
Citation: Marina Santiago, Lindsay Eysenbach, Jessica Allegretti, Olga Aroniadis, Lawrence J. Brandt, Monika Fischer, Ari Grinspan, Colleen Kelly, Casey Morrow, Martin Rodriguez, Majdi Osman, Zain Kassam, Mark B. Smith, Sonia Timberlake. Microbiome predictors of dysbiosis and VRE decolonization in patients with recurrent C. difficile infections in a multi-center retrospective study[J]. AIMS Microbiology, 2019, 5(1): 1-18. doi: 10.3934/microbiol.2019.1.1
[1] | Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785 |
[2] | Guo Lin, Shuxia Pan, Xiang-Ping Yan . Spreading speeds of epidemic models with nonlocal delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7562-7588. doi: 10.3934/mbe.2019380 |
[3] | Thomas Torku, Abdul Khaliq, Fathalla Rihan . SEINN: A deep learning algorithm for the stochastic epidemic model. Mathematical Biosciences and Engineering, 2023, 20(9): 16330-16361. doi: 10.3934/mbe.2023729 |
[4] | Yanmei Wang, Guirong Liu . Dynamics analysis of a stochastic SIRS epidemic model with nonlinear incidence rate and transfer from infectious to susceptible. Mathematical Biosciences and Engineering, 2019, 16(5): 6047-6070. doi: 10.3934/mbe.2019303 |
[5] | Yanni Xiao, Tingting Zhao, Sanyi Tang . Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences and Engineering, 2013, 10(2): 445-461. doi: 10.3934/mbe.2013.10.445 |
[6] | Alain Rapaport, Jérôme Harmand . Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences and Engineering, 2008, 5(3): 539-547. doi: 10.3934/mbe.2008.5.539 |
[7] | Xinyu Bai, Shaojuan Ma . Stochastic dynamical behavior of COVID-19 model based on secondary vaccination. Mathematical Biosciences and Engineering, 2023, 20(2): 2980-2997. doi: 10.3934/mbe.2023141 |
[8] | Tingting Xue, Long Zhang, Xiaolin Fan . Dynamic modeling and analysis of Hepatitis B epidemic with general incidence. Mathematical Biosciences and Engineering, 2023, 20(6): 10883-10908. doi: 10.3934/mbe.2023483 |
[9] | Arturo J. Nic-May, Eric J. Avila-Vales . Global dynamics of a two-strain flu model with a single vaccination and general incidence rate. Mathematical Biosciences and Engineering, 2020, 17(6): 7862-7891. doi: 10.3934/mbe.2020400 |
[10] | Xunyang Wang, Canyun Huang, Yixin Hao, Qihong Shi . A stochastic mathematical model of two different infectious epidemic under vertical transmission. Mathematical Biosciences and Engineering, 2022, 19(3): 2179-2192. doi: 10.3934/mbe.2022101 |
The incidence of a disease is the number of individuals who become infected per unit of time and plays an important role in the study of mathematical epidemiology. Generally, incidence rate depends on both the susceptible and infective classes. In many epidemic models, the bilinear incidence rate is frequently used[1]. However, in recent years, researchers have taken into account oscillations in incidence rates and proposed many nonlinear incidence rates. Let $ S(t) $ be the number of susceptible individuals, $ I(t) $ be the number of infective individuals, and $ R(t) $ be the number of removed individuals at time $ t $, respectively. After studying the cholera epidemic spread in Bari in 1973, Capasso and Serio [2] introduced the saturated incidence $ g(I)S $ into epidemic models, where $ g(I) $ is decreasing when $ I $ is large enough, i.e.
$ g(I)=kI1+αI $ | (1.1) |
This incidence rate seems more reasonable than the bilinear incidence rate because it includes the behavioral change and crowding effect of the infective individuals and prevents the unboundedness of the contact rate by choosing suitable parameters.
To incorporate the effect of the behavioral changes of the susceptible individuals, Liu et al.[3] proposed the general incidence rate
$ g(I)=kIp1+αIq $ | (1.2) |
where $ p $ and $ q $ are positive constants and $ \alpha $ is a nonnegative constant. The special cases when $ p, q $ and $ k $ take different values have been used by many authors. For example, Ruan and Wang [4] studied the case when $ p = 2, q = 2 $ i.e. $ g(I) = \frac{kI^2}{1+\alpha I^2} $ and got some complicated dynamics phenomenons, such as saddle-node bifurcation, Hopf bifurcation, Bogdanov-Takens bifurcation and the existence of none, one and two limit cycles. Derrick and van den Driessche[5], Hethcote [6], Alexander and Moghadas[7], etc. also used the general incidence rate.
If the function $ g(I) $ is nonmonotone, that is, $ g(I) $ is increasing when $ I $ is small and decreasing when $ I $ is large, it can be used to interpret the 'psychological' effect: for a very large number of infective individuals the infection force may decrease as the number of infective individuals increases, because in the presence of large number of infectives the population may tend to reduce the number of contacts per unit time[8]. To model this phenomenon, Xiao and Ruan[8] proposed a incidence rate
$ g(I)=kI1+αI2 $ | (1.3) |
where $ kI $ measures the infection force of the disease and $ 1/(1 + \alpha I^2) $ describes the psychological or inhibitory effect from the behavioral change of the susceptible individuals when the number of infective individuals is very large. This is important because the number of effective contacts between infective individuals and susceptible individuals decreases at high infective levels due to the crowding of infective individuals or due to the protection measures by the susceptible individuals. Notice that when $ \alpha = 0 $, the nonmonotone incidence rate (1.3) becomes the bilinear incidence rate[8]. They used this incidence rate in an SIR model and got the result that this model does not exhibit complicated dynamics as other epidemic models with other types of incidence rates reported in. In this paper, we use this incidence rate in an SLIR model.
In fact, epidemic models are inevitably affected by environmental white noise which is an important component in realism, because it can provide an additional degree of realism in compared to their deterministic counterparts. Therefore, many stochastic models for the epidemic populations have been developed. In addition, both from a biological and from a mathematical perspective, there are different possible approaches to include random effects in the model. Here, we mainly mention three approaches. The first one is through time Markov chain model to consider environment noise in HIV epidemic (see, e.g., [9,10,11,12]). The second is with parameters perturbation. There is an intensive literature on this area, such as [13,14,15,16,17,18,19]. The last important issue to model stochastic epidemic system is to robust the positive equilibria of deterministic model. In this situation, it is mainly to investigate whether the stochastic system preserves the asymptotic stability properties of the positive equilibria of deterministic models, see [20,21,22]. Recently, Yang et.al[19] discusses the stochastic SIR and SEIR epidemic models with saturated incidence rate $ \beta S/(1+\alpha I) $. In this paper, we introduce randomness in the SLIR model with the second approaches as [13] and [15].
The rest of the paper is organized as follows: in Section 2, the deterministic SLIR mathematical model is formulated, boundedness of solutions and existence of a positively invariant and attracting set are shown. In Section 3, the basic reproductive number, the conditions to the existence of possible equilibria of the system and their stability are established. In section 4, we obtain the analytic results of dynamics of the SDE model. Finally, a brief discussion is given in Section 5.
In this section, we formulate an SLIR model with incidence rate (1.3). Figure 1 shows the model diagram. The total population at time t, denoted by $ N(t) $, is divided into four classes: susceptible ($ S $), latent ($ L $), infectious ($ I $) and treatment ($ R $).
All recruitment is into the susceptible class, and occurs at a constant rate $ \Lambda $. We assume that an individual may be infected only through contacts with infectious individuals. The natural death rate is $ \mu $. The infectious class has an additional death rate due to the disease with rate constant $ d $. Thus individuals leave class $ L $ for class $ I $ at rate $ k $. Latent and Infectious individuals are treated with rate constant $ r_1 $ and $ r_2 $, entering the treatment class, respectively. A fraction $ p $ of newly infected individuals moves to the latent class ($ L $), and the remaining fraction $ 1-p $, moves to the active class ($ I $). The incidence rate is $ g(I) = \frac{\beta I}{1+\alpha I^2} $. It is assumed that individuals in the latent class do not transmit infection. Combining all the aforementioned assumptions, the model is given by the following system of differential equations:
$ dSdt=Λ−βSI1+αI2−μS,dLdt=(1−p)βSI1+αI2−(μ+k+r1)L,dIdt=pβSI1+αI2+kL−(μ+d+r2)I,dRdt=r1L+r2I−μR. $ | (2.1) |
By adding all Eq (2.1), the dynamics of the total population $ N(t) $ is given by:
$ dN/dt=Λ−μN−dI. $ | (2.2) |
Since $ dN/dt < 0 $ for $ N > \Lambda/\mu $, then, without loss of generality, we can consider only solutions of (2.1) in the following positively subset of $ R^4 $:
$ \Omega_\varepsilon = \{(S, L, I, R)|S, L, I, R\geq0, S+L+I+R\leq\frac{\Lambda}{\mu}\}. $ |
With respect to model system (2.1), we have the following result:
Proposition 2.1. The compact set $ \Omega_\varepsilon $ is a positively invariant and absorbing set that attracts all solutions of Eq (2.1) in $ R^4 $.
Proof. Define a Lyapunov function as $ W(t) = S(t)+L(t)+I(t)+R(t) $, then we have:
$ dW(t)dt=Λ−μW−dI≤Λ−μW. $ | (2.3) |
Hence, that $ \frac{dW}{dt}\leq 0 $ for $ W > \frac{\Lambda}{\mu} $. $ \Omega_\varepsilon $ is a positively invariant set. On the other hand, solving the differential inequality Eq (2.3) yields:
$ 0 \lt W(t) \lt \frac{\Lambda}{\mu}+W(0)e^{-\mu t}. $ |
$ W(0) $ is the initial condition of $ W(t) $. Thus, as $ t\rightarrow \infty $, one has that $ 0\leq W(t)\leq \frac{\Lambda}{\mu} $.
To analysis the system (2.1), we notice that the variable $ R $ does not participate in the first three equations. Thus we can consider only the equations for $ S $, $ L $ and $ I $, i.e. the following system:
$ {dSdt=Λ−βSI1+αI2−μS,dLdt=(1−p)βSI1+αI2−(μ+k+r1)L,dIdt=pβSI1+αI2+kL−(μ+d+r2)I. $ | (2.4) |
In this section, the model is analyzed in order to obtain the basic reproduction number, conditions for the existence and uniqueness of non-trivial equilibria and asymptotic stability of equilibria.
In this subsection, we define the basic reproduction number $ R_0 $ of system (2.4). $ R_0 $ is the average number of secondary infections that occur when one infective is introduced into a completely susceptible population[23]. For many deterministic epidemiology models, an infection can get started in a fully susceptible population if and only if $ R_0 > 1 $. Thus the basic reproductive number $ R_0 $ is often considered as the threshold quantity that determines when an infection can invade and persist in a new host population[1].
The disease-free equilibrium of system (2.4) is $ X_0 = (S_0, 0, 0) $ with $ S_0 = \Lambda/\mu $. In order to compute the basic reproduction number, it is important to distinguish new infections from all other class transitions in the population. The infected classes are $ L $ and $ I $. Following Van den Driessche and Watmough[24], we can rewrite system (2.4) as
$ \dot{x} = f(x) = \mathscr{F}(x)-\mathscr{V}(x) = \mathscr{F}(x)-(\mathscr{V^-}(x)-\mathscr{V^+}(x)). $ |
where $ x = (L, I, S) $, $ \mathscr{F} $ is the rate of appearance of new infections in each class, $ \mathscr{V^+} $ is the rate of transfer into each class by all other means and $ \mathscr{V^-} $ is the rate of transfer out of each class. Hence,
$ \mathscr{F}(x) = ((1-p)\frac{\beta SI}{1+\alpha I^2}, p\frac{\beta SI}{1+\alpha I^2}, 0)^T $ |
and
$ \mathscr{V}(x) = \left( (μ+k+r1)L−kL+(μ+d+r2)IμS+βSI1+αI2−Λ \right). $ |
The jacobian matrices of $ \mathscr{F} $ and $ \mathscr{V} $ at the disease-free equilibrium $ X_0 = (0, 0, \Lambda/\mu) $ can be partitioned as
$ D\mathscr{F}(X_0) = \left(F000 \right) \ \ \ {\rm{and}} \ \ \ D\mathscr{V}(X_0) = \left(V0J1J2 \right). $ |
where $ F $ and $ V $ correspond to the derivatives of $ \mathscr{F} $ and $ \mathscr{V} $ with respect to the infected classes:
$ F = \left(0(1−p)βS00pβS0 \right) \ \ \ {\rm{and}} \ \ \ V = \left(μ+k+r10−kμ+d+r2 \right). $ |
The basic reproduction number is defined, following Van den Driessche and Watmough [24], as the spectral radius of the next generation matrix, $ FV^{-1} $:
$ R_0 = \frac{\beta \Lambda}{\mu}\frac{k(1-p)+(\mu+k+r_1)p}{(\mu+k+r_1)(\mu+d+r_2)}. $ |
We have the following result about the global stability of the disease free equilibrium:
Theorem 3.1. When $ R_0 > 1 $, the disease free equilibrium $ X_0 $ is unstable.When $ R_0\leq 1 $, the disease free equilibrium $ X_0 $ is globally asymptotically stable in $ \Omega_\varepsilon $; this implies the global asymptotic stability of the disease free equilibrium on the nonnegative orthant $ R^3 $. This means that the disease naturally dies out.
Proof. The Jacobian matrix of system (2.4) at $ X_0 $ is
$ J(X_0) = \left( −μ0−βS00−(μ+k+r1)(1−p)βS00k−(μ+d+r2)+pβS0 \right) $ |
and the characteristic equation is
$ (λ+μ)[λ2+(μ+k+r1+μ+d+r2−pβS0)λ+(μ+k+r1)(μ+d+r2)(1−R0)]=(λ+μ)f(λ)=0. $ | (3.1) |
From (3.1), we get the discriminant of $ f(\lambda) $ is
$ Δ1=(μ+k+r1+μ+d+r2−pβS0)2−4(μ+k+r1)(μ+d+r2)(1−R0)=(μ+k+r1−μ−d−r2+pβS0)2+4k(1−p)βS0>0. $ |
Therefore, (3.1) has three real roots.
If $ R_0 < 1 $, we have
$ \beta S_0 \lt \frac{(\mu+k+r_1)(\mu+d+r_2)}{k(1-p)+(\mu+k+r_1)p}, $ |
then
$ μ+k+r1+μ+d+r2−pβS0>μ+k+r1+μ+d+r2−p(μ+k+r1)(μ+d+r2)k(1−p)+(μ+k+r1)p=μ+k+r1+k(1−p)(μ+d+r2)k(1−p)+(μ+k+r1)p>0. $ |
(3.1) has three negative real roots and hence $ X_0 $ is locally stable.
If $ R_0 > 1 $, (3.1) has at least one positive real root and hence $ X_0 $ is unstable.
When $ R_0\leq1 $, we can define the following Lyapunov-LaSalle function
$ V(t) = \frac{k}{k(1-p)+(\mu+k+r_1)p}L+\frac{\mu+k+r_1}{k(1-p)+(\mu+k+r_1)p}I. $ |
Its time derivative along the trajectories of system (2.4) satisfies
$ ˙V=kk(1−p)+(μ+k+r1)p˙L+μ+k+r1k(1−p)+(μ+k+r1)p˙I=βSI1+αI2−(μ+k+r1)(μ+d+r2)k(1−p)+(μ+k+r1)pI=βI(11+αI2S−S0R0)≤βI(S−S0R0) $ |
Thus $ R_0\leq 1 $ implies that $ \dot{V}\leq 0 $. By LaSalle's invariance principle, the largest invariant set in $ \Omega_\varepsilon $ contained in $ \{(S, L, I, R)\in \Omega_\varepsilon, \dot{V} = 0\} $ is reduced to the disease-free equilibrium $ X_0 $. This proves the global asymptotic stability of the disease-free equilibrium on $ \Omega_\varepsilon $ [25]. Since $ \Omega_\varepsilon $ is absorbing, this proves the global asymptotic stability on the nonnegative octant for $ R_0\leq 1 $. It should be stressed that we need to consider a positively invariant compact set to establish the stability of $ X_0 $ since $ V $ is not positive definite. Generally, the LaSalle's invariance principle only proves the attractivity of the equilibrium. Considering $ \Omega_\varepsilon $ permits to conclude for the stability[25,26,27]. This achieves the proof.
To find the positive equilibrium, let
$ \Lambda-\frac{\beta S I}{1+\alpha I^2} -\mu S = 0, $ |
$ (1-p)\dfrac{\beta SI}{1+\alpha I^2}-(\mu+k+r_1)L = 0, $ |
$ p\dfrac{\beta S I}{1+\alpha I^2}+kL-(\mu+d+r_2)I = 0, $ |
which yields
$ \mu \alpha I^2+\beta I+\mu (1-R_0) = 0 $ |
We can see that
(ⅰ) there is one positive equilibrium if $ R_0 > 1 $;
(ⅱ) there is no positive equilibrium if $ R_0\leq 1 $.
Then we have the following result:
Theorem 3.2. When $ R_0 > 1 $, there exist an unique endemic equilibrium $ X^* = (S^*, L^*, I^*) $ for the system (2.4) where $ S^*, L^* $, and $ I^* $ are defined as in (3.2) which is in the nonnegative octant $ R^3_+ $.
$ S∗=1μ[Λ−(μ+k+r1)(μ+d+r2)k(1−p)+(μ+k+r1)pI∗],L∗=(μ+d+r2)(1−p)k(1−p)+(μ+k+r1)pI∗,I∗=−β+√β2+4μ2α(R0−1)2μα. $ | (3.2) |
In this section, we denote $ \mu+k+r_1 = A, \mu+d+r_2 = B $ for writing convenience.
Theorem 3.3. If $ R_0 > 1 $, the unique endemic equilibrium $ X^* $ of system (2.4) is locally asymptotically stable.
Proof. The Jacobian matrix of system (2.4) at endemic equilibrium $ X^* = (S^*, L^*, I^*) $ is
$ J(X∗)=(−μ−g(I∗)0−g′(I∗)S∗(1−p)g(I∗)−A(1−p)g′(I∗)S∗pg(I∗)k−B+pg′(I∗)S∗)). $ | (3.3) |
where
$ g(I^*) = \frac{\beta I^{*}}{1+\alpha I^{*2}}, \ \ \ \ \ \ g'(I^*) = \frac{\beta(1-\alpha I^{*2})}{(1+\alpha I^{*2})^2} = \frac{g(I^*)}{I^*}-\frac{2\beta \alpha I^{*2}}{(1+\alpha I^{*2})^2} \lt \frac{g(I^*)}{I^*}. $ |
The characteristic equation of $ J(X^*) $ is
$ \lambda^3+a \lambda^2+b \lambda+c = 0. $ |
where
$ a=μ+g(I∗)+A+B−pg′(I∗)S∗>μ+g(I∗)+A+B−pg(I∗)S∗I∗=μ+g(I∗)+A+B−B+kL∗I∗>0,b=(μ+g(I∗))A+(μ+g(I∗)+A)(B−pg′(I∗)S∗)+pg(I∗)g′(I∗)S∗−k(1−p)g′(I∗)S∗,c=(μ+g(I∗))A(B−pg′(I∗)S∗)+pg(I∗)g′(I∗)S∗A−μk(1−p)g′(I∗)S∗+k(1−p)g(I∗)g′(I∗)S∗=μAB−μApg′(I∗)S∗+ABg(I∗)−μk(1−p)g′(I∗)S∗+k(1−p)g(I∗)g′(I∗)S∗>μAB−μA(B−kL∗I∗)+ABg(I∗)−μkAL∗I∗+k(1−p)g(I∗)g′(I∗)S∗=ABg(I∗)+k(1−p)g(I∗)g′(I∗)S∗>0 $ |
$ ab−c=[μ+g(I∗)+A+B−pg′(I∗)S∗][(μ+g(I∗))A+(μ+g(I∗)(B−pg′(I∗)S∗)+pg(I∗)g′(I∗)S∗+A(B−pg′(I∗)S∗)−k(1−p)g′(I∗)S∗]−(μ+g(I∗))A(B−pg′(I∗)S∗)−k(1−p)g(I∗)g′(I∗)S∗−pg(I∗)g′(I∗)S∗(A+μk(1−p)g′(I∗)S∗≥(μ+g(I∗)+A)(μ+g(I∗))A+(μ+g(I∗)+A)(μ+g(I∗))(B−pg′(I∗)S∗)+(μ+g(I∗))pg(I∗)g′(I∗)S∗+(μ+g(I∗))(B−pg′(I∗)S∗)2+μk(1−p)g′(I∗)S∗+pg(I∗)g′(I∗)S∗(B−pg′(I∗)S∗)−k(1−p)g(I∗)g′(I∗)S∗≥(μ+g(I∗)+A)(μ+g(I∗))A+(μ+g(I∗))2(B−pg′(I∗)S∗)+Aμ(B−pg′(I∗)S∗)+(μ+g(I∗))pg(I∗)g′(I∗)S∗+(μ+g(I∗))(B−pg′(I∗)S∗)2+μk(1−p)g′(I∗)S∗+pg(I∗)g′(I∗)S∗(B−pg′(I∗)S∗)>0. $ |
According to direct calculation we have $ a, c > 0 $ and $ ab > c $ when $ R_0 > 1 $. Therefore the endemic equilibrium $ X^* $ is locally asymptotically stable in $ \Omega_\varepsilon $ by Routh-Hurwitz criterion.
In this section, we briefly outline a general mathematical framework developed in [28] for proving global stability, which will be used to prove Theorem 3.10. Consider the autonomous dynamical system
$ x′=f(x) $ | (3.4) |
where $ f:D\rightarrow R^n $ open set and $ f \in C ^1(D) $. Let $ \bar{x} $ be an equilibrium of (3.3), i.e. $ f(\bar{x}) = 0 $. We recall that $ \bar{x} $ is said to be globally stable in $ D $ if it is locally stable and all trajectories in D converge to $ \bar{x} $.
Assume that the following hypothesis hold:
(H1) $ D $ is simply connected;
(H2) There exists a compact absorbing set $ \Gamma\subset D $;
(H3) Eq (3.4) has a unique equilibrium $ \bar{x} $ in $ D $.
The Global Stability Problem arising in [28] is to find conditions under which the global stability of $ \overline{x} $ with respect to $ D $ is implied by its local stability. In [28], the main idea of this geometric approach to the global stability problem is as follows: Assume that (3.4) satisfies a condition in $ D $, which precludes the existence of periodic solutions and suppose that this condition is robust, in the sense that it is also satisfied by ordinary differential equations that are $ C^1 $-close to (3.4); Then every nonwandering point of (3.4) is an equilibrium, as otherwise, by the $ C^1 $ closing lemma of Pugh [29,30], we can perturb (3.4) near such a nonequilibrium nonwandering point to get a periodic solution. As a special case, every omega limit point of (3.4) is an equilibrium. This implies that $ \overline{x} $ attracts points in $ D $. As a consequence, its global stability is implied by the local stability. For this purpose, we introduce the notion of robustness of a Bendixson criterion under local $ C^1 $ perturbations of $ f $.
Definition 3.4. A point $ x_0 \in D $ is wandering for (3.4) if there exists a neighborhood $ U $ of $ x_0 $ and $ t^* > 0 $ such that $ U \cap x(t, U) $ is empty for all $ t > t^* $.
Thus, for example, any equilibrium, alpha limit point, or omega limit point is nonwandering.
Definition 3.5. A function $ g \in C^1(D\rightarrow R^n) $ is called a $ C^1 $ local $ \epsilon $-perturbation of $ f $ at $ x_0\in D $ if there exists an open neighborhood $ U $ of $ x_0 $ in $ D $ such that the support supp$ (f-g) \subset U $ and $ |f-g|_{C^1} < \epsilon $, where
$ |f-g|_{C^1} = \text{sup}\{|f(x)-g(x)|+\Big|\frac{\partial f}{\partial x}(x)-\frac{\partial g}{\partial x}(x)\Big|:x\in D\}. $ |
and $ | \cdot| $ denotes a vector norm on $ R^n $ and the operator norm that it induces for linear mappings from $ R^n $ to $ R^n $.
Definition 3.6. A Bendixson Criterion for (3.4) is a condition satisfied by $ f $, which precludes the existence of nonconstant periodic solutions to (3.4).
Definition 3.7. A Bendixson criterion is said to be robust under $ C^1 $ local perturbations of f at $ x_0 $ if, for each sufficiently small $ \epsilon > 0 $ and neighborhood $ U $ of $ x_0 $, it is also satisfied by each $ C^1 $ local $ \epsilon $-perturbations $ g $ such that supp$ (f-g)\subset U $.
The following is the local version of the global-stability principle proved by [28].
Theorem 3.8. Suppose that assumptions (H2) and (H3) hold and that (3.4) satisfies a Bendixson criterion that is robust under $ C^1 $ local perturbations of $ f $ at all nonequilibrium nonwandering points for (3.4), then $ \bar{x} $ is globally asymptotically stable with respect to $ D $, provided it is stable.
The following is to introduce the quantity $ \bar{q}_2 $ given in [28]. Assume that (3.4) has a compact absorbing set $ K \subset D $. Then every solution $ x(t, x_0) $ of (3.4) exists for any $ t > 0 $. The quantity $ \bar{q}_2 $ is well defined:
$ ˉq2=lim supt→∞supx0∈K1t∫t0ρ(B(x(s,x0)))ds, $ | (3.5) |
where
$ B=PfP−1+P∂f[2]∂xP−1, $ | (3.6) |
and $ x\mapsto P(x) $ is a $ \Big(n2 \Big)\times \Big(n2 \Big) $ matrix-valued function, which is $ C^1 $ in $ D $ and $ A_f = (DP)(f) $ or, equivalently, $ P_f $ is the matrix obtained by replacing each entry $ a_{ij} $ in $ P $ by its directional derivative in the direction of $ f $, $ \frac{\partial f}{\partial x} $[2] is the second additive compound matrix of the Jacobian matrix $ \frac{\partial f}{\partial x} $ of $ f $. If $ |\cdot| $ is a vector norm on $ R^{\Big(n2 \Big)} $, then $ \rho(\mathcal{B}) $ is the Lozinsk$ \check{\mbox{i}} $ measure with respect to $ |\cdot| $, which is defined by
$ \rho(\mathcal{B}) = \lim\limits_{h\rightarrow 0^+}\frac{|I+h\mathcal{B}|-1}{h}. $ |
Under assumptions (H1) and (H2), [28] proved that $ \bar{q}_2 < 0 $ is a Bendixson criterion for (3.3) and it is robust under $ C^1 $ local perturbations of $ f $ at all nonequilibrium nonwandering points for (3.3) by means of the local version of $ C^1 $ closing lemma of Pugh [29,30]. Then we have the following theorem
Theorem 3.9. Under assumptions (H1), (H2), and (H3), the unique equilibrium $ \bar{x} $ is globally asymptotically stable in $ D $ if $ \bar{q}_2 < 0 $.
The criterion $ \bar{q}_2 < 0 $ provides the flexibility of a choice of $ \Big(n2 \Big)\times \Big(n2 \Big) $ arbitrary function in addition to the choice of vector norms $ |\cdot| $ in deriving suitable conditions. It has been remarked in [28] that, under the assumptions of Theorem 3.9, the classical result of Lyapunov, the classical Bendixson-Dulac condition, and the criterion in [31] are obtained as special cases [28]. In addition, it has also been stated in [28] that, under the assumptions of Theorem 3.9 the condition $ \bar{q}_2 < 0 $ also implies the local stability of the equilibrium $ \bar{x} $, because, assuming the contrary, $ \bar{x} $ is both the alpha and the omega limit point of a homoclinic orbit that is ruled out by the condition $ \bar{q}_2 < 0 $.
Global stability of endemic equilibrium.
We will focus on investigating the globally asymptotical stability of the unique endemic equilibrium $ X^*(S^*, L^*, I^*) $. The main theorem of the method requires the use of Lozinsk$ \check{\mbox{i}} $ Logarithmic norm.
Theorem 3.10. Assume that $ R_0 > 1 $. Then the unique endemic equilibrium $ X^* $ is globally asymptotically stable in $ R_3^+ $.
Proof. We set $ P $ as the following diagonal matrix:
$ P(S, L, I) = diag\bigg(1, \frac{L}{I}, \frac{S}{I}\bigg). $ |
Then $ P $ is $ C^1 $ and nonsingular in $ \overset{\circ}{\Omega}_\varepsilon $. Let $ f $ denote the vector field of (2.4). Then
$ P_fP^{-1} = diag\bigg(0, \frac{L'}{L}-\frac{I'}{I}, \frac{S'}{S}-\frac{I'}{I}\bigg), $ |
the second compound matrix $ J $[2] of the Jacobian matrix of system (2.4) can be calculated as follows
$ J[2]=(−A−μ−g(I)(1−p)g′(I)Sg′(I)Sk−μ−g(I)−B+pg′(I)S0−pg(I)(1−p)g(I)−A−B+pg′(I)S). $ |
Then the matrix $ \mathcal{B} = P_fP^{-1}+PJ$[2]$P^{-1} $ in (3.6) can be written in matrix form
$ B=(B11B12B21B22). $ |
where
$ B11=−A−μ−g(I),B12=(IL⋅(1−p)g′(I)S,g′(I)I),B21=(k⋅LI,−pg(I)⋅SI)T,B22=(−μ−g(I)−B+pg′(I)S+L′L−I′I0(1−p)g(I)SL−A−B+pg′(I)S) $ |
Let $ (u, v, w) $ denote the vectors in $ R^3 $, we select a norm in $ R^3 $ as $ |(u, v, w)| = \max\{|u|, |v|+|w|\} $ and let $ \tilde{\mu} $ denote the Lozinsk$ \check{\mbox{i}} $ measure with respect to this norm. Following the method in [32], we have the estimate $ \tilde{\mu}(\mathcal{B})\leq \sup\{g_1, g_2\} $, where
$ g_1 = \tilde{\mu}_1(\mathcal{B}_{11})+|\mathcal{B}_{12}|, \ \ \ \ \text{and} \ \ \ \ g_2 = |\mathcal{B}_{21}|+\tilde{\mu}(\mathcal{B}_{22}) $ |
$ |\mathcal{B}_{12}| $ and $ |\mathcal{B}_{21}| $ are matrix norms with respect to the $ l_1 $ vector norm and $ \tilde{\mu}_1 $ denotes the Lozinsk$ \check{\mbox{i}} $ measure with respect to the $ l_1 $ norm. So
$ ˜μ1(B11)=−A−μ−g(I),|B12|=max{IL⋅(1−p)g′(I)S,g′(I)I},|B21|=max{k⋅LI,pg(I)⋅SI}=kLI $ |
To calculate $ \tilde{\mu}(\mathcal{B}_{22}) $ we add the absolute value of the off-diagonal elements to the diagonal one in each column of $ \mathcal{B}_{22} $, and then take the maximum of two sums, see [33]. We thus obtain,
$ ˜μ(B22)=−B+pg′(I)S−I′I+max{−μ−g(I)+L′L,−A+S′S+(1−p)g(I)SL}=−B+pg′(I)S−I′I+L′L+S′S≤−(μ+d+r2)+pg(I)SI−I′I+L′L+S′S=L′L+S′S−kLI. $ |
Therefore
$ g1=−A−μ−g(I)+max{IL⋅(1−p)g′(I)S,g′(I)I}, $ | (3.7) |
$ g2≤kLI+L′L+S′S−kLI=L′L+S′S. $ | (3.8) |
From (2.4) we have
$ −A−μ−g(I)+IL⋅(1−p)g′(I)S≤−A−μ−g(I)+IL⋅(1−p)g(I)IS=−A−μ−g(I)+L′L+A=L′L−μ−g(I),−A−μ−g(I)+g′(I)I≤−A−μ−g(I)+g(I)=−A−μ. $ | (3.9) |
The uniform persistence constant $ c $ can be adjusted so that there exists $ T > 0 $ independent of $ (S(0), L(0), I(0))\in K $, the compact absorbing set, such that
$ I(t)>c, and L(t)>c for t>T. $ | (3.10) |
Substituting (3.9) into (3.7) and using (3.10), we obtain, for $ t > T $,
$ g1≤L′L−μ, $ | (3.11) |
Therefore $ \tilde{\mu}(\mathcal{B})\leq \frac{L'}{L}+\frac{S'}{S} $ for $ t > T $ by (3.8) and (3.11). Along each solution $ (S(t), L(t), I(t)) $ to (2.4) such that $ (S(0), L(0), I(0))\in K $ and for $ t > T $, we have
$ \frac{1}{t}\int_0^t \tilde{\mu}(\mathcal{B})ds\leq \frac{1}{t}\int_0^T \tilde{\mu}(\mathcal{B})ds+\frac{1}{t}\log \frac{L(t)}{L(T)}+\frac{1}{t}\log \frac{S(t)}{S(T)}, $ |
which implies $ \bar{q}_2\leq 0 $ from (3.5), proving Theorem 3.10.
In this section we proposed a nonmonotone and nonlinear incidence rate of the form $ \beta IS/(1 + \alpha I^2) $, which is increasing when $ I $ is small and decreasing when $ I $ is large. It can be used to interpret the 'psychological' effect: the number of effective contacts between infective individuals and susceptible individuals decreases at high infective levels due to the quarantine of infective individuals or the protection measures by the susceptible individuals.
Recall that the parameter $ \alpha $ describes the psychological effect of the general public toward the infectives. Though the basic reproduction number $ R_0 $ does not depend on $ \alpha $ explicitly, numerical simulations indicate that when the disease is endemic, the steady state value $ I^* $ of the infectives decreases as $ \alpha $ increases (see Figure 2). From the steady state expression (3.2) we can see that $ I^* $ approaches zero as $ \alpha $ tends to infinity.
In this section we consider the stochastic model associated with the deterministic model in (2.1). We introduce randomness into the model (2.1) by replacing the parameters $ \mu $ by $ \mu\rightarrow \mu+\sigma_idB_i(t)(i = 1, 2, 3, 4) $ with the second approaches as [13] and [15], where $ B_i(t)(i = 1, 2, 3, 4) $ are independent standard Brownian motions with $ B_i(0) = 0 $ and $ \sigma_i^2(i = 1, 2, 3, 4) $ denote the intensities of the white noise. Then equation (2.1) becomes
$ {dS=[Λ−βSI1+αI2−μS]dt+σ1SdB1(t),dL=[(1−p)βSI1+αI2−(μ+k+r1)L]dt+σ2LdB2(t),dI=[pβSI1+αI2+kL−(μ+d+r2)I]dt+σ3IdB3(t),dR=(r1L+r2I−μR)dt+σ4RdB4(t). $ | (4.1) |
Throughout this section, unless otherwise specified, let $ (\Omega, \mathcal{F}, \mathbb{P}) $ be a complete probability space with a filtration $ \{\mathcal{F}_t\}_{t\geq 0} $. The Brown motions are defined on the complete probability space $ (\Omega, \mathcal{F}, \mathbb{P}) $. Denote
$ R_+^n = \{x\in R^n:x_i \gt 0, \ \ \text{for all}\ \ 1\leq i \leq n\}. $ |
In general, consider $ n $-dimensional stochastic differential equation[35]:
$ dx(t)=ˉf(x(t),t)dt+ˉg(x(t),t)dB(t), on t≥t0 $ | (4.2) |
with initial value $ x(t_0) = x_0 \in R^n $. $ B(t) $ denotes $ n $-dimensional standard Brownian motions defined on the above probability space. Define the differential operator $ \mathcal{L} $ associated with (4.2) by
$ \mathcal{L} = \frac{\partial}{\partial t}+\sum\limits_{i = 1}^{n}\bar{f}_i(x, t)\frac{\partial}{\partial x_i}+\frac{1}{2}\sum\limits_{i, j = 1}^{n}[\bar{g}^T(x, t)\bar{g}(x, t)]_{ij}\frac{\partial^2}{\partial x_i \partial x_j}. $ |
If $ \mathcal{L} $ acts on a function $ V \in C^{2, 1}(S_h \times \bar{R}_+; \bar{R}_+) $, then
$ \mathcal{L}V (x, t) = V_t(x, t)+V_x(x, t)\bar{f}(x, t)+\frac{1}{2}\text{trace}[\bar{g}^T(x, t)V_{xx}(x, t)\bar{g}(x, t)], $ |
where
$ V_t = \frac{\partial V}{\partial t}, V_x = \Big(\frac{\partial V}{\partial x_1}, \cdots, \frac{\partial V}{\partial x_n}\Big), \ \ \text{and}\ \ V_{xx} = \Big(\frac{\partial^2V}{\partial x_i \partial x_j}\Big)_{n\times n}. $ |
By Itô's formula,
$ dV(x(t), t) = \mathcal{L}V(x(t), t)dt+V_x(x(t), t)\bar{g}(x(t), t)dB(t). $ |
In this subsection we first show the solution of system (4.1) is global and positive. In order for a stochastic differential equation to have a unique global (i.e. no explosion in a finite time) solution for any given initial value, the coefficients of the equation are generally required to satisfy the linear growth condition and local Lipschitz condition [34,35]. However, the coefficients of system (4.1) do not satisfy the linear growth condition (as the incidence is nonlinear), so the solution of system (4.1) may explode at a finite time [34,35]. In this section, using Lyapunov analysis method (mentioned in [36]), we show the solution of system (4.1) is positive and global.
Theorem 4.1. There is a unique solution $ (S(t), L(t), I(t), R(t)) $ of system (4.1) on $ t\geq 0 $ for any intial value $ (S(0), L(0), I(0), R(0))\in R_+^4 $, and the solution will remain in $ R_+^4 $ with probability 1, namely, $ (S(t), L(t), I(t), R(t))\in R_+^4 $ for all $ t > 0 $ almost surely.
Proof. Since the coefficients of system (4.1) satisfy the local Lipschitz condition, then for any initial value $ (S(0), L(0), I(0), R(0))\in R_+^4 $, there is a unique local solution $ (S(t), L(t), I(t), R(t)) $ on $ [0, \tau_e) $, where $ \tau_e $ is the explosion time. To show this solution is global, we only need to prove that $ \tau_e = \infty $ a.s. To this end, let $ n_0 > 0 $ be sufficiently large for every component of $ S(0), L(0), I(0), R(0) $ lying within the interval $ [\frac{1}{n_0}, n_0]\times[\frac{1}{n_0}, n_0]\times[\frac{1}{n_0}, n_0]\times[\frac{1}{n_0}, n_0] $. For each integer $ n > n_0 $, define the following stopping time
$ \tau_n = \inf\Big\{t\in [0, \tau_e): \min\{S(t), L(t), I(t), R(t)\}\leq\frac{1}{n} \ \text{or} \ \max \{S(t), L(t), I(t), R(t)\}\geq n\Big\} $ |
where throughout this paper, we set $ \inf \emptyset = \infty $($ \emptyset $ represents the empty set). Obviously, $ \tau_n $ is increasing as $ n \rightarrow \infty $. Let $ \tau_\infty = \limsup\limits_{n\rightarrow \infty}\tau_n $, then $ \tau_\infty \leq \tau_e $ a.s. In the following, we need to verify $ \tau_\infty = \infty $ a.s. If this assertion is violated, there is a constant $ K > 0 $ and an $ \varepsilon\in (0, 1) $ sucn that $ P\{\tau_\infty \leq K\} > \varepsilon $. As a consequence, there exists an integer $ n_1\geq n_0 $ such that
$ P\{\tau_n \leq K\}\geq\varepsilon, \ \ \ n\geq n_1. $ |
Define a $ C^2 $-function $ V: R_+^4\rightarrow R_+ $ by
$ V(S, L, I, R) = (S-1-\log S)+(L-1-\log L)+(I-1-\log I)+(R-1-\log R). $ |
Applying the Itô's formula, we obtain
$ dV(S, L, I, R) = \mathcal{L}Vdt+\sigma_1(S-1)dB_1+\sigma_2(L-1)dB_2+\sigma_3(I-1)dB_3+\sigma_4(R-1)dB_4. $ |
where
$ LV=(1−1S)(Λ−βSI1+αI2−μS)+(1−1L)((1−p)βSI1+αI2−(μ+k+r1)L)+(1−1I)×(pβSI1+αI2+kL−(μ+d+r2)I)+(1−1R)(r1L+r2I−μR)+σ21+σ22+σ23+σ242=Λ+4μ+k+r1+d+r2−μ(S+L+I+R)−dI−ΛS+βI1+αI2−kLI−(1−p)βSIL(1+αI2)−pβS1+αI2−r1LR−r2IR+σ21+σ22+σ23+σ242≤Λ+4μ+k+r1+d+r2+βI1+αI2+σ21+σ22+σ23+σ242:=M. $ |
For $ \forall I > 0, \frac{I}{1+\alpha I^2}\leq \frac{1}{2\sqrt{\alpha}} $. Hence there exists a suitable constant $ M > 0 $ independent of $ S, L, I, T $ and $ t $ such that $ \mathcal{L}V\leq M $. The remainder of the proof is similar to Theorem 3.1 of [36] and hence is omitted. This completes the proof.
Obviously, $ X_0 = (\frac{\Lambda}{\mu}, 0, 0, 0) $ is the solution of system (2.1), which is called the disease-free equilibrium. If $ R_0 < 1 $, then $ X_0 $ is globally asymptotically stable, which means the disease will vanish after some period of time. Therefore, it is interesting to study the disease-free equilibrium for controlling infectious disease. But, there is no disease-free equilibrium in system (4.1). It is natural to ask how we can consider the disease will extinct. In this subsection we mainly estimate the average of oscillation around $ X_0 $ in time to exhibit whether the disease will die out.
Theorem 4.2. Let $ (S(t), L(t), I(t), R(t)) $ be the solution of system (4.1) with initial value $ (S(0), L(0), I(0), R(0))\in R_+^4 $. If $ R_0 = \frac{\beta \Lambda}{\mu}\frac{k(1-p)+(\mu+k+r_1)p}{(\mu+k+r_1)(\mu+d+r_2)}\leq 1 $, and
$ \Big(\frac{(2\mu+k+r_1)^2}{2\mu(\mu+k+r_1)}+\frac{ r_2k(2\mu+d+r_2)^2}{2(2r_2k^2+\mu r_1^2)(\mu+d+r_2)}+\frac{\mu r_2k+1}{2r_2k^2+\mu r_1^2}\Big)\sigma_1^2 \lt \mu+\frac{\mu^2 r_2k}{2(2r_2k^2+\mu r_1^2)}, $ |
$ \sigma_2^2 \lt \mu+r_1, \ \ \ \ \sigma_3^2 \lt \frac{d}{\mu}, \ \ \ \ \sigma_4^2 \lt \mu, $ |
then
$ lim supt→∞1tE∫t0{[μ+μ2r2k2(2r2k2+μr21)−((2μ+k+r1)22μ(μ+k+r1)+r2k(2μ+d+r2)22(2r2k2+μr21)(μ+d+r2)+μr2k+12r2k2+μr21)σ21]⋅ (S−Λμ)2+μ+r1−σ222L2+μr2k(d−μσ23)2(2r2k2+μr21)I2+μ2k(μ−σ24)4(2r2k2+μr21)R2}dr≤(2+μ2r2k+μr212r2k2+μr21)Λ2σ21μ2. $ |
Proof. Define $ C^2 $-function $ V_1, V_2:R_+\rightarrow R_+ $ and $ V_3, V_4, V_5: R_+^2\rightarrow R_+ $, respectively by
$ V_1(S) = \frac{(S-\frac{\Lambda}{\mu})^2}{2}, \ \ \ V_2(R) = \frac{R^2}{2}, \ \ \ V_3(L, I) = L+\frac{\mu+r_1+k}{k}I, $ |
$ V_4(S, L) = \frac{(S-\frac{\Lambda}{\mu}+L)^2}{2}, \ \ \ V_5(S, I) = \frac{(S-\frac{\Lambda}{\mu}+I)^2}{2}. $ |
Along the trajectories of system (4.1), we have
$ LV1=(S−Λμ)(Λ−βSI1+αI2−μS)+σ21S22=−μ(S−Λμ)2−β(S−Λμ)2I1+αI2−βΛ(S−Λμ)Iμ(1+αI2)+σ21S22LV2=r1LR+r2IR−μR2+σ24R22≤r22I2μ−(μ−σ24)R22+r21L2μ,LV3=(1−p)βSI1+αI2+μ+k+r1kpβSI1+αI2−μ+k+r1k(μ+d+r2)I=[k(1−p)+(μ+k+r1)p]β(S−Λμ)Ik(1+αI2)+(μ+k+r1)(μ+d+r2)Ik(R01+αI2−1),LV4≤−μ(S−Λμ)2−pβΛ(S−Λμ)Iμ(1+αI2)+(2μ+k+r1)22(μ+k+r1)(S−Λμ)2−(μ+k+r1)L22+σ21S22+σ22L22, $ |
$ LV5≤−μ(S−Λμ)2−(1−p)β(S−Λμ)2I1+αI2−(1−p)βΛ(S−Λμ)Iμ(1+αI2)+kL(S−Λμ)−(2μ+d+r2)(S−Λμ)I+kLI−(μ+d+r2)I2+σ21S22+σ23I22 $ |
Hence
$ LV1+Λk[k(1−p)+(μ+k+r1)p]μLV3≤−μ(S−Λμ)2−β(S−Λμ)2I1+αI2+σ21S22≤−(μ−σ21)(S−Λμ)2+σ21Λ2μ2 $ |
$ LV4+pΛk[k(1−p)+(μ+k+r1)p]μLV3≤−(μ−(2μ+k+r1)22(μ+k+r1))(S−Λμ)2+σ21S22+σ22L22≤((2μ+k+r1)22(μ+k+r1)−μ+σ21)(S−Λμ)2+σ21Λ2μ2+σ22L22−(μ+k+r1)L22 $ | (4.3) |
$ LV5+(1−p)Λk[k(1−p)+(μ+k+r1)p]μLV3+μ2r2LV2≤−μ(S−Λμ)2+kL(S−Λμ)−(2μ+d+r2)(S−Λμ)I+kLI−(μ+d+r2)I2+σ21S22+σ23I22+r22I2+r212r2L2−μ(μ−σ24)4r2R2≤−μ(S−Λμ)2+k2μL2+μ2(S−Λμ)2+(2μ+d+r2)22(μ+d+r2)(S−Λμ)2−d+r22I2+σ21S22+σ23I22+r22I2+r212r2L2−μ(μ−σ24)4r2R2≤((2μ+d+r2)22(μ+d+r2)−μ2)(S−Λμ)2+(k2μ+r212r2)L2+−d2I2+σ21S22+σ23I22−μ(μ−σ24)4r2R2 $ | (4.4) |
From (4.3) and (4.4) we have
$ LV4+pΛk[k(1−p)+(μ+k+r1)p]μLV3+μr2k2r2k2+μr21[LV5+(1−p)Λk[k(1−p)+(μ+k+r1)p]μLV3+μ2r2LV2]≤−(μ−(2μ+k+r1)22(μ+k+r1))(S−Λμ)2+σ21S22+σ22L22−μ2r2k2(2r2k2+μr21)μ2(S−Λμ)2+μ2r2k2r2k2+μr21(k2μ+r212r2)L2+μ2r2k2(2r2k2+μr21)(2μ+d+r2)22(μ+d+r2)(S−Λμ)2−μ2r2k2(2r2k2+μr21)d2I2+μ2r2k2(2r2k2+μr21)σ21S22+μ2r2k2(2r2k2+μr21)σ23I22−μ2k(μ−σ24)4(2r2k2+μr21)R2≤((2μ+k+r1)22(μ+k+r1)−μ−μ2r2k2(2r2k2+μr21)+μr2k(2μ+d+r2)22(2r2k2+μr21)(μ+d+r2))(S−Λμ)2+(μ2r2k2r2k2+μr21+1)σ21S22+σ22L22−μ+r12L2−dμr2k2(2r2k2+μr21)I2+μ2r2kσ232(2r2k2+μr21)I2−μ2k(μ−σ24)4(2r2k2+μr21)R2 $ |
Considering positive definite $ C^2 $ function $ V:R_+^4\rightarrow R_+ $ such that
$ V:=((2μ+k+r1)22μ(μ+k+r1)+r2k(2μ+d+r2)22(2r2k2+μr21)(μ+d+r2))(V1+Λkk(1−p)+(μ+k+r1)pV3)+V4+pΛkk(1−p)+(μ+k+r1)pV3+μr2k2r2k2+μr21(V5+(1−p)Λk[k(1−p)+(μ+k+r1)p]μV3+μ2r2V2). $ |
By computation,
$ LV≤−[μ+μ2r2k2(2r2k2+μr21)−((2μ+k+r1)22μ(μ+k+r1)+r2k(2μ+d+r2)22(2r2k2+μr21)(μ+d+r2)+μr2k+12r2k2+μr21)σ21](S−Λμ)2−μ+r1−σ222L2−μr2k(d−μσ23)2(2r2k2+μr21)I2−μ2k(μ−σ24)4(2r2k2+μr21)R2+(2+μ2r2k+μr212r2k2+μr21)Λ2σ21μ2 $ | (4.5) |
Taking expectation above, (4.5) yields
$ EV(t)−EV(0)=∫t0ELV(r)dr≤−[μ+μ2r2k2(2r2k2+μr21)−((2μ+k+r1)22μ(μ+k+r1)+μr2k+12r2k2+μr21+r2k(2μ+d+r2)22(2r2k2+μr21)(μ+d+r2))σ21]∫t0(S(r)−Λμ)2dr−μ+r1−σ222∫t0L2(r)dr−μr2k(d−μσ23)2(2r2k2+μr21)∫t0I2(r)dr−μ2k(μ−σ24)4(2r2k2+μr21)∫t0R2(r)dr+(2+μ2r2k+μr212r2k2+μr21)Λ2σ21μ2t $ |
Hence
$ lim supt→∞1tE∫t0{[μ+μ2r2k2(2r2k2+μr21)−((2μ+k+r1)22μ(μ+k+r1)+r2k(2μ+d+r2)22(2r2k2+μr21)(μ+d+r2)+μr2k+12r2k2+μr21)σ21] ⋅(S−Λμ)2+μ+r1−σ222L2+μr2k(d−μσ23)2(2r2k2+μr21)I2+μ2k(μ−σ24)4(2r2k2+μr21)R2}dr≤(2+μ2r2k+μr212r2k2+μr21)Λ2σ21μ2. $ |
This complete the proof.
In this section, we will show there is a unique distribution for system (4.1) instead of asymptotically stable equilibrium(see [37]). We only consider the first three equation of system (4.1) because the variable $ R $ does not participate in the first three equations. Before giving the main theorem, we first give a lemma (see [38]).
Let $ X(t) $ be a regular temporally homogeneous Markov process in $ E_l\subset R^l $ described by the stochastic differential equation:
$ dX(t) = b(X)t+\sum\limits_{r = 1}^{k}\sigma_r(X)dB_r(t), $ |
and the diffusion matrix is defined as follows
$ A(x) = (a_{i, j}(x)), \ \ a_{i, j}(x) = \sum\limits_{r = 1}^{k}\sigma_r^i(x)\sigma_r^j(x). $ |
Lemma 4.3. (see [38]) We assume that there exists a bounded domain $ U\subset E_l $ with regular boundary, having the following properties:
● In the domain $ U $ and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix $ A(x) $ is bounded away from zero.
● If $ x\in E_l\backslash U $, the mean time $ \tau $ at which a path issuing from $ x $ reaches the set $ U $ is finite, and $ \sup_{x\in K}E_x\tau < \infty $ for every compact subsect $ K\subset E_l $.
then, the Markov process $ X(t) $ has a stationary distribution $ \mu(\cdot) $ with density in $ E_l $ such that for any Borel set $ \mathcal{B}\subset E_l $,
$ \lim\limits_{t\rightarrow\infty}P(t, x, \mathcal{B}) = \breve{\mu}(\mathcal{B}), $ |
and
$ P_x\Big{\{}\lim\limits_{T\rightarrow \infty}\frac{1}{T}\int_0^Tf(x(t))dt = \int_{E_l}f(x)\breve{\mu}(dx)\Big{\}} = 1, $ |
for all $ x\in E_l $ and $ f(x) $ being a function integrable with respect to the measure $ \breve{\mu} $.
Theorem 4.4. Let $ (S(t), L(t), I(t)) $ be the solution of system (4.1) with initial value $ (S(0), L(0), I(0))\in R_+^3 $. If $ R_0 = \frac{\beta \Lambda}{\mu}\frac{k(1-p)+(\mu+k+r_1)p}{(\mu+k+r_1)(\mu+d+r_2)}\leq 1 $, and the following conditions are satisfied:
(i)
$ ρ1=(μ+(2μ+d+r2+r1)μβS∗−(2μ+r1)22(μ+r1)−(2μ+d+r2+r1+βS∗)σ21βS∗−(2μ+d+r2)24αk2(μ+d+r2))∨(μ+(2μ+d+r2+r1)p√αI∗−(2μ+r1)22(μ+r1)−(2μ+d+r2)22(μ+d+r2)−((2μ+d+r2+r1)p+√αI∗)σ21√αI∗)>0ρ2=μ+r12−σ22>0, ρ3=μ+d+r22−σ23>0; $ |
(ii) $ \delta < \min \{\rho_1 S^{*2}, \rho_2L^{*2}, \rho_3I^{*2}\} $, where $ S^*, L^*, I^* $ are difined as in (3.2) and
$ \delta = \Big[\frac{(2\mu+d+r_2+r_1)p+\sqrt{\alpha}I^*}{\sqrt{\alpha}I^*}\vee \frac{2\mu+d+r_2+r_1+\beta S^*}{\beta S^*}\Big]\sigma_1^2S^{*2}+\sigma_2^2L^{*2}+\sigma_3^2I^{*2} $ |
then we have
$ \lim\limits_{t\rightarrow\infty}\frac{1}{t}E\int_0^t[\rho_1(S(r)-S^*)^2+\rho_2(L(r)-L^*)^2+\rho_3(I(r)-I^*)^2]dr\leq\delta. $ |
Proof. As $ R_0 > 1 $, there is a unique endemic equilibrium $ X^* = (S^*, L^*, I^*) $ such that
$ Λ=βS∗I∗1+αI∗2+μS∗, (1−p)βS∗I∗1+αI∗2=(μ+k+r1)L∗, pβS∗I∗1+αI∗2=(μ+d+r2)I∗−kL∗. $ | (4.6) |
Define $ C^2 $ functions as follows:
$ V_1(S, L, I) = \frac{S-S^*+L-L^*+I-I^*}{2}, \ \ V_2(I) = I-I^*-I^*\log\frac{I}{I^*}, \ \ \ V_3(S) = \frac{(S-S^*)^2}{2}. $ |
By computation, we have
$ LV1=(S−S∗+L−L∗+I−I∗)(−μ(S−S∗)−(μ+r1)(L−L∗)−(μ+d+r2)(I−I∗))+σ21S22+σ22L22+σ23I22=−μ(S−S∗)2−(μ+r1)(L−L∗)2−(μ+d+r2)(I−I∗)2−(2μ+r1)(S−S∗)(L−L∗)−(2μ+d+r2)(S−S∗)(I−I∗)−(2μ+d+r2+r1)(L−L∗)(I−I∗)+σ21S22+σ22L22+σ23I22LV2=(1−I∗I)(pβSI1+αI2+kL−(μ+d+r2)I)=pβ(I−I∗)(S1+αI2−S∗1+αI∗2)+k(I−I∗)(L−L∗)I∗−kL(I−I∗)2II∗≤pβ1+αI∗2(S−S∗)(I−I∗)+k(I−I∗)(L−L∗)I∗LV3=(S−S∗)(Λ−βSI1+αI2−μS)+σ21S22=−μ(S−S∗)2−βS∗(αII∗−1)(1+αI∗2)(1+αI2)(S−S∗)(I−I∗)+σ21S22 $ |
We discuss the follow prove in two cases: $ (S-S^*)(I-I^*)\geq0 $ or $ (S-S^*)(I-I^*) < 0 $.
1). If $ (S-S^*)(I-I^*)\geq 0 $, define
$ V(S, L, I) = V_1+\frac{(2\mu+d+r_2+r_1)I^*}{k}V_2+\frac{2\mu+d+r_2+r_1}{\beta S^*}V_3 $ |
By computation, we have
$ LV≤−μ(S−S∗)2−(μ+r1)(L−L∗)2−(μ+d+r2)(I−I∗)2−(2μ+r1)(S−S∗)(L−L∗)+(2μ+d+r2+r1)pβI∗k(1+αI∗2)(S−S∗)(I−I∗)−(2μ+d+r2+r1)μβS∗(S−S∗)2+σ21S22+σ22L22+σ23I22+2μ+d+r2+r1βS∗σ21S22≤−(μ+(2μ+d+r2+r1)μβS∗−(2μ+r1)22(μ+r1)−(2μ+d+r2)24αk2(μ+d+r2))(S−S∗)2−μ+r12(L−L∗)2−μ+d+r22(I−I∗)2+2μ+d+r2+r1+βS∗βS∗σ21S22+σ22L22+σ23I22 $ |
2). If $ (S-S^*)(I-I^*) < 0 $, define
$ {V(S, L, I)} = V_1+\frac{(2\mu+d+r_2+r_1)I^*}{k}V_2+\frac{(2\mu+d+r_2+r_1)p}{\sqrt{\alpha}I^*}V_3 $ |
By computation, we have
$ LV≤−μ(S−S∗)2−(μ+r1)(L−L∗)2−(μ+d+r2)(I−I∗)2−(2μ+r1)(S−S∗)(L−L∗)−(2μ+d+r2)(S−S∗)(I−I∗)−(2μ+d+r2+r1)μp√αI∗(S−S∗)2+σ21S22+σ22L22+σ23I22+(2μ+d+r2+r1)μp√αI∗σ21S22≤−(μ+(2μ+d+r2+r1)p√αI∗−(2μ+r1)22(μ+r1)−(2μ+d+r2)22(μ+d+r2))(S−S∗)2−μ+r12(L−L∗)2−μ+d+r22(I−I∗)2+(2μ+d+r2+r1)p+√αI∗√αI∗σ21S22+σ22L22+σ23I22 $ |
Over all we have
$ LV≤−ρ1(S−S∗)2−ρ2(L−L∗)2−ρ3(I−I∗)2+δ $ | (4.7) |
where
$ ρ1=(μ+(2μ+d+r2+r1)μβS∗−(2μ+r1)22(μ+r1)−(2μ+d+r2+r1+βS∗)σ21βS∗−(2μ+d+r2)24αk2(μ+d+r2))∨(μ+(2μ+d+r2+r1)p√αI∗−(2μ+r1)22(μ+r1)−(2μ+d+r2)22(μ+d+r2)−((2μ+d+r2+r1)p+√αI∗)σ21√αI∗)ρ2=μ+r12−σ22, ρ3=μ+d+r22−σ23,δ=[(2μ+d+r2+r1)p+√αI∗√αI∗∨2μ+d+r2+r1+βS∗βS∗]σ21S∗2+σ22L∗2+σ23I∗2 $ |
If $ \delta < \min \{\rho_1 S^{*2}, \rho_2L^{*2}, \rho_3I^{*2}\} $, then the ellipsoid
$ \rho_1(S-S^*)^2+\rho_2(L-L^*)^2+\rho_3(I-I^*)^2 = \delta $ |
lies entirely $ R_+^3 $. We can take $ U $ as any neighborhood of the ellipsoid such that $ \overline{U}\in R_+^3 $, where $ \overline{U} $ is the closure of $ U $. Thus, we have $ LV < 0 $ which implies the second condition in Lemma 4.3 is satisfied. Besides, there is $ Q > 0 $ such that
$ \sum\limits_{i, j = 1}^{n}\Big(\sum\limits_{k = 1}^na_{ik}(x)a_{jk}(x)\Big)\xi_i\xi_j = \sigma_1^2x_1^2\xi_1^2+\sigma_2^2x_2^2\xi_2^2+\sigma_3^2x_3^2\xi_3^2 \geq Q|\xi|^2, \ \text{for all} x\in \overline{U}, \xi\in R^3 $ |
Applying Rayleigh's principle (see [39], p. 349), the first condition in Lemma 4.3 is satisfied. Therefore, the stochastic system (4.1) has a unique stationary distribution $ \mu(\cdot) $ and it is ergodic.
In this section, we investigate the exponential decay of the global solution of system (4.1) as the intensity of white noise is great. It can be shown below, even if the endemic equilibrium exists in the system (2.1), the stochastic effect may make washout more likely in system (4.1).
Theorem 4.5. Let $ (S(t), L(t), I(t), R(t)) $ be the solution of system (4.1) with any initial value $ (S(0), L(0), I(0), R(0))\in R_+^4 $. If $ \frac{\Lambda \beta (\mu+k+r_1)}{\mu k} < (\frac{\sigma_3^2}{2}+\mu+d+r_2)\wedge (\frac{\sigma_2^2}{2}) $ then,
$ limsupt→∞1tlog[L+μ+k+r1kI]≤Λβkμ(μ+k+r1)−(kμ+k+r1)2[(σ232+μ+d+r2)∧(σ222)]limsupt→∞1tlogR(t)≤{(r1∨r2)⋅{[−(μ+σ242)]∨ζ}}limsupt→∞1t∫t0S(u)du=Λμ,a.e.S(t)→ων,ast→∞,$ |
where $ \rightarrow ^\omega $ means the convergence in distribution and $ \nu $ is a probability measure in $ R_+^1 $ such that $ \int_0^\infty x\nu(dx) = \frac{\Lambda}{\mu} $. In particularly, $ \nu $ has density $ (A\sigma_1^2 x^2p(x))^{-1} $, where $ A $ is a normal constant,
$ p(x) = \mathit{\text{exp}}\Big(-\frac{2\Lambda}{\sigma_1^2}\Big)x^{\frac{2\mu}{\sigma_1^2}}\mathit{\text{exp}}\Big(\frac{2\Lambda}{\sigma_1^2 x}\Big), \ \ x \gt 0. $ |
Proof. By comparison theorem, we see that $ S(t)\leq X(t) $, where $ X(t) $ is the global solution of the following stochastic system with initial value $ X(0) = S(0) $:
$ dX=(Λ−μX)dt+σ1XdB1(t) $ | (4.8) |
Obviously, (4.8) is a diffusion process lying in $ R_+^1 $.
Firstly, we show (4.8) is stable in distribution and ergodic. Let $ Y(t) = X(t)-\frac{\Lambda}{\mu} $, then $ Y(t) $ satisfies
$ dY=−μYdt+σ1(Y+Λμ)dB1(t). $ | (4.9) |
Theorem 2.1(a) in[40] with $ C = 1 $ implies that the diffusion process $ Y(t) $ is stable in distribution as $ t\rightarrow \infty $, so does $ X(t) $.
To prove the ergodicity of $ X(t) $, we difine
$ p(x) = \text{exp}\Big(-2\int_0^x \frac{\Lambda-\mu y}{\sigma_1^2 y^2}dy\Big) = \text{exp}\Big(-\frac{2\Lambda}{\sigma_1^2}\Big)x^{\frac{2\mu}{\sigma_1^2}}\text{exp}\Big(\frac{2\Lambda}{\sigma_1^2 x}\Big) $ |
and it is noted that for each integer $ n\geq 1 $, there exist positive constants $ C_1(n), C_2(n) $ and $ M(n) $ such that
$ p(x)≥C1(n)x2μσ21−n, as 0<x<1M(n), p(x)≥C2(n)x2μσ21, as x>1M(n). $ | (4.10) |
Therefore, together with (4.10) we see
$ \int_1^\infty p(x)dx = \infty, \ \ \ \int_0^1 p(x)dx = \infty, \ \ \int_0^\infty \frac{dx}{\sigma_1^2 p(x)x^2} \lt \infty. $ |
So $ X(t) $ is ergodic (Theorem 1.16 in [41]), and with respect to the Lebesgue measure its invariant measure $ \nu $ has density $ (A\sigma_1^2 p(x)x^2)^{-1} $, where $ A $ is a normal constant.
Now, we show that $ f(t): = EX^p(t) $ is uniformly bounded for some $ p > 1 $ determined later. Applying It$ \hat{\text{o}} $'s formula to $ X^p $, we have
$ dX^p = \Big(p\Lambda X^{p-1}-p\mu X^p+\frac{\sigma_1^2p(p-1)X^p}{2}\Big)dt+p\sigma_1 X^p dB_1(t). $ |
Taking expectation of equation above, and using the fact $ a^{\frac{1}{p}}b^{\frac{p-1}{p}}\leq \frac{a}{p}+\frac{b(p-1)}{p}, a, b > 0 $,
$ f'(t)\leq \frac{\Lambda ^p}{\varepsilon^{p-1}}+\frac{p\varepsilon}{p-1}f(t)-p\Big[\mu-\frac{\sigma_1^2(p-1)}{2}\Big]f(t)\leq\frac{\Lambda ^p}{\varepsilon^{p-1}}+p\Big[\frac{\varepsilon}{p-1}-(\mu-\frac{\sigma_1^2(p-1)}{2})\Big]f(t). $ |
Choosing $ \varepsilon > 0 $ sufficiently small and $ p > 1 $ closely enough to 1 such that
$ \mu-\frac{\sigma_1^2(p-1)}{2} \lt 0, \ \ \ \frac{\varepsilon}{p-1}-(\mu-\frac{\sigma_1^2(p-1)}{2}) \lt 0. $ |
Hence, $ \sup_{t\geq 0}EX^p(t) = \sup_{t\geq 0}f(t) < \infty $, implying that $ \int_0^\infty x^p\nu(dx) < \infty $. Together with its ergodicity we have
$ px{limT→∞1T∫T0X(t)dt=∫∞0xν(dx)}=1. $ | (4.11) |
for all $ x\in R_+^1 $. On the other hand, Jensen's inequality yields
$ E\Big[\frac{1}{T}\int_0^T X(t)dt \Big]^p\leq E\frac{1}{T}\int_0^TX^p(t)dt\leq \sup\limits_{t\geq 0}EX^p(t) \lt \infty, $ |
therefore, $ \{ \frac{1}{T}\int_0^T X(t)dt, t\geq 0\} $ is uniformly integrable. Together with (4.11), we have
$ E1T∫T0Xp(t)dt→∫∞0xν(dx). $ | (4.12) |
Taking expectation of (4.8), we have
$ \frac{EX(t)}{t} = \Lambda-\frac{\mu}{t}E\int_0^tX(s)ds. $ |
Let $ t\rightarrow \infty $, taking (4.12) into account, then we have $ \int_0^\infty x\nu(dx) = \frac{\Lambda}{\mu} $.
We shall eventually show that $ S(t) $ is stable in distribution. To do this, as in [15], we introduce a new stochastic process $ S_\varepsilon (t) $ which is defined by initial condition $ S_\varepsilon(0) = S(0) $ and the stochastic differential equation
$ dS_\varepsilon = [\Lambda-(\mu+\varepsilon)S_\varepsilon]dt+\sigma_1S_\varepsilon d B_1(t). $ |
We prove that
$ limt→∞(S(t)−Sε(t))≥0, a.e. $ | (4.13) |
Therefore consider
$ d(S-S_\varepsilon) = \Big[\Big(\varepsilon-\frac{\beta I}{1+\alpha I^2}\Big)S-(\mu+\varepsilon)(S-S_\varepsilon)\Big]dt+\sigma_1(S-S_\varepsilon)dB_1(t). $ |
The solution is given by
$ S(t)−Sε(t)=exp{−(μ+ε+σ212)t+σ1B1(t)}∫t0exp{(μ+ε+σ212)−σ1B1(s)}⋅(ε−βI(s)1+αI2(s))S(s)ds. $ |
For almost $ \omega\in\Omega, \exists T = T(\omega) $ such that $ \varepsilon > \frac{\beta I(t)}{1+\alpha I^2(t)}, \ \ \forall t > T $.
Hence as the proof of Theorem 5.2 in [15] for almost $ \omega\in \Omega $, for any $ t > T $,
$ S(t)−Sε(t)≥exp{−(μ+ε+σ212)t+σ1B1(t)}∫T0exp{(μ+ε+σ212)−σ1B1(s)}⋅(ε−βI(s)1+αI2(s))S(s)ds. $ |
Therefore, $ \liminf\limits_{t\rightarrow\infty}(S(t)-S_\varepsilon(t)\geq 0, \ a.e. $ Next, it is noted that
$ d(X-S_\varepsilon) = [\varepsilon S_\varepsilon-\mu(X-S_\varepsilon)]dt+\sigma_1(X-S_\varepsilon)dB_1(t). $ |
Taking the expectation of above equation, we see
$ E|X(t)-S_\varepsilon(t)| = \int_0^t[\varepsilon S_\varepsilon(u)-\mu(X(u)-S_\varepsilon(u))]du\leq \int_0^t[\varepsilon X(u)-\mu|X(u)-S_\varepsilon(u)|]du $ |
where the last inequality is using the fact that $ S_\varepsilon(t)\leq X(t) $. Hence we have
$ E|X(t)-S_\varepsilon(t)|\leq \frac{\varepsilon \sup\limits_{u\geq 0}EX_u}{\mu}(1-\text{exp}(-\mu t)). $ |
This implies that
$ lim infε→0limt→∞E|X(t)−Sε(t)|=0. $ | (4.14) |
Combining (4.13), (4.14) and the fact that $ S(t)\leq X(t) $, we have
$ \lim\limits_{t\rightarrow \infty}(X(t)-S(T)) = 0, \ \ \ \text{in probability}. $ |
It has been shown that $ X(t) $ converges weakly to distribution $ \nu $, so does $ S(t) $ as $ t\rightarrow\infty $.
Secondly, using It$ \hat{\text{o}} $'s formula to $ \log[L+\frac{\mu+k+r_1}{k}I] $ and the fact that $ S(t)\leq X(t) $ show
$ dlog[L+μ+k+r1kI]=(k(1−p)+(μ+k+r1)p)βSIk(1+αI2)(L+μ+k+r1kI)−1(L+μ+k+r1kI)2[(σ232+μ+d+r2)(μ+k+r1k)2I2+σ22L22]dt+σ2LL+μ+k+r1kIdB2(t)+σ3(μ+k+r1)Ik(L+μ+k+r1kI)dB3(t)≤(k(1−p)+(μ+k+r1)p)βkXμ+k+r1−(kμ+k+r1)2[(σ232+μ+d+r2)∧(σ222)]dt+σ2LL+μ+k+r1kIdB2(t)+σ3(μ+k+r1)Ik(L+μ+k+r1kI)dB3(t) $ |
Integrating the above inequality from 0 to $ t $, together with (4.11) and the fact that $ \lim_{t\rightarrow \infty}\frac{|B_i(t)|}{t} = 0, i = 2, 3 $[35], yields
$ lim supt→∞1tlog[L+μ+k+r1kI]≤Λβkμ(μ+k+r1)−(kμ+k+r1)2[(σ232+μ+d+r2)∧(σ222)]=:ζ $ | (4.15) |
To help with the proof we introduce another diffusion process $ \widetilde{R}(t) $ which is defined by the initial condition $ \widetilde{R}(0) = R(0) $ and the stochastic differential equation
$ d\widetilde{R} = -\mu\widetilde{R}(t)dt+\sigma_4 \widetilde{R}dB_4(t). $ |
Then consider
$ d(R-\widetilde{R}) = (r_1 L+r_2I-\mu (R-\widetilde{R}))dt+\sigma_4(R-\widetilde{R})dB_4(t). $ |
The solution is given by
$ R(t)-\widetilde{R}(t) = \text{exp}\Big{\{}-\Big(\mu+\frac{\sigma_4^2}{2}\Big)t+\sigma_4B_4(t)\Big{\}}\int_0^t\text{exp}\Big{\{}\Big(\mu+\frac{\sigma_4^2}{2}\Big)s- \sigma_4B_4(s)\Big{\}}(r_1L(s)+r_2I(s))ds. $ |
By (4.15) and the fact that $ \lim\limits_{t\rightarrow \infty}\frac{|B_4(t)|}{t} = 0, $ it has been shown that, for any $ \tilde{\varepsilon} > 0 $ and almost $ \omega\in \Omega, \exists T = T(\omega) $ such that
$ r1L(t)+r2I(t)≤(r1∨r2)(L(t)+I(t))≤(r1∨r2)L(t)+μ+k+r1kI(t)≤(r1∨r2)exp((ζ+˜ε)t), ∀t≥T, $ |
where $ \zeta $ is defined in (4.15). Hence for all $ \omega\in \Omega $, if $ t > T(\omega) $, then
$ |R(t)−˜R(t)|≤exp{−(μ+σ242)t+σ4B4(t)}∫T0exp{(μ+σ242)s−σ4B4(s)}(r1L(s)+r2I(s))ds+(r1∨r2)exp{−(μ+σ242)t+σ4B4(t)+σ4maxs≤t|B4(t)|}∫tTexp{(μ+σ242+ζ+˜ε)s}ds $ |
Therefore,
$ \limsup\limits_{t\rightarrow \infty}\frac{1}{t}\log|R(t)-\widetilde{R}(t)|\leq (r_1 \vee r_2)\cdot \Big{\{}\Big[-\Big(\mu+\frac{\sigma_4^2}{2}\Big)\Big]\vee[\zeta+\tilde{\varepsilon}]\Big{\}}, \ \ a.e. $ |
Let $ \tilde{\varepsilon}\rightarrow 0 $, we get $ \limsup\limits_{t\rightarrow \infty }\frac{1}{t}\log|R(t)-\widetilde{R}(t)|\leq (r_1 \vee r_2)\cdot \{[-(\mu+\frac{\sigma_4^2}{2})]\vee \zeta\}, $ a.e. On the other hand,
$ \widetilde{R}(t) = R(0)\text{exp} \Big{\{}-\Big(\mu+\frac{\sigma_4^2}{2}\Big)t+\sigma_4B_4(t)\Big{\}} $ |
and hence, $ \limsup\limits_{t\rightarrow \infty }\frac{1}{t}\log\widetilde{R}(t) = -(\mu+\frac{\sigma_4^2}{2}) $, Therefore
$ \mathop {\lim \sup }\limits_{t \to \infty } \frac{1}{t}\log R(t) \le \{ ({r_1} \vee {r_2}) \cdot \{ [ - (\mu + \frac{{\sigma _4^2}}{2})] \vee \zeta \} \} . $ |
Based on the model proposed in Xiao and Ruan[8], we proposed an SLIR model with a nonmonotone and nonlinear incidence rate of the form $ \beta IS/(1 + \alpha I^2) $ which is increasing when $ I $ is small and decreasing when $ I $ is large. It can be used to interpret the 'psychological' effect: the number of effective contacts between infective individuals and susceptible individuals decreases at high infective levels due to the quarantine of infective individuals or the protection measures by the susceptible individuals.
We have provided a complete description of the asymptotic behaviour of the solutions of the deterministic model (2.1) and (2.4). Interestingly, this model does not exhibit complicated dynamics as other epidemic models with other types of incidence rates reported in [1,3,4,5,6,8]. In terms of the basic reproduction number $ R_0 = \frac{\beta \Lambda}{\mu}\frac{k(1-p)+(\mu+k+r_1)p}{(\mu+k+r_1)(\mu+d+r_2)} $, our main results indicate that when $ R_0 < 1 $, the disease-free equilibrium is globally attractive. When $ R_0 > 1 $, the endemic equilibrium exists and is globally stable.
A stochastic differential equation (SDE) is formulated for describing the disease in this case. We prove the existence and uniqueness of the solution of this SDE. We proved the positivity of the solutions. Then, we investigate the stability of the model. We illustrated the dynamical behavior of the SLIR model according to $ R_0 < 1 $. We proved that the infective tends asymptotically to zero exponentially almost surely as $ R_0 < 1 $. We also proved that the SLIR model has the ergodic property as the fluctuation is small, where the positive solution converges weakly to the unique stationary distribution.
This work is supported by the National Natural Science Foundation of China No:11601542 and 11771407, the Postdoctoral Research Grant in Henan Province No:001803011.
The authors declare no conflict of interest.
[1] | Antibiotic Resistance Threats in the United States, 2013. US Department of Health and Human Services, Centers for Disease Control and Prevention, 2013. |
[2] |
Knight GM, Costelloe C, Deeny SR, et al. (2018) Quantifying where human acquisition of antibiotic resistance occurs: a mathematical modelling study. BMC Med 16: 137. doi: 10.1186/s12916-018-1121-8
![]() |
[3] |
Sassone-Corsi M, Raffatellu M (2015) No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol 194: 4081–4087. doi: 10.4049/jimmunol.1403169
![]() |
[4] |
Olsan EE, Byndloss MX, Faber F, et al. (2017) Colonization resistance: the deconvolution of a complex trait. J Biol Chem 292: 8577–8581. doi: 10.1074/jbc.R116.752295
![]() |
[5] |
McKenney ES, Kendall MM (2016) Microbiota and pathogen 'pas de deux': setting up and breaking down barriers to intestinal infection. Pathog Dis 74: ftw051. doi: 10.1093/femspd/ftw051
![]() |
[6] |
Sassone-Corsi M, Nuccio S, Liu H, et al. (2016) Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540: 280–283. doi: 10.1038/nature20557
![]() |
[7] |
Brandl K, Plitas G, Mihu C, et al. (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455: 804–807. doi: 10.1038/nature07250
![]() |
[8] |
Theriot CM, Young VB (2015) Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu Rev Microbiol 69: 445–461. doi: 10.1146/annurev-micro-091014-104115
![]() |
[9] | Freedman A (2014) Use of stool transplant to clear fecal colonization with carbapenem-resistant Enterobacteraciae (CRE): proof of concept. IDWeek. |
[10] |
Singh R, Nood E, Nieuwdorp, et al. (2014) Donor feces infusion for eradication of Extended Spectrum beta-Lactamase producing Escherichia coli in a patient with end stage renal disease. Clin Microbiol Infec 20: O977–O978. doi: 10.1111/1469-0691.12683
![]() |
[11] | Stripling J, Kumar R, Baddley JW, et al. (2015) Loss of vancomycin-resistant Enterococcus fecal dominance in an organ transplant patient with Clostridium difficile colitis after fecal microbiota transplant. Open Forum Infect Dis 2: 1–4. |
[12] |
Crun-Cianfione N, Sullivan E, Gonzalo B (2015) Fecal microbiota transplantation and successful resolution of multidrug-resistant-organism colonization. J Clin Microbiol 53: 1986–1989. doi: 10.1128/JCM.00820-15
![]() |
[13] | Jang M, An J, Jung S, et al. (2014) Refractory Clostridium difficile infection cured with fecal microbiota transplantation in vancomycin-resistant Enterococcus colonized patient. Intest Res 13: 80–84. |
[14] | Lombardo M (2015) Vancomycin-resistant enterococcal (VRE) titers diminish among patients with recurrent Clostridium difficile infection after administration of SER-109, a novel microbiome agent. IDWeek. |
[15] |
Biliński J, Grzesiowski P, Muszynski J, et al. (2016) Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: preliminary report performed in an immunocompromised host. Arch Immunol Ther Ex 64: 255–258. doi: 10.1007/s00005-016-0387-9
![]() |
[16] |
Lagier J, Million M, Fournier P, et al. (2015) Faecal microbiota transplantation for stool decolonization of OXA-48 carbapenemase-producing Klebsiella pneumoniae. J Hosp Infect 90: 173–174. doi: 10.1016/j.jhin.2015.02.013
![]() |
[17] |
Wei Y, Gong J, Zhu W, et al. (2015) Fecal microbiota transplantation restores dysbiosis in patients with methicillin resistant Staphylococcus aureus enterocolitis. BMC Infect Dis 15: 265. doi: 10.1186/s12879-015-0973-1
![]() |
[18] | Eysenbach L, Allegretti JR, Aroniadis O, et al. (2016) Clearance of vancomycin-resistant Enterococcus colonization with fecal microbiota transplantation among patients with recurrent Clostridium difficile infection. IDWeek. |
[19] |
Dubberke ER, Mullane KM, Gerding DN, et al. (2016) Clearance of vancomycin-resistant Enterococcus concomitant with administration of a microbiota-based drug targeted at recurrent Clostridium difficile infection. Open Forum Infect Dis 3: ofw133. doi: 10.1093/ofid/ofw133
![]() |
[20] |
Jouhten H, Mattila E, Arkkila P, et al. (2016) Reduction of antibiotic resistance genes in intestinal microbiota of patients with recurrent Clostridium difficile infection after fecal microbiota transplantation. Clin Infect Dis 63: 710–711. doi: 10.1093/cid/ciw390
![]() |
[21] |
Millan B, Park H, Hotte N, et al. (2016) Fecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent Clostridium difficile infection. Clin Infect Dis 62: 1479–1486. doi: 10.1093/cid/ciw185
![]() |
[22] |
García-Fernández S, Morosini M, Cobo M, et al. (2016) Gut eradication of VIM-1 producing ST9 Klebsiella oxytoca after fecal microbiota transplantation for diarrhea caused by a Clostridium difficile hypervirulent R027 strain. Diagn Micr Infec Dis 86: 470–471. doi: 10.1016/j.diagmicrobio.2016.09.004
![]() |
[23] | Sohn KM, Cheon S, Kim YS (2016) Can fecal microbiota transplantation (FMT) eradicate fecal colonization with vancomycin-resistant Enterococci (VRE)? Infect Cont Hosp Ep 37: 1519–1521. |
[24] |
Davido B, Batista R, Michelon H, et al. (2017) Is faecal microbiota transplantation an option to eradicate highly drug-resistant enteric bacteria carriage? J Hosp Infect 95: 433–437. doi: 10.1016/j.jhin.2017.02.001
![]() |
[25] | Ponte A, Pinho R, Mota M (2017) Fecal microbiota transplantation: is there a role in the eradication of carbapenem-resistant Klebsiella pneumoniae intestinal carriage? Rev Esp Enferm Dig 109: 392. |
[26] |
Bilinski J, Grzesiowski P, Sorensen N, et al. (2017) Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: results of a prospective, single-center study. Clin Infect Dis 65: 364–370. doi: 10.1093/cid/cix252
![]() |
[27] |
Dias C, Pipa S, Duarte-Ribeiro F, et al. (2018) Fecal microbiota transplantation as a potential way to eradicate multiresistant microorganisms. IDCases 13: e00432. doi: 10.1016/j.idcr.2018.e00432
![]() |
[28] |
Safdar N, Sengupta S, Musuuza JS, et al. (2017) Status of the prevention of multidrug-resistant organisms in international settings: a survey of the society for healthcare epidemiology of america research network. Infect Cont Hosp Ep 38: 53–60. doi: 10.1017/ice.2016.242
![]() |
[29] |
Kelly CR, Khoruts A, Staley C, et al. (2016) Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann Intern Med 165: 609–616. doi: 10.7326/M16-0271
![]() |
[30] |
Kozich JJ, Westcott SL, Baxter NT, et al. (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microb 79: 5112–5120. doi: 10.1128/AEM.01043-13
![]() |
[31] |
Caporaso JG, Kucznyski J, Stombaugh J, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336. doi: 10.1038/nmeth.f.303
![]() |
[32] | Taur Y, Xavier J, Lipuma L, et al. (2012) Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 5: 905–914. |
[33] |
Moayyedi P, Yuan Y, Baharith H, et al. (2017) Faecal microbiota transplantation for Clostridium difficile-associated diarrhoea: a systematic review of randomised controlled trials. Med J Aust 207: 166–172. doi: 10.5694/mja17.00295
![]() |
[34] | Burns LJ, Dubois N, Smith MB, et al. (2015) 499 donor recruitment and eligibility for fecal microbiota transplantation: results from an international public stool bank. Gastroenterology 48: 96–97. |
[35] |
Halpin AL, de Man TJB, Kraft CS, et al. (2016) Intestinal microbiome disruption in patients in a long-term acute care hospital: A case for development of microbiome disruption indices to improve infection prevention. Am J Infect Control 44: 830–836. doi: 10.1016/j.ajic.2016.01.003
![]() |
[36] |
Staley C, Kaiser T, Vaughn BP, et al. (2018) Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation. Microbiome 6: 166. doi: 10.1186/s40168-018-0549-6
![]() |
[37] |
Chang JY, Antonopoulos DA, Kaira A, et al. (2008) Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis 197: 435–438. doi: 10.1086/525047
![]() |
[38] |
Fuentes S, van Nood E, Tims S, et al. (2014) Reset of a critically disturbed microbial ecosystem: faecal transplant in recurrent Clostridium difficile infection. ISME J 8: 1621–1633. doi: 10.1038/ismej.2014.13
![]() |
[39] |
Ubeda C, Taur Y, Jenq R, et al. (2010) Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120: 4332–4341. doi: 10.1172/JCI43918
![]() |
[40] | Lebreton F, Willems RJL, Gilmore MS (2014) Enterococcus Diversity, Origins in Nature, and Gut Colonization, In: Enterococci: From Commensals to Leading Causes of Drug Resistant Infection, 4 Eds., Boston: Massachusetts Eye and Ear Infirmary. |
[41] | Patel R, Piper KE, Rouse MS, et al. (1998) Determination of 16S rRNA sequences of Enterococci and application to species identification of nonmotile Enterococcus gallinarum isolates. J Clin Microbiol 36: 3399–3407. |
[42] |
Huttenhower C, Gevers D, Knight R, et al. (2012) Structure, function and diversity of the healthy human microbiome. Nature 486: 207–214. doi: 10.1038/nature11234
![]() |
[43] |
Kotlowski R, Bernstein CN, Sepehri S, et al. (2007) High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut 56: 669–675. doi: 10.1136/gut.2006.099796
![]() |
[44] |
Buffie CG, Jarchum I, Equinda M, et al. (2012) Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 80: 62–73. doi: 10.1128/IAI.05496-11
![]() |
[45] |
Desai MS, Seekatz AM, Koropatkin NM, et al. (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167: 1339–1353. doi: 10.1016/j.cell.2016.10.043
![]() |
[46] | Wu W, Sun M, Chen F, et al. (2016) Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol 10: 946–956. |
[47] |
Goverse G, Molenaar R, Maci L, et al. (2017) Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. J Immunol 198: 2172–2181. doi: 10.4049/jimmunol.1600165
![]() |
[48] |
Faber F, Bäumler AJ (2014) The impact of intestinal inflammation on the nutritional environment of the gut microbiota. Immunol Lett 162: 48–53. doi: 10.1016/j.imlet.2014.04.014
![]() |
[49] | Lopez CA, Winter SE, Rivera-Chavez F, et al. (2012) Phage-mediated acquisition of a type III secreted effector protein boosts growth of Salmonella by nitrate respiration. Mbio 3: e00143-12. |
[50] | Winter SE, Winter MG, Xavier MN, et al. (2013) Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339: 708–711. |
[51] |
Thiennimitr P, Winter SE, Winter MG, et al. (2011) Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. P Natl Acad Sci USA 108: 17480–17485. doi: 10.1073/pnas.1107857108
![]() |
[52] |
Fujitani S, George WL, Morgan MA, et al. (2011) Implications for vancomycin-resistant Enterococcus colonization associated with Clostridium difficile infections. Am J Infect Control 39: 188–193. doi: 10.1016/j.ajic.2010.10.024
![]() |
[53] | Sangster W, Hegarty JP, Schieffer KM, et al. (2016) Bacterial and fungal microbiota changes distinguish C. difficile infection from other forms of diarrhea: results of a prospective inpatient study. Front Microbiol 7: 789. |
[54] |
Horvat S, Mahnic A, Breskvar M, et al. (2017) Evaluating the effect of Clostridium difficile conditioned medium on fecal microbiota community structure. Sci Rep 7: 16448. doi: 10.1038/s41598-017-15434-1
![]() |
[55] |
Papa E, Docktor M, Smillie C, et al. (2012) Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS One 7: e39242. doi: 10.1371/journal.pone.0039242
![]() |
1. | Jayanta Kumar Ghosh, Prahlad Majumdar, Uttam Ghosh, Qualitative analysis and optimal control of an SIR model with logistic growth, non-monotonic incidence and saturated treatment, 2021, 16, 0973-5348, 13, 10.1051/mmnp/2021004 | |
2. | Puspa Eosina, Aniati Murni Arymurthy, Adila Alfa Krisnadhi, A Non-Uniform Continuous Cellular Automata for Analyzing and Predicting the Spreading Patterns of COVID-19, 2022, 6, 2504-2289, 46, 10.3390/bdcc6020046 | |
3. | Zhicheng Zheng, Wei Shen, Yang Li, Yaochen Qin, Lu Wang, Spatial equity of park green space using KD2SFCA and web map API: A case study of zhengzhou, China, 2020, 123, 01436228, 102310, 10.1016/j.apgeog.2020.102310 | |
4. | Eric Innocenti, Marielle Delhom, Corinne Idda, Pierre-Regis Gonsolin, Dominique Urbani, 2021, Agent-Based Modelling of the spread of COVID-19 in Corsica, 978-1-7281-9048-8, 1, 10.1109/SSCI50451.2021.9660184 | |
5. | Abhi Chakraborty, K.M. Ariful Kabir, Enhancing vaccination strategies for epidemic control through effective lockdown measures, 2024, 10, 24058440, e32308, 10.1016/j.heliyon.2024.e32308 | |
6. | Wei Wei, Hongjun Gao, Qiyong Cao, Synchronization of differential equations driven by linear multiplicative fractional Brownian motion, 2024, 14, 2158-3226, 10.1063/5.0186441 | |
7. | Pritam Saha, Kalyan Kumar Pal, Uttam Ghosh, Pankaj Kumar Tiwari, Dynamic analysis of deterministic and stochastic SEIR models incorporating the Ornstein–Uhlenbeck process, 2025, 35, 1054-1500, 10.1063/5.0243656 |