T:C \rightarrow C $ be nonexpansive mappings for all $ i\in \{ 1, \ldots, N \} $. Let $ \{ \lambda_n \}, \{ \alpha_n \}, \{ \beta_{n, i} \}, i = 1, \ldots, N $ be sequences in $ (0, 1) $ such that $ \beta_{n, i} \rightarrow \beta_i \in (0, 1) $ as $ n \rightarrow \infty $ for all $ i\in \{ 1, \ldots, N \} $, $ 0 < \mu < \frac{2 \eta}{k^2} $ and $ 0 < \xi \leq \tau $, where $ \tau = 1- \sqrt{1-\mu(2\eta - \mu k^2)} $. Then, the sequence $ \{ x_n \} $ is generated from an arbitrary initial point $ x_1 \in C $ by the following:

    $ {un=JB1λ[xn+γA(JB2λI)Axn],yn,1=βn,1S1un+(1βn,1)un,yn,i=βn,iSiun+(1βn,i)yn,i1,i=2,,N,xn+1=PC[λnξ(αnψ(xn)+(1αn)Sxn)+(IλnμF)Tyn,N],n1. $ (3.50)

    Suppose that the following conditions are satisfied:

    (C1) $ 0 < \underset{n \rightarrow \infty}{\liminf}\alpha_n \leq \underset{n \rightarrow \infty}{\limsup}\alpha_n < 1 $;

    (C2) $ \underset{n \rightarrow \infty}{\lim}\lambda_n = 0 $ and $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 1} \lambda_n = \infty $;

    (C3) $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 2} | \alpha_{n }\lambda_{n}-\alpha_{n-1}\lambda_{n-1}| < \infty $ or $ \underset{n \rightarrow \infty}{\lim} \frac{ |\alpha_{n }\lambda_{n}-\alpha_{n-1}\lambda_{n-1} |}{\lambda_n} = 0 $;

    (C4) $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 2} | \lambda_{n}-\lambda_{n-1}| < \infty $ or $ \underset{n \rightarrow \infty}{\lim} \frac{ |\lambda_{n}-\lambda_{n-1} |}{\lambda_n} = 0 $;

    (C5) $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 2} | \beta_{n, i}-\beta_{n-1, i}| < \infty $ or $ \underset{n \rightarrow \infty}{\lim} \frac{ |\beta_{n, i}-\beta_{n-1, i} |}{\lambda_n} = 0 $ for all $ i\in \{ 1, \ldots, N \} $;

    (C6) $ 0 < \gamma < \frac{1}{r} $.

    Then, $ \{ x_n \} $ converges strongly to a unique solution $ x^{*} \in Fix(T)\cap(\bigcap_i Fix (S_i))\cap SVIP $.

    Here as a numerical illustration, we consider a split common fixed points of a family of nonexpansive mappings, which is a particular case of problem 1.2. To that end, we have the following, which is an equivalent formulation of Theorem 3.1.

    Let $ C $ be a nonempty closed convex subset of a real Hilbert space $ H_1 $ and $ Q $ be a nonempty closed convex subset of a real Hilbert space $ H_2 $. Let $ A:H_1\rightarrow H_2 $ be a bounded linear operator, $ A^* $ be the adjoint of $ A $, and $ r $ be the spectral radius of the operator $ A^* A $. Let $ f: H_2 \rightarrow H_2 $ be a $ \varsigma $-inverse strongly monotone operator, and $ F:C \rightarrow H_1 $ be $ k $-Lipschitzian and $ \eta $-strongly monotone. Let $ \psi: C \rightarrow H_1 $ be a $ \rho $-contraction with a coefficient $ \rho \in [0, 1) $ and $ S_i, S, T:C \rightarrow C $ be nonexpansive mappings for all $ i\in \{ 1, \ldots, N \} $. Let $ \{ \lambda_n \}, \{ \alpha_n \}, \{ \beta_{n, i} \}, i = 1, \ldots, N $ be sequences in $ (0, 1) $ such that $ \beta_{n, i} \rightarrow \beta_i \in (0, 1) $ as $ n \rightarrow \infty $ for all $ i\in \{ 1, \ldots, N \} $, $ 0 < \mu < \frac{2 \eta}{k^2} $ and $ 0 < \xi \leq \tau $, where $ \tau = 1- \sqrt{1-\mu(2\eta - \mu k^2)} $. Then, the sequence $ \{ x_n \} $ is generated from an arbitrary initial point $ x_1 \in C $ by the following:

    $ {un=xn+γA(Iλ2f)Axn,yn,1=βn,1S1un+(1βn,1)un,yn,i=βn,iSiun+(1βn,i)yn,i1,i=2,,N,xn+1=PC[λnξ(αnψ(xn)+(1αn)Sxn)+(IλnμF)Tyn,N],n1. $ (4.1)

    Assume that the problem

    $ (μFξψ)x,xx0,xΩ, $ (4.2)

    has a solution. Suppose that the following conditions are satisfied:

    (C1) $ 0 < \underset{n \rightarrow \infty}{\liminf}\alpha_n \leq \underset{n \rightarrow \infty}{\limsup}\alpha_n < 1 $;

    (C2) $ \underset{n \rightarrow \infty}{\lim}\lambda_n = 0 $ and $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 1} \lambda_n = \infty $;

    (C3) $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 2} | \alpha_{n }\lambda_{n}-\alpha_{n-1}\lambda_{n-1}| < \infty $ or $ \underset{n \rightarrow \infty}{\lim} \frac{ |\alpha_{n }\lambda_{n}-\alpha_{n-1}\lambda_{n-1} |}{\lambda_n} = 0 $;

    (C4) $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 2} | \lambda_{n}-\lambda_{n-1}| < \infty $ or $ \underset{n \rightarrow \infty}{\lim} \frac{ |\lambda_{n}-\lambda_{n-1} |}{\lambda_n} = 0 $;

    (C5) $ \mathop {\mathop \sum \limits^\infty }\limits_{n = 2} | \beta_{n, i}-\beta_{n-1, i}| < \infty $ or $ \underset{n \rightarrow \infty}{\lim} \frac{ |\beta_{n, i}-\beta_{n-1, i} |}{\lambda_n} = 0 $ for all $ i\in \{ 1, \ldots, N \} $;

    (C6) $ \lambda_1 > 0, 0 < \lambda_2 < 2 \varsigma, 0 < \gamma < \frac{1}{r} $.

    Then, $ \{ x_n \} $ converges strongly to a unique solution $ x^{*} \in \Omega $ of Problem (4.2). Suppose $ H = C = \mathbb{R}, $ for each $ x \in \mathbb{R} $ the mappings $ S_i $ and $ T_i $ are defined as follows

    $ S_ix = \frac{i}{i+1}x $

    and

    $ Ti(x)={x,x(,0),2x,x[0,). $ (4.3)

    Observe that $ S_i $ for $ i \ge 1 $ are nonexpansive and T is $ \frac{1}{3} $-demicontractive mapping [29]. Take $ \beta_{n, i} = \frac{6}{n^2 i^2}, \alpha_n = \frac{3}{n^2} $ and $ \lambda_n = \frac{1}{n^2 + 2} $. Also define $ \psi (x) = \frac{2x}{3} $ and $ Ax = 2x $ with $ \|A \| = 2 $. Therefore it can be seen that the sequences satisfy the conditions in the (C1) - (C6).

    It can be observed from Figure 1, that the sequence $ \{x_n\} $ generated converges to $ 0 $, which is the only element of the solution set, i.e $ \Omega = \{0\}. $

    Figure 1.  Plot of the iterative sequence after 200 iterations.

    In this paper, we first propose triple hierarchical variational inequality problem (4.1) in Theorem 3.1 and then we prove some strong convergence of the sequence $ \{x_n\} $ generated by (4.1) to a common solution of variational inequality problem, split monotone variational inclusion problem and fixed point problems. We divide the proof into 6 steps and our theorem is extends and improves the corresponding results of Jitsupa et al. [1] and Kazmi and Rizvi [22].

    The authors thank the referees for their comments and suggestions regarding this manuscript. The last author would like to thank King Mongkut's University of Technology North Bangkok, Rayong Campus (KMUTNB-Rayong). This research was funded by King Mongkut's University of Technology North Bangkok. Contract no. KMUTNB-63-KNOW-016.

    The authors declare that they have no competing interests.

    [1] Analysis of a model for precipitation and dissolution coupled with a Darcy flux. J. Math. Anal. Appl. (2015) 431: 752-781.
    [2] Numerical analysis of reaction front propagation model under Boussinesq approximation. Math. Meth. Appl. Sci. (2003) 26: 1529-1572.
    [3] An augmented velocity-vorticity-pressure formulation for the Brinkman equations. Int. J. Numer. Methods Fluids (2015) 79: 109-137.
    [4] A priori and a posteriori error analysis of a fully-mixed scheme for the Brinkman problem. Numer. Math. (2016) 133: 781-817.
    [5] Stabilized mixed approximation of axisymmetric Brinkman flows. ESAIM: Math. Model. Numer. Anal. (2015) 49: 855-874.
    [6] Pure vorticity formulation and Galerkin discretization for the Brinkman equations. IMA J. Numer. Anal. (2017) 37: 2020-2041.
    [7] On the domain of validity of Brinkman's equation. Transp. Porous Med. (2009) 79: 215-223.
    [8] Finite element approximation of the transport of reactive solutes in porous media. Part Ⅱ: error estimates for equilibrium adsorption processes. SIAM J. Numer. Anal. (1997) 34: 455-479.
    [9] Controlled release with finite dissolution rate. SIAM J. Appl. Math. (2011) 71: 731-752.
    [10]

    H. Brezis, Analyse Fonctionnelle. Théorie et Applications, Masson, Paris, 1983.

    [11] A coupled anisotropic chemotaxis-fluid model: The case of two-sidedly degenerate diffusion. Comput. Math. Appl. (2014) 68: 1052-1070.
    [12] A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math. (2010) 70: 2904-2928.
    [13]

    A. Ern and V. Giovangigli, Multicomponent Transport Algorithms, vol. 24 of Lecture Notes in Physics, New Series Monographs, Springer-Verlag, Heidelberg, 1994.

    [14] Guermond and L. Quartapelle, Vorticity-velocity formulations of the Stokes problem in 3D. Math. Methods Appl. Sci. (1999) 22: 531-546.
    [15] Modelling polymeric controlled drug release and transport phenomena in the arterial tissue. Math. Models Methods Appl. Sci. (2010) 20: 1759-1786.
    [16] Convective diffusion on an enzyme reaction. SIAM J. Appl. Math. (1977) 33: 289-297.
    [17]

    G. N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and Applications, Springer Briefs in Mathematics, Springer, Cham Heidelberg New York Dordrecht London, 2014.

    [18] Minimal model for signal-induced $\mathrm{Ca}^{2+}$ oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl. Acad. Sci. USA (1990) 87: 1461-1465.
    [19] Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem. SIAM J. Numer. Anal. (2016) 54: 2750-2774.
    [20] Convergence analysis for a conformal discretization of a model for precipitation and dissolution in porous media. Numer. Math. (2014) 127: 715-749.
    [21] Systems of partial differential equations in porous medium. Nonl. Anal. (2016) 133: 79-101.
    [22]

    O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, 1988.

    [23] Numerical investigation of falling bacterial plumes caused by bioconvection in a three-dimensional chamber. Eur. J. Mech. B/Fluids (2015) 52: 120-130.
    [24] Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows. J. Comput. Phys. (2017) 344: 281-302.
    [25] Error estimates for discrete-time approximations of nonlinear cross-diffusion systems. SIAM J. Numer. Anal. (2014) 52: 955-974.
    [26] Adaptive numerical simulation of intracellular calcium dynamics using domain decomposition methods. Appl. Numer. Math. (2008) 58: 1658-1674.
    [27] Newton method for reactive solute transport with equilibrium sorption in porous media. J. Comput. and Appl. Math. (2010) 234: 2118-2127.
    [28] Primal-mixed formulations for reaction-diffusion systems on deforming domains. J. Comput. Phys. (2015) 299: 320-338.
    [29] Mathematical modeling of active contraction in isolated cardiomyocytes. Math. Medicine Biol. (2014) 31: 259-283.
    [30] Mixed finite element -discontinuous finite volume element discretization of a general class of multicontinuum models. J. Comput. Phys. (2016) 322: 666-688.
    [31] A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media. Numer. Math. (2015) 129: 691-722.
    [32] An inexact Newton method for fully coupled solution of the Navier-Stokes equations with heat and mass transport. J. Comput. Phys. (1997) 137: 155-185.
    [33] Compact sets in the space $L^p(0,T;B)$ . Ann. Mat. Pura Appl. (4) (1987) 146: 65-96.
    [34] A robust and efficient linearization scheme for doubly nonlinear and degenerate parabolic problems arising in flow in porous media. SIAM J. Sci. Comput. (2002) 23: 1593-1614.
    [35] Coupling remeshed particle and phase field methods for the simulation of reaction-diffusion on the surface and the interior of deforming geometries. SIAM J. Sci. Comput. (2013) 35: B1285-B1303.
    [36]

    R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Reedition in the AMS-Chelsea Series, AMS, Providence, 2001.

    [37]

    V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd edition, Springer-Verlag, Berlin Heidelberg, 2006.

    [38] An integrated formulation of anisotropic force-calcium relations driving spatio-temporal contractions of cardiac myocytes. Phil. Trans. Royal Soc. London A (2009) 367: 4887-4905.
  • This article has been cited by:

    1. Mohammad Akram, Mohammad Dilshad, Arvind Kumar Rajpoot, Feeroz Babu, Rais Ahmad, Jen-Chih Yao, Modified Iterative Schemes for a Fixed Point Problem and a Split Variational Inclusion Problem, 2022, 10, 2227-7390, 2098, 10.3390/math10122098
    2. Imran Ali, Yuanheng Wang, Rais Ahmad, Three-Step Iterative Algorithm for the Extended Cayley–Yosida Inclusion Problem in 2-Uniformly Smooth Banach Spaces: Convergence and Stability Analysis, 2024, 12, 2227-7390, 1977, 10.3390/math12131977
    3. Doaa Filali, Mohammad Dilshad, Lujain Saud Muaydhid Alyasi, Mohammad Akram, Inertial Iterative Algorithms for Split Variational Inclusion and Fixed Point Problems, 2023, 12, 2075-1680, 848, 10.3390/axioms12090848
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6879) PDF downloads(519) Cited by(13)

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog