Review Special Issues

A review of technical options for solar charging stations in Asia and Africa

  • Received: 01 June 2015 Accepted: 03 September 2015 Published: 09 September 2015
  • Charging stations are an attractive solution to provide access to electricity to low income populations with low energy consumption in remote and off-grid areas. This paper reviews the state of the art of charging stations, with special focus on the technical options. Forty-five different actors in this field were analysed, based on academic publications, reports, online search and surveys. Results show that most stations are run in Sub Saharan Africa and South Asia, are powered by solar energy and although there are many different energy services targeted, the most popular services are charging batteries, mobile phones and lamps. The first charging station was installed in 1992 but most activities happen after 2005. This recent growth has been enabled by the falling cost of photovoltaic modules, learning effect, economies of scale, financial innovation, private sector involvement and worldwide dissemination of mobile phones. While in the first system the only purpose was to charge solar photovoltaic lanterns, the first multi-purpose station appeared in 2008. As expected, the technical challenges are mostly related to the use of batteries not only because they represent the component with shortest lifetime but also because if the battery is not for individual use, social questions arise due to poor definition of rights and duties of the customers. Furthermore, the development of a sustainable business model is also a challenge since this requires technical skills and system monitoring that are not usually available locally. Finally, it is also suggested that the minimum technical quality standards for charging stations should be defined and implemented.

    Citation: R. H. Almeida, M. C. Brito. A review of technical options for solar charging stations in Asia and Africa[J]. AIMS Energy, 2015, 3(3): 428-449. doi: 10.3934/energy.2015.3.428

    Related Papers:

    [1] Yufei Wang, Yujun Zhang, Yuxin Yan, Juan Zhao, Zhengming Gao . An enhanced aquila optimization algorithm with velocity-aided global search mechanism and adaptive opposition-based learning. Mathematical Biosciences and Engineering, 2023, 20(4): 6422-6467. doi: 10.3934/mbe.2023278
    [2] Shuang Wang, Heming Jia, Qingxin Liu, Rong Zheng . An improved hybrid Aquila Optimizer and Harris Hawks Optimization for global optimization. Mathematical Biosciences and Engineering, 2021, 18(6): 7076-7109. doi: 10.3934/mbe.2021352
    [3] Yaning Xiao, Yanling Guo, Hao Cui, Yangwei Wang, Jian Li, Yapeng Zhang . IHAOAVOA: An improved hybrid aquila optimizer and African vultures optimization algorithm for global optimization problems. Mathematical Biosciences and Engineering, 2022, 19(11): 10963-11017. doi: 10.3934/mbe.2022512
    [4] Huangjing Yu, Yuhao Wang, Heming Jia, Laith Abualigah . Modified prairie dog optimization algorithm for global optimization and constrained engineering problems. Mathematical Biosciences and Engineering, 2023, 20(11): 19086-19132. doi: 10.3934/mbe.2023844
    [5] Juan ZHAO, Zheng-Ming GAO . The heterogeneous Aquila optimization algorithm. Mathematical Biosciences and Engineering, 2022, 19(6): 5867-5904. doi: 10.3934/mbe.2022275
    [6] Xuepeng Zheng, Bin Nie, Jiandong Chen, Yuwen Du, Yuchao Zhang, Haike Jin . An improved particle swarm optimization combined with double-chaos search. Mathematical Biosciences and Engineering, 2023, 20(9): 15737-15764. doi: 10.3934/mbe.2023701
    [7] Di Wu, Changsheng Wen, Honghua Rao, Heming Jia, Qingxin Liu, Laith Abualigah . Modified reptile search algorithm with multi-hunting coordination strategy for global optimization problems. Mathematical Biosciences and Engineering, 2023, 20(6): 10090-10134. doi: 10.3934/mbe.2023443
    [8] Xiaorui Yang, Yumei Zhang, Xiaojiao Lv, Honghong Yang, Zengguo Sun, Xiaojun Wu . Hybrid multi-strategy chaos somersault foraging chimp optimization algorithm research. Mathematical Biosciences and Engineering, 2023, 20(7): 12263-12297. doi: 10.3934/mbe.2023546
    [9] Teng Fei, Hongjun Wang, Lanxue Liu, Liyi Zhang, Kangle Wu, Jianing Guo . Research on multi-strategy improved sparrow search optimization algorithm. Mathematical Biosciences and Engineering, 2023, 20(9): 17220-17241. doi: 10.3934/mbe.2023767
    [10] Jiahao Zhang, Zhengming Gao, Suruo Li, Juan Zhao, Wenguang Song . Improved intelligent clonal optimizer based on adaptive parameter strategy. Mathematical Biosciences and Engineering, 2022, 19(10): 10275-10315. doi: 10.3934/mbe.2022481
  • Charging stations are an attractive solution to provide access to electricity to low income populations with low energy consumption in remote and off-grid areas. This paper reviews the state of the art of charging stations, with special focus on the technical options. Forty-five different actors in this field were analysed, based on academic publications, reports, online search and surveys. Results show that most stations are run in Sub Saharan Africa and South Asia, are powered by solar energy and although there are many different energy services targeted, the most popular services are charging batteries, mobile phones and lamps. The first charging station was installed in 1992 but most activities happen after 2005. This recent growth has been enabled by the falling cost of photovoltaic modules, learning effect, economies of scale, financial innovation, private sector involvement and worldwide dissemination of mobile phones. While in the first system the only purpose was to charge solar photovoltaic lanterns, the first multi-purpose station appeared in 2008. As expected, the technical challenges are mostly related to the use of batteries not only because they represent the component with shortest lifetime but also because if the battery is not for individual use, social questions arise due to poor definition of rights and duties of the customers. Furthermore, the development of a sustainable business model is also a challenge since this requires technical skills and system monitoring that are not usually available locally. Finally, it is also suggested that the minimum technical quality standards for charging stations should be defined and implemented.


    The process of selecting appropriate and applicable variable values for a specific task is known as optimization [1,2,3]. Optimization exists in almost every domain, including job shop scheduling [4], feature selection [5,6,7], image processing [8,9], face detection and recognition [10], predicting chemical activities [11], classification [12,13], network allocation [14], internet of vehicles [15], routing [16], and neural network [17]. Due to the nature of real-world problems, Optimization becomes very challenging and has many difficulties such as multiobjectivity [18], memetic optimization [19], large-scale optimization [20], fuzzy optimization [21], uncertainties [22] and parameter estimation [23]. Metaheuristics algorithms have been used to solve such problems due to their advantages such as flexibility, efficiency and getting a near-optimal solution in a reasonable time.

    Table 1.  Summary of literature review on Aquila optimizer (AO) variants and applications.
    SN. Modification Name Authors Remarks
    1 Original AO Abualigah et al. [49] Authors simulate Aquila behavior
    2 IHAOHHO Wang et al. [50] Hybrid Aquila optimizer and Harris hawks algorithm
    3 Simplified AO (IAO) Zhao et al. [54] Only two techniques are used and others were dropped
    4 AGWO Ma et al. [55] GWO is hybridized with AO
    5 Aqu Abdelaziz et al. [58] COVID-19 images

     | Show Table
    DownLoad: CSV

    Examples of metaheuristics algorithms include particle swarm optimization (PSO) [24], artificial bee colony [25], coot bird [26], genetic algorithms (GAs) [27], the krill herd algorithm [28], the harmony search (HS) algorithm [29], the snake optimizer [30], monarch butterfly optimization [31], the slime mold algorithm [32], the moth search algorithm [33], the hunger games search [34], the Runge-Kutta method [35], the weighted mean of vectors [36], the virus colony search [37], the lightning search algorithm [38], ant lion optimization [39], the crow search algorithm [40], moth-flame optimization [41], the wild horse optimizer [42], the remora optimization algorithm [43], the artificial rabbit Optimizer [44], the artificial hummingbird algorithm [45], grasshopper optimization algorithm (GOA) [46], grey wolf optimizer (GWO) [47] and the whale optimization algorithm (WOA) [48].

    The Aquila optimizer (AO) is the latest developed algorithm proposed by Abualigah et al. [49] which simulates the four different phases of Aquila hunting behavior. Wang et al. [50] developed an improved version of the AO by replacing AO's original exploitation phase with the Harris hawks optimizer's exploitation phase. Moreover, they embedded a random opposition-learning strategy and nonlinear escaping operator in their proposed algorithm. They argued that the proposed algorithm is able to achieve the best results compared with the other five metaheuristic optimizers. Also, Mahajan et al. [51] hybridized the AO with the arithmetic optimization algorithm (AOA) [52]. They tested their algorithm which is called AO-AOA with original AO, original AOA, WOA, GOA and GWO. Another hybrid work between AO and AOA has been done by Zhang et al. [53]. Likewise, Zhao et al. [54] developed another version of the AO called the simplified AO algorithm by removing the control equation of the exploitation and exploration procedures (latter strategies) and keeping the former two techniques. They said their developed algorithm IAO achieved better results than many newly developed swarm algorithms. Another enhancement has been done by Ma et al. [55] in which grey wolf optimizer is hybridized using Aquila algorithm that allows some wolves to be able to fly, improving their search techniques, and avoiding getting stuck in local optima. They tested their developed algorithm with many optimizers using 23 functions. Also, Gao et al. [56] employed three different strategies to enhance the AO algorithm. These strategies are Gaussian mutation (GM), random-opposition learning, and developing a search control operator. They argued that their algorithm, an improved AO, has superior results compared to other optimizers.

    The AO has been successfully used in many applications. For example, AlRassas et al. [57] tried to forecast oil production by using the AO to optimize the adaptive neuro-fuzzy inference system model. Also, Abdelaziz et al. [58] tried to classify COVID-19 images using the AO algorithm and MobilNet3. Likewise, Fatani et al. [59] developed an extraction and selecting approach for features using the AO and deep learning for iot detection intrusion systems.

    Despite the powerfulness and superiority of the algorithm, and as stated by the no free lunch theorem, the AO cannot solve all optimization issues. So, the AO still needs more enhancements and developments.

    This paper introduces a novel version of the AO in which three different strategies have been used to overcome the original optimizer drawbacks such as getting stuck in local optima and slow convergence. These strategies are the chaotic local search (CLS), opposition-based learning (OBL) and the restart strategy (RS). Using OBL and the RS enhances the AO exploratory search capabilities whereas the CLS improves AO exploitative search abilities.

    The main contributions of this paper are as follows:

    ● A novel Aquila algorithm has been developed using three strategies: OBL, the RS and the CLS.

    ● The developed optimizer has been compared with the original AO and nine other algorithms, namely, the CSA [40], EHO [60], GOA [46], LSHADE [61], Lshade-EpSin [62], MFO [63], MVO [64], and PSO [24].

    ● A scalability test and removing one strategy from the developed algorithm experiments have been carried out.

    ● mAO was tested using 29 functions and five constrained ones.

    This paper is organized as follows: Section 2 discusses the background and preliminaries of the original algorithm, OBL, the CLS and the RS, whereas Section 3 introduces the structure of the modified optimizer and its complexity. Sections 4 and 5 discuss the results of the proposed mAO and other competitors in CEC2017 and five different constrained engineering problems whereas Section 6 concludes the paper.

    Aquila algorithm is one of the latest population-based swarm intelligence optimizers developed by Abualigah et al. [49]. Aquila can be considered among the most well-known prey birds existed in north hemisphere. Aquila is brown with a golden back body. Aquila uses its agility and strength with its wide nails and strong feet to catch various types ofprey usually squirrels, rabbits, marmots, and hares [65].

    Aquila optimizer (AO) simulates the four different Aquila strategies in hunting. The next subsection shows Aquila's mathematical model.

    AO begins with a random set of individuals that can be represented mathematically as follows:

    $ X=[X1,1X1,2...X1,j...X1,D1X1,DX2,1X2,2...X2,j...X2,D1X2,D...............Xn1,1Xn1,2...Xn1,j...Xn1,D1Xn1,DXn,1Xn,2...Xn,j...Xn,D1Xn,D]
    $
    (2.1)

    where $ X $ is an agent position (solution) that can be computed using the following equation:

    $ Xi,j=rand×(UBjLBj)+LBj,i=1,...,n,j=1,...,D
    $
    (2.2)

    where $ D $ refers to the number of decision variables, $ N $ indicates the number of agents, $ UB_{j} \ {\rm{ and }}\ LB_{j} $ are the $ j^{th} $ upper and lower boundaries, and $ x_{i} $ refers to the $ i^{th} $ value of the decision variable.

    AO simulates Aquila hunting in four different phases where the optimizer can easily move from exploration and exploitation using the following condition:

    IF, $ \left\{ t(23)×TPerform explorationOtherwisePerform exploration

    \right. $

    In this phase, Aquila will determine the area to hunt the prey and select it by a vertical stoop and high soar. The mathematical formula for such a behavior is given by the following two equations:

    $ X1(t+1)=Xbest(t)×(1tT)+(XM(t)Xbest(t)rand)
    $
    (2.3)
    $ XM(t)=1NNi=1Xi(t),j=1,2,...,Dim
    $
    (2.4)

    where $ X_{M} (t) $ indicates the mean position in the ith generation, $ X_{best} $ is the best Aquila position founded in this iteration, $ r $ is a randomly generated number in the interval $ [0, 1] $, $ t $ is the current generation where $ T $ is the maximum generation number, and $ N $ is the Aquilas number.

    This technique is the most technique used by Aquila for hunting. To attack the prey, a short gliding is used with contour flight. Aquila position's will be updated as follows:

    $ X2(t+1)=Xbest(t)×Levy(D)+XR(t)+(yx)rand
    $
    (2.5)

    where $ X_{R} $ indicates a position of Aquila generated randomly, $ rand $ is a random real number between 0 and 1, $ D $ is the number of variables, and $ Levy $ refers to a lévy function which is presented as follows:

    $ Levy(D)=s×u×σ|ν|1β
    $
    (2.6)
    $ σ=Γ(1+β)×sin(πβ2)Γ(1+β2)×β×2β12
    $
    (2.7)

    where $ s $ is a fixed value and equals 0.01, $ u \ {\rm{ and }}\ \mu $ are random numbers between 0 and 1 and $ \beta $ is a constant and equals 1.5. Both $ y $ and $ x $ are used to model the spiral shape and can be computed using the following two equations:

    $ y=r×cos(θ)
    $
    (2.8)
    $ x=r×sin(θ)
    $
    (2.9)

    where $ r \ {\rm{ and }}\ \theta $ can be calculated as follows:

    $ r=r1+U×D1
    $
    (2.10)
    $ θ=ω×D1+θ1
    $
    (2.11)
    $ θ1=3×π2
    $
    (2.12)

    where $ U $ equals 0.00565, $ \omega $ equals 0.005, and $ r_1 $ has a value between 1 and 20.

    In the $ 3^{rd} $ technique, the prey area is determined and agents can vertically perform a preliminary attack with low flight. Agents can attack the prey as follow:

    $ X3(t+1)=(Xbest(t)XM(t))×αrand+((UBLB)×rand+LB)×δ
    $
    (2.13)

    where $ X_{M} (t) $ indicates the mean position in the i-th generation, $ X_{best} $ is the best Aquila position founded in this iteration, $ rand $ is a randomly generated number in the interval $ [0, 1] $, $ \alpha \ {\rm{ and }}\ \beta $ are exploitation parameters that are equal 0.1, and $ UB \ {\rm{ and }}\ LB $ refer to the upper and lower boundaries.

    In this phase, Aquila can easily chase the prey and attack attacks it using escape trajectory light which can be modeled as follows:

    $ X4(t+1)=QF×Xbest(t)(G1×X(t)×rand)G2×Levy(D)+rand×G1
    $
    (2.14)
    $ QF(t)=t2×rand1(1r)2
    $
    (2.15)
    $ G1=2×rand1
    $
    (2.16)
    $ G2=2×(1tT)
    $
    (2.17)

    where $ QF(t) $ is the quality value, $ G_{1} $ refers to various AO motions, and $ G_{2} $ refers to chasing prey flight slope.

    Opposition-based learning strategy is a technique introduced by Tizhoosh [66] which has been employed by many researchers to improve many swarm optimizers. For example, Hussien [67] embedded OBL in SSA to overcome getting trapped in local optima. Moreover, Hussien and Amin used OBL with chaotic local search to improve the exploration abilities of HHO [7]. Zhao et al. employed OBL with arithmetic optimization algorithm [1]. OBL works by comparing the original solution with its opposite one. Let $ x $ is a real number that falls in the interval $ [lb, ub] $, then its opposite can be calculated from the following equation:

    $ ˉx=ub+lbx
    $
    (2.18)

    where $ lb \ {\rm{ and }}\ ub $ are lower boundary and upper one respectively, and $ \bar{x} $ indicates the opposite solution. If $ x $ is a vector that has multi values, then $ \bar{x} $ can be computed from the following equation:

    $ ¯xj=ubj+lbjxj
    $
    (2.19)

    where $ x_{j} $ indicates the $ j^{th} $ value of $ x $ and $ ub_{j} \ {\rm{ and }}\ lb_{j} $ refer to upper and lower boundaries respectively.

    The chaotic local search (CLS) technique has been integrated with many swarm optimizers such as WOA [68], HHO [7], brain storm optimization [69], and Jaya Algorithm (JAYA) [70]. CLS technique is almost used with the logistic map which is given in the following equation:

    $ os+1=Cos(1os)
    $
    (2.20)

    where $ s $ is the number of the current iteration, $ C $ is a control parameter that equals 4, $ o^{1} \neq $ 0.25, 0.50 and 0.75. Local search is used to search in the neighborhood area of the already founded optimal solution. CLS can be represented by the following equation:

    $ Cs=(1μ)×T+μ`Ci,i=1,2,...,n
    $
    (2.21)

    where $ Cs $ refers to the value generated by CLS in iteration $ i $ and $ \grave{C_{i}} $ can be easily calculated as follows:

    $ `Ci=LB+Ci×(UBLB)
    $
    (2.22)

    $ \mu $ is a shrinking factor and can be computed from the following below equation:

    $ μ=Tt+1T
    $
    (2.23)

    where $ t \ {\rm{ and }}\ T $ refer to the current and maximum number of iterations.

    During the search operation, some agents may not be able to find a better location as they may get trapped in local optimum regions. Such agents may affect the overall search as they take many generation resources and don't enhance the search process. Restart strategy (RS) at this point which is proposed by Zhang et al. [71] can help worse agents to jump out from local regions. RS counts the number of times for each individual that has been enhanced and updated. So, if the i-th agent has updated, then the trial value will be zero, otherwise, the trial value will be increased by 1. If the trial is equal to a certain threshold, then the individual position will be changed using the following 2 equations:

    $ X(t+1)=lb+rand.(ublb)
    $
    (2.24)
    $ X(t+1)=rand.(ub+lb)X(t)
    $
    (2.25)

    where $ ub \ {\rm{ and }}\ lb $ refer to upper and lower boundaries and $ rand $ indicates a random number in the number $ [0, 1] $.

    AO similar to other swarm optimizers may get stagnation in sub-optimal areas and have a slow convergence, especially when addressing and handling complicated & complex problems that have high dimensional features.

    Our proposed algorithm which is termed mAO tries to solve the original optimizer limitations. In the proposed mAO, three different strategies are used to improve the classical AO namely: opposition-based Learning, restart strategy, and chaotic local search. OBL strategy is used in both the initialization phase and updating agent position process. OBL is used in initialization by selecting the best $ N $ solutions from the pool of $ X \cup \bar{x} $ to ensure the algorithm starts with a good set of agents whereas it is embedded in the updating process to improve algorithm exploration abilities. Moreover, a chaotic local search mechanism is used to improve the best solution and existed until now which will lead to the enhancement of the whole individuals. On the other hand, a restart strategy is employed in AO to change the position of the worst individuals if they have already get fallen in local regions. The pseudo-code of the developed optimizer can be seen in algorithm 1.

    The complexity of the proposed algorithm can be computed by calculating the complexity of each phase separately, i.e., initialization, evaluation, and updating process. So $ O({\rm{mAO}}) = O({\rm{Initialization}}) + O({\rm{Evaluation}}) $$+ O({\rm{Updating\ Position}}) + O({\rm{CLS + OBL + RS}}) $. If $ D $ is the number of dimensions, $ N $ is the number of individuals, and $ T $ is the max iteration number, the following can be obtained.

    $ O({\rm{Initialization}}) = O(N) $

    $ O({\rm{Evaluation}}) = O(N \times T) $

    $ O({\rm{Updating\ Position}}) = O(N \times T \times D) $

    $ O({\rm{CLS}}) = O(N \times T) $

    $ O({\rm{OBL}}) = O(N \times T \times D) $

    $ O({\rm{RS}}) = O(N \times D) $

    $ O({\rm{CLS + OBL + RS}}) = O(N \times T \times D) $

    $ O({\rm{mAO}}) = O(N) + O(N \times T) $$+ O(N \times T \times D) + O(N \times T \times D) = O(N \times T \times D) $

    To validate our proposed approach, 29 functions from CEC2017 have been used to test mAO performance. These CEC2017 functions are very challenging and contain different types of functions (Unimodal, multimodal, composite, and hybrid). The description of CEC2017 functions is shown in Table 4 where $ opt. $ refers to the global optimal value. All experiments have been performed on Matlab 2021b using Intel Corei7 and 8.00 G of RAM. The parameter setting of all experiments is shown in Table 2. mAO is compared with the original Aquila Optimizer and other nine well-known and powerful swarm algorithms namely: crow search algorithm [40], elephant herd optimizer [60], grasshopper optimization algorithm [46], LSHADE [61], Lshade-EpSin [62], moth-flame optimization [63], multi-verse optimization [64], and particle swarm algorithm [24]. The parameter of each mentioned algorithm is given in Table 3.

    Algorithm 1 Improved Aquila optimizer
    1: Initialize the population X of the AO
    2: Calculate X and select the best N from (X U X)
    3: Initialize AO parameters
    4: while (t < T) do
    5:  Compute the objective function values
    6:   Select the best agent Xbest
    7:   for (i = 1, 2, ..., N) do
    8:    Update the current solution mean
    9:    Compute y, ${x}, {G}_1, {G}_2$ and $ {Levy}({D})$
    10:      if (t $\le (\frac{2}{3})$T) then
    11:        if rand $\le$0.5 then
    12:        Update current position using Eq (2.3)
    13:          Compute opposite position using Eq (2.19)
    14:        else
    15:          Update current position using Eq (2.5)
    16:          Compute opposite position using Eq (2.19)
    17:          if Fitness (${rand} \le 0.5$) then
    18:            Update the current solution using Eq (2.13)
    19:            Compute opposite position using Eq (2.19)
    20:          else
    21:            Update the current solution using Eq (2.14)
    22:            Compute opposite position using Eq (2.19)
    23:          end if
    24:         end if
    25:      end if
    26:    end for
    27:    Apply RS strategy using Eqs (2.24) and (2.25)
    28:    Apply CLS strategy using Eq (2.21)
    29: end while
    30: Return best solution

    Table 2.  Experiments parameters settings.
    No. Parameter Name Value
    1 Population Size 30
    2 Dim 30
    3 Max number of iteration 500

     | Show Table
    DownLoad: CSV
    Table 3.  Setting of all meta-heuristic algorithms parameters.
    Alg. Parameter Value
    CSA $ AP $ 0.1
    $ fl $ 2
    EHO $ Numclanx $ 5
    $ \alpha $ 0.5
    $ \beta $ 0.1
    number of elite 2
    GOA $ c_{max} $ 1
    $ c_{min} $ 0.00004
    L-SHADE Pbest 0.1
    Arc rate 2
    HHO $ \alpha $ 1.5
    LSHADE-EpSin H 5
    NPmin 4
    Pbest rate 0.11
    Arc rate 1.4
    ps 0.4
    pc 0.4
    MFO $ a $ $ \in [-2, 1] $
    Spiral factor $ b $ 1
    MVO p 6
    PSO wMax 0.9
    wMin 0.2
    $ c_{1} $ 2.0
    $ c_{2} $ 2.0
    AO $ U $ 0.00565
    $ r_{1} $ 10
    $ \omega $ 0.005
    $ \alpha $ 0.1
    $ \delta $ 0.1
    G1 $ \in [-1, 1] $
    G2 $ \in [2, 0] $
    mAO $ U $ 0.00565
    $ r_{1} $ 10
    $ \omega $ 0.005
    $ \alpha $ 0.1
    $ \delta $ 0.1
    G1 $ \in [-1, 1] $
    G2 $ \in [2, 0] $
    $ C $ 4

     | Show Table
    DownLoad: CSV
    Table 4.  Benchmark functions.
    No. Types Name Opt.
    F1 Unimodal Shifted and Rotated Bent Cigar Function 100
    F2 Shifted and Rotated Sum of Different Power Function 200
    F3 Shifted and Rotated Zakharov Function 300
    F4 Multimodal Shifted and Rotated Rosenbrock's Function 400
    F5 Shifted and Rotated Rastrigin's Function 500
    F6 Shifted and Rotated Expanded Scaffer's F6 Function 600
    F7 Shifted and Rotated Lunacek Bi-Rastrigin Function 700
    F8 Shifted and Rotated Non-Continuous Rastrigin's Function 800
    F9 Shifted and Rotated Lévy Function 900
    F10 Shifted and Rotated Schwefel's Function 1000
    F11 Hybrid H-Fun 1 (N = 3) 1100
    F12 H-Fun 2 (N = 3) 1200
    F13 H-Fun 3 (N = 3) 1300
    F14 H-Fun 4 (N = 4) 1400
    F15 H-Fun 5 (N = 4) 1500
    F16 H-Fun 6 (N = 4) 1600
    F17 H-Fun 6 (N = 5) 1700
    F18 H-Fun 6 (N = 5) 1800
    F19 H-Fun 6 (N = 5) 1900
    F20 H-Fun 6 (N = 6) 2000
    F21 Composition C-Fun 1 (N = 3) 2100
    F22 C-Fun 2 (N = 3) 2200
    F23 C-Fun 3 (N = 4) 2300
    F24 C-Fun 4 (N = 4) 2400
    F25 C-Fun 5 (N = 5) 2500
    F26 C-Fun 6 (N = 5) 2600
    F27 C-Fun 7 (N = 6) 2700
    F28 C-Fun 8 (N = 6) 2800
    F29 C-Fun 9 (N = 3) 2900
    F30 C-Fun 10 (N = 3) 3000

     | Show Table
    DownLoad: CSV

    The developed optimizer and its competitors' results are shown in Table 5 in terms of best (min), worst (mac), mean (average), and standard deviation. From the above-mentioned table, it can be seen that the suggested technique has good results and performs well in solving all functions type. For example, in term of average, it ranked first in all unimodal functions $ (F1 \ {\rm{ and }}\ F3) $, and all multimodal functions $ (F4 \ {\rm{ and }}\ F10) $. On the other hand, it can be noticed that mAO achieved better results compared to the original optimizer and others. It ranked first in almost functions whereas it ranked first in solving composite problems in 5 functions out of 10. Besides the statistical measures, convergence curve can be seen as a powerful tool to compare any new algorithm with its competitors to see if it has a good convergence or slow one. mAO has been recognized to achieve a fast convergence curve in all mentioned function types as shown in Figures 13.

    Table 5.  The comparison results of all algorithms over 30 functions.
    F CSA EHO GOA HHO LSHADE Lshade-EpSin MFO MVO PSO AO mAO
    F1 Best 4.31E+09 5.06E+09 3.06E+09 2.09E+09 3.51E+10 1.31E+11 2.08E+10 2.25E+10 2.88E+08 4.18E+08 1.50E+07
    Worest 1.08E+10 1.12E+10 9.40E+09 9.57E+09 6.22E+10 1.49E+11 9.10E+10 4.27E+10 2.76E+09 9.96E+08 2.62E+07
    Mean 7.39E+09 8.31E+09 5.64E+09 5.64E+09 4.05E+10 1.36E+11 3.80E+10 2.79E+10 5.49E+08 5.45E+08 1.78E+07
    Std 1.71E+09 1.68E+09 1.98E+09 1.96E+09 8.34E+09 9.47E+09 2.23E+10 7.22E+09 5.47E+08 2.02E+08 4.23E+06
    F3 Best 1.27E+05 5.90E+09 1.20E+05 1.40E+05 2.62E+05 2.54E+05 3.04E+05 1.41E+05 2.41E+05 1.43E+05 9.90E+04
    Worest 1.79E+05 1.88E+10 4.65E+05 2.11E+05 4.78E+05 3.29E+05 5.58E+05 2.50E+05 3.63E+05 2.30E+05 1.77E+05
    Mean 1.32E+05 8.74E+09 2.18E+05 1.80E+05 3.38E+05 2.75E+05 3.92E+05 1.75E+05 2.71E+05 1.58E+05 1.31E+05
    Std 1.57E+04 2.92E+09 8.25E+04 1.86E+04 7.52E+04 3.57E+04 8.69E+04 4.36E+04 4.13E+04 2.55E+04 1.55E+04
    F4 Best 1.35E+03 5.25E+09 8.43E+02 1.23E+03 6.79E+03 3.72E+04 2.72E+03 4.02E+03 7.90E+02 7.75E+02 5.35E+02
    Worest 2.93E+03 1.22E+10 1.68E+03 3.48E+03 1.27E+04 4.67E+04 6.81E+03 9.14E+03 1.19E+03 1.05E+03 7.24E+02
    Mean 2.02E+03 9.03E+09 1.18E+03 1.91E+03 8.15E+03 3.92E+04 4.21E+03 5.24E+03 8.93E+02 8.36E+02 5.91E+02
    Std 4.89E+02 2.17E+09 2.63E+02 4.81E+02 2.40E+03 5.65E+03 1.49E+03 1.58E+03 1.21E+02 9.06E+01 6.13E+01
    F5 Best 7.53E+02 5.93E+09 7.83E+02 8.92E+02 1.10E+03 1.32E+03 9.46E+02 1.06E+03 7.58E+02 8.18E+02 7.26E+02
    Worest 9.42E+02 1.64E+10 1.07E+03 1.06E+03 1.26E+03 1.41E+03 1.12E+03 1.14E+03 9.69E+02 9.36E+02 9.57E+02
    Mean 8.64E+02 9.26E+09 9.51E+02 9.45E+02 1.13E+03 1.36E+03 1.00E+03 1.08E+03 8.43E+02 8.64E+02 7.77E+02
    Std 4.91E+01 2.37E+09 6.86E+01 3.90E+01 6.41E+01 4.90E+01 7.50E+01 6.10E+01 7.57E+01 4.44E+01 2.55E+01
    F6 Best 6.57E+02 4.24E+09 6.48E+02 6.66E+02 6.66E+02 7.07E+02 6.51E+02 6.45E+02 6.89E+02 6.53E+02 6.10E+02
    Worest 6.77E+02 1.51E+10 7.03E+02 6.87E+02 7.00E+02 7.18E+02 6.78E+02 6.92E+02 6.98E+02 6.85E+02 6.25E+02
    Mean 6.70E+02 9.19E+09 6.76E+02 6.79E+02 6.74E+02 7.11E+02 6.61E+02 6.53E+02 6.91E+02 6.60E+02 6.15E+02
    Std 4.73E+00 2.21E+09 1.36E+01 5.18E+00 9.81E+00 4.63E+00 1.07E+01 1.23E+01 4.54E+00 9.84E+00 3.37E+00
    F7 Best 1.40E+03 2.87E+09 1.41E+03 1.78E+03 1.83E+03 3.39E+03 1.71E+03 1.78E+03 1.24E+03 1.26E+03 1.15E+03
    Worest 1.82E+03 1.43E+10 1.88E+03 1.97E+03 2.38E+03 3.93E+03 2.86E+03 1.95E+03 1.42E+03 1.48E+03 1.34E+03
    Mean 1.58E+03 9.15E+09 1.61E+03 1.88E+03 1.95E+03 3.58E+03 2.02E+03 1.86E+03 1.27E+03 1.32E+03 1.18E+03
    Std 1.22E+02 2.93E+09 1.38E+02 6.27E+01 1.77E+02 2.55E+02 3.84E+02 7.46E+01 7.74E+01 7.97E+017.24E+01
    F8 Best 1.10E+03 4.48E+09 1.09E+03 1.17E+03 1.39E+03 1.63E+03 1.25E+03 1.38E+03 1.09E+03 1.12E+03 1.06E+03
    Worest 1.28E+03 1.09E+10 1.33E+03 1.31E+03 1.51E+03 1.71E+03 1.48E+03 1.44E+03 1.22E+03 1.30E+03 1.17E+03
    Mean 1.20E+03 8.09E+09 1.23E+03 1.24E+03 1.44E+03 1.65E+03 1.29E+03 1.40E+03 1.13E+03 1.17E+03 1.09E+03
    Std 4.83E+01 2.11E+09 7.29E+01 3.56E+01 4.99E+01 3.18E+01 9.21E+01 2.62E+01 6.03E+01 6.46E+01 5.22E+01
    F9 Best 9.40E+03 4.06E+09 1.60E+04 2.58E+04 2.70E+04 4.64E+04 1.78E+04 2.74E+04 4.18E+03 1.89E+04 1.49E+04
    Worest 2.12E+04 1.63E+10 3.73E+04 3.87E+04 4.56E+04 6.01E+04 3.99E+04 4.05E+04 4.32E+04 3.53E+04 3.15E+04
    Mean 1.54E+04 8.42E+09 2.66E+04 3.18E+04 3.27E+04 5.25E+04 3.11E+04 2.16E+04 8.35E+03 2.20E+04 2.10E+04
    Std 4.77E+03 2.73E+09 5.60E+03 3.69E+03 7.64E+03 5.09E+03 5.32E+03 8.22E+03 9.05E+03 6.91E+03 3.32E+03
    F10 Best 7.57E+03 4.85E+09 8.21E+03 8.92E+03 1.56E+04 1.50E+04 8.49E+03 1.25E+04 1.40E+04 1.16E+04 7.05E+03
    Worest 1.46E+04 1.10E+10 1.21E+04 1.24E+04 1.72E+04 1.57E+04 1.10E+04 1.08E+04 1.58E+04 1.41E+04 1.05E+04
    Mean 9.31E+03 7.96E+09 1.02E+04 1.03E+04 1.62E+04 1.53E+04 9.24E+03 1.29E+04 1.45E+04 1.21E+04 7.82E+03
    Std 8.42E+02 1.92E+09 1.11E+03 8.32E+02 6.62E+02 7.99E+02 1.10E+03 1.06E+03 1.19E+03 1.42E+03 2.81E+02
    F11 Best 2.63E+03 3.77E+09 2.68E+03 2.09E+03 1.82E+04 2.58E+04 6.14E+03 5.54E+03 1.84E+03 2.24E+03 1.58E+03
    Worest 6.26E+03 1.14E+10 9.92E+03 5.10E+03 4.98E+04 4.09E+04 3.48E+04 1.43E+04 2.78E+03 4.10E+03 1.97E+03
    Mean 4.52E+03 7.36E+09 4.76E+03 3.20E+03 2.53E+04 3.05E+04 1.63E+04 8.45E+03 2.10E+03 2.65E+03 1.66E+03
    Std 1.00E+03 S1.86E+09 1.96E+03 8.03E+02 1.01E+04 5.04E+03 9.70E+03 2.96E+03 3.18E+02 5.58E+02 1.19E+02
    F12 Best 6.49E+08 4.25E+09 4.74E+07 2.19E+08 5.41E+09 5.12E+10 1.94E+09 6.06E+07 5.68E+09 3.34E+07 1.76E+07
    Worest 2.19E+09 1.32E+10 1.02E+09 2.83E+09 1.25E+10 6.42E+10 1.05E+10 3.05E+08 1.98E+10 1.43E+08 1.46E+08
    Mean 1.26E+09 8.35E+09 3.63E+08 9.33E+08 6.99E+09 5.52E+10 3.89E+09 1.17E+08 9.44E+09 5.29E+07 4.74E+07
    Std 5.02E+08 2.11E+09 2.44E+08 6.13E+08 1.93E+09 7.75E+09 2.74E+09 6.99E+07 4.44E+09 3.05E+07 3.85E+07
    F13 Best 1.49E+06 1.92E+09 6.11E+04 7.36E+06 9.12E+08 1.75E+10 7.50E+05 2.92E+05 1.14E+09 2.63E+04 1.24E+04
    Worest 6.05E+07 1.33E+10 1.37E+06 2.18E+08 2.41E+09 3.16E+10 6.52E+09 7.87E+05 6.61E+09 1.26E+05 2.98E+04
    Mean 1.40E+07 8.47E+09 4.43E+05 3.12E+07 1.55E+09 2.05E+10 1.33E+09 3.97E+05 2.08E+09 4.84E+04 1.76E+04
    Std 1.45E+07 2.77E+09 3.48E+05 4.58E+07 5.87E+08 4.92E+09 1.89E+09 1.52E+05 1.78E+09 2.80E+04 6.46E+03
    F14 Best 1.06E+05 2.87E+09 7.01E+04 6.61E+05 2.39E+06 1.25E+07 8.65E+05 1.51E+05 1.14E+06 1.92E+05 4.49E+05
    Worest 2.65E+06 1.90E+10 2.48E+06 2.72E+07 2.52E+07 4.42E+07 1.83E+07 5.17E+05 1.28E+07 1.28E+06 1.78E+06
    Mean 9.35E+05 9.20E+09 6.14E+05 6.98E+06 6.92E+06 2.09E+07 3.35E+06 2.16E+05 7.00E+05 3.01E+06 4.70E+05
    Std 9.00E+05 3.45E+09 6.77E+05 8.03E+06 6.70E+06 9.15E+06 4.12E+06 1.07E+05 4.74E+05 2.91E+06 3.40E+05
    F15 Best 1.72E+04 2.81E+09 1.57E+04 5.70E+05 2.06E+08 4.62E+09 5.41E+04 9.19E+04 1.25E+08 4.67E+03 3.34E+03
    Worest 1.77E+05 1.35E+10 4.60E+05 4.58E+07 1.07E+09 7.78E+09 4.18E+08 2.79E+05 2.68E+04 1.14E+09 2.39E+04
    Mean 5.53E+04 8.47E+09 1.09E+05 5.40E+06 3.74E+08 5.82E+09 6.28E+07 1.30E+05 9.53E+03 3.74E+08 9.51E+03
    Std 3.58E+04 2.44E+09 1.01E+05 1.06E+07 2.76E+08 1.54E+09 1.53E+08 5.82E+04 7.36E+03 3.64E+08 5.65E+03
    F16 Best 3.49E+03 4.88E+09 3.24E+03 3.62E+03 6.09E+03 7.79E+03 3.53E+03 3.10E+03 3.62E+03 4.85E+03 3.35E+03
    Worest 6.54E+03 1.19E+10 5.05E+03 6.22E+03 7.18E+03 8.70E+03 5.51E+03 5.36E+03 5.31E+03 7.41E+03 4.21E+03
    Mean 4.79E+03 7.67E+09 4.14E+03 4.97E+03 6.42E+03 8.09E+03 4.20E+03 3.61E+03 4.19E+03 5.31E+03 3.56E+03
    Std 6.41E+02 1.91E+09 5.59E+02 7.09E+02 4.97E+02 4.27E+02 7.40E+02 6.06E+02 7.01E+02 7.31E+02 3.73E+02
    F17 Best 2.92E+03 4.07E+09 2.88E+03 2.70E+03 4.79E+03 7.38E+03 3.70E+03 3.09E+03 3.32E+03 3.85E+03 2.89E+03
    Worest 3.85E+03 1.26E+10 4.41E+03 4.72E+03 5.52E+03 1.41E+04 5.32E+03 4.00E+03 4.75E+03 5.00E+03 3.94E+03
    Mean 3.40E+03 7.99E+09 3.73E+03 3.70E+03 5.03E+03 8.94E+03 3.92E+03 3.31E+03 3.73E+03 4.24E+03 3.23E+03
    Std 2.67E+02 2.21E+09 3.70E+02 5.26E+02 2.96E+02 2.13E+03 5.22E+02 3.76E+02 6.02E+02 4.28E+02 4.27E+02
    F18 Best 1.02E+06 4.40E+09 6.81E+06 3.22E+06 3.22E+07 9.35E+07 3.95E+06 7.89E+05 2.81E+06 1.73E+06 1.17E+06
    Worest 1.73E+07 1.10E+10 6.56E+07 3.75E+07 2.01E+08 1.90E+08 3.42E+07 9.04E+06 1.53E+07 7.00E+06 1.67E+06
    Mean 4.69E+06 8.10E+09 2.07E+07 1.00E+07 6.33E+07 1.12E+08 1.11E+07 2.32E+06 6.56E+06 3.13E+06 6.42E+06
    Std 4.24E+06 1.78E+09 1.80E+07 8.83E+06 4.68E+07 3.28E+07 8.56E+06 2.05E+06 4.19E+06 1.77E+06 4.56E+06
    F19 Best 1.53E+05 5.36E+09 3.07E+05 2.23E+05 7.44E+07 1.67E+09 3.87E+05 2.23E+06 2.25E+03 5.96E+07 1.14E+04
    Worest 7.15E+06 1.27E+10 3.91E+07 1.42E+07 2.05E+08 3.63E+09 8.29E+08 1.62E+07 3.22E+04 3.87E+08 2.91E+04
    Mean 1.77E+06 9.34E+09 1.27E+07 3.84E+06 1.09E+08 2.33E+09 4.50E+07 5.65E+06 8.79E+03 1.21E+08 1.63E+04
    Std 1.64E+06 1.77E+09 9.06E+06 3.91E+06 4.59E+07 7.14E+08 1.85E+08 4.10E+06 1.02E+04 8.23E+07 7.65E+03
    F20 Best 3.01E+03 4.10E+09 2.98E+03 3.15E+03 4.62E+03 4.29E+03 3.37E+03 3.12E+03 3.26E+03 3.12E+03 3.26E+03
    Worest 3.83E+03 1.67E+10 4.34E+03 3.89E+03 5.17E+03 4.63E+03 4.22E+03 4.11E+03 4.52E+03 3.93E+03 4.09E+03
    Mean 3.34E+03 8.95E+09 3.55E+03 3.52E+03 4.85E+03 4.35E+03 3.61E+03 3.30E+03 3.58E+03 3.38E+03 3.57E+03
    Std 2.28E+02 2.85E+09 2.95E+02 2.41E+02 2.25E+02 1.41E+02 2.53E+02 3.47E+02 5.21E+02 2.92E+02 3.06E+02
    F21 Best 2.66E+03 3.63E+09 2.67E+03 2.79E+03 2.86E+03 3.14E+03 2.70E+03 2.51E+03 2.88E+03 2.56E+03 2.54E+03
    Worest 2.91E+03 1.45E+10 3.06E+03 3.36E+03 2.98E+03 3.22E+03 2.95E+03 2.63E+03 3.07E+03 2.80E+03 2.78E+03
    Mean 2.78E+03 9.28E+09 2.78E+03 2.96E+03 2.90E+03 3.17E+03 2.77E+03 2.56E+03 2.95E+03 2.66E+03 2.62E+03
    Std 6.26E+01 2.75E+09 9.73E+01 1.16E+02 4.33E+01 4.05E+01 8.87E+01 6.43E+01 9.74E+01 7.62E+01 5.30E+01
    F22 Best 3.70E+03 3.89E+09 9.28E+03 1.02E+04 1.73E+04 1.66E+04 9.83E+03 1.49E+04 1.52E+04 1.29E+04 9.01E+03
    Worest 1.33E+04 1.74E+10 1.38E+04 1.48E+04 1.88E+04 1.76E+04 1.19E+04 1.75E+04 1.72E+04 1.57E+04 1.13E+04
    Mean 1.07E+04 9.31E+09 1.16E+04 1.21E+04 1.77E+04 1.69E+04 1.04E+04 1.56E+04 1.53E+04 1.30E+04 9.65E+03
    Std 2.52E+03 3.40E+09 1.31E+03 1.12E+03 9.98E+02 4.37E+02 8.50E+02 1.43E+03 1.39E+03 3.81E+03 9.70E+02
    F23 Best 3.46E+03 2.86E+09 3.09E+03 3.69E+03 3.43E+03 4.11E+03 3.11E+03 3.58E+03 3.03E+03 3.11E+03 2.96E+03
    Worest 4.09E+03 2.07E+10 3.64E+03 4.54E+03 3.61E+03 4.37E+03 3.38E+03 3.94E+03 3.27E+03 3.29E+03 3.21E+03
    Mean 3.83E+03 9.44E+09 3.34E+03 4.17E+03 3.49E+03 4.19E+03 3.16E+03 3.70E+03 3.11E+03 3.15E+03 3.03E+03
    Std 1.70E+02 3.78E+09 1.55E+02 2.43E+02 6.72E+01 9.66E+01 8.30E+01 1.42E+02 7.92E+01 6.70E+01 8.38E+01
    F24 Best 3.61E+03 5.32E+09 3.22E+03 3.75E+03 3.59E+03 4.40E+03 3.67E+03 3.14E+03 3.30E+03 3.21E+03 3.19E+03
    Worest 4.59E+03 1.63E+10 3.73E+03 4.76E+03 3.88E+03 4.73E+03 3.88E+03 3.35E+03 3.44E+03 3.38E+03 3.36E+03
    Mean 4.05E+03 8.62E+09 3.45E+03 4.39E+03 3.65E+03 4.50E+03 3.73E+03 3.18E+03 3.33E+03 3.26E+03 3.25E+03
    Std 2.58E+02 2.54E+09 1.33E+02 2.47E+02 9.84E+01 1.46E+02 1.10E+02 7.17E+01 5.13E+01 6.32E+01 5.48E+01
    F25 Best 3.69E+03 4.11E+09 3.26E+03 3.49E+03 7.53E+03 2.08E+04 3.76E+03 5.28E+03 3.23E+03 3.24E+03 3.05E+03
    Worest 4.49E+03 1.34E+10 4.29E+03 4.69E+03 1.11E+04 2.83E+04 1.32E+04 7.19E+03 3.43E+03 3.51E+03 3.13E+03
    Mean 4.04E+03 9.09E+09 3.65E+03 3.81E+03 8.59E+03 2.32E+04 5.33E+03 5.70E+03 3.30E+03 3.30E+03 3.07E+03
    Std 2.23E+02 2.52E+09 2.74E+02 2.92E+02 1.47E+03 2.85E+03 2.41E+03 7.05E+02 8.91E+01 7.88E+01 2.87E+01
    F26 Best 3.69E+03 4.11E+09 3.26E+03 3.49E+03 7.53E+03 2.08E+04 3.76E+03 5.28E+03 3.23E+03 3.24E+03 3.05E+03
    Worest 4.49E+03 1.34E+10 4.29E+03 4.69E+03 1.11E+04 2.83E+04 1.32E+04 7.19E+03 3.43E+03 3.51E+03 3.13E+03
    Mean 4.04E+03 9.09E+09 3.65E+03 3.81E+03 8.59E+03 2.32E+04 5.33E+03 5.70E+03 3.30E+03 3.30E+03 3.07E+03
    Std 2.23E+02 2.52E+09 2.74E+02 2.92E+02 1.47E+03 2.85E+03 2.41E+03 7.05E+02 8.91E+01 7.88E+01 2.87E+01
    F27 Best 4.20E+03 5.55E+09 3.51E+03 4.11E+03 4.14E+03 5.77E+03 3.54E+03 3.37E+03 3.59E+03 4.01E+03 3.55E+03
    Worest 6.55E+03 1.33E+10 4.39E+03 6.97E+03 4.81E+03 6.58E+03 3.79E+03 3.74E+03 3.88E+03 4.87E+03 4.07E+03
    Mean 5.42E+03 8.69E+09 3.78E+03 5.03E+03 4.30E+03 5.97E+03 3.62E+03 3.47E+03 3.66E+03 4.30E+03 3.68E+03
    Std 6.27E+02 1.98E+09 2.42E+02 7.26E+02 .08E+02 3.70E+02 9.18E+01 1.26E+02 1.12E+02 2.89E+02 1.77E+02
    F28 Best 4.29E+03 3.74E+09 3.55E+03 4.08E+03 7.96E+03 1.32E+04 7.92E+03 6.01E+03 3.48E+03 3.60E+03 3.31E+03
    Worest 6.13E+03 1.25E+10 4.74E+03 5.92E+03 9.92E+03 1.58E+04 1.04E+04 8.14E+03 4.38E+03 4.04E+03 3.38E+03
    Mean 4.88E+03 7.83E+09 3.95E+03 4.72E+03 8.11E+03 1.40E+04 8.57E+03 6.50E+03 3.59E+03 3.70E+03 3.32E+03
    Std 4.24E+02 2.00E+09 3.19E+02 4.47E+02 8.93E+02 1.25E+03 9.61E+02 7.38E+02 2.11E+02 1.33E+02 2.84E+01
    F29 Best 5.53E+03 6.15E+09 5.01E+03 5.03E+03 6.91E+03 1.56E+04 4.97E+03 4.94E+03 4.29E+03 6.97E+03 4.62E+03
    Worest 8.87E+03 1.70E+10 6.87E+03 8.39E+03 1.02E+04 2.37E+04 6.81E+03 6.18E+03 5.63E+03 9.31E+03 5.87E+03
    Mean 7.19E+03 9.08E+09 5.85E+03 7.03E+03 7.81E+03 1.75E+04 5.49E+03 5.30E+03 4.59E+03 7.63E+03 5.05E+03
    Std 8.94E+02 2.80E+09 5.45E+02 8.24E+02 1.17E+03 3.26E+03 5.49E+02 4.35E+02 4.00E+02 8.04E+02 4.52E+02
    F30 Best 8.44E+07 3.95E+09 7.63E+07 5.04E+07 4.05E+08 3.32E+09 9.10E+06 6.76E+07 5.88E+06 4.56E+08 3.43E+06
    Worest 3.37E+08 1.25E+10 2.69E+08 4.30E+08 8.01E+08 5.25E+09 1.37E+08 2.11E+08 7.29E+07 1.07E+09 9.93E+06
    Mean 2.25E+08 8.68E+09 1.63E+08 1.43E+08 4.71E+08 3.95E+09 3.56E+07 9.27E+07 1.24E+07 6.21E+08 5.61E+06
    Std 6.98E+07 2.24E+09 4.63E+07 8.02E+07 1.35E+08 7.58E+08 4.31E+07 3.74E+07 1.51E+07 2.22E+08 2.46E+06

     | Show Table
    DownLoad: CSV
    Figure 1.  The convergence behavior of the comparative methods on CEC2017 F1–F10 functions, Dim = 30.
    Figure 2.  The convergence behavior of the comparative methods on CEC2017 F11--F20 functions, Dim = 30.
    Figure 3.  The convergence behavior of the comparative methods on CEC2017 F21–F30 functions, Dim = 30.

    Furthemore, a statistical comparsion using Wilcoxon test [72,73] has been carried out between the developed algorithm and all other competitors. Table 6 shows the p-values which show a big diffeence in the outputs between different optimizers. From Table 6, results prove the mAO algorithm superiority in finding near-optimal solutions when compared with others. To show the powerful and efficient of the proposed algorithm, a scalability test has been performed on 10 and 50 dimensions using the same functions and the same comparing algorithms. The results of this scalability test are shown in Table 7. It can be seen that mAO is better than other competitors in almost functions.

    Table 6.  Wilcoxon rank sum test results for mAO against other algorithms CEC2017.
    F CSA EHO GOA HHO LSHADE Lshade-EpSin MFO MVO PSO AO
    F1 5.82E-08 3.77E-08 7.44E-08 9.09E-08 7.02E-02 8.06E-08 4.57E-08 6.75E-08 9.02E-08 7.32E-08
    F3 2.83E-08 5.44E-08 7.90E-08 1.66E-07 1.12E-03 6.80E-08 7.80E-08 6.44E-08 3.55E-08 9.65E-08
    F4 7.03E-08 5.87E-06 1.05E-06 6.80E-08 8.82E-01 6.85E-08 6.54E-08 4.82E-01 6.78E-08 6.83E-08
    F5 9.74E-08 2.73E-03 1.26E-07 6.80E-07 5.33E-02 7.24E-04 8.87E-07 3.52E-03 5.50E-08 7.76E-07
    F6 8.91E-07 2.81E-01 6.80E-07 6.77E-07 7.03E-06 5.80E-05 8.12E-04 4.37E-05 8.45E-07 7.75E-07
    F7 3.22E-08 5.03E-04 7.72E-06 7.43E-08 3.56E-01 7.77E-08 6.44E-08 3.25E-04 6.66E-08 1.32E-08
    F8 4.83E-08 7.23E-03 4.32E-06 7.22E-07 5.24E-03 6.82E-08 4.47E-08 4.52E-06 6.33E-07 4.81E-03
    F9 7.88E-06 4.54E-06 3.31E-07 5.23E-08 6.42E-05 7.22E-08 1.09E-08 6.52E-05 7.42E-08 1.29E-08
    F10 7.23E-08 7.67E-06 1.32E-07 6.53E-08 3.21E-07 6.94E-08 6.46E-08 3.31E-07 6.74E-08 6.65E-08
    F11 5.77E-08 4.54E-05 9.86E-01 6.45E-08 4.75E-01 6.33E-08 6.23E-08 5.75E-01 4.33E-08 3.23E-08
    F12 6.45E-08 3.18E-05 1.34E-07 6.84E-08 1.46E-04 6.83E-08 6.82E-08 1.46E-04 6.83E-08 6.82E-08
    F13 6.70E-08 1.61E-04 6.23E-08 6.34E-08 4.45E-06 6.23E-08 6.87E-08 4.45E-06 6.23E-08 6.87E-08
    F14 2.43E-03 3.53E-03 1.75E-03 7.06E-08 9.84E-03 6.14E-05 3.67E-06 9.64E-03 6.84E-05 3.47E-06
    F15 6.54E-08 7.47E-06 7.75E-08 6.77E-08 1.34E-07 6.54E-08 6.23E-08 1.36E-07 6.58E-08 6.27E-08
    F16 6.43E-08 2.22E-04 1.02E-06 6.86E-08 4.06E-03 6.43E-23 6.23E-08 4.11E-03 6.24E-08 6.31E-08
    F17 3.46E-06 1.73E-03 3.97E-03 6.56E-08 5.53E-01 5.94E-04 6.76E-08 5.57E-01 5.96E-04 6.78E-08
    F18 4.34E-06 9.75E-04 1.36E-03 3.84E-07 2.74E-02 3.88E-07 6.54E-08 2.64E-02 3.78E-07 6.34E-08
    F19 6.83E-08 1.40E-04 6.60E-08 6.65E-08 6.63E-08 6.35E-08 6.76E-08 6.33E-08 6.97E-08 6.45E-08
    F20 6.45E-08 4.93E-02 5.21E-03 1.43E-07 4.54E-01 2.42E-06 9.56E-08 4.22E-01 2.61E-06 9.65E-08
    F21 6.46E-08 9.76E-05 7.65E-08 6.76E-08 8.48E-05 7.55E-08 6.43E-08 8.59E-05 7.65E-08 6.54E-08
    F22 1.23E-03 2.74E-04 2.47E-07 6.45E-08 1.03E-06 8.85E-06 6.44E-08 1.06E-06 8.86E-06 6.48E-08
    F23 1.54E-02 2.61E-06 9.73E-08 6.33E-08 4.65E-03 1.32E-07 6.03E-08 4.65E-03 1.32E-07 6.03E-08
    F24 2.96E-04 3.44E-06 6.43E-08 6.19E-08 4.63E-04 2.73E-07 6.27E-08 4.36E-04 2.37E-07 6.72E-08
    F25 6.33E-08 6.11E-04 2.62E-04 6.73E-08 6.42E-02 6.23E-08 6.97E-08 6.38E-02 6.72E-08 6.56E-08
    F26 2.41E-03 8.27E-03 3.35E-05 6.26E-08 8.97E-04 3.95E-06 6.25E-08 8.32E-04 3.44E-06 6.52E-08
    F27 6.76E-06 1.75E-03 2.73E-07 6.31E-08 1.83E-04 2.92E-07 6.53E-08 1.24E-04 2.47E-07 6.61E-08
    F28 6.71E-08 1.32E-07 6.46E-07 6.28E-08 3.35E-05 1.46E-07 6.71E-08 3.47E-05 1.62E-07 6.65E-08
    F29 1.24E-07 1.64E-01 3.28E-06 6.37E-08 5.54E-01 1.73E-06 6.22E-08 5.53E-01 1.37E-06 6.22E-08
    F30 6.54E-08 1.32E-01 1.28E-07 6.32E-08 6.18E-08 6.91E-08 6.83E-08 6.78E-08 6.41E-08 6.33E-08

     | Show Table
    DownLoad: CSV
    Table 7.  Scalability Test Average results of all algorithms over 30 functions.
    F CSA EHO GOA HHO LSHADE Lshade-EpSin MFO MVO PSO AO mAO
    F1 10 4.34E+07 6.24E+07 4.46E+07 4.65E+07 3.15E+08 2.23E+09 4.74E+08 3.64E+08 4.37E+06 5.235E+06 2.87E+05
    30 7.39E+09 8.31E+09 5.64E+09 5.64E+09 4.05E+10 1.36E+11 3.80E+10 2.79E+10 5.49E+08 5.45E+08 1.78E+07
    50 9.79E+11 9.42E+11 7.77E+11 6.86E+11 5.23E+11 2.19E+13 2.83E+12 4.85E+12 7.65E+10 6.62E+10 2.63E+09
    F3 10 1.19E+04 6.73E+07 2.07E+04 2.32E+04 2.21E+04 3.87E+04 2.66E+04 2.45E+04 3.60E+04 3.23E+04 3.19E+04
    30 1.32E+05 8.74E+09 2.18E+05 1.80E+05 3.38E+05 2.75E+05 3.92E+05 1.75E+05 2.71E+05 1.58E+05 1.31E+05
    50 1.65E+07 6.99E+10 3.46E+07 2.32E+07 3.44E+06 3.23E+06 5.77E+07 2.43E+07 4.55E+07 3.21E+07 3.11E+07
    F4 10 2.88E+02 7.88E+08 2.32E+02 3.75E+02 7.22E+02 2.42E+03 7.03E+02 4.66E+02 6.67E+02 3.11E+02 1.21E+02
    30 2.02E+03 9.03E+09 1.18E+03 1.91E+03 8.15E+03 3.92E+04 4.21E+03 5.24E+03 8.93E+02 8.36E+02 5.91E+02
    50 2.62E+05 5.29E+11 3.25E+04 3.77E+05 6.22E+05 7.13E+06 7.55E+05 7.31E+05 6.21E+05 2.44E+04 2.31E+04
    F5 10 7.53E+02 5.93E+09 7.83E+02 8.92E+02 1.10E+03 1.32E+03 9.46E+02 1.06E+03 7.58E+02 8.18E+02 7.26E+02
    30 8.64E+02 9.26E+09 9.51E+02 9.45E+02 1.13E+03 1.36E+03 1.00E+03 1.08E+03 8.43E+02 8.64E+02 7.77E+02
    50 4.91E+01 2.37E+09 6.86E+01 3.90E+01 6.41E+01 4.90E+01 7.50E+01 6.10E+01 7.57E+01 4.44E+01 2.55E+01
    F6 10 4.70E3+02 7.39E+07 4.36E+02 5.79E+02 4.64E+02 5.41E+02 4.51E+02 5.27E+02 4.31E+02 4.13E+02 3.15E+02
    30 6.70E+02 9.19E+09 6.76E+02 6.79E+02 6.74E+02 7.11E+02 6.61E+02 6.53E+02 6.91E+02 6.60E+02 6.15E+02
    50 8.70E+05 4.19E+11 4.88E+02 6.99E+04 8.88E+03 8.44E+05 8.65E+04 8.23E+05 8.23E+04 4.60E+05 5.23E+04
    F11 10 1.59E+03 6.31E+05 7.13E+02 8.20E+02 4.35E+03 3.11E+03 1.35E+03 2.40E+02 8.17E+02 5.22E+02 2.60E+02
    30 4.52E+03 7.36E+09 4.76E+03 3.20E+03 2.53E+04 3.05E+04 1.63E+04 8.45E+03 2.10E+03 2.65E+03 1.66E+03
    50 8.57E+05 6.36E+09 5.11E+05 4.29E+05 2.94E+05 8.75E+06 7.84E+06 7.87E+05 8.92E+05 7.83E+05 6.33E+05
    F12 10 6.41E+06 4.65E+06 4.34E+05 2.66E+05 5.76E+06 5.76E+7 1.84E+06 6.56E+06 5.22E+06 3.74E+06 1.21E+04
    30 1.26E+09 8.35E+09 3.63E+08 9.33E+08 6.99E+09 5.52E+10 3.89E+09 1.17E+08 9.44E+09 5.29E+07 4.74E+07
    50 1.45E+10 8.88E+10 3.77E+10 9.83E+10 6.55E+10 5.23E+11 3.21E+10 1.45E+10 9.21E+10 5.33E+09 4.23E+10
    F13 10 1.11E+05 6.23E+06 3.11E+04 3.07E+06 6.50E+06 2.66E+07 8.03E+06 2.44E+05 2.65E+06 4.99E+03 2.33E+03
    30 1.40E+07 8.47E+09 4.43E+05 3.12E+07 1.55E+09 2.05E+10 1.33E+09 3.97E+05 2.08E+09 4.84E+04 1.76E+04
    50 1.66E+09 8.74E+10 4.34E+07 3.76E+09 7.55E+10 2.77E+11 1.66E+10 8.23E+07 2.73E+10 4.22E+07 1.45E+07
    F14 10 6.35E+03 9.28E+05 6.65E+03 4.22E+05 8.13E+04 2.34E+05 3.22E+04 2.67E+04 6.17E+04 8.61E+04 6.76E+04
    30 9.35E+05 9.20E+09 6.14E+05 6.98E+06 6.92E+06 2.09E+07 3.35E+06 2.16E+05 7.00E+05 3.01E+06 4.70E+05
    50 6.53E+08 9.77E+11 6.87E+08 8.98E+08 8.72E+08 2.73E+08 3.83E+08 7.75E+08 7.76E+08 3.93E+08 4.93E+07
    F21 10 2.32E+03 7.13E+07 6.17E+06 2.45E+062 2.45E+02 3.82E+02 2.28E+02 8.50E+02 2.42E+03 2.23E+03 2.12E+02
    30 2.78E+03 9.28E+09 2.78E+03 2.96E+03 2.90E+03 3.17E+03 2.77E+03 2.56E+03 2.95E+03 2.66E+03 2.62E+03
    50 2.45E+07 1.23E+10 2.11E+06 6.96E+06 2.45E+06 3.55E+07 2.27E+06 7.88E+06 2.11E+07 2.76E+05 2.23E+05
    F22 10 8.37E+03 6.11E+06 6.76E+03 6.88E+06 1.33E+06 1.43E+03 1.87E+03 1.56E+04 1.56E+03 1.43E+03 2.90E+02
    30 1.07E+04 7.31E+09 1.16E+04 1.21E+04 1.77E+04 1.69E+04 1.04E+04 1.56E+04 1.53E+04 1.30E+04 9.65E+03
    50 7.27E+06 9.12E+09 5.56E+06 1.45E+06 8.57E+06 8.59E+06 6.74E+07 8.23E+06 1.21E+06 5.38E+04 9.23E+07
    F23 10 3.73E+02 5.11E+08 2.34E+02 3.67E+02 3.32E+02 3.55E+02 3.65E+02 3.21E+02 3.07E+02 2.76E+03 4.03E+02
    30 3.83E+03 9.44E+09 3.34E+03 4.17E+03 3.49E+03 4.19E+03 3.16E+03 3.70E+03 3.11E+03 3.15E+03 3.03E+03
    50 3.93E+04 5.44E+10 3.13E+04 4.09E+02 4.12E+04 9.12E+04 7.19E+04 3.79E+04 3.44E+04 3.62E+04 8.83E+03
    F24 10 5.04E+02 7.13E+06 1.41E+02 5.24E+02 2.43E+02 3.23E+02 4.73E+02 2.22E+02 3.55E+02 9.21E+02 2.25E+02
    30 4.05E+03 8.62E+09 3.45E+03 4.39E+03 3.65E+03 4.50E+03 3.73E+03 3.18E+03 3.33E+03 3.26E+03 3.25E+03
    50 7.23E+05 5.62E+11 5.66E+05 8.33E+05 7.23E+05 6.56E+05 2.73E+05 3.23E+06 3.26E+05 3.17E+05 5.25E+05

     | Show Table
    DownLoad: CSV

    To show the powerfulness of our suggested optimizer by intergrating three strategies with AO, we test the standard AO with each operator seperately. Table 8 shows the average and standard deviation of four algorithms: AO with OBL (AOOBL), AO with CLS (AOCLS), AO with RS (AORS), and the developed algorithm mAO that contains AO with CLS, RS, and OBL.

    Table 8.  Mean and Standard Deviation values obtained by various Enhanced AO.
    N Average Standard Deviation
    AOOBL AOCLS AORS mAO AOOBL AOCLS AORS mAO
    F1 1.23E+09 4.45E+08 1.98E+08 1.78E+07 7.63E+07 7.65E+07 7.12E+07 4.23E+06
    F3 1.46E+06 2.22E+06 1.22E+06 1.31E+05 1.23E+05 4.91E+05 3.02E+06 1.55E+04
    F4 1.02E+04 4.23E+03 1.31E+03 5.91E+02 6.71E+03 6.92E+03 8.71E+03 6.13E+01
    F5 4.67E+03 9.78E+02 4.23E+04 7.77E+02 2.91E+02 7.12E+02 2.81E+02 2.55E+01
    F6 4.71E+03 6.82E+03 6.74E+03 6.15E+02 1.19E+01 3.99E+01 7.87E+00 3.37E+00
    F11 4.67E+03 2.12E+04 2.23E+04 1.66E+03 2.23E+02 1.49E+03 1.49E+03 1.19E+02
    F12 5.48E+07 2.27E+08 3.27E+08 4.47E+07 6.82E+07 7.66E+07 6.23E+07 3.85E+07
    F13 2.52E+04 9.22E+05 3.23E+04 1.76E+04 5.73E+04 2.40E+04 2.36E+04 6.46E+03
    F14 4.78E+05 4.91E+05 6.28E+06 4.70E+05 4.62E+06 8.13E+05 8.17E+05 3.40E+05
    F21 2.73E+03 3.81E+03 3.22E+04 2.62E+03 3.07E+02 1.54E+02 9.37E+01 5.30E+01
    F22 6.85E+04 4.23E+04 7.23E+04 9.65E+03 6.41E+03 4.78E+03 4.04E+03 9.70E+02
    F23 3.19E+03 4.27E+04 7.82E+04 3.03E+03 2.45E+02 2.39E+02 8.33E+012 8.48E+01
    F24 2.52E+04 7.45E+03 6.15E+03 3.25E+03 7.68E+02 6.92E+02 3.77E+02 5.48E+01

     | Show Table
    DownLoad: CSV

    In this section, the performance of the developed optimizer is tested using many real-world constrained problems which contain many inequalities. These problems are Welded beam design problem, Pressure vessel design problem, Tension/compression spring design problem, Speed reducer design problem, and Three-bar truss design problem. The mathematical formulas for the above problems are existed in [68,74,75].

    The first constrained problem used in this study is welded beam design (WBD) which is proposed by Coello [76]. The aim of this problem is to find the minimum welded beam cost and its design structure is shown in Figure 4. WBD has 7 constraints and 4 design variables namely: bar thickness $ (b) $, bar height $ (t) $, weld thickness $ (h) $, and attached bar part length $ (l) $. The mathematical representation of WBD can be formulated as follows:

    Figure 4.  Welded beam design.

    $ {\rm{Consider }}\vec{x} = \left[{{x}_{1}}\; {{x}_{2}}\; {{x}_{3}}\; {{x}_{4}} \right] = \left[h \, l \, t \, b \right]$

    ${\rm{Minimize }}\ f\left({\vec{x}} \right) = 1.10471x_{1}^{2}{{x}_{2}}+0.04811{{x}_{3}}{{x}_{4}}\left(14.0+{{x}_{2}} \right)$

    ${\rm{Subject\ to: }}$

    ${{g}_{1}}\left({\vec{x}} \right) = \tau \left({\vec{x}} \right)-13600\le 0$

    ${{g}_{2}}\left({\vec{x}} \right) = \sigma \left({\vec{x}} \right)-30000\le 0$

    ${{g}_{3}}\left({\vec{x}} \right) = {{x}_{1}}-{{x}_{4}}\le 0$

    ${{g}_{4}}\left({\vec{x}} \right) = 0.10471\left(x_{1}^{2} \right)+0.04811{{x}_{3}}{{x}_{4}}\left(14+{{x}_{2}} \right)-5.0\le 0$

    ${{g}_{6}}\left({\vec{x}} \right) = \delta \left({\vec{x}} \right)-0.25\le 0$

    ${{g}_{7}}\left({\vec{x}} \right) = 6000-{{p}_{c}}\left({\vec{x}} \right)\le 0$

    ${{\rm{where}}}$

    $\tau \left({\vec{x}} \right) = \sqrt{\left({{\tau }'} \right)+\left(2{\tau }'{\tau }'' \right)\frac{{{x}_{2}}}{2R}+{{\left({{\tau }''} \right)}^{2}}}$

    ${\tau }' = \frac{6000}{\sqrt{2}{{x}_{1}}{{x}_{2}}}$

    ${\tau }'' = \frac{MR}{J}$

    $M = 6000\left(14+\frac{{{x}_{2}}}{2} \right)$

    $R = \sqrt{\frac{x_{2}^{2}}{4}+{{\left(\frac{{{x}_{1}}+{{x}_{3}}}{2} \right)}^{2}}}$

    $j = 2\left\{ {{x}_{1}}{{x}_{2}}\sqrt{2}\left[\frac{x_{2}^{2}}{12}+{{\left(\frac{{{x}_{1}}+{{x}_{3}}}{2} \right)}^{2}} \right] \right\}$

    $\sigma \left({\vec{x}} \right) = \frac{504000}{{{x}_{4}}x_{3}^{2}}$

    $\delta \left({\vec{x}} \right) = \frac{65856000}{\left(30\times {{10}^{6}} \right){{x}_{4}}x_{3}^{3}}$

    ${{p}_{c}}\left({\vec{x}} \right) = \frac{4.013\left(30\times {{10}^{6}} \right)\sqrt{\frac{x_{3}^{2}x_{4}^{6}}{36}}}{196}\left(1-\frac{{{x}_{3}}\sqrt{\frac{30\times {{10}^{6}}}{4\left(12\times {{10}^{6}} \right)}}}{28} \right)$

    ${\rm{with }}\ 0.1\le {{x}_{1}}, {{x}_{4}}\le 2.0\, {\rm{and}}\, 0.1\le {{x}_{2}}, {{x}_{3}}\le 10.0$

    Results of WBD are shown in Table 9 where mAO is compared with classical AO, GSA [46], GA [77], SSA [78], MPA [79], HHO [80,81], WOA [82], and CSA [40]. From the pre-mentioned table, it's notable that mAO has outperformed other swarm optimizers with an objective value of 1.6565 and decision values $ (x_1, x_2, x_3, x_4) $ = (0.1625, 3.4705, 9.0234, 0.2057, 1.6565).

    Table 9.  Comparison of optimum results for Welded beam design problem.
    Algorithm h l t b Cost
    AO 0.1631 3.3652 9.0202 0.2067 1.6566
    GSA 0.1821 3.856979 10.000 0.202376 1.87995
    GA 0.2489 6.1730 8.1789 0.2533 2.4300
    SSA 0.2057 3.4714 9.0366 0.2057 1.72491
    MPA 0.2057 3.470509 9.036624 0.205730 1.724853
    SMA 0.2054 3.2589 9.0384 0.2058 1.69604
    HHO 0.2134 3.5601 8.4629 0.2346 1.85614
    WOA 0.3290 2.5471 6.8078 0.3789 2.358350
    SO 0.2057 3.4705 9.0366 0.2057 1.72485
    mAO 0.1625 3.4705 9.0234 0.2057 1.6565

     | Show Table
    DownLoad: CSV

    The $ 2^{nd} $ constrained problem introduced in this study is one of the mixed integer optimization problems which is termed as Pressure Vessel Design (PVD) problem proposed by Kannan and Kramer [83]. PVD aims to select the lowest cost of raw materials for the cylindrical vessel as shown in Figure 5. PVD has 4 parameters namely: head thickness $ (T_{h}) $, shell thickness $ (T_{s}) $, cylindrical strength $ (L) $, and inner radius $ (R) $. To mathematically model PVD, the following formula is designed:

    Figure 5.  Pressure vessel design.

    $ {\rm{Minimize }}\ f(x) = 0.6224{{x}_{1}}{{x}_{3}}{{x}_{4}}+1.7781{{x}_{2}}x_{3}^{2}+3.1661x_{1}^{2}{{x}_{4}}+19.84x_{1}^{2}{{x}_{3}}$

    ${\rm{Subject\ to: }}$

    ${{g}_{1}}(x) = -{{x}_{1}}+0.0193x$

    ${{g}_{2}}(x) = -{{x}_{2}}+0.00954{{x}_{3}}\, \le 0$

    ${{g}_{3}}(x) = -\pi x_{3}^{2}{{x}_{4}}-(4/3)\pi x_{3}^{3}+1,296,000\le 0$

    ${{g}_{4}}(x) = {{x}_{4}}-240\le 0$

    $0\le {{x}_{i}}\le 100, \, \, i = 1, 2$

    $10\le {{x}_{i}}\le 200, \, \, i = 3, 4$

    $ Results of PVD exists in table 10 where the suggested optimizer is compared with original AO, WOA [82], PSO-SCA [84], HS [85], SMA [86], CPSO [87], GWO [47], HHO [80], GOA [46], TEO [88], and SO [30]. From the pre-mentioned table, it can be seen that the developed optimizer ranked first with a value of 5946.3358 and decision values $ (x_1, x_2, x_3, x_4) $ = (1.0530, 0.181884, 58.619, 38.8080, 5946.3358).

    Table 10.  Comparison of optimum results for pressure vessel design.
    Algorithm x1 x2 x3 x4 Cost
    AO 1.0540 0.182806 59.6219 38.8050 5949.2258
    WOA 0.812500 0.437500 42.0982699 176.638998 6059.7410
    PSO-SCA 0.8125 0.4375 42.098446 176.6366 6059.71433
    HS 1.125000 0.625000 58.29015 43.69268 7197.730
    SMA 0.7931 0.3932 40.6711 196.2178 5994.1857
    CPSO 0.8125 0.4375 42.091266 176.7465 6061.0777
    GWO 0.8125 0.4345 42.0892 176.7587 6051.5639
    HHO 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259
    GOA 0.9571 0.4749 49.9302 99.0053 6333.0873
    SO 0.7819 0.3857 40.5752 196.5499 5887.5297
    mAO 1.0530 0.181884 58.619 38.8080 5946.3358

     | Show Table
    DownLoad: CSV

    The $ 3^{rd} $ constrained engineering problem discussed here is Tension/Compression Spring Design (TCSD) which was introduced by Arora [89] and its main objective is to decrease the tension spring weight by determining the optimal design variables' values that satisfy its constrained requirements. TCSD has different 3 variables namely: diameter of mean coil $ (D) $, the diameter of the wire $ (d) $, and active coils number $ (N) $. TCSD design is given in Figure 6 and its mathematical formulation is given as follows:

    Figure 6.  Tension/compression spring design.

    Consider:

    $ \vec{x} = \left[{{x}_{1}}{{x}_{2}}{{x}_{3}} \right] = \left[d\, D\, N \right]$

    ${\rm{Minimize }}\ f\left({\vec{x}} \right) = \left({{x}_{3}}+2 \right){{x}_{2}}x_{1}^{2}$

    $subject to:$

    ${{g}_{1}}\left({\vec{x}} \right) = 1-\frac{x_{2}^{3}{{x}_{3}}}{71785x_{1}^{4}}\le 0$

    ${{g}_{2}}\left({\vec{x}} \right) = \frac{4x_{2}^{2}-{{x}_{1}}{{x}_{2}}}{12566\left({{x}_{2}}x_{1}^{3}-x_{1}^{4} \right)}+\frac{1}{5108x_{1}^{2}}-1\le 0$

    ${{g}_{3}}\left({\vec{x}} \right) = 1-\frac{140.45{{x}_{1}}}{x_{2}^{2}{{x}_{3}}}\le 0$

    ${{g}_{4}}\left({\vec{x}} \right) = \frac{{{x}_{1}}+{{x}_{2}}}{1.5}-1\le 0$

    ${\rm{with }}\ 0.05\le {{x}_{1}}\le 2.0, 0.25\le {{x}_{2}}\le 1.3, and\, 2.0\le {{x}_{3}}\le 15.0$

    Table 11 shows the results of TCSD where mAO is compared with RO [90], WOA [82], PSO [87], MVO [64], ES [91], OBSCA [92], GSA [93], and CPSO [87].

    Table 11.  Comparison of optimum results for Tension/compression spring.
    Algorithm d D P Cost
    RO 0.051370 0.349096 11.76279 0.0126788
    WOA 0.051207 0.345215 12.004032 0.0126763
    PSO 0.051728 0.357644 11.244543 0.0126747
    MVO 0.05251 0.37602 10.33513 0.012790
    ES 0.051643 0.355360 11.397926 0.012698
    OBSCA 0.05230 0.31728 12.54854 0.012625
    GSA 0.050276 0.323680 13.525410 0.0127022
    CPSO 0.051728 0.357644 11.244543 0.0126747
    AO 0.0502439 0.35262 10.5425 0.011165
    mAO 0.0502339 0.32282 10.5244 0.011056

     | Show Table
    DownLoad: CSV

    From the previously mentioned table, we can conclude that mAO has achieved better results compared to original and other competitors. It achieves a fitness value with 0.011056 and decision values $ (x_1, x_2, x_3) $ = (0.0502339, 0.32282, 10.5244).

    The $ 4^{th} $ engineering problem discussed in this section is the speed reducer design [94] (SRD) whose main aim is to minimize speed reducer weight with respect to curvature stress of gear teeth, shafts stress, and shafts transverse deflections. It has seven different variables and its design is shown in Figure 7. The formulation of the SRD can be descriped mathematically as follows:

    Figure 7.  Speed reducer design problem.

    $ {\rm{Minimize: }}\; f\left({\vec{z}} \right) = 0.7854{{z}_{1}}z_{2}^{2}\left(3.3333z_{3}^{2}+14.9334{{z}_{3}}-43.0934 \right)-1.508{{z}_{1}}\,$

    $\left(z_{6}^{2}+z_{7}^{2} \right)+7.4777\left(z_{6}^{3}+z_{7}^{3} \right)+0.7854\left({{z}_{4}}z_{6}^{2}+{{z}_{5}}z_{7}^{2} \right)\,$

    ${\rm{Subject\ to: }}$

    ${{g}_{1}}\left({\vec{z}} \right) = \frac{27}{{{z}_{1}}z_{2}^{2}{{z}_{3}}}-1\le 0$

    ${{g}_{2}}\left({\vec{z}} \right) = \frac{397.5}{{{z}_{1}}z_{2}^{2}{{z}_{3}}}-1\le 0$

    ${{g}_{3}}\left({\vec{z}} \right) = \frac{1.93z_{4}^{3}}{{{z}_{2}}{{z}_{3}}z_{6}^{4}}-1$

    ${{g}_{4}}\left({\vec{z}} \right) = \frac{1.93z_{5}^{3}}{{{z}_{2}}{{z}_{3}}z_{7}^{4}}-1\le 0$

    ${{g}_{5}}\left({\vec{z}} \right) = \frac{1}{110z_{6}^{3}}\sqrt{{{\left(\frac{745{{z}_{4}}}{{{z}_{2}}{{z}_{3}}} \right)}^{2}}+16.9\times {{10}^{6}}}-1\le 0$

    ${{g}_{6}}\left({\vec{z}} \right) = \frac{1}{85z_{7}^{3}}\sqrt{{{\left(\frac{745{{z}_{5}}}{{{z}_{2}}{{z}_{3}}} \right)}^{2}}+157.5\times {{10}^{6}}}-1\le 0$

    ${{g}_{7}}\left({\vec{z}} \right) = \frac{{{z}_{2}}{{z}_{3}}}{40}-1\le 0$

    ${{g}_{8}}\left({\vec{z}} \right) = \frac{5{{z}_{2}}}{{{z}_{1}}}-1\le 0$

    ${{g}_{9}}\left({\vec{z}} \right) = \frac{{{z}_{1}}}{12{{z}_{2}}}-1\le 0$

    ${{g}_{10}}\left({\vec{z}} \right) = \frac{1.5{{z}_{6}}+1.9}{z_{4}}-1\le 0$

    ${{g}_{11}}\left({\vec{z}} \right) = \frac{1.1{{z}_{7}}+1.9}{{{z}_{5}}}-1\le 0$

    $with$

    $2.6\le {{z}_{1}}\le 3.6$

    $0.7\le {{z}_{2}}\le 0.8$

    $17\le {{z}_{3}}\le 28$

    $7.3\le {{z}_{4}}\le 8.3$

    $7.8\le {{z}_{5}}\le 8.3$

    $2.9\le {{z}_{6}}\le 3.9$

    ${\rm{and}}\, 5\le {{z}_{7}}\le 5.5$

    mAO is compared with different metaheuristics optimizers including PSO [95], MDA [96], GSA [93], HS [29], SCA [97], SES [98], SBSM [99], and hHHO-SCA [100] as shown in Table 12. From this table, it's obvious that mAO outperformed other algorithms. mAO ranked first with a fitness value of 3002.7328 and decision values $ (x_1, x_2, x_3, x_4, x_5, x_6, x_7) $ = (3.5012, 0.7, 17, 7.3100, 7.8873, 3.0541, 5.2994).

    Table 12.  Comparison of optimum results for Speed Reducer problem.
    Algorithm z1 z2 z3 z4 z5 z6 z7 Cost
    Cost
    PSO 3.5001 0.7000 17.0002 7.5177 7.7832 3.3508 5.2867 3145.922
    MDA 3.5 0.7 17 7.3 7.670396 3.542421 5.245814 3019.583365
    GSA 3.600000 0.7 17 8.3 7.8 3.369658 5.289224 3051.120
    HS 3.520124 0.7 17 8.37 7.8 3.366970 5.288719 3029.002
    SCA 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563
    SES 3.506163 0.700831 17 7.460181 7.962143 3.362900 5.308949 3025.005127
    SBSM 3.506122 0.700006 17 7.549126 7.859330 3.365576 5.289773 3008.08
    hHHO-SCA 3.506119 0.7 17 7.3 7.99141 3.452569 5.286749 3029.873076
    AO 3.5021 0.7000 17.0000 7.3099 7.7476 3.3641 5.2994 3007.7328
    mAO 3.5012 0.7 17 7.3100 7.8873 3.0541 5.2994 3002.7328

     | Show Table
    DownLoad: CSV

    The last engineering problem addressed in this manuscript is called the Three-bar truss design (TBD) problem. TBD is a fraction and nonlinear civil engineering problem introduced by Nowcki [101]. Its objective is to find the minimum values of truss weight. It has two variables and its mathematical formulation is shown below:

    Minimize: $ f(x) = (2\sqrt{2x_{1}}+x_{2})*l $

    Subject to: $ {{g}_{1}}\left(x \right) = \frac{\sqrt{2}x_{1}+x_{2}}{\sqrt{2x_{1}^{2}}+2x_{1}x_{2}}P- \sigma\leq0 $

    $ {{g}_{2}}\left(x \right) = \frac {x_{2}}{\sqrt{2}x_{1}^{2}+2x_{1}x_{2}}P-\sigma\leq0 $

    $ {{g}_{3}}\left(x \right) = \frac {1}{\sqrt{2}x_{1}^{2}+2x_{1}x_{2}}P-\sigma\leq0 $

    Variable Range

    $ 0\le {x}_{1}, {x}_{2}\le 1 $

    Figure 8.  Three-bar truss design problem.

    mAO results are compared with CS [102], GOA [46], DEDS [103], MBA [104], PSO-DE [84], AAA [105], PSO-DE [84], DEDS [103] and AO. The results of TBD are listed in table 13 in which mAO results outperformed other competitors. mAO ranked first with a fitness value of 231.8681 and decision values $ (x_1, x_2) $ = (30.7886, 0.3844).

    Table 13.  Optimization results for the Three-bar truss design problem.
    Algorithm x1 x2 Cost
    CS 0.78867 0.40902 263.9716
    GOA 0.78889755557 0.40761957011 263.89588149
    DEDS 0.78867513 0.40824828 263.89584
    MBA 0.7885650 0.4085597 263.89585
    PSO-DE 0.7886751 0.4082482 263.89584
    AAA 0.7887354 0.408078 263.895880
    CS 0.78867 0.40902 263.9716
    PSO-DE 0.7886751 0.4082482 263.89584
    DEDS 0.78867513 0.40824828 263.89584
    AO 0.7926 0.3966 263.8684
    mAO 0.7886 0.3844 231.8681

     | Show Table
    DownLoad: CSV

    In this study, a novel AO version is suggested called mAO to tackle various optimization issues. mAO is based on 3 different techniques: 1) Opposition-based Learning to improve optimizer exploration phase 2) Restart Strategy to remove the worse agents and replace them with totally random agents. 3) Chaotic Local Search to add more exploitation abilities to the original algorithm. mAO is tested using 29 CEC2017 functions and different five engineering optimization problems. Statistical analysis and experimental numbers show the significance of the suggested optimizer in solving various optimization issues. However, mAO like other swarm-based algorithms has a slow convergence in high-dimensional problems so, it won't be able to solve all optimization problem types.

    In future, we can apply mAO to feature selection, job scheduling, combinatorial optimization problems, and stress suitability. Binary and multi-objective versions may be proposed in future.

    The authors would like to thank the support of Digital Fujian Research Institute for Industrial Energy Big Data, Fujian Province University Key Lab for Industry Big Data Analysis and Application, Fujian Key Lab of Agriculture IOT Application, IOT Application Engineering Research Center of Fujian Province Colleges and Universities, Sanming City 5G Innovation Laboratory, and also the anonymous reviewers and the editor for their careful reviews and constructive suggestions to help us improve the quality of this paper. Educational research projects of young and middle-aged teachers in Fujian Province (JAT200648), Fujian Natural Science Foundation Project (2021J011128).

    The authors declare there is no conflict of interest.

    [1] International Energy Agency, Energy Access Database, 2015. Available from: http://www.worldenergyoutlook.org/resources/energydevelopment/energyaccessdatabase/#d.en.8609.
    [2] International Energy Agency (2013) Global Energy Trends, In: World Energy Outlook 2013, International Energy Agency.
    [3] Alstone P, Gershenson D, Kammen DM (2015) Decentralized energy systems for clean electricity access. Nat Clim Chang 5: 305-314.
    [4] Green Power for Mobile (2011) Green Power for Mobile Charging Choices 2011 - Mobile Phone Charging Solutions in the Developing World, Groupe Speciale Mobile Association, London.
    [5] GTZ (Gesellschaft für Technische Zusammenarbeit, German Technical Cooperation Agency in English), Rural Electrification by Battery Charging Stations, GTZ.
    [6] Corbus D (1998) Battery Charging Stations (Project Brief, Renewables for Sustainable Village Power ), National Renewable Energy Laboratory (NREL), Washington, DC.
    [7] Kemeny P, Munro PG, Schiavone N, et al. (2014) Community Charging Stations in rural sub-Saharan Africa: Commercial. Energy Sustain Dev 23: 228-236.
    [8] Emmott CJM, Jaoude AA, Urbina A, et al. (2012) Life Cycle Analysis of an Off-Grid Solar Charging Kiosk, IEEE Third International Conference on Sustainable Energy Technologies (ICSET), Kathmandu.
    [9] dos Santos RR, R Zilles (2001) Photovoltaic Residential Electrification: A Case Study on Solar Battery Charging Stations in Brazil. Prog Photovolt Res Appl 9: 445-453.
    [10] Dung TQ, Anisuzzaman M, Kumar S, et al. (2003) Demonstration of multi-purpose battery charging station for rural electrification. Renew Energ 8: 2367-2378.
    [11] Chaurey A, Kandpal TC (2009) Solar lanterns for domestic lighting in India: Viability of central charging, Energ Policy 37: 4910-4918.
    [12] Chaurey A, Kandpal TC (2010) Assessment and evaluation of PV based decentralized rural electrification: An overview. Renew Sust Energ Rev 14: 2266-2278. doi: 10.1016/j.rser.2010.04.005
    [13] Manchester SC, Swan LG (2013) Off-grid mobile phone charging: An experimental study. Energy Sustain Dev 17: 564-571. doi: 10.1016/j.esd.2013.10.003
    [14] Ley D, Martínez H, Lara E, et al., Nicaraguan Renewable Energy for rural zones program initiative. Availabe from: http://solar.nmsu.edu/publications//A185.pdf
    [15] Chhim C, Ketjoy N, Suriwong T (2014) Techno-Economic Analysis of PV Battery Charging Station in Kampot, Cambodia. J Clean Energ Tech 2: 369-373. doi: 10.7763/JOCET.2014.V2.156
    [16] Wyche SP, Murphy LL (2012) “Dead China-Make” Phones Off the Grid: Investigating and Designing for Mobile Phone Use in Rural Africa, Designing Interactive Systems Conference, New York.
    [17] Thongsathitya A, Surawatanawong J, Stakulcharoen S (1995), Photovoltaic Battery charging stations for Non - electrified villages in Thailand, Ministry of Interior, Bangkok.
    [18] Sriuthaisiriwong Y, Kumar S (2001) Rural Electrification Using Photovoltaic Battery Charging Stations: A Performance Study in Northern Thailand. Prog Photovolt Res Appl 9: 223-234.
    [19] Resch M, Schnorr F, Wolff M, et al. (2013) Local and Global Simulation of Solarkiosks, 3rd Symposium Small PV-Applications, Ulm.
    [20] Green D (2004) Thailand's solar white elephants: an analysis of 15 yr of solar battery. Energ Policy 32: 747-760.
    [21] Johnson NG, Bryden KM (2012) Energy supply and use in a rural West African village. Energy 43: 283-292.
    [22] Bidwell NJ, Siya M, Marsden G, et al. (2013) Walking and the Social Life of Solar Charging in Rural Africa, ACM Transactions on Computer-Human Interaction (TOCHI) - Special issue on practice-oriented approaches to sustainable HCI 20.
    [23] Linna P (2011) Community-level entrepreneurial activities: Case study from rural Kenya. Int J Bus Public Manage 1: 8-15.
    [24] Wyche SP, Murphy LL (2013) Powering the cellphone revolution: findings from mobile phone charging trials in off-grid Kenya, SIGCHI Conference on Human Factors in Computing Systems, New York.
    [25] Jacobson A (2007) Connective Power: Solar Electrification and Social Change in Kenya. World Dev 35: 144-162.
    [26] Sheng S, Hsu CT, Li P, et al. (2013) Energy Management for Solar Battery Charging Station, IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL), Salt Lake City.
    [27] Chaurey A, Krithika PR, Palit D, et al. (2012) New partnerships and business models for facilitating energy access. Energ Policy 47: 48-55.
    [28] Rey-Moreno C, Roro Z, Tucker WD, et al. (2013) Community-based Solar Power Revenue Alternative to Improve Sustainability of a Rural Wireless Mesh Network, Sixth International Conference on Information and Communications Technologies and Development, New York.
    [29] Milicevic M (2014) Cyberspace and Globalization, 2nd African Digital Curation Conference, Pretoria, South Africa.
    [30] Bidwell NJ, Reitmaier T, Rey-Moreno C,et al. (2013) Timely Relations in Rural Africa, 12th International Conference on Social Implications of Computers in Developing Countrie1, Ocho Rios.
    [31] Adkins E, Oppelstrup K, Modi V (2012) Rural household energy consumption in the millennium villages in Sub-Saharan Africa. Energ Sustain Dev 12: 249-259.
    [32] Gaudchau E, Gerlach AK, Wasgindt V, et al. (2013) Business Models for Renewable Energy Based Mini-Grids in Non-Electrified Regions, 28th European Photovoltaic Solar Energy Conference, Paris.
    [33] Silva ID, Abop MS, Wassler S, et al. (2012) Establishment of a Solar Energy Kiosk as a Solar Field Laboratory, 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt.
    [34] Mohanty P, Dasgupta N, Sharma A (2010) Centralized solar lantern charging station under ‘lighting a billion lives' campaign: a technological evolution. Prog Photovolt Res Appl 18: 516-534.
    [35] Greacen C, Green D (2001) The role of bypass diodes in the failure of solar battery charging stations in Thailand. Sol Energ Mat Sol C 70: 141-149. doi: 10.1016/S0927-0248(01)00017-4
    [36] Lorenzo E (1997) Photovoltaic Rural Electrification. Prog Photovolt Res Appl 5: 3-27.
    [37] Palit D (2013) Solar energy programs for rural electrification: Experiences and lessons from South Asia. Energ Sustain Dev 17: 270-290. doi: 10.1016/j.esd.2013.01.002
    [38] Palit D, Singh J (2011) Lighting a Billion Lives - Empowering the rural poor. Boiling Point 59.
    [39] Borah RR, Palit D, Mahapatra S (2013) Comparative Analysis of Solar Photovoltaic Lighting Systems in India, 4th International Conference on Advances in Energy Research, Bombay.
    [40] Ulsruda K, Wintherb T, Palit D, et al. (2015) Village-level solar power in Africa: Accelerating access to electricity services through a socio-technical design in Kenya. Energ Res Soc Sci 5: 34-44.
    [41] Santos RR, Zilles R (2000) Eletrificação de localidades isoladas: centros fotovoltaicos de carga de bateria e sistemas fotovoltaicos domiciliares, 3 Encontro de Energia no Meio Rural, Campinas.
    [42] Muhopadhyay K, Sensarma B, Saha H (1993) Solar PV lanterns with centralized charging system - a new concept for rural lighting in the developing nations. Sol Energ Mat Sol C 31: 437-446.
    [43] Gaillard L, Schroeter A (2009) Solar Recharging Stations: Selling Hours of Solar, 1st International Conference on the Developments in Renewable Energy Technology, Dhaka.
    [44] UNIDO Representative for Kenya and Eritrea, KIANG'OMBEJM hybrid Energy Kiosk - A technology developed to support the UNIDO-Kenya Initiative of Rural Energy for Productive Use In off-grid rural areas of Africa, Nairobi. Available from: http://www.riaed.net/IMG/pdf/KENYA_UNIDO_launches_hybrid_energy_kiosk_in_Kiang_ombe.pdf
    [45] Jaoude AA, Grealish A, Holzigel J, et al. (2013) Experiences from Solar Battery Charging Kiosks in Rwanda, 3rd Sympsium on Small PV Applications for Rural Electrification and Commercial Uses, Ulm.
    [46] Collings S (2011) Phone Charging Micro-businesses in Tanzania and Uganda, GVEP International, London, 2011.
    [47] Fishbein RE (2003) Survey of Productive Uses of Electricity in Rural Areas, World Bank, Washington DC.
    [48] The Energy and Mining Sector Board (2008) Box 2: Solar Battery Charging Stations in Nicaragua: Solution for the Poorest?, In The World Bank, Designing Sustainable Off-Grid Rural Electrification Projects: Principles and Practices, The World Bank, Washington DC.
    [49] Green Power for Mobile, Community Power from Mobile - Charging Services, Groupe Speciale Mobile Association, London, 2011.
    [50] Knobloch C, Hartl J (2014) The Energy Kiosk Model - Current Challenges and Future Strategies, Endeva Business Model Library.
    [51] Hartl JM (2014) The Energy Kiosk Model for Electrification - Status Quo and Future Strategies, Instituto Superior Técnico, Lisbon.
    [52] The World Bank (2012) Maximizing Mobile: Information and Communications for Development, The World Bank, Washington DC.
    [53] BBOXX, BBOXX, 2015. Available from: http://www.bboxx.co.uk/.
    [54] HERi Madagascar, HERi Madagascar, 2014. Available from: http://www.beheri.com/NL.
    [55] Juabar, Juabar, 2014. Available from: http://juabar.com/.
    [56] SolarKiosk, SolarKiosk , 2014. Available from: http://solarkiosk.eu/.
    [57] Lighting A Billion Lives, Lighting A Billion Lives , 2015. Available from: http://labl.teriin.org/.
    [58] African Renewable Energy Distributor, African Renewable Energy Distributor, 2014. Available from: http://www.a-r-e-d.com/.
    [59] International Energy Agency (2011) Energy for All - Financing access for the poor, International Energy Agency.
    [60] The Money Converter, The Money Converter, 2014. Available from: http://themoneyconverter.com/.
    [61] International Electrotechnical Commission (2013) Recommendations for small renewable energy and hybrid systems for rural electrification - Part 9-5: Integrated system - Selection of stand-alone lighting kits for rural electrification, International Electrotechnical Commission, Geneva.
  • This article has been cited by:

    1. Yangwei Wang, Yaning Xiao, Yanling Guo, Jian Li, Dynamic Chaotic Opposition-Based Learning-Driven Hybrid Aquila Optimizer and Artificial Rabbits Optimization Algorithm: Framework and Applications, 2022, 10, 2227-9717, 2703, 10.3390/pr10122703
    2. Amit Chhabra, Abdelazim G. Hussien, Fatma A. Hashim, Improved bald eagle search algorithm for global optimization and feature selection, 2023, 68, 11100168, 141, 10.1016/j.aej.2022.12.045
    3. Rong Zheng, Abdelazim G Hussien, Raneem Qaddoura, Heming Jia, Laith Abualigah, Shuang Wang, Abeer Saber, A multi-strategy enhanced African vultures optimization algorithm for global optimization problems, 2023, 10, 2288-5048, 329, 10.1093/jcde/qwac135
    4. Xiang Liu, Min Tian, Jie Zhou, Jinyan Liang, An efficient coverage method for SEMWSNs based on adaptive chaotic Gaussian variant snake optimization algorithm, 2022, 20, 1551-0018, 3191, 10.3934/mbe.2023150
    5. Lei Wu, Jiawei Wu, Tengbin Wang, Enhancing grasshopper optimization algorithm (GOA) with levy flight for engineering applications, 2023, 13, 2045-2322, 10.1038/s41598-022-27144-4
    6. Fatma A. Hashim, Reham R. Mostafa, Abdelazim G. Hussien, Seyedali Mirjalili, Karam M. Sallam, Fick’s Law Algorithm: A physical law-based algorithm for numerical optimization, 2023, 260, 09507051, 110146, 10.1016/j.knosys.2022.110146
    7. Gang Hu, Rui Yang, Muhammad Abbas, Guo Wei, BEESO: Multi-strategy Boosted Snake-Inspired Optimizer for Engineering Applications, 2023, 1672-6529, 10.1007/s42235-022-00330-w
    8. Yufei Wang, Yujun Zhang, Yuxin Yan, Juan Zhao, Zhengming Gao, An enhanced aquila optimization algorithm with velocity-aided global search mechanism and adaptive opposition-based learning, 2023, 20, 1551-0018, 6422, 10.3934/mbe.2023278
    9. Chao Shang, Ting-ting Zhou, Shuai Liu, Optimization of complex engineering problems using modified sine cosine algorithm, 2022, 12, 2045-2322, 10.1038/s41598-022-24840-z
    10. Abdelazim G. Hussien, Fatma A. Hashim, Raneem Qaddoura, Laith Abualigah, Adrian Pop, An Enhanced Evaporation Rate Water-Cycle Algorithm for Global Optimization, 2022, 10, 2227-9717, 2254, 10.3390/pr10112254
    11. Abdelazim G. Hussien, Ruba Abu Khurma, Abdullah Alzaqebah, Mohamed Amin, Fatma A. Hashim, Novel memetic of beluga whale optimization with self-adaptive exploration–exploitation balance for global optimization and engineering problems, 2023, 27, 1432-7643, 13951, 10.1007/s00500-023-08468-3
    12. Fei Pan, Xingwei Sun, Heran Yang, Yin Liu, Sirui Chen, Hongxun Zhao, Prediction of Abrasive Belt Wear Height for Screw Rotor Belt Grinding Based on BP Neural Network with Improved Skyhawk Algorithm, 2024, 2234-7593, 10.1007/s12541-024-01110-8
    13. Yahya Abdulfattah Hamoodi, Ban Ahmed Mitras, 2023, Improved Chaotic Aquila Optimization Algorithm Based on Artificial Hummingbird Algorithm, 979-8-3503-4440-0, 52, 10.1109/ICESAT58213.2023.10347310
    14. Esra’a Alhenawi, Ruba Abu Khurma, Robertas Damaševic̆ius, Abdelazim G. Hussien, Solving Traveling Salesman Problem Using Parallel River Formation Dynamics Optimization Algorithm on Multi-core Architecture Using Apache Spark, 2024, 17, 1875-6883, 10.1007/s44196-023-00385-5
    15. Fatma A. Hashim, Ruba Abu Khurma, Dheeb Albashish, Mohamed Amin, Abdelazim G. Hussien, Novel hybrid of AOA-BSA with double adaptive and random spare for global optimization and engineering problems, 2023, 73, 11100168, 543, 10.1016/j.aej.2023.04.052
    16. Ibrahim Al-Shourbaji, Pramod Kachare, Sajid Fadlelseed, Abdoh Jabbari, Abdelazim G. Hussien, Faisal Al-Saqqar, Laith Abualigah, Abdalla Alameen, Artificial Ecosystem-Based Optimization with Dwarf Mongoose Optimization for Feature Selection and Global Optimization Problems, 2023, 16, 1875-6883, 10.1007/s44196-023-00279-6
    17. Gopi S., Prabhujit Mohapatra, Chaotic Aquila Optimization algorithm for solving global optimization and engineering problems, 2024, 108, 11100168, 135, 10.1016/j.aej.2024.07.058
    18. Abdelazim G Hussien, Sumit Kumar, Simrandeep Singh, Jeng-Shyang Pan, Fatma A Hashim, An enhanced dynamic differential annealed algorithm for global optimization and feature selection, 2023, 11, 2288-5048, 49, 10.1093/jcde/qwad108
    19. Mainak Deb, Krishna Gopal Dhal, Arunita Das, Abdelazim G. Hussien, Laith Abualigah, Arpan Garai, A CNN-based model to count the leaves of rosette plants (LC-Net), 2024, 14, 2045-2322, 10.1038/s41598-024-51983-y
    20. Reham R. Mostafa, Essam H. Houssein, Abdelazim G. Hussien, Birmohan Singh, Marwa M. Emam, An enhanced chameleon swarm algorithm for global optimization and multi-level thresholding medical image segmentation, 2024, 36, 0941-0643, 8775, 10.1007/s00521-024-09524-1
    21. Arnapurna Panda, Digital Channel Equalizer Using Functional Link Artificial Neural Network Trained with Quantum Aquila Optimizer, 2024, 5, 2661-8907, 10.1007/s42979-024-02632-8
    22. Amr A. Abd El-Mageed, Amr A. Abohany, Ahmed Elashry, Effective Feature Selection Strategy for Supervised Classification based on an Improved Binary Aquila Optimization Algorithm, 2023, 181, 03608352, 109300, 10.1016/j.cie.2023.109300
    23. Kangjian Sun, Ju Huo, Heming Jia, Lin Yue, Reinforcement learning guided Spearman dynamic opposite Gradient-based optimizer for numerical optimization and anchor clustering, 2023, 11, 2288-5048, 12, 10.1093/jcde/qwad109
    24. Buddhadev Sasmal, Abdelazim G. Hussien, Arunita Das, Krishna Gopal Dhal, A Comprehensive Survey on Aquila Optimizer, 2023, 30, 1134-3060, 4449, 10.1007/s11831-023-09945-6
    25. Dana Marsetiya Utama, Nabilah Sanafa, A modified Aquila optimizer algorithm for optimization energy-efficient no-idle permutation flow shop scheduling problem, 2023, 7, 2580-2895, 95, 10.30656/jsmi.v7i2.6446
    26. Shuang Wang, Heming Jia, Abdelazim G Hussien, Laith Abualigah, Guanjun Lin, Hongwei Wei, Zhenheng Lin, Krishna Gopal Dhal, Boosting aquila optimizer by marine predators algorithm for combinatorial optimization, 2024, 11, 2288-5048, 37, 10.1093/jcde/qwae004
    27. Abeer Saber, Abdelazim G. Hussien, Wael A. Awad, Amena Mahmoud, Alaa Allakany, Adapting the pre-trained convolutional neural networks to improve the anomaly detection and classification in mammographic images, 2023, 13, 2045-2322, 10.1038/s41598-023-41633-0
    28. Hao Cui, Yaning Xiao, Abdelazim G. Hussien, Yanling Guo, Multi-strategy boosted Aquila optimizer for function optimization and engineering design problems, 2024, 27, 1386-7857, 7147, 10.1007/s10586-024-04319-4
    29. S. Gopi, Prabhujit Mohapatra, Fast random opposition-based learning Aquila optimization algorithm, 2024, 10, 24058440, e26187, 10.1016/j.heliyon.2024.e26187
    30. Chengzhi Fang, Yushen Chen, Xiaolei Deng, Sangyinhuan Lu, Wanjun Zhang, Yao Chen, A Novel Temperature Rise Prediction Method of Multi-component Feed System for CNC Machine Tool Based on Multi-source Fusion of Heterogeneous Correlation Information, 2024, 25, 2234-7593, 1571, 10.1007/s12541-024-01022-7
    31. Sarada Mohapatra, Prabhujit Mohapatra, Fast random opposition-based learning Golden Jackal Optimization algorithm, 2023, 275, 09507051, 110679, 10.1016/j.knosys.2023.110679
    32. Nabil Neggaz, Imene Neggaz, Mohamed Abd Elaziz, Abdelazim G. Hussien, Laith Abulaigh, Robertas Damaševičius, Gang Hu, Boosting manta rays foraging optimizer by trigonometry operators: a case study on medical dataset, 2024, 36, 0941-0643, 9405, 10.1007/s00521-024-09565-6
    33. Megha Varshney, Pravesh Kumar, Laith Abualigah, Hybridizing remora and aquila optimizer with dynamic oppositional learning for structural engineering design problems, 2025, 462, 03770427, 116475, 10.1016/j.cam.2024.116475
    34. Xiaowei Wang, An intensified northern goshawk optimization algorithm for solving optimization problems, 2024, 6, 2631-8695, 045267, 10.1088/2631-8695/ada222
    35. Khaled Mohammed Elgamily, M. A. Mohamed, Ahmed Mohamed Abou-Taleb, Mohamed Maher Ata, Enhanced object detection in remote sensing images by applying metaheuristic and hybrid metaheuristic optimizers to YOLOv7 and YOLOv8, 2025, 15, 2045-2322, 10.1038/s41598-025-89124-8
    36. Dongning Chen, Xinwei Du, Haowen Wang, Qinggui Xian, Jianhao Sha, Chengyu Yao, 2024, An Improved Hybrid Aquila Optimizer and Pigeon-Inspired Optimization Algorithm with Its Application in PID Parameter Optimization, 979-8-3503-8028-6, 367, 10.1109/ISCSIC64297.2024.00082
    37. Sylia Mekhmoukh Taleb, Elham Tahsin Yasin, Amylia Ait Saadi, Musa Dogan, Selma Yahia, Yassine Meraihi, Murat Koklu, Seyedali Mirjalili, Amar Ramdane-Cherif, A Comprehensive Survey of Aquila Optimizer: Theory, Variants, Hybridization, and Applications, 2025, 1134-3060, 10.1007/s11831-025-10281-0
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10161) PDF downloads(1519) Cited by(5)

Figures and Tables

Figures(15)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog