Citation: Zhijun Liu, Xiaobi Wei, Dongquan Wang, Liangliang Wang. Performance of cement-stabilized macadam roads based on aggregate gradation interpolation tests[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2371-2390. doi: 10.3934/mbe.2019119
[1] | Lernik Asserian, Susan E. Luczak, I. G. Rosen . Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol. Mathematical Biosciences and Engineering, 2023, 20(11): 20345-20377. doi: 10.3934/mbe.2023900 |
[2] | Keenan Hawekotte, Susan E. Luczak, I. G. Rosen . Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach. Mathematical Biosciences and Engineering, 2021, 18(5): 6739-6770. doi: 10.3934/mbe.2021335 |
[3] | Gigi Thomas, Edward M. Lungu . A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences and Engineering, 2010, 7(4): 871-904. doi: 10.3934/mbe.2010.7.871 |
[4] | Salih Djillali, Soufiane Bentout, Tarik Mohammed Touaoula, Abdessamad Tridane . Global dynamics of alcoholism epidemic model with distributed delays. Mathematical Biosciences and Engineering, 2021, 18(6): 8245-8256. doi: 10.3934/mbe.2021409 |
[5] | Hai-Feng Huo, Shuang-Lin Jing, Xun-Yang Wang, Hong Xiang . Modelling and analysis of an alcoholism model with treatment and effect of Twitter. Mathematical Biosciences and Engineering, 2019, 16(5): 3561-3622. doi: 10.3934/mbe.2019179 |
[6] | Ridouan Bani, Rasheed Hameed, Steve Szymanowski, Priscilla Greenwood, Christopher M. Kribs-Zaleta, Anuj Mubayi . Influence of environmental factors on college alcohol drinking patterns. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1281-1300. doi: 10.3934/mbe.2013.10.1281 |
[7] | Peixian Zhuang, Xinghao Ding, Jinming Duan . Subspace-based non-blind deconvolution. Mathematical Biosciences and Engineering, 2019, 16(4): 2202-2218. doi: 10.3934/mbe.2019108 |
[8] | Biyun Hong, Yang Zhang . Research on the influence of attention and emotion of tea drinkers based on artificial neural network. Mathematical Biosciences and Engineering, 2021, 18(4): 3423-3434. doi: 10.3934/mbe.2021171 |
[9] | Colette Calmelet, John Hotchkiss, Philip Crooke . A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis. Mathematical Biosciences and Engineering, 2014, 11(6): 1449-1464. doi: 10.3934/mbe.2014.11.1449 |
[10] | Piotr Klejment . Application of supervised machine learning as a method for identifying DEM contact law parameters. Mathematical Biosciences and Engineering, 2021, 18(6): 7490-7505. doi: 10.3934/mbe.2021370 |
[1] | C. Berthelot, D. Podborochynski, B. Marjerison, et al., Mechanistic characterization of cement stabilized marginal granular base materials for road construction, Can. J. Civil Eng., 37 (2010), 1613–1620. |
[2] | J. P. Bilodeau, C. O. Plamondon and D. Guy, Estimation of resilient modulus of unbound granular materials used as pavement base: combined effect of grain-size distribution and aggregate source frictional properties, Mater. Struct., 49 (2016), 4363–4373. |
[3] | Z. J. Chen, J. S. Xue, F. Cao, et al. Study of strong interlocked skeleton dense gradation for cement-stabilized macadam, Appl. Mech. Mater., 438–439 (2013), 644–648. |
[4] | W. S. Guthrie, M. S. Shea and D. L. Eggett, Hydraulic conductivity of cement-treated soils and aggregates after freezing, Proc. Int. Conf. Cold Reg. Eng., 2012 (2012), 93–103. |
[5] | Y. Wang, X. Ma and Z. L. Sun, Shrinkage performance of cement-treated macadam base materials, ICTTS, 383 (2010), 1378–1386. |
[6] | W. B. Ashraf and M. A. Noor, Performance-evaluation of concrete properties for different combined aggregate gradation approaches, Proc. Eng. 14 (2011), 2627–2634. |
[7] | K. A. Davis, L. S. Warr, S. E. Burns, et al., Physical and chemical behavior of four cement-treated aggregates, J. Mat. Civil Eng., 19 (2007), 891–897. |
[8] | Z. J. Liu, Experimental research on the engineering characteristics of polyester fiber-reinforced cement-stabilized macadam, J. Mat. Civil Eng., 27 (2015), 04015004. |
[9] | Z. J. Liu, Influence of rainfall characteristics on the infiltration moisture field of high-way subgrade, Road Mat. Pavement., 16 (2015), 635‒652. |
[10] | I. D. Rey, J. Ayuso, A. Barbudo, et al., Feasibility study of cement-treated 0–8 mm recycled aggregates from construction and demolition waste as road base layer, Road Mat. Pavement., 17 (2016), 678‒692. |
[11] | F. Colangelo and R. Cioffi, Mechanical properties and durability of mortar containing fine fraction of demolition wastes produced by selective demolition in South Italy, Composite B Eng., 115 (2017), 43–50. |
[12] | F. Colangelo, R. Cioffi, B. Liguori, et al., Recycled polyolefins waste as aggregates for lightweight concrete, Composite B Eng., 106 (2016), 234–241. |
[13] | V. Corinaldesi, Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates, Constr. Build. Mat., 24 (2010), 1616–1620. |
[14] | W. B. Ashraf and M. A. Noor, Performance-evaluation of concrete properties for different combined aggregate gradation approaches, Proc. Eng., 14 (2011), 2627–2634. |
[15] | M. R. Fatmi, B. Islam, M. Rahman, et al., Optimized aggregate gradation for Bangladesh, Appl. Mech. Mat., 71–78 (2011), 4226–4229. |
[16] | L. Jin and J. L. Zheng, The analysis about how gradation impact on the performance of cement stabilized macadam base, In: 2012 International Conference on Computer Distributed Control and Intelligent Environmental monitoring, Hunan, China, 2012. |
[17] | M. D. Cook, A. Ghaeezadah, and M. T. Ley, Impacts of coarse-aggregate gradation on the workability of slip-formed concrete, J. Mat. Civil Eng., 2018. |
[18] | The Ministry of Communications of PRC. Technical guidelines for construction of highway roadbases (JTG/T F20-2015). China Communication Press, Beijing, China, 2015. |
[19] | G. H. Hu, Study on the influence of the cement stabilized macadam's gradation to the modulus and strength, Adv. Mat. Res., 1004–1005 (2014), 1579–1584. |
[20] | J. X. Liu and B. Li, Optimum design of aggregate gradation for cement stabilized macadam based on the fuzzy orthogonal method, J. Wuhan Univ. Tech., 32 (2010), 60–64. |
[21] | Y. Wang, F. J. Ni and W. H. Xuan, Research on dry shrinkage performance of cement-treated base materials, Geohunan Int. Conf., 2009 (2009), 81–86. |
[22] | Y. Wang, X. Sun, and Z. X. Li, Research on the reasonable strength of cement-treated macadam base, Adv. Civil Eng. Build. Mat., 2012 (2012), 621–624. |
[23] | Y. Wang, W. H. Xuan and X. T. Feng, Studies on fatigue behaviors of cement stabilized macadam mixture, Geohunan Int Conf., 2011. Available from https://ascelibrary.org/doi/pdf/10.1061/47629(408)14. |
[24] | Y. J. Jiang, L. W. Li, Y. S. Xu, et al. Performance comparison of cement-stabilized macadam with two skeleton close-grained gradation, Int. Conf. Concrete Pavement Des. Constr. Rehabil., 2011 (2011), 71–75. |
[25] | The Ministry of Communications of PRC. Test methods of materials stabilized with inorganic binders for highway engineering (JTG E51-2009). China Communication Press, Beijing, China, 2009. |
[26] | P. Zhang, Q. F. Li and H. Wei, Investigation of flexural properties of cement-stabilized macadam reinforced with polypropylene fiber, J. Mater. Civil Eng., 22 (2010), 1282–1287. |
[27] | L. J. Zhao, W. Z. Jiang, J. R. Hou, et al., Influence of mixing methods on performance of compressive strength for cement stabilized macadam mixture, China J. Highway Transport., 31 (2018), 151–158. |
[28] | Y. B. Yang, H. M. Chen and S. M. Wu, Study on the C80 high-strength rock chips concrete, Key Engineering Materials, Ecol. Environ. Tech. Concrete, 477 (2011), 218–223. |
[29] | Y. L. Zhao, Gradation design of the aggregate skeleton in asphalt mixture, J. Test. Eval., 40 (2012), 20120142. |
[30] | L. H. Li, P. Huang and D. Liu, Impact on performance of cement stabilized macadam mixtures between gyratory compaction and static compaction methods, J. Chang'an Univ. (Nat. Sci. Ed.), 36 (2016), 17–25. |
[31] | D. Luo and C. F. Wu, Influence of gradation and compaction standards to performance of cement stabilized crushed stone base material, Highway, 4 (2014), 187–193. |
[32] | T. Ma, X. H. Ding, D. Y. Zhang, et al., Experimental study of recycled asphalt concrete modified by high-modulus agent, Constr. Build Mat., 128 (2016), 128–135. |
[33] | X. Yu and X. Wu, The influences of RAP on the performance of cement stabilized crushed stone base, IEEE, 2011 (2011), 6315–6318. |
[34] | M. O. Ahmed, A. H. Waddah and K. Manish, Research on the mechanical strength of emulsified asphalt-cement stabilized macadam based on neural network algorithm, Key Eng. Mat., 753 (2017), 326–330. |
[35] | A. Muntean, M. Böhm and J. Kropp, Moving carbonation fronts in concrete: A moving-sharp-interface approach, Chem. Eng. Sci., 66 (2011), 538–547. |
[36] | I. S. Yoon, O. Çopuroğlu and K. B. Park, Effect of global climatic change on carbonation progress of concrete, Atmos. Environ., 41 (2007), 7274–7285. |
1. | Yan Wang, Daniel J. Fridberg, Robert F. Leeman, Robert L. Cook, Eric C. Porges, Wrist-worn alcohol biosensors: Strengths, limitations, and future directions, 2019, 81, 07418329, 83, 10.1016/j.alcohol.2018.08.013 | |
2. | John D. Roache, Tara E. Karns-Wright, Martin Goros, Nathalie Hill-Kapturczak, Charles W. Mathias, Donald M. Dougherty, Processing transdermal alcohol concentration (TAC) data to detect low-level drinking, 2019, 81, 07418329, 101, 10.1016/j.alcohol.2018.08.014 | |
3. | Melike Sirlanci, I. Gary Rosen, Tamara L. Wall, Susan E. Luczak, Applying a novel population-based model approach to estimating breath alcohol concentration (BrAC) from transdermal alcohol concentration (TAC) biosensor data, 2019, 81, 07418329, 117, 10.1016/j.alcohol.2018.09.005 | |
4. | Jian Li, Susan E. Luczak, I. G. Rosen, Comparing a distributed parameter model-based system identification technique with more conventional methods for inverse problems, 2019, 27, 0928-0219, 703, 10.1515/jiip-2018-0006 | |
5. | Alastair van Heerden, Mark Tomlinson, Sarah Skeen, Charles Parry, Kendal Bryant, Mary Jane Rotheram-Borus, Innovation at the Intersection of Alcohol and HIV Research, 2017, 21, 1090-7165, 274, 10.1007/s10461-017-1926-z | |
6. | Melike Sirlanci, Susan Luczak, I. G. Rosen, 2017, Approximation and convergence in the estimation of random parameters in linear holomorphic semigroups generated by regularly dissipative operators, 978-1-5090-5992-8, 3171, 10.23919/ACC.2017.7963435 | |
7. | Kelly Egmond, Cassandra J. C. Wright, Michael Livingston, Emmanuel Kuntsche, Wearable Transdermal Alcohol Monitors: A Systematic Review of Detection Validity, and Relationship Between Transdermal and Breath Alcohol Concentration and Influencing Factors, 2020, 44, 0145-6008, 1918, 10.1111/acer.14432 | |
8. | Christian S. Hendershot, Christina N. Nona, A Review of Developmental Considerations in Human Laboratory Alcohol Research, 2017, 4, 2196-2952, 364, 10.1007/s40429-017-0173-8 | |
9. | Nancy P. Barnett, Mark A. Celio, Jennifer W. Tidey, James G. Murphy, Suzanne M. Colby, Robert M. Swift, A preliminary randomized controlled trial of contingency management for alcohol use reduction using a transdermal alcohol sensor, 2017, 112, 0965-2140, 1025, 10.1111/add.13767 | |
10. | Melike Sirlanci, I G Rosen, Susan E Luczak, Catharine E Fairbairn, Konrad Bresin, Dahyeon Kang, Deconvolving the input to random abstract parabolic systems: a population model-based approach to estimating blood/breath alcohol concentration from transdermal alcohol biosensor data, 2018, 34, 0266-5611, 125006, 10.1088/1361-6420/aae791 | |
11. | Susan E. Luczak, Ashley L. Hawkins, Zheng Dai, Raphael Wichmann, Chunming Wang, I.Gary Rosen, Obtaining continuous BrAC/BAC estimates in the field: A hybrid system integrating transdermal alcohol biosensor, Intellidrink smartphone app, and BrAC Estimator software tools, 2018, 83, 03064603, 48, 10.1016/j.addbeh.2017.11.038 | |
12. | Melike Sirlanci, Susan E. Luczak, Catharine E. Fairbairn, Dahyeon Kang, Ruoxi Pan, Xin Yu, I. Gary Rosen, Estimating the distribution of random parameters in a diffusion equation forward model for a transdermal alcohol biosensor, 2019, 106, 00051098, 101, 10.1016/j.automatica.2019.04.026 | |
13. | Sina Kianersi, Maya Luetke, Jon Agley, Ruth Gassman, Christina Ludema, Molly Rosenberg, Validation of transdermal alcohol concentration data collected using wearable alcohol monitors: A systematic review and meta-analysis, 2020, 216, 03768716, 108304, 10.1016/j.drugalcdep.2020.108304 | |
14. | Catharine E. Fairbairn, I. Gary Rosen, Susan E. Luczak, Walter J. Venerable, Estimating the quantity and time course of alcohol consumption from transdermal alcohol sensor data: A combined laboratory-ambulatory study, 2019, 81, 07418329, 111, 10.1016/j.alcohol.2018.08.015 | |
15. | John D. Clapp, Danielle R. Madden, Sheila Pakdaman, Drinking with Friends: Measuring the Two-week Ecology of Drinking Behaviors, 2022, 46, 1087-3244, 96, 10.5993/AJHB.46.2.1 | |
16. | Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, 2022, Physics-Informed Learning: Distributed Parameter Systems, Hidden Markov Models, and the Viterbi Algorithm, 978-1-6654-5196-3, 266, 10.23919/ACC53348.2022.9867145 | |
17. | Baichen Li, R. Scott Downen, Quan Dong, Nam Tran, Maxine LeSaux, Andrew C. Meltzer, Zhenyu Li, A Discreet Wearable IoT Sensor for Continuous Transdermal Alcohol Monitoring—Challenges and Opportunities, 2021, 21, 1530-437X, 5322, 10.1109/JSEN.2020.3030254 | |
18. | Clemens Oszkinat, Susan E. Luczak, I. Gary Rosen, An abstract parabolic system-based physics-informed long short-term memory network for estimating breath alcohol concentration from transdermal alcohol biosensor data, 2022, 34, 0941-0643, 18933, 10.1007/s00521-022-07505-w | |
19. | Mengsha Yao, Susan E. Luczak, I. Gary Rosen, Tracking and blind deconvolution of blood alcohol concentration from transdermal alcohol biosensor data: A population model-based LQG approach in Hilbert space, 2023, 147, 00051098, 110699, 10.1016/j.automatica.2022.110699 | |
20. | Keenan Hawekotte, Susan E. Luczak, I. G. Rosen, Deconvolving breath alcohol concentration from biosensor measured transdermal alcohol level under uncertainty: a Bayesian approach, 2021, 18, 1551-0018, 6739, 10.3934/mbe.2021335 | |
21. | Clemens Oszkinat, Tianlan Shao, Chunming Wang, I G Rosen, Allison D Rosen, Emily B Saldich, Susan E Luczak, Blood and breath alcohol concentration from transdermal alcohol biosensor data: estimation and uncertainty quantification via forward and inverse filtering for a covariate-dependent, physics-informed, hidden Markov model* , 2022, 38, 0266-5611, 055002, 10.1088/1361-6420/ac5ac7 | |
22. | Mengsha Yao, Susan E. Luczak, Emily B. Saldich, I. Gary Rosen, A population model‐based linear‐quadratic Gaussian compensator for the control of intravenously infused alcohol studies and withdrawal symptom prophylaxis using transdermal sensing, 2022, 0143-2087, 10.1002/oca.2934 | |
23. | Bob M. Lansdorp, Flux-Type versus Concentration-Type Sensors in Transdermal Measurements, 2023, 13, 2079-6374, 845, 10.3390/bios13090845 | |
24. | Kyla-Rose Walden, Emily B. Saldich, Georgia Wong, Haoxing Liu, Chunming Wang, I. Gary Rosen, Susan E. Luczak, 2023, 79, 9780443193866, 271, 10.1016/bs.plm.2023.06.002 | |
25. | Clemens Oszkinat, Susan E. Luczak, I. G. Rosen, Uncertainty Quantification in Estimating Blood Alcohol Concentration From Transdermal Alcohol Level With Physics-Informed Neural Networks, 2023, 34, 2162-237X, 8094, 10.1109/TNNLS.2022.3140726 | |
26. | Lernik Asserian, Susan E. Luczak, I. G. Rosen, Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol, 2023, 20, 1551-0018, 20345, 10.3934/mbe.2023900 | |
27. | J.M. Maestre, P. Chanfreut, L. Aarons, Constrained numerical deconvolution using orthogonal polynomials, 2024, 24058440, e24762, 10.1016/j.heliyon.2024.e24762 | |
28. | Mengsha Yao, Maria Allayioti, Emily B. Saldich, Georgia Y. Wong, Chunming Wang, Susan E. Luczak, I. G. Rosen, Real-time recursive estimation of, and uncertainty quantification for, breath alcohol concentration via LQ tracking control-based inverse filtering of transdermal alcohol biosensor signals, 2024, 2, 2994-7669, 38, 10.3934/ammc.2024003 | |
29. | Joseph C. Anderson, A new approach to modeling transdermal ethanol kinetics, 2024, 12, 2051-817X, 10.14814/phy2.70070 | |
30. | Mengsha Yao, Gary Rosen, 2025, 10.5772/intechopen.1010428 |