Citation: Li-zhen Du, Shanfu Ke, Zhen Wang, Jing Tao, Lianqing Yu, Hongjun Li. Research on multi-load AGV path planning of weaving workshop based on time priority[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2277-2292. doi: 10.3934/mbe.2019113
[1] | Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067 |
[2] | C. Connell McCluskey . Global stability for an model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences and Engineering, 2016, 13(2): 381-400. doi: 10.3934/mbe.2015008 |
[3] | Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297 |
[4] | Maria Guadalupe Vazquez-Peña, Cruz Vargas-De-León, Jorge Velázquez-Castro . Global stability for a mosquito-borne disease model with continuous-time age structure in the susceptible and relapsed host classes. Mathematical Biosciences and Engineering, 2024, 21(11): 7582-7600. doi: 10.3934/mbe.2024333 |
[5] | Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372 |
[6] | Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227 |
[7] | Qiuyi Su, Jianhong Wu . Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models. Mathematical Biosciences and Engineering, 2020, 17(6): 7671-7691. doi: 10.3934/mbe.2020390 |
[8] | Zhisheng Shuai, P. van den Driessche . Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences and Engineering, 2012, 9(2): 393-411. doi: 10.3934/mbe.2012.9.393 |
[9] | Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073 |
[10] | Andrey V. Melnik, Andrei Korobeinikov . Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Mathematical Biosciences and Engineering, 2011, 8(4): 1019-1034. doi: 10.3934/mbe.2011.8.1019 |
[1] | H. Fazlollahtabar and M. Saidi-Mehrabad, Models for AGVs' scheduling and routing, Autonomous Guided Vehicles, 20 (2015), 1–15. |
[2] | G. M. Li, X. Y. Li, L. Gao, et al., Tasks assigning and sequencing of multiple AGVs based on an improved harmony search algorithm, J. Amb. Inter. Hum. Comp., 2018. Available from: DOI, 10.1007/s12652-018-1137-0. |
[3] | D. H. Lee, Resource-based task allocation for multi-robot systems, Robot Auton. Syst., 103 (2018), 151–161. |
[4] | T. J. Chen, Y. Sun, W. Dai, et al., On the shortest and conflict-free path planning of multi-AGV system based on dijkstra algorithm and the dynamic time-window method, Adv. Mater. Res., 645 (2013), 267–271. |
[5] | A. Kaplan, N. Kingry, P. Uhing, et al., Time-optimal path planning with power schedules for a solar-powered ground robot, IEEE T. Autom. Sci. Eng., 14 (2017), 1235–1244. |
[6] | N. Smolic-Rocak, S. Bogdan, Z. Kovacic, et al., Time windows based dynamic routing in multi-AGV systems, IEEE T. Autom. Sci. Eng., 7 (2010), 151–155. |
[7] | K. G. Huo, Y. Q. Zhang, Z. H. Hu, et al., Research on scheduling problem of multi-load AGV at automated container terminal, J. Dalian Univ. Techno., 6 (2016), 24–251. |
[8] | G. M. Li, B. Zeng, W. Liao, et al., A new AGV scheduling algorithm based on harmony search for material transfer in a real-world manufacturing system, Adv. Mech. Eng., 10 (2018), 1–13. |
[9] | M. Mousavi, H. J. Yap, S. N. Musa, et al., Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization, PLoS One, 12 (2017), 1–24. |
[10] | F. Hamed and M. Nezam, An optimal path in a bi-criteria AGV-based flexible job shop manufacturing system having uncertain parameters, Int. J. Ind. Syst. Eng., 13 (2010), 27–55. |
[11] | H. Fazlollahtabara and M. Saidi-Mehrabad, Optima path in an intelligent AGV based manufacturing system, Transp. Lett., 7 (2015), 219–228. |
[12] | V. K. Chawla, A. K. Chanda, S. Angra, et al., Multi-load AGVs scheduling by application of modified memetic particle swarm optimization algorithm, J. Braz. Socy. Mech. Sci., 2018. Available from: 10.1007/s40430-018-1357-4. |
[13] | S. Bakshi, Z. Y. Yan, D. M. Chen, et al., A fast algorithm on minimum-time scheduling of an autonomous ground vehicle using a traveling salesman framework, J. Dyn. Syst. Meas. Control, 2018. Available from: DOI, 10.1115/1.4040665. |
[14] | H. Fazlollahtabar and S. Hassanli, Hybrid cost and time path planning for multiple autonomous guided vehicles, Appl. Intell., 48 (2018), 482–498. |
[15] | M. Grunow, H. Gunther, M. Lehmann, et al., Dispatching multi-load AGVs in highly automatedseaport container terminals, OR Spectrum., 26 (2014), 211–235. |
[16] | T. J. Park, J. W. Ahn, C. S. Han, et al., A path generation algorithm of an automatic guided vehicle using sensor scanning method, J. Mech. Sci. Technol., 16 (2002), 137–146. |
[17] | H. Y. Wang, Q. Huang, C. T. Li, et al., Graph theory algorithm and MATLAB simulation, BeiJing (2009), Beihang University Press. |
[18] | A. Ali and M Tawhid, A hybrid particle swarm optimization and genetic algorithm with population partitioning for large scale optimization problems, Ain. Shams. Eng. J., 8 (2017), 191–206. |
[19] | X. Y. Li and L. Gao, An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem, Int. J. Prod. Econ., 174 (2016), 93–110. |
[20] | P. B. C. Miranda and R. B. C. Prudêncio, Generation of particle swarm optimization algorithms: An experimental study using grammar guided genetic, Appl. Soft. Comput., 60 (2017), 281–296. |
[21] | S. Hamed and K. Govindan, A hybrid particle swarm optimization and genetic algorithm for closed loop supply chain network design in large scale networks, Appl. Math. Model., 39 (2015), 3990–4012. |
[22] | K. Deb and N. Padhye, Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms, Comput. Optim. Appl., 57 (2014), 761–794. |
[23] | X. Y. Li, L. Gao, Q. K. Pan, et al., An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop, IEEE T. Syst. Man. Cy. S., 2018. |
[24] | A. M. Bertram, Q. Zhang, S. C. Kong, et al., A novel particle swarm and genetic algorithm hybrid method for diesel engine performance optimization, Int. J. Engine. Res., 17 (2016), 732–747. |
[25] | X. Y. Li, C. Lu, L. Gao, et al., An effective multi-objective algorithm for energy efficient scheduling in a real-life welding shop, IEEE T. Ind. Inform., 14 (2018), 5400–5409. |
[26] | Y. N. Yan, L. Z. Liu, B. Y. Luo, et al., Arrangement of garment production line by particle swarm algorithm, J. Text. Res., 39 (2018), 120–124. |
1. | Xia Wang, Yuming Chen, Shengqiang Liu, Global dynamics of a vector-borne disease model with infection ages and general incidence rates, 2018, 37, 0101-8205, 4055, 10.1007/s40314-017-0560-8 | |
2. | Cruz Vargas-De-León, Global stability properties of age-dependent epidemic models with varying rates of recurrence, 2016, 39, 01704214, 2057, 10.1002/mma.3621 | |
3. | Edwin Setiawan Nugraha, Janson Naiborhu, Nuning Nuraini, 2017, 1825, 0094-243X, 020015, 10.1063/1.4978984 | |
4. | Gang Huang, Chenguang Nie, Yueping Dong, Global stability for an SEI model of infectious diseases with immigration and age structure in susceptibility, 2019, 12, 1793-5245, 1950042, 10.1142/S1793524519500426 | |
5. | Xia Wang, Ying Zhang, Xinyu Song, An age-structured epidemic model with waning immunity and general nonlinear incidence rate, 2018, 11, 1793-5245, 1850069, 10.1142/S1793524518500699 | |
6. | Rui Xu, Zhili Wang, Fengqin Zhang, Global stability and Hopf bifurcations of an SEIR epidemiological model with logistic growth and time delay, 2015, 269, 00963003, 332, 10.1016/j.amc.2015.07.084 | |
7. | Danga Duplex Elvis Houpa, Tagne Eric Miamdjo, Tchaptchie Yannick Kouakep, A General Model for Hepatitis B Disease with Age-Dependent Susceptibility and Transmission Probabilities, 2014, 05, 2152-7385, 707, 10.4236/am.2014.54068 | |
8. | Lili Liu, Xianning Liu, Mathematical Analysis for an Age-Structured Heroin Epidemic Model, 2019, 164, 0167-8019, 193, 10.1007/s10440-018-00234-0 | |
9. | Carles Barril, Andrei Korobeinikov, 2014, Chapter 18, 978-3-319-08137-3, 99, 10.1007/978-3-319-08138-0_18 | |
10. | Jinliang Wang, Ran Zhang, Toshikazu Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, 2015, 432, 0022247X, 289, 10.1016/j.jmaa.2015.06.040 | |
11. | Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020 | |
12. | Kosaku Kitagawa, Toshikazu Kuniya, Shinji Nakaoka, Yusuke Asai, Koichi Watashi, Shingo Iwami, Mathematical Analysis of a Transformed ODE from a PDE Multiscale Model of Hepatitis C Virus Infection, 2019, 81, 0092-8240, 1427, 10.1007/s11538-018-00564-y | |
13. | Chuncheng Wang, Dejun Fan, Ling Xia, Xiaoyu Yi, Global stability for a multi-group SVIR model with age of vaccination, 2018, 11, 1793-5245, 1850068, 10.1142/S1793524518500687 | |
14. | Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba, A multi-group SIR epidemic model with age structure, 2016, 21, 1531-3492, 3515, 10.3934/dcdsb.2016109 | |
15. | Xia Wang, Yijun Lou, Xinyu Song, Age-Structured Within-Host HIV Dynamics with Multiple Target Cells, 2017, 138, 00222526, 43, 10.1111/sapm.12135 | |
16. | Jinliang Wang, Min Guo, Shengqiang Liu, SVIR epidemic model with age structure in susceptibility, vaccination effects and relapse, 2017, 82, 0272-4960, 945, 10.1093/imamat/hxx020 | |
17. | Cruz Vargas-De-León, Lourdes Esteva, Andrei Korobeinikov, Age-dependency in host-vector models: The global analysis, 2014, 243, 00963003, 969, 10.1016/j.amc.2014.06.042 | |
18. | Xia Wang, Yuming Chen, Xinyu Song, Global dynamics of a cholera model with age structures and multiple transmission modes, 2019, 12, 1793-5245, 1950051, 10.1142/S1793524519500517 | |
19. | Leonid Shaikhet, Andrei Korobeinikov, Stability of a stochastic model for HIV-1 dynamics within a host, 2016, 95, 0003-6811, 1228, 10.1080/00036811.2015.1058363 | |
20. | Xia Wang, Yuming Chen, Shengqiang Liu, Dynamics of an age‐structured host‐vector model for malaria transmission, 2018, 41, 0170-4214, 1966, 10.1002/mma.4723 | |
21. | Raúl Peralta, Cruz Vargas-De-León, Pedro Miramontes, Global Stability Results in a SVIR Epidemic Model with Immunity Loss Rate Depending on the Vaccine-Age, 2015, 2015, 1085-3375, 1, 10.1155/2015/341854 | |
22. | Shengfu Wang, Lin-Fei Nie, Global Dynamics for a Vector-Borne Disease Model with Class-Age-Dependent Vaccination, Latency and General Incidence Rate, 2020, 19, 1575-5460, 10.1007/s12346-020-00407-z | |
23. | Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang, Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility, 2017, 22, 1553-524X, 2795, 10.3934/dcdsb.2017151 | |
24. | Toshikazu Kuniya, Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficients, 2014, 27, 08939659, 15, 10.1016/j.aml.2013.08.008 | |
25. | Toshikazu Kuniya, Global Behavior of a Multi-Group SIR Epidemic Model with Age Structure and an Application to the Chlamydia Epidemic in Japan, 2019, 79, 0036-1399, 321, 10.1137/18M1205947 | |
26. | Hisashi Inaba, 2017, Chapter 6, 978-981-10-0187-1, 287, 10.1007/978-981-10-0188-8_6 | |
27. | Toshikazu Kuniya, Hopf bifurcation in an age-structured SIR epidemic model, 2019, 92, 08939659, 22, 10.1016/j.aml.2018.12.010 | |
28. | Xia Wang, Yuming Chen, Maia Martcheva, Libin Rong, Asymptotic analysis of a vector-borne disease model with the age of infection, 2020, 14, 1751-3758, 332, 10.1080/17513758.2020.1745912 | |
29. | Faïçal Ndaïrou, Delfim F. M. Torres, Mathematical Analysis of a Fractional COVID-19 Model Applied to Wuhan, Spain and Portugal, 2021, 10, 2075-1680, 135, 10.3390/axioms10030135 | |
30. | Suxia Zhang, Yanna Liu, Hui Cao, Bifurcation analysis of an age‐structured epidemic model with two staged‐progressions, 2021, 44, 0170-4214, 11482, 10.1002/mma.7508 | |
31. | Manoj Kumar, Syed Abbas, Age-Structured SIR Model for the Spread of Infectious Diseases Through Indirect Contacts, 2022, 19, 1660-5446, 10.1007/s00009-021-01925-z | |
32. | Jiaji Pan, Zhongxiang Chen, Yixuan He, Tongliang Liu, Xi Cheng, Jun Xiao, Hao Feng, Why Controlling the Asymptomatic Infection Is Important: A Modelling Study with Stability and Sensitivity Analysis, 2022, 6, 2504-3110, 197, 10.3390/fractalfract6040197 | |
33. | Ruyan Su, Wensheng Yang, Global stability of a diffusive HCV infections epidemic model with nonlinear incidence, 2022, 68, 1598-5865, 2685, 10.1007/s12190-021-01637-3 | |
34. | Xin Jiang, Global Dynamics for an Age-Structured Cholera Infection Model with General Infection Rates, 2021, 9, 2227-7390, 2993, 10.3390/math9232993 | |
35. | Chunrong Xue, Xin Ning, Study on the Global Stability for a Generalized SEIR Epidemic Model, 2022, 2022, 1687-5273, 1, 10.1155/2022/8215214 | |
36. | Xiaogang Liu, Yuming Chen, Xiaomin Li, Jianquan Li, Global stability of latency-age/stage-structured epidemic models with differential infectivity, 2023, 86, 0303-6812, 10.1007/s00285-023-01918-4 | |
37. | Yi Chen, Lianwen Wang, Jinhui Zhang, Global asymptotic stability of an age-structured tuberculosis model: An analytical method to determine kernel coefficients in Lyapunov functional, 2024, 181, 09600779, 114649, 10.1016/j.chaos.2024.114649 | |
38. | Abderrazak NABTi, Dynamical analysis of an age-structured SEIR model with relapse, 2024, 75, 0044-2275, 10.1007/s00033-024-02227-6 | |
39. | Qian Jiang, Zhijun Liu, Lianwen Wang, Global threshold dynamics of an HIV/AIDS model with multi-class-age structure, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024068 | |
40. | Kailong Zhao, Zhijun Liu, Caihong Guo, Huili Xiang, Lili Liu, Lianwen Wang, Modeling and analysis of transmission dynamics of tuberculosis with preventive treatment and vaccination strategies in China, 2025, 138, 0307904X, 115779, 10.1016/j.apm.2024.115779 | |
41. | Abderrazak Nabti, Salih Djilali, Malek Belghit, Dynamics of a Double Age-Structured SEIRI Epidemic Model, 2025, 196, 0167-8019, 10.1007/s10440-025-00723-z |